
http://www.cambridge.org/9780521876582

Quantum Computer Science
An Introduction

In the 1990s it was realized that quantum physics has some
spectacular applications in computer science. This book is a concise
introduction to quantum computation, developing the basic elements
of this new branch of computational theory without assuming any
background in physics. It begins with a novel introduction to the
quantum theory from a computer-science perspective. It illustrates
the quantum-computational approach with several elementary
examples of quantum speed-up, before moving to the major
applications: Shor’s factoring algorithm, Grover’s search algorithm,
and quantum error correction.

The book is intended primarily for computer scientists who know
nothing about quantum theory but would like to learn the elements of
quantum computation either out of curiosity about this new
paradigm, or as a basis for further work in the subject. It will also be
of interest to physicists who want to learn the theory of quantum
computation, and to physicists and philosophers of science interested
in quantum foundational issues. It evolved during six years of teaching
the subject to undergraduates and graduate students in computer
science, mathematics, engineering, and physics, at Cornell University.

N. DAVID MERMIN is Horace White Professor of Physics Emeritus at
Cornell University. He has received the Lilienfeld Prize of the
American Physical Society and the Klopsteg award of the American
Association of Physics Teachers. He is a member of the U.S. National
Academy of Sciences and the American Academy of Arts and
Sciences. Professor Mermin has written on quantum foundational
issues for several decades, and is known for the clarity and wit of his
scientific writings. Among his other books are Solid State Physics
(with N. W. Ashcroft, Thomson Learning 1976), Boojums all the Way
Through (Cambridge University Press 1990), and It’s about Time:
Understanding Einstein’s Relativity (Princeton University Press 2005).

“This is one of the finest books in the rapidly growing field of quan-
tum information. Almost every page contains a unique insight or a
novel interpretation. David Mermin has once again demonstrated his
legendary pedagogical skills to produce a classic.”

Lov Grover, Bell Labs

“Mermin’s book will be a standard for instruction and reference for
years to come. He has carefully selected, from the mountain of knowl-
edge accumulated in the last 20 years of research in quantum infor-
mation theory, a manageable, coherent subset that constitutes a com-
plete undergraduate course. While selective, it is in no sense “watered
down”; Mermin moves unflinchingly through difficult arguments in
the Shor algorithm, and in quantum error correction theory, providing
invaluable diagrams, clear arguments, and, when necessary, extensive
appendices to get the students successfully through to the end. The
book is suffused with Mermin’s unique knowledge of the history of
modern physics, and has some of the most captivating writing to be
found in a college textbook.”

David DiVincenzo, IBM T. J. Watson Research Center

“Mermin’s book is a gentle introduction to quantum computation espe-
cially aimed at an audience of computer scientists and mathematicians.
It covers the basics of the field, explaining the material clearly and con-
taining lots of examples. Mermin has always been an entertaining and
comprehensible writer, and continues to be in this book. I expect it to
become the definitive introduction to this material for non-physicists.”

Peter Shor, Massachusetts Institute of Technology

“Textbook writers usually strive for a streamlined exposition, smooth-
ing out the infelicities of thought and notation that plague any field’s
early development. Fortunately, David Mermin is too passionate and
acute an observer of the cultural side of science to fall into this bland-
ness. Instead of omitting infelicities, he explains and condemns them,
at the same time using his experience of having taught the course many
times to nip nascent misunderstandings in the bud. He celebrates the
field’s mongrel origin in a shotgun wedding between classical com-
puter scientists, who thought they knew the laws of information, and
quantum physicists, who thought information was not their job. Dif-
ferences remain: we hear, for example, why physicists love the Dirac
notation and mathematicians hate it. Worked-out examples and exer-
cises familiarize students with the necessary algebraic manipulations,
while Mermin’s lucid prose and gentle humor cajole them toward a
sound intuition for what it all means, not an easy task for a subject
superficially so counterintuitive.”

Charles Bennett, IBM T. J. Watson Research Center

Quantum Computer Science
An Introduction

N. David Mermin
Cornell University

In memory of my brother, Joel Mermin

You would have enjoyed it.

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-87658-2

ISBN-13 978-0-511-34258-5

© N. D. Mermin 2007

2007

Information on this title: www.cambridge.org/9780521876582

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

ISBN-10 0-511-34258-6

ISBN-10 0-521-87658-3

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

eBook (NetLibrary)

eBook (NetLibrary)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521876582

Contents

Preface page xi
A note on references xv

1 Cbits and Qbits 1
1.1 What is a quantum computer? 1
1.2 Cbits and their states 3
1.3 Reversible operations on Cbits 8
1.4 Manipulating operations on Cbits 11
1.5 Qbits and their states 17
1.6 Reversible operations on Qbits 19
1.7 Circuit diagrams 21
1.8 Measurement gates and the Born rule 23
1.9 The generalized Born rule 28
1.10 Measurement gates and state preparation 30
1.11 Constructing arbitrary 1- and 2-Qbit states 32
1.12 Summary: Qbits versus Cbits 34

2 General features and some simple examples 36
2.1 The general computational process 36
2.2 Deutsch’s problem 41
2.3 Why additional Qbits needn’t mess things up 46
2.4 The Bernstein–Vazirani problem 50
2.5 Simon’s problem 54
2.6 Constructing Toffoli gates 58

3 Breaking RSA encryption 63
3.1 Period finding, factoring, and cryptography 63
3.2 Number-theoretic preliminaries 64
3.3 66
3.4 Quantum period finding: preliminary remarks 68

3.6 Eliminating the 2-Qbit gates 76
3.7 Finding the period 79

3.5 The quantum Fourier transform 71

RSA encryption

viii CONTENTS

3.8 Calculating the periodic function 83
3.9 The unimportance of small phase errors 84
3.10 Period finding and factoring 86

4 Searching with a quantum computer 88
4.1 The nature of the search 88
4.2 The Grover iteration 89
4.3 How to construct W 94
4.4 Generalization to several special numbers 96
4.5 Searching for one out of four items 98

5 Quantum error correction 99
5.1 The miracle of quantum error correction 99
5.2 A simplified example 100
5.3 The physics of error generation 109
5.4 Diagnosing error syndromes 113
5.5 The 5-Qbit error-correcting code 117
5.6 The 7-Qbit error-correcting code 121
5.7 Operations on 7-Qbit codewords 124
5.8 A 7-Qbit encoding circuit 127
5.9 A 5-Qbit encoding circuit 128

6 Protocols that use just a few Qbits 136
6.1 Bell states 136
6.2 Quantum cryptography 137
6.3 Bit commitment 143
6.4 Quantum dense coding 146
6.5 Teleportation 149
6.6 The GHZ puzzle 154

Appendices 159
A. Vector spaces: basic properties and Dirac notation 159
B. Structure of the general 1-Qbit unitary transformation 168
C. Structure of the general 1-Qbit state 173
D. Spooky action at a distance 175
E. Consistency of the generalized Born rule 181
F. Other aspects of Deutsch’s problem 183
G. The probability of success in Simon’s problem 187
H. One way to make a cNOT gate 189
I. A little elementary group theory 193
J. Some simple number theory 195
K. Period finding and continued fractions 197
L. Better estimates of success in period finding 201

CONTENTS ix

M. Factoring and period finding 203
N. Shor’s 9-Qbit error-correcting code 207
O. A circuit-diagrammatic treatment of the 7-Qbit code 210
P. On bit commitment 216

Index 218

Preface

It was almost three quarters of a century after the discovery of quan-
tum mechanics, and half a century after the birth of information theory
and the arrival of large-scale digital computation, that people finally
realized that quantum physics profoundly alters the character of infor-
mation processing and digital computation. For physicists this devel-
opment offers an exquisitely different way of using and thinking about
the quantum theory. For computer scientists it presents a surprising
demonstration that the abstract structure of computation cannot be
divorced from the physics governing the instrument that performs
the computation. Quantum mechanics provides new computational
paradigms that had not been imagined prior to the 1980s and whose
power was not fully appreciated until the mid 1990s.

In writing this introduction to quantum computer science I have
kept in mind readers from several disciplines. Primarily I am address-
ing computer scientists, electrical engineers, or mathematicians who
may know little or nothing about quantum physics (or any other kind
of physics) but who wish to acquire enough facility in the subject to be
able to follow the new developments in quantum computation, judge for
themselves how revolutionary they may be, and perhaps choose to par-
ticipate in the further development of quantum computer science. Not
the least of the surprising things about quantum computation is that
remarkably little background in quantum mechanics has to be acquired
to understand and work with its applications to information process-
ing. Familiarity with a few fundamental facts about finite-dimensional
vector spaces over the complex numbers (summarized and reviewed in
Appendix A) is the only real prerequisite.

One of the secondary readerships I have in mind consists of physi-
cists who, like myself – I am a theorist who has worked in statistical
physics, solid-state physics, low-temperature physics, and mathemat-
ical physics – know very little about computer science, but would like
to learn about this extraordinary new application of their discipline.
I stress, however, that my subject is quantum computer science, not
quantum computer design. This is a book about quantum computa-
tional software – not hardware. The difficult question of how one might
actually build a quantum computer is beyond its scope.

xii PREFACE

Another secondary readership is made up of those philosophers and
physicists who – again like myself – are puzzled by so-called founda-
tional issues: what the strange quantum formalism implies about the
nature of the world that it so accurately describes. By applying quan-
tum mechanics in an entirely new way – and especially by applying it
to the processing of knowledge – quantum computation gives a new
perspective on interpretational questions. While I rarely address such
matters explicitly, for purely pedagogical reasons my presentation is
suffused with a perspective on the quantum theory that is very close to
the venerable but recently much reviled Copenhagen interpretation.
Those with a taste for such things may be startled to see how well
quantum computation resonates with the Copenhagen point of view.
Indeed, it had been my plan to call this book Copenhagen Computa-
tion until the excellent people at Cambridge University Press and my
computer-scientist friends persuaded me that virtually no members of
my primary readership would then have had any idea what it was about.

Several years ago I mentioned to a very distinguished theoretical physi-
cist that I spent the first four lectures of a course in quantum computa-
tion giving an introduction to quantum mechanics for mathematically
literate people who knew nothing about quantum mechanics, and quite
possibly little if anything about physics. His immediate response was
that any application of quantum mechanics that can be taught after only
a four-hour introduction to the subject cannot have serious intellectual
content. After all, he remarked, it takes any physicist many years to
develop a feeling for quantum mechanics.

It’s a good point. Nevertheless computer scientists and mathemati-
cians with no background in physics have been able quickly to learn
enough quantum mechanics to understand and make major contri-
butions to the theory of quantum computation. There are two main
reasons for this.

First of all, a quantum computer – or, more accurately, the abstract
quantum computer that one hopes someday to be able to embody in ac-
tual hardware – is an extremely simple example of a physical system. It
is discrete, not continuous. It is made up out of a finite number of units,
each of which is the simplest possible kind of quantum-mechanical sys-
tem, a so-called two-state system, whose behavior, as we shall see, is
highly constrained and easily specified. Much of the analytical com-
plexity of learning quantum mechanics is connected with mastering
the description of continuous (infinite-state) systems. By restricting
attention to collections of two-state systems (or even d -state systems
for finite d) one can avoid much suffering. Of course one also loses
much wisdom, but hardly any of it – at least at this stage of the art – is
relevant to the basic theory of quantum computation.

Second, and just as important, the most difficult part of learning
quantum mechanics is to get a good feeling for how the formalism

PREFACE xiii

can be applied to actual phenomena. This almost invariably involves
formulating oversimplified abstract models of real physical systems, to
which the quantum formalism can then be applied. The best physicists
have an extraordinary intuition for what features of the phenomena
are essential and must be represented in a model, and what features
are inessential and can be ignored. It takes years to develop such intu-
ition. Some never do. The theory of quantum computation, however,
is entirely concerned with an abstract model – the easy part of the
problem.

To understand how to build a quantum computer, or even to study
what physical systems are promising candidates for realizing such a
device, you must indeed have many years of experience in quantum
mechanics and its applications under your belt. But if you only want to
know what such a device is capable in principle of doing once you have it,
then there is no reason to get involved in the really difficult physics of the
subject. Exactly the same thing holds for ordinary classical computers.
One can be a masterful practitioner of computer science without having
the foggiest notion of what a transistor is, not to mention how it works.

So while you should be warned that the subset of quantum mechanics
you will acquire from this book is extremely focused and quite limited
in its scope, you can also rest assured that it is neither oversimplified nor
incomplete, when applied to the special task for which it is intended.

I might note that a third impediment to developing a good intuition
for quantum physics is that in some ways the behavior implied by
quantum mechanics is highly counterintuitive, if not downright weird.
Glimpses of such strange behavior sometimes show up at the level
of quantum computation. Indeed, for me one of the major appeals of
quantum computation is that it affords a new conceptual arena for
trying to come to a better understanding of quantum weirdness. When
opportunities arise I will call attention to some of this strange behavior,
rather than (as I easily could) letting it pass by unremarked upon and
unnoticed.

The book evolved as notes for a course of 28 one-hour lectures on quan-
tum computation that I gave six times between 2000 and 2006 to a di-
verse group of Cornell University undergraduates, graduate students,
and faculty, in computer science, electrical engineering, mathematics,
physics, and applied physics. With so broad an audience, little com-
mon knowledge could be assumed. My lecture notes, as well as my own
understanding of the subject, repeatedly benefited from comments
and questions in and after class, coming from a number of different
perspectives. What made sense to one of my constituencies was often
puzzling, absurd, or irritatingly simple-minded to others. This final
form of my notes bears little resemblance to my earliest versions, hav-
ing been improved by insightful remarks, suggestions, and complaints
about everything from notation to number theory.

xiv PREFACE

In addition to the 200 or so students who passed through P481-P681-
CS483, I owe thanks to many others. Albert J. Sievers, then Director
of Cornell’s Laboratory of Atomic and Solid State Physics, started
me thinking hard about quantum computation by asking me to put
together a two-week set of introductory lectures for members of our
laboratory, in the Fall of 1999. So many people showed up from all over
the university that I decided it might be worth expanding this sur-
vey into a full course. I’m grateful to two Physics Department chairs,
Peter Lepage and Saul Teukolsky, for letting me continue teaching
that course for six straight years, and to the Computer Science De-
partment chair, Charlie van Loan, for support, encouragement, and
a steady stream of wonderful students. John Preskill, though he may
not know it, taught me much of the subject from his superb online
Caltech lecture notes. Charles Bennett first told me about quantum
information processing, back when the term might not even have been
coined, and he has always been available as a source of wisdom and clar-
ification. Gilles Brassard has on many occasions supplied me with help
from the computer-science side. Chris Fuchs has been an indispens-
able quantum-foundational critic and consultant. Bob Constable made
me, initially against my will, a certified Cornell Information Scientist
and introduced me to many members of that excellent community.
But most of all, I owe thanks to David DiVincenzo, who collaborated
with me on the 1999 two-week LASSP Autumn School and has acted
repeatedly over the following years as a sanity check on my ideas, an
indispensable source of references and historical information, a patient
teacher, and an encouraging friend.

A note on references

Quantum Computer Science is a pedagogical introduction to the basic
structure and procedures of the subject – a quantum-computational
primer. It is not a historical survey of the development of the field.
Many of these procedures are named after the people who first put
them forth, but although I use their names, I do not cite the original
papers unless they add something to my own exposition. This is be-
cause, not surprisingly, work done since the earliest papers has led to
clearer expositions of those ideas. I learned the subject myself almost
exclusively from secondary, tertiary, or even higher-order sources, and
then reformulated it repeatedly in the course of teaching it for six years.

