1/5/23, 12:46 AM 15/85 Security

Reversing Firmware- How does that
work?

March 8, 2017

Last week | wrote about a backdoor vulnerability in a device used by
spammers. The team at Spider Labs
(https://www.trustwave.com/Resources/SpiderLabs-
Blog/Undocumented-Backdoor-Account-in-DBLTek-GolP/)
discovered it by reverse engineering a piece of firmware. If you've
never seen anything like that before, here’s a quick walk-through
that'll take a piece of firmware from a binary file to an extracted file
system you can explore on your own. Let's get started!

1.) Download the firmware

Download the firmware from D-Link
(http://support.dlink.com/Productinfo.aspx?m=DCS-932L). This
walkthrough used hardware version A, firmware version 1.14.04
(ftp://ftp2.dlink.com/PRODUCTS/DCS-932L/REVA/DCS-
932L_REVA_FIRMWARE_1.14.04.ZIP).

D-Link Technical Support - Mozilla Firefox

i)-LinkTechnicalSupport D

@ D sl dlink.com/Proc
.
D-Link TechSupport
Buiding Networks fo Peopl
Product Registration Warran ty Documen t DCS-932L
_: @ Cloud Camera 1100, Day/Night Network
@j Cloud Camera
oﬂ First Time Setting Up? \ Contact Support @

For access to the right downloads, please select the correct hardware revision for your device

Type Date
Frmware (1.14.04) - 11/10/16
Quick Install Guide (1.00) 07/16/13
User Manual (1.00) 07/16/13
Datasheet (1.00) 09/10/13
D-View Cam (3.6.0) 04/25/14

Setup Wizard Windows (1.04.10 Win) v 09/28/15

2.) Unzip the archive

1585security.com/Firmware-Reversing-1/ 1/6

https://www.trustwave.com/Resources/SpiderLabs-Blog/Undocumented-Backdoor-Account-in-DBLTek-GoIP/
http://support.dlink.com/ProductInfo.aspx?m=DCS-932L
ftp://ftp2.dlink.com/PRODUCTS/DCS-932L/REVA/DCS-932L_REVA_FIRMWARE_1.14.04.ZIP

1/5/23, 12:46 AM 15/85 Security

Unzip the archive with unzip DCS-932L_REVA_FIRMWARE_1.14.04.ZIP .
You should see two files in there: a PDF, and a .bin (binary) file.

File Edit View Search Terminal Help

:~/project# unzip DCS-932L_REVA FIRMWARE 1.14.04.ZIP
Archive: DCS-932L REVA_FIRMWARE 1.14.04.ZIP

inflating: DCS-932L_REVA RELEASENOTES_ 1.14.04_EN.PDF
inflating: dcs9321 _v1.14.04.bin
:~/project# I

3.) Try toread the binary file

(Optional) Binary files are formatted for computers- not human eyes.
Try reading that binary like you would a text file by running head
dcs9321 v1.14.04.bin .

File Edit View Search Terminal Help
:~/project# head dcs9321_v1.14.04.bin

TR HRERETAE]

He: e HeHiT el Hal: el el el

BT A RO I
“Seicnics

@

$' X [3PK| 5G6RHGREEG

.

z;@"@a
@?Z.;@Emm | XOER66H G pOTE\
zg@“@

@$Ee[gm

:~/project#

4.) Use strings to see printable characters

Try running strings -10 dcs9321_v1.14.04.bin|head to search the
file for printable characters. The -1e tells strings to search for 10 or
more printable characters in arow, and | head cuts the noise down
by only showing you the first 10 lines things it found.

File Edit View Search Terminal Help
:~/project# strings -10 dcs9321 v1.14.04.bin|head

NetReceive
send_syn_ack

send_reset

:~/project#

5.) Use binwalk to orient yourself

Now it's time to use binwalk, a tool specifically designed for reverse
engineering. It will parse the file and return a table of contents
based on what it finds. Try running binwalk dcs9321_v1.14.04.bin.

1585security.com/Firmware-Reversing-1/ 2/6

1/5/23, 12:46 AM

15/85 Security

Each “hit” binwalk gets is recorded on a single line, and comes in
three parts:

¢ A file location in decimal format
e A file location in hexadecimal format
* A description of what was found at that location

Looking at the first line, we see that binwalk found a U-Boot string
at 106352. U-Boot is a popular bootloader. When a device is
powered on, it's the bootloader’s job to load up the operating
system. And sure enough, at 327680, we can see a ulmage header
telling us that we'll find the OS kernel image in a LZMA archive that
starts at 327744. If you're having a hard time following it, | cleaned
up the formatiting in step 6.