On the few occasions when I do cite a paper it is either because
it completes an exposition that I have only sketched, or because the
work has not yet become identified in the field with the name(s) of the
author(s) and I wanted to make clear that it was not original with me.

Readers interested in hunting down earlier work in the field can
begin (and in most cases conclude) their search at the quantum-physics
subdivision of the Cornell (formerly Los Alamos) E-print Archive,
http://arxiv.org/archive/quant-ph, where most of the
important papers in the field have been and are still being posted.

Chapter 1

Cbits and Qbits

1.1 What is a quantum computer?

It is tempting to say that a quantum computer is one whose operation
is governed by the laws of quantum mechanics. But since the laws of
quantum mechanics govern the behavior of all physical phenomena,
this temptation must be resisted. Your laptop operates under the laws
of quantum mechanics, but it is not a quantum computer. A quantum
computer is one whose operation exploits certain very special transfor-
mations of its internal state, whose description is the primary subject of
this book. The laws of quantum mechanics allow these peculiar trans-
formations to take place under very carefully controlled conditions.

In a quantum computer the physical systems that encode the indi-
vidual logical bits must have no physical interactions whatever that are
not under the complete control of the program. All other interactions,
however irrelevant they might be in an ordinary computer – which
we shall call classical – introduce potentially catastrophic disruptions
into the operation of a quantum computer. Such damaging encoun-
ters can include interactions with the external environment, such as
air molecules bouncing off the physical systems that represent bits, or
the absorption of minute amounts of ambient radiant thermal energy.
There can even be disruptive interactions between the computation-
ally relevant features of the physical systems that represent bits and
other features of those same systems that are associated with computa-
tionally irrelevant aspects of their internal structure. Such destructive
interactions, between what matters for the computation and what does
not, result in decoherence, which is fatal to a quantum computation.

To avoid decoherence individual bits cannot in general be encoded
in physical systems of macroscopic size, because such systems (except
under very special circumstances) cannot be isolated from their own
irrelevant internal properties. Such isolation can be achieved if the bits
are encoded in a small number of states of a system of atomic size, where
extra internal features do not matter, either because they do not exist, or
because they require unavailably high energies to come into play. Such
atomic-scale systems must also be decoupled from their surroundings
except for the completely controlled interactions that are associated
with the computational process itself.

1

2 CB ITS AND QBITS

Two things keep the situation from being hopeless. First, because
the separation between the discrete energy levels of a system on the
atomic scale can be enormously larger than the separation between the
levels of a large system, the dynamical isolation of an atomic system
is easier to achieve. It can take a substantial kick to knock an atom
out of its state of lowest energy. The second reason for hope is the
discovery that errors induced by extraneous interactions can actually
be corrected if they occur at a sufficiently low rate. While error cor-
rection is routine for bits represented by classical systems, quantum
error correction is constrained by the formidable requirement that it
be done without knowing either the original or the corrupted state of
the physical systems that represent the bits. Remarkably, this turns out
to be possible.

Although the situation is therefore not hopeless, the practical diffi-
culties in the way of achieving useful quantum computation are enor-
mous. Only a rash person would declare that there will be no useful
quantum computers by the year 2050, but only a rash person would
predict that there will be. Never mind. Whether or not it will ever
become a practical technology, there is a beauty to the theory of quan-
tum computation that gives it a powerful appeal as a lovely branch of
mathematics, and as a strange generalization of the paradigm of clas-
sical computer science, which had completely escaped the attention of
computer scientists until the 1980s. The new paradigm demonstrates
that the theory of computation can depend profoundly on the physics
of the devices that carry it out. Quantum computation is also a valuable
source of examples that illustrate and illuminate, in novel ways, the
mysterious phenomena that quantum behavior can give rise to.

For computer scientists the most striking thing about quantum com-
putation is that a quantum computer can be vastly more efficient than
anything ever imagined in the classical theory of computational com-
plexity, for certain computational tasks of considerable practical inter-
est. The time it takes the quantum computer to accomplish such tasks
scales up much more slowly with the size of the input than it does in
any classical computer. Much of this book is devoted to examining the
most celebrated examples of this speed-up.

This exposition of quantum computation begins with an introduc-
tion to quantum mechanics, specially tailored for this particular ap-
plication. The quantum-mechanics lessons are designed to give you,
as efficiently as possible, the conceptual tools needed to delve into
quantum computation. This is done by restating the rules of quantum
mechanics, not as the remarkable revision of classical Newtonian me-
chanics required to account for the behavior of matter at the atomic
and subatomic levels, but as a curious generalization of rules describ-
ing an ordinary classical digital computer. By focusing exclusively on
how quantum mechanics enlarges the possibilities for the physical ma-
nipulation of digital information, it is possible to characterize how

1.2 CB ITS AND THE IR STATES 3

the quantum theory works in an elementary and quite concise way,
which is nevertheless rigorous and complete for this special area of
application.

While I assume no prior familiarity with quantum physics (or any
other kind of physics), I do assume familiarity with elementary linear
algebra and, in particular, with the theory of finite-dimensional vector
spaces over the complex numbers. Appendix A summarizes the relevant
linear algebra. It is worth examining even if you are well acquainted
with the mathematics of such vector spaces, since it also provides a
compact summary of the mathematically unconventional language –
Dirac notation – in which linear algebra is couched in all treatments of
quantum computation. Dirac notation is also developed, more infor-
mally, throughout the rest of this chapter.

1.2 Cbits and their states

We begin with an offbeat formulation of what an ordinary classical
computer does. I frame the elementary remarks that follow in a lan-
guage which may look artificial and cumbersome, but is designed to
accommodate the richer variety of things that a computer can do if it
takes full advantage of the possibilities made available by the quantum-
mechanical behavior of its constituent parts. By introducing and apply-
ing the unfamiliar nomenclature and notation of quantum mechanics
in a familiar classical context, I hope to make a little less strange its
subsequent extension to the broader quantum setting.

A classical computer operates on strings of zeros and ones, such
as 110010111011000, converting them into other such strings. Each
position in such a string is called a bit, and it contains either a 0 or a
1. To represent such collections of bits the computer must contain a
corresponding collection of physical systems, each of which can exist
in two unambiguously distinguishable physical states, associated with
the value (0 or 1) of the abstract bit that the physical system represents.
Such a physical system could be, for example, a switch that could be
open (0) or shut (1), or a magnet whose magnetization could be oriented
in two different directions, “up” (0) or “down” (1).

It is a common practice in quantum computer science to use the
same term “bit” to describe the two-state classical system that rep-
resents the value of the abstract bit. But this use of a single term to
characterize both the abstract bit (0 or 1) and the physical system whose
two states represent the two values is a potential source of confusion.
To avoid such confusion, I shall use the term Cbit (“C” for “classi-
cal”) to describe the two-state classical physical system and Qbit to
describe its quantum generalization. This terminology is inspired by
Paul Dirac’s early use of c-number and q-number to describe classical
quantities and their quantum-mechanical generalizations. “Cbit” and

4 CB ITS AND QBITS

“Qbit” are preferable to “c-bit” and “q-bit” because the terms them-
selves often appear in hyphenated constructions.

Unfortunately the preposterous spelling qubit currently holds sway
for the quantum system. The term qubit was invented and first used
in print by the otherwise admirable Benjamin Schumacher.1 A brief
history of the term can be found in the acknowledgments at the end of
his paper. Although “qubit” honors the English (German, Italian, . . .)
rule that q should be followed by u , it ignores the equally powerful
requirement that qu should be followed by a vowel. My guess is that
“qubit” has gained acceptance because it visually resembles an obsolete
English unit of distance, the homonymic cubit. To see its ungainliness
with fresh eyes, it suffices to imagine that Dirac had written qunumber
instead of q-number, or that one erased transparencies and cleaned one’s
ears with Qutips.

Because clear distinctions among bits, Cbits, and Qbits are crucial
in the introduction to quantum computation that follows, I shall use
this currently unfashionable terminology. If you are already addicted
to the term qubit, please regard Qbit as a convenient abbreviation.

To prepare for the extension from Cbits to Qbits, I introduce what
may well strike you as a degree of notational overkill in the discussion
of Cbits that follows. We shall represent the state of each Cbit as a kind
of box, depicted by the symbol | 〉, into which we place the value, 0
or 1, represented by that state. Thus the two distinguishable states of
a Cbit are represented by the symbols |0〉 and |1〉. It is the common
practice to call the symbol |0〉 or |1〉 itself the state of the Cbit, thereby
using the same term to refer to both the physical condition of the
Cbit and the abstract symbol that represents that physical condition.
There is nothing unusual in this. For example one commonly uses the
term “position” to refer to the symbol x that represents the physical
position of an object. I call this common, if little noted, practice to your
attention only because in the quantum case “state” refers only to the
symbol, there being no internal property of the Qbit that the symbol
represents. The subtle relation between Qbits and their state symbol
will emerge later in this chapter.

Along the same lines, we shall characterize the states of the five Cbits
representing 11001, for example, by the symbol

|1〉|1〉|0〉|0〉|1〉, (1.1)

and refer to this object as the state of all five Cbits. Thus a pair of Cbits
can have (or “be in”) any of the four possible states

|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉, (1.2)

1 Benjamin Schumacher, “Quantum coding,” Physical Review A 51,
2738–2747 (1995).

1.2 CB ITS AND THE IR STATES 5

three Cbits can be in any of the eight possible states

|0〉|0〉|0〉, |0〉|0〉|1〉, |0〉|1〉|0〉, |0〉|1〉|1〉, |1〉|0〉|0〉,
|1〉|0〉|1〉, |1〉|1〉|0〉, |1〉|1〉|1〉, (1.3)

and so on.
As (1.4) already makes evident, when there are many Cbits such

products are often much easier to read if one encloses the whole string
of zeros and ones in a single bigger box of the form | 〉 rather than
having a separate box for each Cbit:

|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉. (1.4)

We shall freely move between these two equivalent ways of expressing
the state of several Cbits that represent a string of bits, boxing the whole
string or boxing each individual bit. Whether the form (1.3) or (1.4) is
to be preferred depends on the context.

There is also a third form, which is useful when we regard the zeros
and ones as constituting the binary expansion of an integer. We can
then replace the representations of the 3-Cbit states in (1.4) by the
even shorter forms

|0〉, |1〉, |2〉, |3〉, |4〉, |5〉, |6〉, |7〉. (1.5)

Note that, unlike the forms (1.3) and (1.4), the form (1.5) is ambiguous,
unless we are told that these symbols express states of three Cbits. If
we are not told, then there is no way of telling, for example, whether
|3〉 represents the 2-Cbit state|11〉, the 3-Cbit state|011〉, or the 4-Cbit
state |0011〉, etc. This ambiguity can be removed, when necessary, by
adding a subscript making the number of Cbits explicit:

|0〉3, |1〉3, |2〉3, |3〉3, |4〉3, |5〉3, |6〉3, |7〉3. (1.6)

Be warned, however, that, when there is no need to emphasize how
many Cbits |x〉 represents, it can be useful to use such subscripts for
other purposes. If, for example, Alice and Bob each possess a single
Cbit it can be convenient to describe the state of Alice’s Cbit (if it has
the value 1) by |1〉a , Bob’s (if it has the value 0) by |0〉b , and the joint
state of the two by |1〉a |0〉b or |10〉ab .

Dirac introduced the | 〉 notation (known as Dirac notation) in the
early days of the quantum theory, as a useful way to write and manipu-
late vectors. For silly reasons he called such vectors kets, a terminology
that has survived to this day. In Dirac notation you can put into the box
| 〉 anything that serves to specify what the vector is. If, for example, we
were talking about displacement vectors in ordinary three-dimensional
space, we could have a vector

|5 horizontal centimeters northeast〉. (1.7)

6 CB ITS AND QBITS

In using Dirac notation to express the state of a Cbit, or a collection
of Cbits, I’m suggesting that there might be some utility in thinking
of the states as vectors. Is there? Well, in the case of Cbits, not very
much, but maybe a little. We now explore this way of thinking about
Cbit states, because when we come to the generalization to Qbits, it
becomes absolutely essential to consider them to be vectors – so much
so that the term state is often taken to be synonymous with vector (or,
more precisely, “vector that represents the state”).

We shall briefly explore what one can do with Cbits when one takes
the two states |0〉 and |1〉 of a single Cbit to be represented by two
orthogonal unit vectors in a two-dimensional space. While this is little
more than a curious and unnecessarily elaborate way of describing
Cbits, it is fundamental and unavoidable in dealing with Qbits. Playing
unfamiliar and somewhat silly games with Cbits will enable you to
become acquainted with much of the quantum-mechanical formalism
in a familiar setting.

If you prefer your vectors to be expressed in terms of components,
note that we can represent the two orthogonal states of a single Cbit,
|0〉 and |1〉, as column vectors

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
. (1.8)

In the case of two Cbits the vector space is four-dimensional, with
an orthonormal basis

|00〉, |01〉, |10〉, |11〉. (1.9)

The alternative notation for this basis,

|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉, (1.10)

is deliberately designed to suggest multiplication, since it is, in fact,
a short-hand notation for the tensor product of the two single-Cbit
2-vectors, written in more formal mathematical notation as

|0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉. (1.11)

In terms of components, the tensor product a ⊗ b of an M-component
vector a with components aµ and an N-component vector b with com-
ponents bν is the (MN)-component vector with components indexed
by all the MN possible pairs of indices (µ, ν), whose (µ, ν)th com-
ponent is just the product aµbν . A broader view can be found in the
extended review of vector-space concepts in Appendix A. I shall freely
move back and forth between the various ways (1.9)–(1.11) of writing
the tensor product and their generalizations to multi-Cbit states, using
in each case a form that makes the content clearest.

Once one agrees to regard the two 1-Cbit states as orthogonal unit
vectors, the tensor product is indeed the natural way to represent

1.2 CB ITS AND THE IR STATES 7

multi-Cbit states, since it leads to the obvious multi-Cbit generaliza-
tion of the representation (1.8) of 1-Cbit states as column vectors. If we
express the states |0〉 and |1〉 of each single Cbit as column vectors, then
we can get the column vector describing a multi-Cbit state by repeat-
edly applying the rule for the components of the tensor product of two
vectors. The result is illustrated here for a three-fold tensor product:

(
x0

x1

)
⊗

(
y0

y1

)
⊗

(
z0

z1

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0 y0z0

x0 y0z1

x0 y1z0

x0 y1z1

x1 y0z0

x1 y0z1

x1 y1z0

x1 y1z1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1.12)

On applying this, for example, to the case |5〉3, we have

|5〉3 = |101〉 = |1〉|0〉|1〉 =
(

0
1

)
⊗

(
1
0

)
⊗

(
0
1

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1.13)

If we label the vertical components of the 8-vector on the right
0, 1, . . ., 7, from the top down, then the single nonzero component is
the 1 in position 5 – precisely the position specified by the state vector
in its form on the left of (1.13). This is indeed the obvious multi-Cbit
generalization of the column-vector form (1.8) for 1-Cbit states.

This is quite general: the tensor-product structure of multi-Cbit
states is just what one needs in order for the 2n-dimensional column
vector representing the state |m〉n to have all its entries zero except for
a single 1 in the m th position down from the top.

One can turn this development upside down, taking as one’s starting
point the simple rule that an integer x in the range 0 ≤ x < N is
represented by one of N orthonormal vectors in an N-dimensional
space. One can then pick a basis so that 0 is represented by an N-
component column vector |0〉 that has 0 in every position except for a
1 in the top position, and x is to be represented by an N-component
column vector |x〉 that has 0 in every position except for a 1 in the
position x down from the top. It then follows from the nature of the
tensor product that if N = 2n and x has the binary expansion x =∑n−1

j=0 x j 2 j , then the column vector |x〉n is the tensor product of the n
2-component column vectors |x j 〉:

|x〉n = |xn−1〉 ⊗ |xn−2〉 ⊗ · · · ⊗ |x1〉 ⊗ |x0〉. (1.14)

8 CB ITS AND QBITS

In dealing with n-Cbit states of the form (1.14) we shall identify each
of the n 1-Cbit states, out of which they are composed, by giving the
power of 2 associated with the individual bit that the Cbit represents.
Thus the 1-Cbit state on the extreme right of (1.14) represents Cbit 0,
the state immediately to its left represents Cbit 1, and so on.

This relation between tensor products of vectors and positional
notation for integers is not confined to the binary system. Suppose,
for example, one represents a decimal digit x = 0, 1, . . ., 9 as a 10-
component column vector v(x) with all components 0 except for a
1, x positions down from the top. If the n-digit decimal number
X = ∑n−1

j=0 x j 10 j is represented by the tensor product V = v(xn−1) ⊗
v(xn−2) ⊗ · · · ⊗ v(1) ⊗ v(0), then V will be a 10n-component column vec-
tor with all components 0 except for a 1, x positions down from the
top.

Although the representation of Cbit states by column vectors clearly
shows why tensor products give a natural description of multi-Cbit
states, for almost all other purposes it is better and much simpler to
forget about column vectors and components, and deal directly with
the state vectors in their abstract forms (1.3)–(1.6).

1.3 Reversible operations on Cbits

Quantum computers do an important part of their magic through re-
versible operations, which transform the initial state of the Qbits into
its final form using only processes whose action can be inverted. There
is only a single irreversible component to the operation of a quantum
computer, called measurement, which is the only way to extract useful
information from the Qbits after their state has acquired its final form.
Although measurement is a nontrivial and crucial part of any quantum
computation, in a classical computer the extraction of information from
the state of the Cbits is so conceptually straightforward that it is not
viewed as an inherent part of the computational process, though it is,
of course, a nontrivial concern for those who design digital displays
or printers. Because the only computationally relevant operations on
a classical computer that can be extended to operations on a quantum
computer are reversible, only operations on Cbits that are reversible
will be of interest to us here.

In a reversible operation every final state arises from a unique initial
state. An example of an irreversible operation is ERASE, which forces
a Cbit into the state |0〉 regardless of whether its initial state is |0〉 or
|1〉. ERASE is irreversible in the sense that, given only the final state
and the fact that it was the output of the operation ERASE, there is no
way to recover the initial state.

The only nontrivial reversible operation we can apply to a single Cbit
is the NOT operation, denoted by the symbol X, which interchanges

1.3 REVERS IBLE OPERAT IONS ON CBITS 9

the two states |0〉 and |1〉:
X : |x〉 → |x̃〉; 1̃ = 0, 0̃ = 1. (1.15)

This is sometimes referred to as flipping the Cbit. NOT is reversible
because it has an inverse: applying X a second time brings the state of
the Cbit back to its original form:

X2 = 1, (1.16)

where 1 is the unit (identity) operator. If we represent the two or-
thogonal states of the Cbit by the column vectors (1.8), then we can
express NOT by a linear operator X on the two-dimensional vector
space, whose action on the column vectors is given by the matrix

X =
(

0 1
1 0

)
. (1.17)

So the two reversible things you can do to a single Cbit – leaving it
alone and flipping it – correspond to the two linear operators X and 1,

1 =
(

1 0
0 1

)
, (1.18)

on its two-dimensional vector space.
A pedantic digression: since multiplication by the scalar 1 and ac-

tion by the unit operator 1 achieve the same result, I shall sometimes
follow the possibly irritating practice of physicists and not distinguish
notationally between them. I shall take similar liberties with the scalar
0, the zero vector 0, and the zero operator 0.

Possibilities for reversible operations get richer when we go from a
single Cbit to a pair of Cbits. The most general reversible operation on
two Cbits is any permutation of their four possible states. There are 4!
= 24 such operations. Perhaps the simplest nontrivial example is the
swap (or exchange) operator Si j , which simply interchanges the states
of Cbits i and j :

S10|xy〉 = |yx〉. (1.19)

Since the swap operator S10 interchanges |01〉 = |1〉2 and |10〉 = |2〉2,
while leaving |00〉 = |0〉2 and |11〉 = |3〉2 fixed, its matrix in the basis
|0〉2, |1〉2, |2〉2, |3〉2 is

S10 = S01 =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠. (1.20)

The 2-Cbit operator whose extension to Qbits plays by far the
most important role in quantum computation is the controlled-NOT
or cNOT operator Ci j . If the state of the i th Cbit (the control Cbit) is
|0〉, Ci j leaves the state of the j th Cbit (the target Cbit) unchanged, but,

10 CB ITS AND QBITS

if the state of the control Cbit is |1〉, Ci j applies the NOT operator X

to the state of the target Cbit. In either case the state of the control Cbit
is left unchanged.

We can summarize this compactly by writing

C10|x〉|y〉 = |x〉|y ⊕ x〉, C01|x〉|y〉 = |x ⊕ y〉|y〉, (1.21)

where ⊕ denotes addition modulo 2:

y ⊕ 0 = y, y ⊕ 1 = ỹ = 1 − y. (1.22)

The modulo-2 sum x ⊕ y is also called the “exclusive OR” (or XOR)
of x and y.

You can construct SWAP out of three cNOT operations:

Si j = Ci j C j i Ci j . (1.23)

This can easily be verified by repeated applications of (1.21), noting
that x ⊕ x = 0. We note some other ways of showing it below.

To construct the matrix for the cNOT operation in the four-
dimensional 2-Cbit space, note that if the control Cbit is on the left
then cNOT leaves |00〉 = |0〉2 and |01〉 = |1〉2 fixed and exchanges
|10〉 = |2〉2 and |11〉 = |3〉2. Therefore the 4 ⊗ 4 matrix representing
C10 is just

C10 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠. (1.24)

If the control Cbit is on the right, then the states |01〉 = |1〉2 and
|11〉 = |3〉2 are interchanged, and |00〉 = |0〉2 and |10〉 = |2〉2 are fixed,
so the matrix representing C01 is

C01 =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞
⎟⎟⎠. (1.25)

The construction (1.23) of S out of cNOT operators also follows
from (1.20), (1.24), and (1.25), using matrix multiplication. As a prac-
tical matter, it is almost always more efficient to establish operator
identities by dealing with them directly as operators, avoiding matrix
representations.

A very common kind of 2-Cbit operator consists of the tensor prod-
uct ⊗ of two 1-Cbit operators:

(a ⊗ b)|xy〉 = (a ⊗ b)|x〉 ⊗ |y〉 = a|x〉 ⊗ b|y〉, (1.26)

from which it follows that

(a ⊗ b)(c ⊗ d) = (ac) ⊗ (bd). (1.27)

1.4 MANIPULAT ING OPERAT IONS ON CBITS 11

This tensor-product notation for operators can become quite un-
gainly when one is dealing with a large number of Cbits and wants to
write a 2-Cbit operator that affects only a particular pair of Cbits. If,
for example, the 2-Cbit operator in (1.26) acts only on the second and
fourth Cbits from the right in a 6-Cbit state, then the operator on the
6-Cbit state has to be written as

1 ⊗ 1 ⊗ a ⊗ 1 ⊗ b ⊗ 1. (1.28)

To avoid such typographical monstrosities, we simplify (1.28) to

1 ⊗ 1 ⊗ a ⊗ 1 ⊗ b ⊗ 1 = a3b1 = b1a3, (1.29)

where the subscript indicates which Cbit the 1-Cbit operator acts on,
and it is understood that those Cbit states whose subscripts do not
appear remain unmodified – i.e. they are acted on by the unit operator.
As noted above, we label each 1-Cbit state by the power of 2 it would
represent if the n Cbits were representing an integer: the state on the
extreme right is labeled 0, the one to its left, 1, etc. Since the order
in which a and b are written is clearly immaterial if their subscripts
specify different 1-Cbit states, the order in which one writes them in
(1.29) doesn’t matter: 1-Cbit operators that act on different 1-Cbit
states commute.

Sometimes we deal with 1-Cbit operators that already have sub-
scripts in their names; under such conditions it is more conve-
nient to indicate which Cbit state the operator acts on by a super-
script, enclosed in parentheses to avoid confusion with an exponent:
thus X(2) represents the 1-Cbit operator that flips the third Cbit
state from the right, but X2 represents the square of the flip oper-
ator (i.e. the unit operator) without reference to which Cbit state it
acts on.

To prepare for some of the manipulations we will be doing with
operations on Qbits, we now examine a few examples of working with
operators on Cbits.

1.4 Manipulating operations on Cbits

It is useful to introduce a 1-Cbit operator n that is simply the projection
operator onto the state |1〉:

n|x〉 = x|x〉, x = 0 or 1. (1.30)

Because |0〉 and |1〉 are eigenvectors of n with eigenvalues 0 and 1, n is
called the 1-Cbit number operator. We also define the complementary
operator,

ñ = 1 − n, (1.31)

12 CB ITS AND QBITS

which projects onto the state |0〉, so |0〉 and |1〉 are eigenvectors of ñwith
eigenvalues 1 and 0. These operators have the matrix representations

n =
(

0 0
0 1

)
, ñ =

(
1 0
0 0

)
. (1.32)

It follows directly from their definitions that

n 2 = n, ñ2 = ñ, nñ = ñn = 0, n + ñ = 1. (1.33)

We also have

nX = Xñ, ñX = Xn, (1.34)

since flipping the state of a Cbit and then acting on it with n (ñ) is the
same as acting on the state with ñ (n) and then flipping it. All the simple
relations in (1.33) and (1.34) also follow, as they must, from the matrix
representations (1.17) and (1.32) for X, n, and ñ.

Although n has no interpretation as a physical operation on Cbits –
replacing the state of a Cbit by the zero vector corresponds to no physi-
cal operation – it can be useful in deriving relations between operations
that do have physical meaning. Since, for example, the SWAP operator
Si j acts as the identity if the states of the Cbits i and j are the same, and
flips the numbers represented by both Cbits if their states are different,
it can be written as

Si j = ni n j + ñi ñ j + (Xi X j)(ni ñ j + ñi n j). (1.35)

At the risk of belaboring the obvious, I note that (1.35) acts as the
swap operator because if both Cbits are in the state |1〉 (so swapping
their states does nothing) then only the first term in the sum acts (i.e.
each of the other three terms gives 0) and multiplies the state by 1;
if both Cbits are in the state |0〉, only the second term acts and again
multiplies the state by 1; if Cbit i is in the state |1〉 and Cbit j is in the
state |0〉, only the third term acts and the effect of flipping both Cbits
is to swap their states; and if Cbit i is in the state |0〉 and Cbit j is in
the state |1〉, only the fourth term acts and the effect of the two Xs is
again to swap their states.

To help you become more at home with this notation, you are urged
to prove from (1.35) that S2

i j = 1, using only the relations in (1.33) and
(1.34), the fact that X2 = 1, and the fact that 1-Cbit operators acting
on different Cbits commute.

The construction (1.23) of SWAP out of cNOT operators can also
be demonstrated using a more algebraic approach. Note first that Ci j

can be expressed in terms of ns and Xs by

Ci j = ñi + X j ni , (1.36)

since if the state of Cbit i is |0〉 only the first term acts, which leaves the
states of both Cbits unchanged, but if the state of Cbit i is |1〉 only the
second term acts, which leaves the state of Cbit i unchanged, while X j

1.4 MANIPULAT ING OPERAT IONS ON CBITS 13

flips Cbit j . If you substitute expressions of the form (1.36) for each
of the three terms in (1.23), then you can show by purely algebraic
manipulations that four of the eight terms into which the products
expand vanish and the remaining four can be rearranged to give the
swap operator (1.35).

An operator that has no direct role to play in classical computa-
tion, but which is as important as the NOT operator X in quantum
computation, is the operator Z defined by

Z = ñ − n =
(

1 0
0 −1

)
. (1.37)

It follows from (1.34) (or from the matrix representations (1.17) and
(1.37)) that X anticommutes with Z:

ZX = −XZ. (1.38)

Since ñ + n = 1, we can use (1.37) to express the 1-Cbit projection
operators ñ and n in terms of 1 and Z:

n = 1
2 (1 − Z), ñ = 1

2 (1 + Z). (1.39)

Using this we can rewrite the cNOT operator (1.36) in terms of X

and Z operators:

Ci j = 1
2

(
1 + Zi

) + 1
2X j

(
1 − Zi

)
= 1

2

(
1 + X j

) + 1
2Zi

(
1 − X j

)
. (1.40)

The second form follows from the first because X j and Zi commute
when i �= j . Note that, if we were to interchange X and Z in the second
line of (1.40), we would get back the expression directly above it except
for the interchange of i and j . So interchanging the X and Z operators
has the effect of switching which Cbit is the control and which is
the target, changing Ci j into C j i . An operator that can produce just
this effect is the Hadamard transformation (also sometimes called the
Walsh–Hadamard transformation),

H = 1√
2

(X + Z) = 1√
2

(
1 1
1 −1

)
. (1.41)

This is another operator of fundamental importance in quantum
computation.2

2 Physicists should note here an unfortunate clash between the notations of
quantum computer science and physics. Quantum physicists invariably use
H to denote the Hamiltonian function (in classical mechanics) or
Hamiltonian operator (in quantum mechanics). Fortunately Hamiltonian
operators, although of crucial importance in the design of quantum
computers, play a very limited role in the general theory of quantum
computation, being completely overshadowed by the unitary
transformations that they generate. So physicists can go along with the
computer-science notation without getting into serious trouble.

14 CB ITS AND QBITS

Since X2 = Z2 = 1 and XZ = −ZX, one easily shows from the
definition (1.41) of H in terms of X and Z that

H2 = 1 (1.42)

and that

HXH = Z, HZH = X. (1.43)

This shows how H can be used to interchange the X and Z operators
in C j i : it follows from (1.43), together with (1.40) and (1.42), that

C j i = (
Hi H j

)
Ci j

(
Hi H j

)
. (1.44)

We shall see that this simple relation can be put to some quite
remarkable uses in a quantum computer. While one can achieve
this interchange on a classical computer using the SWAP operation,
C j i = Si j Ci j Si j , the crucial difference between Si j and Hi H j is that
the latter is a product of two 1-Cbit operators, while the former is not.

Of course, the action of H on the state of a Cbit that follows from
(1.41),

H|0〉 = 1√
2
(|0〉 + |1〉), H|1〉 = 1√

2
(|0〉 − |1〉), (1.45)

describes no meaningful transformation of Cbits. Nevertheless, when
combined with other operations, as on the right side of (1.44), the
Hadamard operations result in the perfectly sensible operation given
on the left side. In a quantum computer the action of H on 1-Qbit
states turns out to be not only meaningful but also easily implemented,
and the possibility of interchanging control and target Qbits using only
1-Qbit operators in the manner shown in (1.44) turns out to have some
striking consequences.