File Edit View Search Terminal Help
:~/project# binwalk dcs9321_v1.14.04.bin

HEXADECIMAL DESCRIPTION

0x19F70 U-Boot version string, "U-Boot 1.1.3"

0x1A140 CRC32 polynomial table, little endian

0x1E680 HTML document header

Ox1E7DA HTML document footer

Ox1E7E4 HTML document header

Ox1E8A4 HTML document footer

0x1E94C HTML document header

Ox1ECO1 HTML document footer

0x50000 uImage header, header size: 64 bytes, header CRC: ©x88345E96, created: 2016-09-09 13:52:27, image size: 380495
8 bytes, Data Address: 0x80000000, Entry Point: 0x803B8000, data CRC: 0x531E94DE, 0S: Linux, CPU: MIPS, image type: 0S Kernel Image, compres
sion type: lzma, image name: "Linux Kernel Image"
327744 0x50040 LZMA compressed data, properties: 0x5D, dictionary size: 33554432 bytes, uncompressed size: 6558763 bytes

:~/project# ||

6.) Carve out the LZMA archive

Before we can unpack that LZMA archive and dig through it, we need
to carve it out of the larger binary. We'll do that by running: dd
if=dcs9321_v1.14.04.bin skip=327744 bs=1 of=kernel.lzma

(Optional) You can check to ensure the LZMA archive came through
OK by running file kernel.lzma .

1585security.com/Firmware-Reversing-1/

3/6

1/5/23, 12:46 AM

15/85 Security

File Edit View Search Terminal Help

0
0x1A140 CRC32 polynomial table, little endian

0x1E680 HTML document header
Ox1E7DA HTML document footer
Ox1E7E4 HTML document header
Ox1E8A4 HTML document footer
0x1E94C HTML document header
0x1ECO1 HTML document footer
0x50000 uImage header, header size: 64 bytes,
header CRC: 0x88345E96,
created: 2016-09-09 13:52:27,
image size: 3804958 bytes,
Data Address: 0x80000000,
Entry Point: ©x803B8000,
data CRC: 0x531E94DE,
0S: Linux, CPU: MIPS,
image type: 0S Kernel Image,
compression type: lzma,
image name: "Linux Kernel Image”
0x50040 LZMA compressed data, properties: 0x5D,
dictionary size: 33554432 bytes,
uncompressed size: 6558763 bytes
:~/project# dd if=dcs9321 v1.14.04.bin skip=327744 bs=1 of=LinuxKernelImage.lzma
3866560+0 records in
3866560+0 records out
3866560 bytes (3.9 MB, 3.7 MiB) copied, 5.07149 s, 762 kB/s
:~/project# file LinuxKernelImage.lzma
LinuxKernelImage.lzma: LZMA compressed data, non-streamed, size 6558763
:~/project# ||

7.) Another data file...

Now you can unpack that LZMA archive by running unlzma
kernel.lzma.To learn what we've unpacked let's use the file
command again by running file kernel ..looks like we've got
another data file.

:~/project/dlink# unlzma kernel.lzma
:~/project/dlink# file kernel

kernel: déta
:~/project/dlink# I

8.) Time torinse...

Just like before, we're going to run binwalk against the data file with

binwalk kernel.

There's a ton of output there, including another LZMA archive at
4038656 . If you scroll up to the top of the binwalk output, you'll also
see the Linux kernel version.

1585security.com/Firmware-Reversing-1/

4/6

1/5/23, 12:46 AM

15/85 Security

File Edit View Search Terminal Help
ize < 1530failed

3463610
k->pRxPacketfailed

0x34DA22 Unix path: /net/wireless/rt2860v2_sta/.
0x34DBC2 Unix path: /net/wireless/rt2860v2_sta/.
0x34DDOE Unix path: /net/wireless/rt2860v2_sta/.

0x34DE3E Unix path: /net/wireless/rt2860v2_sta/.

ixLen < IFNAMSIZ)failed
3464878

tNameLen + prefixLen) < IFNAMSIZ)failed
0x351AF2 Unix path:

3480306

r >= -7)failed

3484022

ue == 0x00)failed

3484126
0x04)failed

0x353072 Unix path: /net/wireless/rt2860v2_sta/.

valuefailed
3486762
!= NULLfailed

0x353596 Unix path: /net/wireless/rt2860v2_sta/.