The use of Hadamards to interchange the control and target Qbits of
a cNOT operation is sufficiently important in quantum computation
to merit a second derivation of (1.44), which further illustrates the
way in which one uses the operator formalism. In strict analogy to the
definition of cNOT (see (1.21) and the preceding paragraph) we can
define a controlled-Z operation, CZ

i j , which leaves the state of the target
Cbit j unchanged if the state of the control Cbit i is |0〉, and operates
on the target Cbit with Z if the state of the control Cbit is |1〉. As a
result CZ

10|xy〉 acts as the identity on |xy〉 unless both x and y are 1, in
which case it simply takes |11〉 into −|11〉. This behavior is completely
symmetric in the two Cbits, so

CZ
i j = CZ

j i . (1.46)

It is a straightforward consequence of (1.42) and (1.43) that sand-
wiching the target Cbit of a cNOT between Hadamards converts

1.4 MANIPULAT ING OPERAT IONS ON CBITS 15

it to a CZ:

H j Ci j H j = CZ
i j , Hi C j i Hi = CZ

j i . (1.47)

In view of (1.46), we then have

H j Ci j H j = Hi C j i Hi , (1.48)

which is equivalent to (1.44), since H2 = 1.
As a final exercise in treating operations on Cbits as linear operations

on vectors, we construct an alternative form for the swap operator. If
we use (1.39) to reexpress each n and ñ appearing in the swap operator
(1.35) in terms of Z, we find that

Si j = 1
2 (1 + Zi Z j) + 1

2 (Xi X j)(1 − Zi Z j). (1.49)

If we define

Y = iXZ =
(

0 −i
i 0

)
(i = √−1), (1.50)

we get the more compact form

Si j = 1
2 (1 + Xi X j + Yi Y j + Zi Z j). (1.51)

For three quarters of a century physicists have enjoyed grouping the
matrix representations of the three operators X,Y, and Z into a “3-
vector” −→σ whose “components” are 2 ⊗ 2 matrices:

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

(1.52)

The swap operator then becomes3

Si j = 1
2

(
1 + −→σ (i) · −→σ (j))

, (1.53)

where “·” represents the ordinary three-dimensional scalar product:

−→σ (i) · −→σ (j) = σ(i)
x σ(j)

x + σ(i)
y σ(j)

y + σ(i)
z σ(j)

z . (1.54)

The three components of −→σ have many properties that are un-
changed under cyclic permutations of x, y, and z. All three are
Hermitian.4 All square to unity,

σ2
x = σ2

y = σ2
z = 1. (1.55)

3 Physicists might enjoy the simplicity of this “computational” derivation of
the form of the exchange operator, compared with the conventional
quantum-mechanical derivation, which invokes the full apparatus of
angular-momentum theory.

4 The elements of a Hermitian matrix A satisfy Aji = A∗
i j , where ∗ denotes

complex conjugation. A fuller statement in a broader context can be found in
Appendix A.

16 CB ITS AND QBITS

They all anticommute in pairs and the product of any two of them is
simply related to the third:

σxσy = −σyσx = iσz,

σyσz = −σzσy = iσx, (1.56)

σzσx = −σxσz = iσy.

The three relations (1.56) differ only by cyclic permutations of x, y,
and z.

All the relations in (1.55) and (1.56) can be summarized in a single
compact and useful identity. Let −→a and −→b be two 3-vectors with
components ax, ay, az and b x, b y, bz that are ordinary real numbers.
(They can also be complex numbers, but in most useful applications
they are real.) Then one easily confirms that all the relations in (1.55)
and (1.56) imply and are implied by the single identity

(−→a · −→σ)(−→b · −→σ) = (−→a · −→b)1 + i (−→a × −→b) · −→σ , (1.57)

where −→a × −→b denotes the vector product (or “cross product”) of −→a
and −→b ,

(−→a × −→b)x = aybz − azb y,

(−→a × −→b)y = azb x − axbz, (1.58)

(−→a × −→b)z = axb y − ayb x .

Together with the unit matrix 1, the matrices σx , σy, and σz form
a basis for the four-dimensional algebra of two-dimensional matrices
of complex numbers: any such matrix is a unique linear combination of
these four with complex coefficients. Because the four are all Hermitian,
any two-dimensional Hermitian matrix A of complex numbers must
be a real linear combination of the four, and therefore of the form

A = a01 + −→a · −→σ , (1.59)

where a0 and the components of the 3-vector −→a are all real numbers.
The matrices σx , σy, and σz were introduced in the early days of

quantum mechanics by Wolfgang Pauli, to describe the angular mo-
mentum associated with the spin of an electron. They have many other
useful purposes, being simply related to the quaternions invented by
Hamilton to deal efficiently with the composition of three-dimensional
rotations.5 It is pleasing to find them here, buried in the interior of the
operator that simply swaps two classical bits. We shall have extensive
occasion to use Pauli’s 1-Qbit operators when we come to the subject of

5 Hamilton’s quaternions i, j, k are represented by iσx, iσy, iσz. The
beautiful and useful connection between Pauli matrices and
three-dimensional rotations discovered by Hamilton is developed in
Appendix B.

1.5 QB ITS AND THE IR STATES 17

quantum error correction. Some of their properties, developed further
in Appendix B, prove to be quite useful in treating Qbits, to which we
now turn.

1.5 Qbits and their states

The state of a Cbit is a pretty miserable specimen of a two-dimensional
vector. The only vectors with any classical meaning in the whole two-
dimensional vector space are the two orthonormal vectors |0〉 and |1〉,
since those are the only two states a Cbit can have. Happily, nature has
provided us with physical systems, Qbits, described by states that do
not suffer from this limitation. The state |ψ〉 associated with a Qbit
can be any unit vector in the two-dimensional vector space spanned by
|0〉 and |1〉 over the complex numbers. The general state of a Qbit is

|ψ〉 = α0|0〉 + α1|1〉 =
(

α0

α1

)
, (1.60)

where α0 and α1 are two complex numbers constrained only by the
requirement that |ψ〉, like |0〉 and |1〉, should be a unit vector in the
complex vector space – i.e. only by the normalization condition

|α0|2 + |α1|2 = 1. (1.61)

The state |ψ〉 is said to be a superposition of the states |0〉 and |1〉 with
amplitudes α0 and α1. If one of α0 and α1 is 0 and the other is 1 – i.e.
the special case in which the state of the Qbit is one of the two classical
states |0〉 or |1〉 – it can be convenient to retain the language appropriate
to Cbits, speaking of the Qbit “having the value” 0 or 1. More correctly,
however, one is entitled to say only that the state of the Qbit is |0〉 or
|1〉. Qbits, in contrast to Cbits, cannot be said to “have values.” They
have – or, more correctly, are described by, or, better still, are associated
with – states. We shall often sacrifice correctness for ease of expression.
Some reasons for this apparently pedantic terminological hair splitting
will emerge below.

Just as the general state of a single Qbit is any normalized superpo-
sition (1.60) of the two possible classical states, the general state |�〉
that nature allows us to associate with two Qbits is any normalized
superposition of the four orthogonal classical states,

|�〉 = α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉 =

⎛
⎜⎝

α00

α01

α10

α11

⎞
⎟⎠, (1.62)

with the complex amplitudes being constrained only by the normal-
ization condition

|α00|2 + |α01|2 + |α10|2 + |α11|2 = 1. (1.63)

18 CB ITS AND QBITS

This generalizes in the obvious way to n Qbits, whose general state can
be any superposition of the 2n different classical states, with amplitudes
whose squared magnitudes sum to unity:

|�〉 =
∑

0≤x<2n

αx |x〉n , (1.64)

∑
0≤x<2n

|αx |2 = 1. (1.65)

In the context of quantum computation, the set of 2n classical states –
all the possible tensor products of n individual Qbit states |0〉 and |1〉 –
is called the computational basis. For most purposes classical basis is a
more appropriate term. I shall use the two interchangeably. The states
that characterize n Cbits – the classical-basis states – are an extremely
limited subset of the states of n Qbits, which can be any (normalized)
superposition with complex coefficients of these classical-basis states.

If we have two Qbits, one in the state |ψ〉 = α0|0〉 + α1|1〉 and the
other in the state |φ〉 = β0|0〉 + β1|1〉, then the state |�〉 of the pair,
in a straightforward generalization of the rule for multi-Cbit states, is
taken to be the tensor product of the individual states,

|�〉 = |ψ〉 ⊗ |φ〉 = (
α0|0〉 + α1|1〉

) ⊗ (
β0|0〉 + β1|1〉

)
= α0β0|00〉 + α0β1|01〉 + α1β0|10〉 + α1β1|11〉

=

⎛
⎜⎝

α0β0

α0β1

α1β0

α1β1

⎞
⎟⎠. (1.66)

Note that a general 2-Qbit state (1.62) is of the special form (1.66) if
and only if α00α11 = α01α10. Since the four amplitudes in (1.62) are
constrained only by the normalization condition (1.63), this relation
need not hold, and the general 2-Qbit state, unlike the general state
of two Cbits, is not a product (1.66) of two 1-Qbit states. The same is
true for states of n Qbits. Unlike Cbits, whose general state can only
be one of the 2n products of |0〉s and |1〉s, a general state of n Qbits
is a superposition of these 2n product states and cannot, in general,
be expressed as a product of any set of 1-Qbit states. Individual Qbits
making up a multi-Qbit system, in contrast to individual Cbits, cannot
always be characterized as having individual states of their own.6

Such nonproduct states of two or more Qbits are called entangled
states. The term is a translation of Schrödinger’s verschränkt, which I

6 More precisely, they do not always have what are called pure states of their
own. It is often convenient to give a statistical description of an individual
Qbit (or a group of Qbits) in terms of what is called a density matrix or mixed
state. If one wishes to emphasize that one is not talking about a mixed state,
one uses the term “pure state.” In this book the term “state” always means
“pure state.”

1.6 REVERS IBLE OPERAT IONS ON QBITS 19

am told is rendered more accurately as “entwined” or “enfolded.” But
Schrödinger himself used the English word “entangled,” and may even
have used it before coining the German term. When the state of several
Qbits is entangled, they can sometimes behave in some very strange
ways. An example of such peculiar behavior is discussed in Appendix
D. Aside from its intrinsic interest, the appendix provides some further
exercise in the analytical manipulation of Qbits.

1.6 Reversible operations on Qbits

The only nontrivial reversible operation a classical computer can per-
form on a single Cbit is the NOT operation X. Nature has been far
more versatile in what it allows us to do to a Qbit. The reversible
operations that a quantum computer can perform upon a single Qbit
are represented by the action on the state of the Qbit of any linear
transformation that takes unit vectors into unit vectors. Such transfor-
mations u are called unitary and satisfy the condition7

uu† = u†u = 1. (1.67)

Since any unitary transformation has a unitary inverse, such actions of a
quantum computer on a Qbit are reversible. The reason why reversibil-
ity is crucial for the effective functioning of a quantum computer will
emerge in Chapter 2.

The most general reversible n-Cbit operation in a classical com-
puter is a permutation of the (2n)! different classical-basis states. The
most general reversible operation that a quantum computer can per-
form upon n Qbits is represented by the action on their state of any
linear transformation that takes unit vectors into unit vectors – i.e. any
2n-dimensional unitary transformation U, satisfying

UU† = U†U = 1. (1.68)

Any reversible operation on n Cbits – i.e. any permutation P of the
2n Cbit states – can be associated with a unitary operation U on n Qbits.
One defines the action of U on the classical-basis states of the Qbit to
be identical to the operation of P on the corresponding classical states
of the Cbit. Since the classical basis is a basis, U can be extended to
arbitrary n-Qbit states by requiring it to be linear. Since the action
of U on the classical-basis states is to permute them, its effect on any
superposition of such states

∑
αx |x〉n is to permute the amplitudes

αx . Such a permutation preserves the value of
∑ |αx |2, so U takes

unit vectors into unit vectors. Being norm-preserving and linear, U is
indeed unitary.

7 These and other facts about linear operators on vector spaces over the
complex numbers are also reviewed and summarized in Appendix A.

20 CB ITS AND QBITS

Many important unitary operations on Qbits that we shall be exam-
ining below are defined in this way, as permutations of the classical-basis
states, which are implicitly understood to be extended by linearity to
all Qbit states. In particular, the transformations NOT, SWAP, and
cNOT on Cbits are immediately defined in this way for Qbits as well.
But the available unitary transformations on Qbits are, of course, much
more general than straightforward extensions of classical operations.
We have already encountered two such examples, the operator Z and
the Hadamard transformation H. Both of these take the classical-basis
states of a Qbit into another orthonormal basis, so their linear exten-
sions to all Qbit states are necessarily unitary.

In designing quantum algorithms, the class of allowed unitary trans-
formations is almost always restricted to ones that can be built entirely
out of products of unitary transformations that act on only one Qbit
at a time, called 1-Qbit gates, or that act on just a pair of Qbits, called
2-Qbit gates. This restriction is imposed because the technical problems
of making higher-order quantum gates are even more formidable than
the (already difficult) problems of constructing reliable 1- and 2-Qbit
gates.

It turns out that this is not a fundamental limitation, since arbitrary
unitary transformations can be approximated to an arbitrary degree
of precision by sufficiently many 1- and 2-Qbit gates. We shall not
prove this general result,8 because all of the quantum algorithms to
be developed here will be explicitly built up entirely out of 1- and
2-Qbit gates. One very important illustration of the sufficiency of 1-
and 2-Qbit gates will emerge in Chapter 2. For a reversible classical
computer, it can be shown that at least one 3-Cbit gate is needed to
build up general logical operations. But, in a quantum computer, we
shall find, remarkably – and importantly for the feasibility of practical
quantum computation – that the quantum extension of this 3-Cbit gate
can be constructed out of a small number of 1- and 2-Qbit gates.

While unitarity is generally taken to be the hallmark of the transfor-
mations nature allows us to perform on quantum states, what is really
remarkable about the transformations of Qbit states is their linearity
(which is, of course, one aspect of their unitarity). It is easy to dream
up simple classical models for a Qbit, particularly if one restricts its
states to real linear combinations of the two computational basis states.
It is not hard to invent classical models for NOT and Hadamard 1-
Qbit gates that act linearly on all the 1-Qbit states of the model Qbit.
But I know of no classical model that can extend a cNOT on the
four computational basis states of two Cbits to an operation that acts

8 The argument is given by David P. DiVincenzo, “Two-bit gates are universal
for quantum computation,” Physical Review A 51, 1015–1022 (1995),
http://arxiv.org/abs/quant-ph/9407022.

1.7 C IRCUIT D IAGRAMS 21

y u yu

Fig 1.1 A circuit diagram representing the action on a single Qbit of
the 1-Qbit gate u. Initially the Qbit is described by the input state |ψ〉
on the left. The thin line (wire) represents the subsequent history of
the Qbit. After emerging from the box representing u, the Qbit is
described on the right by the final state u|ψ〉.

Ψ U ΨU

Fig 1.2 A circuit diagram representing the action on n Qbits of the
n-Qbit gate U. Initially the Qbits ares described by the input state |�〉
on the left. The thick line (bar) represents the subsequent history of
the Qbits. After emerging from the box representing U, the Qbits are
described on the right by the final state U|�〉.

linearly on all the states of two model Qbits. It is a remarkable and
highly nontrivial fact about the physical world that nature does allow
us, with much ingenuity and hard work, to fabricate unitary cNOT
gates for a pair of genuine quantum Qbits.

1.7 Circuit diagrams

It is the practice in quantum computer science to represent the action
of a sequence of gates acting on n Qbits by a circuit diagram. The initial
state of the Qbits appears on the left, the final state on the right, and the
gates themselves in the central part of the figure. Figure 1.1 shows the
simplest possible such diagram: a Qbit initially in the state |ψ〉 is acted
on by a 1-Qbit gate u, with the result that the Qbit is assigned the new
state u|ψ〉. Figure 1.2 shows the analogous diagram for an n-Qbit gate
U and an n-Qbit initial state |�〉. The line that goes into and out of the
box representing the unitary transformation – which becomes useful
when one starts chaining together a sequence of gates – is sometimes
called a wire in the case of a single Qbit, and the thicker line (which
represents n wires) associated with an n-Qbit gate is sometimes called
a bar.

Figure 1.3 reveals a peculiar feature of these circuit diagrams that it is
important to be aware of. The diagrams are read from left to right (as one
reads ordinary prose in European languages). Part (a) portrays a circuit
that acts first with V and then with U on the initial state |�〉. The result
is the state UV|�〉, because it is the convention, in writing equations
for linear operators on vector spaces, that the operation appears to the

22 CB ITS AND QBITS

Ψ UV Ψ

UV UV=

UV

(b)

(a)

Fig 1.3 (a) A circuit
diagram representing the
action on n Qbits of two
n-Qbit gates. Initially the
Qbits are described by the
input state |�〉 on the left.
They are acted upon first
by the gate V and then by
the gate U, emerging on
the right in the final state
UV|�〉. Note that the
order in which the Qbits
encounter unitary gates in
the figure is opposite to the
order in which the
corresponding symbols are
written in the symbol for
the final state on the right.
(b) This emphasizes the
unfortunate convention
that, because gates on the
left act before gates on the
right in a circuit diagram, a
circuit showing V on the
left and U on the right
represents the operation
conventionally denoted by
UV.

left of the state on which it acts. Thus the sequence of symbols |�〉,
V, and U on the left of the circuit diagram in (a) is reversed from the
sequence in which they appear in the mathematical representation of
the state that is produced on the right. Part (b) shows the consequences
of this for the part of the circuit diagram containing just the gates: a
diagram in which a gate V (on the left) is followed by a gate U on the
right describes the unitary transformation UV.

One should be wary of the possibility for confusion arising from
the fact that operators (and states) in circuit diagrams always appear
in the diagrams in the opposite sequence from the order in which
they appear on the page in the corresponding equations. While sev-
eral of the most important diagrams we shall encounter are left–right
symmetric, many are not, so one should be on guard against getting
things backwards when translating equations into circuit diagrams and
vice versa.

In lecturing on quantum computation I tried for several years to
reverse the computer-science convention, putting the initial state on
the right of the circuit diagram and letting the gates on the right act
first. This has the great advantage of making the diagram look like
the equation it represents. It has, however, a major disadvantage, even
setting aside the fact that it flies in the face of well established conven-
tion. It requires one to write on the blackboard in the wrong direction,
from right to left, whenever one wishes to produce a circuit diagram.
Guessing how far to the right one should start is hard to do if the di-
agram is a lengthy one, and for this reason I gave up after a few years
and reverted to the conventional form. A better alternative would be
for physicists to start writing their equations with the states on the left
(represented by bra vectors rather than ket vectors9) and with linear
operators appearing to the right of the states on which they act. But
this would require abandoning a tradition that goes back three quarters
of a century. So we are stuck with a clash of cultures, and must simply
keep in mind that confusion can arise if one forgets the elementary fact
represented in Figure 1.3(b).

There is little utility to circuit diagrams of the simple form in
Figures 1.1–1.3, but they are important as building blocks out of which

9 See Appendix A for the distinction between bras and kets.

1.8 MEASUREMENT GATES AND THE BOR N RULE 23

larger circuit diagrams are constructed. As the number of operations
increases, the diagrams enable one to see at a glance the action of a
sequence of 1- and 2-Qbit unitary gates on a collection of many Qbits
in a way that is far more transparent and much more easily remem-
bered than the corresponding formulae. Indeed, many calculations that
involve rather lengthy equations can be simply accomplished by ma-
nipulating circuit diagrams, as we shall see.

When the state vectors entering or leaving a wire or bar in a circuit
diagram are computational-basis states like |x〉, one sometimes omits
the symbol | 〉 and simply writes x.

1.8 Measurement gates and the Born rule

To give the state of a single Cbit you need only one bit of information:
whether the state of the Cbit is |0〉 or |1〉. But to specify the state
(1.60) of a single Qbit to an arbitrarily high degree of precision, you
need arbitrarily many bits of information, since you must specify two
complex numbers α and β subject only to the normalization constraint
(1.61). Because Qbits not only have a much richer set of states than
Cbits, but also can be acted on by a correspondingly richer set of
transformations, it might appear obvious that a quantum computer
would be vastly more powerful than a classical computer. But there is a
major catch!

The catch is this: if you have n Cbits, each representing either 0 or
1, you can find out the state of each just by looking. There is nothing
problematic about learning the state of a Cbit, and hence learning the
result of any calculation you may have built up out of operations on those
Cbits. Furthermore – and this is taken for granted in any discussion of
a classical computer – the state of Cbits is not altered by the process
of reading them. The act of acquiring the information from Cbits is
not disruptive. You can read the Cbits at any stage of a computation
without messing up subsequent stages.

In stark contrast, if you have n Qbits in a superposition (1.64) of
computational basis states, there is nothing whatever you can do to them
to extract from those Qbits the vast amount of information contained in
the amplitudes αx . You cannot read out the values of those amplitudes,
and therefore you cannot find out what the state is. The state of n Qbits
is not associated with any ascertainable property of those Qbits, as it is
for Cbits.

There is only one way to extract information from n Qbits in a
given state. It is called making a measurement.10 Making a measurement

10 Physicists will note – others need pay no attention to this remark – that
what follows is more accurately characterized as “making a (von Neumann)
measurement in the computational (classical) basis.” There are other ways

24 CB ITS AND QBITS

consists of performing a certain test on each Qbit, the outcome of which
is either 0 or 1. The particular collection of zeros and ones produced by
the test is not in general determined by the state |�〉 of the Qbits; the
state determines only the probability of the possible outcomes, according
to the following rule: the probability of getting a particular result – say
01100, if you have five Qbits – is given by the squared magnitude of the
amplitude of the state |01100〉 in the expansion of the state |�〉 of the
Qbits in the 25 computational basis states. More generally, if the state
of n Qbits is

|�〉n =
∑

0≤x<2n

αx |x〉n , (1.69)

then the probability that the zeros and ones resulting from measure-
ments of all the Qbits will give the binary expansion of the integer x is

p(x) = |αx |2. (1.70)

This basic rule for how information can be extracted from a quan-
tum state was first enunciated by Max Born, and is known as the Born
rule. It provides the link between amplitudes and the numbers you can
actually read out when you test – i.e. measure – the Qbits. The squared
magnitudes of the amplitudes give the probabilities of outcomes of
measurements. Normalization conditions like (1.65) are just the re-
quirements that the probabilities for all of the 2n mutually exclusive
outcomes add up to 1.

The process of measurement is carried out by a piece of hardware
with a digital display, known as an n-Qbit measurement gate. Such an
n-Qbit measurement gate is depicted schematically in Figure 1.4. In
contrast to unitary gates, which have a unique output state for each
input state, the state of the Qbits emerging from a measurement gate is
only statistically determined by the state of the input Qbits. In further
contrast to unitary gates, the action of a measurement gate cannot be
undone: given the final state |x〉, there is no way of reconstructing the
initial state |�〉. Measurement is irreversible. Nor is the action of a
measurement gate in any sense linear.

To the extent that it suggests that some preexisting property is being
revealed, “measurement” is a dangerously misleading term, but it is

to make such a measurement, but they can all be reduced to measurements
in the computational basis if an appropriate unitary transformation is
applied to the n-Qbit state of the computer just before carrying out the
measurement. In this book the term “measurement” always means
measurement in the computational basis. Measurements in other bases will
always be treated as measurements in the computational basis preceded by
suitable unitary transformations. There are also more general forms of
measurement than von Neumann measurements, going under the
unpleasant acronym POVM (for “positive operator-valued measure”). We
shall make no explicit use of POVMs.

1.8 MEASUREMENT GATES AND THE BOR N RULE 25

Ψ n Mnnx nx x p 2ax=

x

= Σ a

Fig 1.4 A circuit diagram representing an n-Qbit measurement gate.
The Qbits are initially described by the n-Qbit state

|�〉n =
∑

0≤x<2n

αx |x〉n ,

on the left. After the measurement gate Mn has acted, with probability
p = |αx |2 it indicates an integer x, 0 ≤ x < 2n , and the Qbits are
subsequently described by the state |xn〉 on the right.

hallowed by three quarters of a century of use by quantum physicists,
and impossible to avoid in treatments of quantum computation. One
should avoid being misled by such spurious connotations of “measure-
ment,” though it confused many physicists in the early days of quantum
mechanics and may well continue to confuse some to this day. In quan-
tum computation “measurement” means nothing more or less than
applying and reading the display of an appropriate measurement gate,
whose action is fully specified by the Born rule, as described above,
and expanded upon below. While measurement in quantum mechan-
ics is not at all like measuring somebody’s weight, it does have some
resemblance to measuring Alice’s IQ , which, one can argue, reveals no
preexisting numerical property of Alice, but only what happens when
she is subjected to an IQ test.

The simplest statement of the Born rule is for a single Qbit. If the
state of the Qbit is the superposition (1.60) of the states |0〉 and |1〉
with amplitudes α0 and α1 then the result of the measurement is 0 with
probability |α0|2 and 1 with probability |α1|2. This measurement is
carried out by a 1-Qbit measurement gate, as illustrated in Figure 1.5.
We shall see below that n-Qbit measurement gates can be realized by
applying 1-Qbit measurement gates to each of the n Qbits. The process
of measurement can thus be reduced to applying multiple copies of a
single elementary piece of hardware: the 1-Qbit measurement gate.

In addition to displaying an n-bit integer with probabilities deter-
mined by the amplitudes, there is a second very important aspect of the
action of measurement gates: if n Qbits, initially described by a state
|�〉, are sent through an n-Qbit measurement gate, and the display of
the measurement gate indicates the integer x, then one must associate
with the Qbits emerging from that measurement gate the classical-basis
state |x〉n , as shown in Figures 1.4 and 1.5. This means that all traces
of the amplitudes αx characterizing the input state have vanished from
the output state. The only role they have played in the measurement is
to determine the probability of a particular output.

26 CB ITS AND QBITS

x
y M0a 1a1+= 0

x p = a x
2

Fig 1.5 A special case of
Figure 1.4: a 1-Qbit
measurement gate. The
reading x of the gate is
either 0 or 1. If the state of the input Qbits is one of the classical-basis states |x〉n ,

then according to the Born rule the probability that the measurement
gate will read x and the output state will remain |x〉n is 1. But for
superpositions (1.69) with more than a single nonzero amplitudeαx , the
output state is not determined. Being a single one of the classical basis
states |x〉n , the output state no longer carries any information about
the amplitudes characterizing the initial state, other than certifying that
the particular amplitude αx was not zero, and, in all likelihood, was not
exceedingly small.

So once you send n Qbits through an n-Qbit measurement gate,
you remove the possibility of extracting any further information about
their original state |�〉. After such a measurement of five Qbits, if the
result is 01100, then the post-measurement state associated with the
Qbits is no longer |�〉, but |01100〉. The original state |�〉, with all
the rich information potentially available in its amplitudes, is irretriev-
ably lost. Qbits emerging from a measurement gate that indicates the
outcome x are characterized by the state |x〉, regardless of what their
pre-measurement state may have been.

This change of state attendant upon a measurement is often re-
ferred to as a reduction or collapse of the state. One says that the pre-
measurement state reduces or collapses to the post-measurement state, as
a consequence of the measurement. This should not be taken to imply
(though, alas, it often is) that the Qbits themselves suffer a catastrophic
“reduction” or “collapse.” It is important to keep in mind, in this con-
text, that the state of n Qbits is nothing more than an abstract symbol,
used, via the Born rule, to calculate probabilities of measurement out-
comes. As has already been noted, there is no internal property of the
Qbits that corresponds to their state.

You might well wonder how one can learn anything at all of com-
putational interest under these wretched conditions. The artistry of
quantum computation consists of producing, through a cunningly con-
structed unitary transformation, a superposition in which most of the
amplitudes αx are zero or extremely close to zero, with useful infor-
mation being carried by any of the values of x that have an appreciable
probability of being indicated by the measurement. It is thus important
to be seeking information that, once possessed, can easily be confirmed,
perhaps with an ordinary (classical) computer (e.g. the factors of a large
number), so that one is not misled by rare and irrelevant low-probability
outcomes. How this is actually accomplished in various cases of interest
will be one of our major preoccupations.

It is important to note and immediately reject a possible misun-
derstanding of the Born rule. One might be tempted to infer from

1.8 MEASUREMENT GATES AND THE BOR N RULE 27

the rule that for a Qbit to be in a superposition, such as the state
|ψ〉 = α0|0〉 + α1|1〉, means nothing more than that the “actual state”
of the Qbit is either |0〉 with probability |α0|2 or |1〉 with probability
|α1|2. Such an assertion goes beyond the rule, of course, which merely
asserts that if one subjects a Qbit in the state |ψ〉 to an appropriate
test – a measurement – then the outcome of the test will be 0 or 1
with those probabilities and the post-measurement state of the Qbit
can correspondingly be taken to be |0〉 or |1〉. This does not imply that
prior to the test the Qbit already carried the value revealed by the test
and was already described by the corresponding classical-basis state,
since, among other possibilities, the action of the test itself might well
play a role in bringing forth the outcome.

In fact, it is easy to produce examples that demonstrate that the Qbit,
prior to the test, could not have been in either of the states |0〉 and |1〉.
We can see this with the help of the Hadamard transformation (1.41).
We have defined the action of the 1-Qbit operators H, X, and Z only
on the computational-basis states |0〉 and |1〉, but, as noted above, we
can extend their action to arbitrary linear combinations of these states
by requiring the extensions to be linear operators. Since the states |0〉
and |1〉 form a basis, this determines the action of H, X, and Z on any
1-Qbit state.

Because it is linear and norm-preserving, H is unitary, and is there-
fore the kind of operation a quantum computer can apply to the state
of a Qbit: a 1-Qbit gate. The result of the operation of a Hadamard
gate is to change the state |φ〉 of a Qbit to H|φ〉. Suppose, now, that we
apply H to a Qbit that is initially in the state

|φ〉 = 1√
2
(|0〉 + |1〉). (1.71)

It follows from (1.45) that the result is just

H|φ〉 = |0〉. (1.72)

So according to the Born rule, if we measure a Qbit described by the
state H|φ〉, the result will be 0 with probability 1.

But suppose that a Qbit in the state |φ〉 were indeed either in the state
|0〉 with probability 1

2 or in the state |1〉 with probability 1
2 . In either

case, according to (1.45), the subsequent action of H would produce
a state – either (1/

√
2)(|0〉 + |1〉) or (1/

√
2)(|0〉 − |1〉) – that under

measurement yielded 0 or 1 with equal probability. This contradicts
the fact just extracted directly from (1.72) that the result of making a
measurement on a Qbit in the state H|φ〉 is invariably 0.

So a Qbit in a quantum superposition of |0〉 and |1〉 cannot be viewed
as being either in the state |0〉or in the state |1〉with certain probabilities.
Such a state represents something quite different. Although the Qbit
reveals only a 0 or a 1 when you query it with a measurement gate,

28 CB ITS AND QBITS

prior to the query its state is not in general either |0〉 or |1〉, but a
superposition of the form (1.60). Such a superposition is as natural
and irreducible a description of a Qbit as |0〉 and |1〉 are. This point is
expanded on in Appendix C.

If the states of n Qbits are restricted to computational-basis states
then the process of measurement is just like the classical process of
“learning the value” of x without altering the state. Thus a quantum
computer can be made to simulate a reversible classical computer by
allowing only computational-basis states as input, and using only uni-
tary gates that take computational-basis states into computational-basis
states.