0x34D9BA Unix path: /net/wireless/rt2860v2_sta/.

0x34DEAE Unix path: /net/wireless/rt2860v2_sta/.
net/wireless/rt2860v2_sta/.
0x352976 Unix path: /net/wireless/rt2860v2_sta/.

6x3529DE Unix path: /net/wireless/rt2860v2_sta/.

0x35342A Unix path: /net/wireless/rt2860v2_sta/.

./rt2860v2/0s/linux/rt_linux.
./rt2860v2/0s/linux/rt_linux.
./rt2860v2/0s/linux/rt_linux.
./rt2860v2/0s/linux/rt_linux.
./rt2860v2/0s/linux/rt_linux.
./rt2860v2/0s/linux/rt_linux.
./rt2860v2/0s/linux/rt_ate.c

./rt2860v2/0s/linux/rt_ate.c

./rt2860v2/os/linux/rt_ate.c:
./rt2860v2/os/linux/rt_ate.c:

./rt2860v2/os/linux/rt_ate.c:

0x3546D0 Unix path: /etc/Wireless/RT2860STA/RT2860STA.dat

0x3685C3

0x3A1A20
0x3DA00O
: 8072704 bytes

CRC32 polynomial table, little e

roject# I

9.) ...And repeat.

Neighborly text, "neighbor %.2x%.2x.%.2X:%.2X:

:%d

:%d

:%d

:%d

:%d

c:

%d assert

%d
%d
%d
%d

./rt2860v2/0s/linux/rt_pci_rbus.

.2X:%.2X:%.2X:%.2x lost

%d

assert

assert

assert

assert

assert

assert

assert

assert

assert

assert

pRxB1
pHead
pTask
pNetD
(pref
((slo

(TxPowe
(BbpVal
(BbpVal
bbp_dat
pRaCfg

c:%d assert pA

on port %d(%s)

LZMA compressed data, properties: 0x5D, dictionary size: 1048576 bytes, uncompressed

Now let's extract that LZMA we saw in there. We'll use dd if=kernel
skip=4038656 bs=1 of=mystery.lzma, and unpack the results with

unlzma mystery.lzma

File Edit View Search Terminal Help

:~/project# dd if=kernel skip=4038656 bs=1 of=mystery.lzma
2520107+0 records in
2520107+0 records out

2520107 bytes (2.5 MB, 2.4 MiB) copied, 3.18272 s, 792 kB/s
/project# file mystery.lzma

mystery.lém : LZMA compressed data, non-streamed, size 8072704

roject# i

10.) The CPIO archive

Run file mystery.It's a CPIO archive, which is yet another archive
format...and it's the kind of place you're likely to find the file system.

File Edit View Search Terminal Help
:~/project# file mystery
mystery: ASCII cpio archive (SVR4 with no CRC)
project# mkdir cpio; cd cpio

H roject/cpio# cpio -idm --no-absolute-filenames < ../mystery
cpio: Removing leading ‘/' from member names
15767 blocks

:~/project/cpio#

Create a directory to unpack the CPIO archive and get in there with

mkdir cpio; cd cpio.Now unpackthe CPIO with cpio -idm --no-

absolute-filenames < ../mystery.

11.) Explore the file system

1585security.com/Firmware-Reversing-1/

5/6

1/5/23, 12:46 AM

If everything went well, congrats! The file system
you're able to explore it on your own.

File Edit View Search Terminal Help
1s -1

:~/project/cpio#

501
501
501
501
501
501
501
501
501
501
501
501
501
501
501
501

2
3
2
9
2
1
4
2
2
2
2
2
2
2
5
2

501
501
501
501
501
501
501
501
501
501
501
501
501
501
501
501

4096
4096
4096
4096
4096

11
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096

Apr
Apr
Apr
Apr
Sep
Apr
Apr
Sep
Sep
Apr
Sep
Apr
Sep
Sep
Apr
Sep

project/cpio# I

1585security.com/Firmware-Reversing-1/

23
23
23
23

9

bin

dev

etc
etc_ro
home
init -> bin/busybox
lib
media
mnt
mydlink
proc
shin
sys

tmp

usr

var

15/85 Security

is unpacked, and

6/6