The Born rule, relating the amplitudes αx in the expansion (1.64)
of a general n-Qbit state |�〉 to the probabilities of measuring x,
is often stated in terms of inner products or projection operators.11

The probability of a measurement giving the result x (0 ≤ x < 2n)
is

p� (x) = | αx |2 = |〈x|�〉|2. (1.73)

It can also be usefully expressed in terms of projection operators:

p� (x) = 〈x|�〉〈�|x〉 = 〈x|P� |x〉 (1.74)

or

p� (x) = 〈�|x〉〈x|�〉 = 〈�|Px |�〉, (1.75)

where P� = |�〉〈�| is the projection operator on the state |�〉, and
Px = |x〉〈x| is the projection operator on the state |x〉.

1.9 The generalized Born rule

There is a stronger version of the Born rule, which plays an important
role in quantum computation, even though, surprisingly, it is rarely
explicitly mentioned in most standard quantum-mechanics texts. We
shall call it the generalized Born rule. This stronger form applies when
one measures only a single one of n + 1 Qbits, by sending it through a
standard 1-Qbit measurement gate.

To formulate the generalized Born rule, note that any state of all
n + 1 Qbits can be represented in the form

|�〉n+1 = α0|0〉|�0〉n + α1|1〉|�1〉n , |α0|2 + |α1|2 = 1, (1.76)

11 The Dirac notation for inner products and projection operators is
described in Appendix A.

1.9 THE GENERAL IZED BOR N RULE 29

M
x

Ψ
Φx

x
2

=
0

1+ 1

0a
a

Φ

Φ1

0 p =
x

a

Fig 1.6 The action of a
1-Qbit measurement gate
on a single one of n + 1
Qbits, according to the
generalized Born rule. The
initial state (on the left) is a
general (n + 1)-Qbit state,
expressed in the form
|�〉n+1 = a0|0〉|�0〉n+
a1|1〉|�1〉n . Only the single
Qbit on the left of this
expression is subjected to a
measurement gate.

where |�0〉n and |�1〉n are normalized (but not necessarily orthogonal).
This follows directly from the general form,

|�〉n+1 =
2n+1−1∑

x=0

γ (x)|x〉n+1,

2n+1−1∑
x=0

|γ (x)|2 = 1. (1.77)

The states |�0〉n and |�1〉n are given by

|�0〉n = (1/α0)
2n−1∑
x=0

γ (x)|x〉n , |�1〉n = (1/α1)
2n−1∑
x=0

γ (2n + x)|x〉n ,

(1.78)
where

α2
0 =

2n−1∑
x=0

| γ (x)|2, α2
1 =

2n−1∑
x=0

|γ (2n + x)|2. (1.79)

(The α0 and α1 in (1.78) and (1.79) are real numbers, but can be mul-
tiplied by arbitrary phase factors if |�0〉n and |�1〉n are multiplied by
the inverse phase factors.)

The generalized Born rule asserts that if one measures only the single
Qbit whose state symbol is explicitly separated out from the others in
the (n + 1)-Qbit state (1.76), then the 1-Qbit measurement gate will
indicate x (0 or 1) with probability |αx |2, after which the (n + 1)-Qbit
state can be taken to be the product state |x〉|�x〉n . (The rule holds for
the measurement of any single Qbit – there is nothing special about the
Qbit whose state symbol appears on the left in the (n + 1)-Qbit state
symbol.) This action of a 1-Qbit measurement gate on an (n + 1)-Qbit
state is depicted schematically in Figure 1.6.

If the Qbit on which the 1-Qbit gate acts is initially unentangled with
the remaining n Qbits, then the action of the gate on the measured Qbit
is just that specified by the ordinary Born rule, and the unmeasured
Qbits play no role at all, remaining in their original state throughout the
process. This is evident from the above statement of the generalized
Born rule, specialized to the case in which the two states |�0〉n and
|�1〉n are identical. It is illustrated in Figure 1.7.

If one applies the generalized Born rule n times to successive
1-Qbit measurements of each of n Qbits, initially in the general
n-Qbit state (1.69), one can show by a straightforward argument, given
in Appendix E, that the final state of the n Qbits is x with probability
|αx |2, where x is the n-bit integer whose bits are given by the readings

30 CB ITS AND QBITS

x

Φ Φ

y x
2

M00 11+ ap =a= a x
Fig 1.7 A simplification of
Figure 1.6 when
|�0〉 = |�1〉 = |�〉. In this
case the initial state on the
left is just the product state
|�〉n = |ψ〉|�〉 =(
a0|0〉 + a1|1〉

)|�〉, and
the final state of the
unmeasured Qbits
continues to be |�〉
regardless of the value of x
indicated by the 1-Qbit
measurement gate. The
unmeasured Qbits are
unentangled with the
measured Qbit and
described by the state |�〉
throughout the process.
The 1-Qbit measurement
gate acts on the measured
Qbit exactly as it does in
Figure 1.5 when no other
Qbits are present, and the
generalized Born rule of
Figure 1.6 reduces to the
ordinary Born rule.

on the n 1-Qbit measurement gates. This is nothing but the ordinary
Born rule, with the n 1-Qbit measurement gates playing the role of
the single n-Qbit measurement gate. There is thus, as remarked upon
above, only a single primitive piece of measurement hardware: the 1-
Qbit measurement gate. The construction of an n-Qbit measurement
gate out of n 1-Qbit measurement gates is depicted in Figure 1.8.

An even more general version of the Born rule follows from the
generalized Born rule itself. The general state of m + n Qbits can be
written as

|�〉m+n =
2m∑

x=0

αx |x〉m |�x〉n , (1.80)

where
∑

x |αx |2 = 1 and the states |�x〉n are normalized, but not nec-
essarily orthogonal. By applying the generalized Born rule m times to
m Qbits in an (m + n)-Qbit state, one establishes the rule that if just
the m Qbits on the left of (1.80) are measured, then with probability
|αx |2 the result will be x, and after the measurement the state of all
m + n Qbits will be the product state

|x〉m |�x〉n (1.81)

in which the m measured Qbits are in the state |x〉m and the n unmea-
sured ones are in the state |�x〉n .

1.10 Measurement gates and state preparation

In addition to providing an output at the end of a computation, mea-
surement gates also play a crucial role (which is not often emphasized)
at the beginning. Since there is no way to determine the state of a given
collection of Qbits – indeed, in general such a collection might be entan-
gled with other Qbits and therefore not even have a state of its own – how
can one produce a set of Qbits in a definite state for the gates of a quan-
tum computer to transform into another computationally useful state?

The answer is by measurement. If one takes n Qbits off the shelf,
and subjects them to an n-Qbit measurement gate that registers x,
then the Qbits emerging from that gate are assigned the classical-basis
state |x〉n . If one then applies the 1-Qbit operation X to each Qbit that
registered a 1 in the measurement, doing nothing to the Qbits that

1.10 MEASUREMENT GATES AND STATE PREPARAT ION 31

x

M

M

M

M

M

=

x

1x

x

3x

0

2

Fig 1.8 Constructing a
4-Qbit measurement gate
out of four 1-Qbit
measurement gates. The
integer x has the binary
expansion x3x2x1x0.

registered 0, the resulting set of Qbits will be described by the state
|0〉n . It is this state that most quantum-computational algorithms take
as their input. Such a use of a measurement gate to produce a Qbit
described by the state |0〉 is shown in Figure 1.9.

Measurement gates therefore play two roles in a quantum com-
putation. They get the Qbits ready for the subsequent action of the
computer, and they extract from the Qbits a digital output after the
computer has acted. The initial action of the measurement gates is
called state preparation, since the Qbits emerging from the process can
be characterized by a definite state. The association of unitary oper-
ators with the gates that subsequently act on the Qbits permits one
to update that initial state assignment into the corresponding unitary
transformation of the initial state, thereby making it possible to calcu-
late, using the Born rule, the probabilities of the outcomes of the final
measurement gates.

This role of measurement gates in state preparation follows from
the Born rule if the Qbits that are to be prepared already have a state of
their own, even though that state might not be known to the user of the
quantum computer. It also follows from the generalized Born rule if the
Qbits already share an entangled state – again, not necessarily known to
the user – with additional (unmeasured) Qbits. But one cannot deduce
from the Born rules that measurement gates serve to prepare states
for Qbits “off the shelf,” whose past history nobody knows anything
about. In such cases the use of measurement gates to assign a state to
the Qbits is a reasonable and plausible extension of the Born rules. It
is consistent with them, but goes beyond them.

For particular physical realizations of Qbits, there may be other ways
to produce the standard initial state |0〉n . Suppose, for example, that
each Qbit is an atom, the state |0〉 is the lowest-energy state (the ground
state) of the atom, and the state |1〉 is the atomic state of next-lowest

32 CB ITS AND QBITS

x

0? M X
x

Fig 1.9 Using a 1-Qbit
measurement gate to
prepare an off-the-shelf
Qbit so that its associated
state is |0〉. The input on
the left is a Qbit in an
unknown condition – i.e.
nothing is known of its past
history. After the
measurement gate is
applied, the NOT gate X is
or is not applied,
depending on whether the
measurement gate
indicates 1 or 0. The Qbit
that emerges (on the right)
is described by the state |0〉.

energy (the first excited state). Then one can produce the state |0〉n by
cooling n such atoms to an appropriately low temperature (determined
by the energy difference between the two states – the smaller that
energy, the lower the temperature must be).

From the conceptual point of view, state preparation by the use of
measurement gates is the simplest way. An acceptable physical can-
didate for a Qbit must be a system for which measurement gates are
readily available. Otherwise there would be no way of extracting infor-
mation from the computation, however well the unitary gates did their
job. So the hardware for state preparation by measurement is already
there. Whether one chooses to use it or other (e.g. cryogenic) methods
to initialize the Qbits to the state |0〉n is a practical matter that need
not concern us here. It is enough to know that it can always be done
with measurement gates.

1.11 Constructing arbitrary 1- and 2-Qbit states

The art of quantum computation is to construct circuits out of 1-
and 2-Qbit gates that produce final states capable of revealing useful
information, when measured. The expectation is that 1-Qbit gates
will be comparatively easy to construct. Two-Qbit gates that are not
mere tensor products of 1-Qbit gates are likely to be substantially more
difficult to make. Attention has focused strongly on the cNOT gate,
and gates that can be constructed from it in combination with 1-Qbit
unitaries. All of the circuits we shall be examining can, in fact, be
reduced to combinations of 1-Qbit gates and 2-Qbit cNOT gates. Given
the difficulty in making cNOT gates, it is generally considered desirable
to keep their number as small as possible. As an illustration of such
constructions, we now examine how to assign arbitrary states to one or
two Qbits, starting with the standard 1-Qbit state |0〉 or the standard
2-Qbit state |00〉. (Both of these standard states can be produced with
the help of measurement gates, as described in Section 1.10.)

The situation for 1-Qbit states is quite simple. Let |ψ〉 be any 1-Qbit
state, and let |φ〉 be the orthogonal state (unique to within an overall
phase), satisfying 〈φ|ψ〉 = 0. Since |0〉 and |1〉 are linearly indepen-
dent, there is a unique linear transformation taking them into |ψ〉 and
|φ〉. But, since |ψ〉 and |φ〉 are an orthonormal pair (as are |0〉 and
|1〉), this linear transformation is easily verified to preserve the norm

1.11 CONSTRUCT ING ARB ITRARY 1- AND 2-QB IT STATES 33

of arbitrary states, so it is a unitary transformation u. Thus, for any |ψ〉
there is a 1-Qbit unitary gate u that takes |0〉 into |ψ〉:

|ψ〉 = u|0〉. (1.82)

Things are more complicated for 2-Qbit states. An unentangled 2-
Qbit state, being the product of two 1-Qbit states, can be constructed
out of |00〉by the application of 1-Qbit unitaries to each of the two Qbits.
But a general 2-Qbit state is entangled, and its production requires
a 2-Qbit gate that is not just a tensor product of 1-Qbit unitaries.
Interestingly, a single cNOT gate, combined with 1-Qbit unitaries, is
enough to do the trick.

To see this, note that the general 2-Qbit state,

|�〉 = α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉, (1.83)

is of the form

|�〉 = |0〉 ⊗ |ψ〉 + |1〉 ⊗ |φ〉, (1.84)

where |ψ〉 = α00|0〉 + α01|1〉 and |φ〉 = α10|0〉 + α11|1〉. Apply u ⊗ 1

to |�〉, where u is a linear transformation, whose action on the com-
putational basis is of the form

u|0〉 = a|0〉 + b |1〉, u|1〉 = −b∗|0〉 + a∗|1〉; |a|2 + |b |2 = 1.
(1.85)

The transformation u is unitary because it preserves the orthogonality
and normalization of the basis |0〉, |1〉.

We have(
u ⊗ 1

)|�〉 = (
a|0〉 + b |1〉) ⊗ |ψ〉 + (− b∗|0〉 + a∗|1〉) ⊗ |φ〉

= |0〉 ⊗ |ψ ′〉 + |1〉 ⊗ |φ′〉, (1.86)

where

|ψ ′〉 = a|ψ〉 − b∗|φ〉, |φ′〉 = b |ψ〉 + a∗|φ〉. (1.87)

We would like to choose the complex numbers a and b to make |φ′〉
and |ψ ′〉 orthogonal. The inner product 〈φ′|ψ ′〉 is

〈φ′|ψ ′〉 = a2〈φ|ψ〉 − b∗2〈ψ |φ〉 + ab∗(〈ψ |ψ〉 − 〈φ|φ〉). (1.88)

If 〈φ|ψ〉 �= 0, then setting 〈φ′|ψ ′〉 to 0 gives a quadratic equation for
a/b∗, which has two complex solutions. If a in (1.85) is any nonzero
complex number then either solution determines b , which, with a ,
gives a 1-Qbit unitary u for which(

u ⊗ 1
)|�〉 = |0〉 ⊗ |ψ ′〉 + |1〉 ⊗ |φ′〉 (1.89)

where |ψ ′〉 and |φ′〉 are orthogonal. If 〈φ|ψ〉 = 0 then (1.84) is already
of this form with u = 1.

34 CB ITS AND QBITS

We can pick positive real numbersλ andµ so that |ψ ′′〉 = |ψ ′〉/λ and
|φ′′〉 = |φ′〉/µ are unit vectors, making |ψ ′′〉 and |φ′′〉 an orthonormal
pair. They are therefore related to |0〉 and |1〉 by a unitary transforma-
tion v:

|ψ ′′〉 = v|0〉, |φ′′〉 = v|1〉. (1.90)

Equation (1.89) then gives12

|�〉 = (
u† ⊗ v

)(
λ|0〉 ⊗ |0〉 + µ|1〉 ⊗ |1〉). (1.91)

We can write this as

|�〉 = (
u† ⊗ v

)
C10

(
λ|0〉 + µ|1〉) ⊗ |0〉. (1.92)

Since |�〉 is a unit vector and unitary transformations preserve unit
vectors, it follows from (1.91) that λ|0〉 + µ|1〉 is a unit vector. It can
therefore be obtained from |0〉 by a unitary transformation w. So

|�〉 = (
u† ⊗ v

)
C10

(
w ⊗ 1

)(|0〉 ⊗ |0〉) = u
†
1v0C10w1|00〉. (1.93)

We have thus established that a general 1-Qbit state |�〉 can be
constructed out of three 1-Qbit unitaries and a single cNOT gate, acting
on the standard state |00〉. This is an early example of the usefulness
of cNOT gates.

1.12 Summary: Qbits versus Cbits

Table 1.1 gives a concise comparison of the elementary properties of
Cbits and Qbits. The table uses the term “Bit,” with an upper-case
B, to mean “Qbit or Cbit,” which should be distinguished from “bit,”
with a lower-case b, which means “0 or 1.” Alice (in the fifth line of the
table) is anybody who knows the relevant history of the Qbits – their
initial state preparation and the unitary gates that have subsequently
acted on them.

12 This form for a general vector in a space of 2 × 2 dimensions is a special
case of a more general result for d × d dimensions known as the polar (or
Schmidt) decomposition theorem.

1.12 SUMMARY: QB ITS VERSUS CB ITS 35

Table 1.1. A summary of the features of Qbits, contrasted to the analogous features of Cbits

Cbits Qbits

States of n Bits |x〉n, 0 ≤ x < 2n ∑
αx |x〉n,

∑ |αx |2 = 1

Subsets of n Bits Always have states Generally have no states

Reversible operations on states Permutations Unitary transformations

Can state be learned from Bits? Yes No

To learn state of Bits Examine them Go ask Alice

To get information from Bits Just look at them Measure them

Information acquired x x with probability |αx |2

State after information acquired Same: still |x〉 Different: now |x〉

Chapter 2

General features and some
simple examples

2.1 The general computational process

A suitably programmed quantum computer should act on a number x
to produce another number f (x) for some specified function f . Appro-
priately interpreted, with an accuracy that increases with increasing k,
we can treat such numbers as non-negative integers less than 2k. Each
integer is represented in the quantum computer by the corresponding
computational-basis state of k Qbits.

If we specify the numbers x as n-bit integers and the numbers f (x)
as m-bit integers, then we shall need at least n + m Qbits: a set of
n-Qbits, called the input register, to represent x, and another set of m-
Qbits, called the output register, to represent f (x). Qbits being a scarce
commodity, you might wonder why we need separate registers for input
and output. One important reason is that if f (x) assigns the same
value to different values of x, as many interesting functions do, then
the computation cannot be inverted if its only effect is to transform the
contents of a single register from x to f (x). Having separate registers for
input and output is standard practice in the classical theory of reversible
computation. Since quantum computers must operate reversibly to
perform their magic (except for measurement gates), they are generally
designed to operate with both input and output registers. We shall find
that this dual-register architecture can also be usefully exploited by a
quantum computer in some strikingly nonclassical ways.

The computational process will generally require many Qbits be-
sides the n + m in the input and output registers, but we shall ignore
these additional Qbits for now, viewing a computation of f as doing
nothing more than applying a unitary transformation, U f , to the n + m
Qbits of the input and output registers. We take up the fundamental
question of why the additional Qbits can be ignored in Section 2.3,
only noting for now that it is the reversibility of the computation that
makes this possible.

We define the transformation U f by specifying it as a reversible
transformation taking computational-basis states into computational-
basis states. As noted in Section 1.6, the linear extension of such a
classically meaningful transformation to arbitrary complex superpo-
sitions of computational-basis states is necessarily unitary. The stan-
dard quantum-computational protocol, which we shall use repeatedly,

36

2.1 THE GENERAL COMPUTAT IONAL PROCESS 37

defines the action of U f on the computational-basis states |x〉n |y〉m of
the n + m Qbits making up the input and output registers as follows:

U f
(|x〉n |y〉m

) = |x〉n |y ⊕ f (x)〉m , (2.1)

where ⊕ indicates modulo-2 bitwise addition (without carrying) or,
if you prefer, the bitwise exclusive OR. If x and y are m-bit integers
whose j th bits are x j and yj , then x ⊕ y is the m-bit integer whose j th
bit is x j ⊕ yj . Thus 1101 ⊕ 0111 = 1010. This is a straightforward
generalization of the single-bit ⊕ defined in Section 1.3.

If the initial value represented by the output register is y = 0 then
we have

U f
(|x〉n |0〉m

) = |x〉n | f (x)〉m (2.2)

and we do indeed end up with f (x) in the output register. Regardless
of the initial value of y, the input register remains in its initial state
|x〉n .

The transformation (2.1) is clearly invertible. Indeed, U f is its own
inverse:

U f U f
(|x〉|y〉) = U f

(|x〉|y ⊕ f (x)〉)
= |x〉|y ⊕ f (x) ⊕ f (x)〉 = |x〉|y〉, (2.3)

since z ⊕ z = 0 for any z. (From this point on I shall use subscripts that
specify the numbers of Qbits only when it is important to emphasize
what those numbers are.)

The form (2.2) inspires the most important trick of the quantum-
computational repertoire. If we apply to each Qbit in the 2-Qbit state
|0〉|0〉 the 1-Qbit Hadamard transformation H (Equation (1.45)), then
we get(

H ⊗ H
)(|0〉 ⊗ |0〉) = H1H0|0〉|0〉 = (

H|0〉)(
H|0〉)

= 1√
2

(|0〉 + |1〉) 1√
2

(|0〉 + |1〉)
= 1

2

(|0〉|0〉 + |0〉|1〉 + |1〉|0〉 + |1〉|1〉)
= 1

2

(|0〉2 + |1〉2 + |2〉2 + |3〉2
)
. (2.4)

This clearly generalizes to the n-fold tensor product of n Hadamards,
applied to the n-Qbit state |0〉n :

H⊗ n |0〉n = 1
2n/2

∑
0≤x<2n

|x〉n , (2.5)

where

H⊗ n = H ⊗ H ⊗ · · · ⊗ H, n times. (2.6)

So if the initial state of the input register is |0〉n and we apply an n-fold
Hadamard transformation to that register, its state becomes an equally

38 GENERAL FEATURES AND SOME S IMPLE EXAMPLES

weighted superposition of all possible n-Qbit inputs. If we then apply
U f to that superposition, with 0 initially in the output register, then
by linearity we get from (2.5) and (2.2)

U f
(
H⊗ n ⊗ 1m

)(|0〉n |0〉m
) = 1

2n/2

∑
0≤x<2n

U f
(|x〉n |0〉m

)

= 1
2n/2

∑
0≤x<2n

|x〉n | f (x)〉m . (2.7)

This contains an important part of the magic that underlies quantum
computation. If before letting U f act, we merely apply a Hadamard
transformation to every Qbit of the input register, initially in the stan-
dard state |0〉n , the result of the computation is described by a state
whose structure cannot be explicitly specified without knowing the
result of all 2n evaluations of the function f . So if we have a mere
hundred Qbits in the input register, initially all in the state |0〉100 (and
m more in the ouput register), if a hundred Hadamard gates act on the
input register before the application of U f , then the form of the final
state contains the results of 2100 ≈ 1030 evaluations of the function f .
A billion billion trillion evaluations! This apparent miracle is called
quantum parallelism.

But a major part of the miracle is only apparent. One cannot say
that the result of the calculation is 2n evaluations of f , though some
practitioners of quantum computation are rather careless about making
such a claim. All one can say is that those evaluations characterize the
form of the state that describes the output of the computation. One
knows what the state is only if one already knows the numerical values
of all those 2n evaluations of f . Before drawing extravagant practical,
or even only metaphysical, conclusions from quantum parallelism, it
is essential to remember that when you have a collection of Qbits in a
definite but unknown state, there is no way to find out what that state is.

If there were a way to learn the state of such a set of Qbits, then every-
one could join in the rhapsodic chorus. (Typical verses: “Where were
all those calculations done? In parallel universes!” “The possibility of
quantum computation has established the existence of the multiverse.”
“Quantum computation achieves its power by dividing the computa-
tional task among huge numbers of parallel worlds.”) But there is no
way to learn the state. The only way to extract any information from
Qbits is to subject them to a measurement.

When we send all n + m Qbits through measurement gates, the
Born rule tells us that if the state of the registers has the form (2.7),
then with equal probability the result of measuring the Qbits in the
input register will be any one of the values of x less than 2n , while
the result of measuring the Qbits in the ouput register will be the
value of f for that particular value of x. So by measuring the Qbits
we can learn a single value of f as well as learning a single (random)

2.1 THE GENERAL COMPUTAT IONAL PROCESS 39

x0 at which f has that value. After the measurement the state of the
registers reduces to |x0〉| f (x0)〉 and we are no longer able to learn
anything about the values of f for any other values of x. So although
we can learn something from the output of the “parallel computation,”
it is nothing more than what we would have learned had we simply run
the computation starting with a classical state |x〉 in the input register,
with the value of x chosen randomly. That, of course, could have been
done with an ordinary classical computer.

To be sure, a hint of a miracle remains – hardly more than the smile
of the Cheshire cat – in the fact that in the quantum case the random
selection of the x, for which f (x) can be learned, is made only after
the computation has been carried out. (To assert that the selection
was made before the computation was done is to make the same error
as asserting that a Qbit described by a superposition of the states |0〉
and |1〉 is actually in one or the other of them, as discussed in Section
1.8.) This is a characteristic instance of what journalists like to call
“quantum weirdness,” in that (a) it is indeed vexing to contemplate
the fact that the choice of the value of x for which f can be learned
is made only after – quite possibly long after – the computation has
been finished, but (b) since that choice is inherently random – beyond
anyone’s power to control in any way whatever – it does not matter for
any practical purpose whether the selection was made astonishingly
after or boringly before the calculation was executed.

If, of course, there were an easy way to make copies of the output
state prior to making the measurement, without running the whole
computation over again, then one could, with high probability, learn
the values of f for several different (random) values of x. But such
copying is prohibited by an elementary result called the “no-cloning
theorem,” which states that there is no such duplication procedure:
there is no unitary transformation that can take the state |ψ〉n |0〉n into
the state |ψ〉n |ψ〉n for arbitrary |ψ〉n .

The no-cloning theorem is an immediate consequence of linearity.
If

U
(|ψ〉|0〉) = |ψ〉|ψ〉 and U

(|φ〉|0〉) = |φ〉|φ〉, (2.8)

then it follows from linearity that

U
(
a|ψ〉 + b |φ〉)|0〉 = aU|ψ〉|0〉 + bU|φ〉|0〉 = a|ψ〉|ψ〉 + b |φ〉|φ〉.

(2.9)
But if U cloned arbitrary inputs, we would have

U
(
a|ψ〉 + b |φ〉)|0〉 = (

a|ψ〉 + b |φ〉)(
a|ψ〉 + b |φ〉)

= a2|ψ〉|ψ〉 + b 2|φ〉|φ〉 + ab |ψ〉|φ〉 + ab |φ〉|ψ〉,
(2.10)

40 GENERAL FEATURES AND SOME S IMPLE EXAMPLES

which differs from (2.9) unless one of a and b is zero. Surprisingly,
this very simple theorem was not proved until half a century after the
discovery of quantum mechanics, presumably because it took that long
for it to occur to somebody that it was an interesting proposition to
formulate.

Of course, the ability to clone to a reasonable degree of approxima-
tion would be quite useful. But this is also impossible. Suppose that U

approximately cloned both |φ〉 and |ψ〉:

U
(|ψ〉|0〉) ≈ |ψ〉|ψ〉 and U

(|φ〉|0〉) ≈ |φ〉|φ〉. (2.11)

Then since unitary transformations preserve inner products, since the
inner product of a tensor product of states is the (ordinary) product of
their inner products, and since 〈0|0〉 = 1, it follows from (2.11) that

〈φ|ψ〉 ≈ 〈φ|ψ〉2. (2.12)

But this requires 〈φ|ψ〉 to be either close to 1 or close to 0. Hence a
unitary transformation can come close to cloning both of two states
|ψ〉 and |φ〉 only if the states are very nearly the same, or very close to
being orthogonal. In all other cases at least one of the two states will be
badly copied.

If this were the full story, nobody but a few philosophers would be
interested in quantum computation. The National Security Agency
of the United States of America is interested because there are more
clever things one can do. Typically these involve applying additional
unitary gates to one or both of the input and output registers before
and/or after applying U f , sometimes intermingled with intermediate
measurement gates acting on subsets of the Qbits. All these additional
gates are cunningly chosen so that when one finally does measure all
the Qbits, one extracts useful information about relations between the
values of f for several different values of x, which a classical computer
could get only by making several independent evaluations. The price
one inevitably pays for this relational information is the loss of the
possibility of learning the actual value f (x) for any individual x. This
tradeoff of one kind of information for another is typical of quantum
computation, and typical of quantum physics in general, where it is
called the uncertainty principle. The principle was first enunciated by
Werner Heisenberg in the context of mechanical information – the
position of a particle versus its momentum.

So it is wrong and deeply misleading to say that in the process that
assigns the state (2.7) to the Qbits, the quantum computer has evaluated
the function f (x) for all x in the range 0 ≤ x < 2n . Such assertions are
based on the mistaken view that the quantum state encodes a property
inherent in the Qbits. The state encodes only the possibilities available
for the extraction of information from those Qbits. You should keep
this in mind as we examine some of the specific ways in which this

2.2 DEUTSCH’S PROBLEM 41

nevertheless permits a quantum computer to perform tricks that no
classical computer can accomplish.

2.2 Deutsch’s problem

Deutsch’s problem is the simplest example of a quantum tradeoff that
sacrifices particular information to acquire relational information. A
crude version of it appeared in a 1985 paper by David Deutsch that,
together with a 1982 paper by Richard Feynman, launched the whole
field. In that early version the trick could be executed successfully only
half the time. It took a while for people to realize that the trick could
be accomplished every single time. Here is how it works.

Let both input and output registers each contain only one Qbit, so
we are exploring functions f that take a single bit into a single bit.
There are two rather different ways to think about such functions.

(1) The first way is to note that there are just four such functions, as
shown in Table 2.1. Suppose that we are given a black box that calcu-
lates one of these four functions in the usual quantum-computational
format, by performing the unitary transformation

U f
(|x〉|y〉) = |x〉|y ⊕ f (x)〉, (2.13)

where the state on the left is that of the 1-Qbit input register (i), and
the state on the right is that of the 1-Qbit output register (o). Using
the forms in Table 2.1 and the explicit structure (2.13) of U f , you can
easily confirm that

U f0 = 1, U f1 = Ci o , U f2 = Ci oXo , U f3 = Xo , (2.14)

where 1 is the (2-Qbit) unit operator, Ci o is the controlled-NOT with
the input Qbit as control and the output as target, and Xo acts as NOT
on the output register. These possibilities are illustrated in the circuit
diagram of Figure 2.1.

Suppose that we are given a black box that executes U f for one of
the four functions, but are not told which of the four operations (2.14)
the box carries out. We can, of course, find out by letting the black box

Table 2.1. The four distinct functions
f j (x) that take one bit into one bit

x = 0 x = 1

f0 0 0
f1 0 1
f2 1 0
f3 1 1

42 GENERAL FEATURES AND SOME S IMPLE EXAMPLES

xx

f (x)yy

f(0) f(1)

0 0

0 1

1 0

1 1

=

=

=

=

X

X X

X

U

U

U

U

Uf

f

f

f

f

Fig 2.1 A way to
construct, with elementary
gates, each of the black
boxes U f that realize the
four possible functions f
that appear in Deutsch’s
problem. In case 00 f is
identically 0 and it is
evident from the general
form at the top of the figure
that U f acts as the identity.
In case 01 f (x) = x, so U f

acts as cNOT, with the
input register as the
control Qbit. In case 10 f
interchanges 0 and 1, so
U f applies NOT to the
target Qbit if and only if
the computational-basis
state of the control Qbit is
|0〉. This is equivalent to
combining a cNOT with an
unconditional NOT on the
target Qbit. In case 11 f is
identically 1, and the effect
of U f is just to apply NOT
to the output register,
whatever the state of the
input register. Note the
diagrammatic convention
for controlled operations:
the control Qbit is
represented by the wire
with the black dot on it; the
target Qbit is connected to
the control by a vertical
line ending in a box
containing the controlled
operation. An alternative
representation for cNOT
appears in Figure 2.7.

act twice – first on |0〉|0〉 and then on |1〉|0〉. But suppose that we can
only let the box act once. What can we learn about f ?

In a classical computer, where we are effectively restricted to letting
the black box act on Qbits in one of the four computational-basis states,
we can learn either the value of f (0) (if we let U f act on either |0〉|0〉 or
|0〉|1〉) or the value of f (1) (if we let U f act on either |1〉|0〉 or |1〉|1〉).
If we choose to learn the value of f (0), then we can restrict f to being
either f0 or f1 (if f (0) = 0) or to being either f2 or f3 (if f (0) = 1).
If we choose to learn the value of f (1), then we can restrict f to being
either f0 or f2 (if f (1) = 0) or to being either f1 or f3 (if f (1) = 1).

Suppose, however, that we want to learn whether f is constant
(f (0) = f (1), satisfied by f0 and f3) or not constant (f (0) �= f (1),
satisfied by f1 and f2). We then have no choice with a classical computer
but to evaluate both f (0) and f (1) and compare them. In this way we
determine whether or not f is constant, but we have to extract complete
information about f to do so. We have to run U f twice.

Remarkably, it turns out that with a quantum computer we do not
have to run U f twice to determine whether or not f is constant. We
can do this in a single run. Interestingly, when we do this we learn
nothing whatever about the individual values of f (0) and f (1), but
we are nevertheless able to answer the question about their relative
values: whether or not they are the same. Thus we get less information
than we get in answering the question with a classical computer, but
by renouncing the possibility of acquiring that part of the information
which is irrelevant to the question we wish to answer, we can get the
answer with only a single application of the black box.

2.2 DEUTSCH’S PROBLEM 43

(2) There is a second way to look at Deutsch’s problem, which gives
it nontrivial mathematical content. One can think of x as specifying a
choice of two different inputs to an elaborate subroutine that requires
many additional Qbits, and one can think of f (x) as characterizing
a two-valued property of the output of that subroutine. For example
f (x) might be the value of the millionth bit in the binary expansion of√

2 + x so that f (0) is the millionth bit in the expansion of
√

2 while
f (1) is the millionth bit of

√
3. In this case the input register feeds

data into the subroutine and the subroutine reports back to the output
register.

In the course of the calculation the input and output registers will in
general become entangled with the additional Qbits used by the sub-
routine. If the entanglement persists to the end of the calculation, the
input and output registers will have no final states of their own, and it
will be impossible to describe the computational process as the simple
unitary transformation (2.1). We shall see in Section 2.3, however, that
it is possible to set things up so that at the end of the computation the
additional Qbits required for the subroutine are no longer entangled
with the input and output registers, so that the additional Qbits can in-
deed be ignored. The simple linear transformation (2.1) then correctly
characterizes the net effect of the computation on those two registers.

Under interpretation (1) of Deutsch’s problem, answering the ques-
tion of whether f is or is not constant amounts to learning something
about the nature of the black box that executes U f without actually
opening it up and looking inside. Under interpretation (2) it becomes
the nontrivial question of whether the millionth bits of

√
2 and

√
3

agree or disagree. Under either interpretation, to answer the question
with a classical computer we can do no better than to run the black box
twice, with both 0 and 1 as inputs, and compare the two outputs.

In the quantum case we could try the standard trick, preparing the
input register in the superposition (1/

√
2)

(|0〉 + |1〉). After a single
application of U f the final state of the 1-Qbit input and output registers
would then be

U f
(
H ⊗ 1

)(|0〉|0〉) = 1√
2
|0〉| f (0)〉 + 1√

2
|1〉| f (1)〉, (2.15)

as described in (2.7). If we then measured the input and ouput registers
we could learn, under case (2), the millionth bit of either

√
2 or

√
3,

as well as learning which we had learned. The choice of which we did
learn would be random. This procedure offers no improvement on the
classical situation.

It was first noticed that, without making any further use of U f , there
are additional unitary transformations one can apply to the state (2.15)
before carrying out the measurement that enable you half the time
to state with assurance whether or not f (0) = f (1). (This imperfect
solution to Deutsch’s problem has some interesting features, which we

44 GENERAL FEATURES AND SOME S IMPLE EXAMPLES

explore further in Appendix F.) Some time later, it was realized that
you can always answer the question if you apply appropriate unitary
transformations before as well as after the single application of U f . Here
is how the trick is done.

To get the output (2.15) we took the input to U f to be the state

(
H ⊗ 1

)(|0〉|0〉). (2.16)

Instead of doing this, we again start with both input and output registers
in the state |0〉, but then we apply the NOT operation X to both
registers, followed by an application of the Hadamard transform to
both. Since X|0〉 = |1〉 and H|1〉 = (1/

√
2)(|0〉 − |1〉), the input to U f

is now described by the state

(
H ⊗ H

)(
X ⊗ X

)(|0〉|0〉) = (
H ⊗ H

)(|1〉|1〉)
=

(
1√
2
|0〉 − 1√

2
|1〉

)(
1√
2
|0〉 − 1√

2
|1〉

)
= 1

2

(|0〉|0〉 − |1〉|0〉 − |0〉|1〉 + |1〉|1〉).
(2.17)

If we take the state (2.17) as input to U f , then by linearity the resulting
state is

1
2

(
U f (|0〉|0〉) − U f (|1〉|0〉) − U f (|0〉|1〉) + U f (|1〉|1〉)). (2.18)

It follows from the explicit form (2.13) of the action of U f on the
computational-basis states that this is simply

1
2

(|0〉| f (0)〉 − |1〉| f (1)〉 − |0〉| f̃ (0)〉 + |1〉| f̃ (1)〉), (2.19)

where, as earlier, x̃ = 1 ⊕ x so that 1̃ = 0 and 0̃ = 1, and f̃ (x) =
1 ⊕ f (x). So if f (0) = f (1) the ouput state (2.19) is

1
2

(|0〉 − |1〉)(| f (0)〉 − | f̃ (0)〉), f (0) = f (1), (2.20)

but if f (0) �= f (1) then f (1) = f̃ (0), f̃ (1) = f (0), and the output
state (2.19) becomes

1
2

(|0〉 + |1〉)(| f (0)〉 − | f̃ (0)〉), f (0) �= f (1). (2.21)

If, finally, we apply a Hadamard transformation to the input register,
these become

|1〉 1√
2

(| f (0)〉 − | f̃ (0)〉), f (0) = f (1), (2.22)

|0〉 1√
2

(| f (0)〉 − | f̃ (0)〉), f (0) �= f (1). (2.23)

2.2 DEUTSCH’S PROBLEM 45

On putting together all the operations in a form we can compare
with the more straightforward computation (2.15), we have

(
H ⊗ 1

)
U f

(
H ⊗ H

)(
X ⊗ X

)(|0〉|0〉)
=

⎧⎨
⎩

|1〉 1√
2

(
| f (0)〉 − | f̃ (0)〉

)
, f (0) = f (1),

|0〉 1√
2

(
| f (0)〉 − | f̃ (0)〉

)
, f (0) �= f (1).

(2.24)

Thus the state of the input register has ended up as |1〉 or |0〉 de-
pending on whether or not f (0) = f (1), so by measuring the input
register we can indeed answer the question of whether f (0) and f (1)
are or are not the same!

Notice that in either case the output register is left in the state
(1/

√
2)(| f (0)〉 − | f̃ (0)〉). Because the two terms in the superposition

have amplitudes with exactly the same magnitude, if one measures the
output register the result is equally likely to be f (0) or f̃ (0), and one
learns absolutely nothing about the actual value of f (0). The output
register contains no useful information at all.

Another way to put it is that the final state of the output register
is ±(1/

√
2)

(|0〉 − |1〉) depending on whether f (0) = 0 or f (0) = 1.
Since a change in the overall sign of a state (or, more generally, the
presence of an overall complex factor of modulus 1) has no effect on
the statistical distribution of measurement outcomes, there is no way
to distinguish between these two cases.

Thus the price one has paid to learn whether f (0) and f (1) are or
are not the same is the loss of any information whatever about the actual
value of either of them. One has still eliminated only two of the four
possible forms for the function f . What the quantum computer gives
us is the ability to make this particular discrimination with just a single
invocation of the black box. No classical computer can do this.

There is a rather neat circuit-theoretic way of seeing why this trick
enables one to learn whether or not f (0) = f (1) in just one application
of U f , without going through any of the above algebraic manipulations.
This quite different way of looking at Deutsch’s problem is illustrated
in Figures 2.1–2.3. The basic idea is that for each of the four possible
choices for the function f , the 2-Qbit unitary transformation U f be-
haves in exactly the same way as the equivalent circuit constructed out
of a NOT and/or a cNOT gate pictured in Figure 2.1. Consequently
applying Hadamard gates to each Qbit, both before and after the ap-
plication of U f , must produce exactly the same result as it would if
the Hadamards were applied to the equivalent circuits in Figure 2.1.
Using the elementary identities in Figure 2.2, one easily demonstrates
that those results are as shown in Figure 2.3. But Figure 2.3 shows ex-
plicitly that when U f is so sandwiched between Hadamards, the input
register ends up in the state |0〉 if f (0) = f (1) and in the state |1〉 if
f (0) �= f (1).

46 GENERAL FEATURES AND SOME S IMPLE EXAMPLES

= (a)

=

=

=

(d)

(e)

(f)

= (c)

= (b)

X

X

X

ZX

X

Z

Z

Z

H H

H H

H H

H Z H

H

H

H

H

Fig 2.2 Some elementary
circuit identities. (a)
H2 = 1. (b) HXH = Z. (c)
A consequence of (a) and
(b). (d) A consequence of
(a) and (c). (e) The action
of the controlled-Z gate
does not depend on which
Qbit is control and which is
target, since it acts as the
identity on each of the
states |00〉, |01〉, and |10〉
and multiplies the state
|11〉 by −1. (f) This follows
from (d), (a), and (e).

When one thinks of applying this to learn whether the millionth bits
of

√
2 and

√
3 are the same or different, as in the second interpretation

of Deutsch’s problem, it is quite startling that one can do this with no
more effort (except for a simple modification of the initial and final
states) than one uses to calculate the millionth bit of either

√
2 or

√
3.

In this case, however, there is an irritating catch, which we note at the
end of Section 2.3.

2.3 Why additional Qbits needn’t mess things up

Now that we have a specific example of a quantum computation to keep
in mind, we can address an important and very general issue mentioned
in Section 2.1. The computational process generally requires the use
of many Qbits besides the n + m in the input and output registers. In
the second interpretation of Deutsch’s problem, it may need a great
many more. The action of the computer is then described by a uni-
tary transformation W f that acts on the space associated with all the
Qbits: those in the input and output registers, together with the r
additional Qbits used in calculating the function f . Only under very
special circumstances will this global unitary transformation W f on
all n + m + r Qbits induce a transformation on the input and output
registers that can be be described by a unitary transformation U f that
acts only on those two registers, as in (2.1). In general the input and
output registers will become entangled with the states of the additional
r Qbits, and cannot even be assigned a state.

2.3 WHY ADDIT IONAL QB ITS NEEDN’T MESS TH INGS UP 47

xx

f(x)yy

H

H H

H

H

H H

H

H

H H

H

H

H H

H

=

=

=

=

f(1)

0 0

0 1

01

11

f(0)

Uf

X

X

Z

Z

U

U

U

U

f

f

f

f

Fig 2.3 We can get the
action of U f , when it is
preceded and followed by
Hadamards on both Qbits,
by applying the appropriate
identities of Figure 2.2 to
the diagrams of Figure 2.1.
Case 00 is unchanged
because of Figure 2.2(a). In
case 01 the target and
control Qbits of the cNOT
are interchanged because of
Figure 2.2(f). The form in
case 10 follows from the
corresponding form in
Figure 2.1 because of
Figures 2.2(f) and 2.2(b).
The form in case 11 follows
from Figures 2.2(a) and
2.2(b). If the initial state of
the output register (lower
wire) is |1〉 and the initial
state of the input register
(upper wire) is either of the
two computational-basis
states, then the initial state
of the input register will be
unchanged in cases 00 and
11, and flipped in cases 01
and 10, so by measuring
the input register after the
action of(
H ⊗ H

)
U f

(
H ⊗ H

)
one

can determine whether or
not f (0) = f (1).

But if the action of the computer on all n + m + r Qbits has a very
special form, then the input and output registers can indeed end up
with a state, related to their initial states through the desired unitary
transformation U f . Let the additional r Qbits start off in some standard
initial state |ψ〉r , so that the initial state of input register, output register,
and additional Qbits is

|�〉n+m+r = |x〉n |y〉m |ψ〉r . (2.25)

Although the r additional Qbits may well become entangled with those
in the input and output registers in the course of the calculation – they
will have to if they are to serve any useful purpose – we require that
when the calculation is finished the final state of the computer must be
of the form

W f |�〉n+m+r = |x〉n |y ⊕ f (x)〉m |φ〉r , (2.26)

where the additional r Qbits not only are unentangled with the input
and output registers, but also have a state |φ〉r that is independent of
the initial state of the input and output registers.

Because W f is linear on the whole (n + m + r)-Qbit subspace, and
because |ψ〉r and |φ〉r are independent of the initial computational-
basis state of the input and output registers, it follows that if the
input and output registers are initially assigned any superposition
of computational-basis states, then W f leaves them with a definite
final state, which is related to their initial state by precisely the unitary
transformation U f of (2.1).

48 GENERAL FEATURES AND SOME S IMPLE EXAMPLES

x
nUf

x
n

y
m

+ f(x)
m

y

Fig 2.4 A schematic representation of the standard unitary
transformation U f for evaluating a function f taking a number
0 ≤ x < 2n into a number 0 ≤ f (x) < 2m . The heavy horizontal lines
(bars) represent multiple-Qbit inputs. In order for the computation to
be reversible even when f is not one-to-one, two multi-Qbit registers
must be used.

Wfx
n

r

y
m

+ f(x)
m

x
n

r
fy

y

Fig 2.5 A more realistic picture of the computation represented in
Figure 2.4. Many additional Qbits may be needed to carry out the
calculation. These are represented by an r -Qbit bar in addition to the
n- and m-Qbit bars representing the input and output registers.
The computation is actually executed by a unitary transformation
W f that acts on the larger space of all n + m + r Qbits. The
representation of Figure 2.4 is correct only if the action of this larger
unitary transformation W f on the input and output registers
alone can be represented by a unitary transformation U f . This
will be the case if the action of W f on the residual r Qbits is to take
them from an initial pure state |ψ〉r to a final pure state |φ〉r that
is independent of the initial contents of the input and output
registers.

Therefore we can indeed use (2.1), ignoring complications associated
with the additional r Qbits needed to compute the function f , if both
the initial and the final states of the additional Qbits are independent
of the initial states of the input and output registers. Independence of
the initial states can be arranged by initializing the additional r Qbits
to some standard state, for example |�〉r = |0〉r . A standard final state
|φ〉r of the r Qbits, which is, in fact, identical to their initial state |ψ〉r ,
can be produced by taking appropriate advantage of the fact that unitary
transformations are reversible.

We do the trick in three stages.

(1) Begin the computation by applying a unitary transformation V that
acts only on the n-Qbit input register and the r additional Qbits,

2.3 WHY ADDIT IONAL QB ITS NEEDN’T MESS TH INGS UP 49

f(x)
m

f(x)
m

x
n

y
r

x
n

rVf

y
Vf

y
m

Cm y + f(x)
m

yx n + r − m †
Fig 2.6 A more detailed
view of the structure of the
unitary transformation W f

of Figure 2.5. Algebraically,
W f = V

†
f CmV f . First a

unitary transformation V f

acts only on the n-Qbit
input register and r
additional Qbits, acting as
the identity on the output
register. This
transformation takes the
n + r Qbits into a state in
which an m-Qbit subset
represents the result of the
calculation, f (x). Second,
m controlled-NOT
transformations (described
in more detail in Figure
2.7) act only on the m Qbits
representing f (x) and the
m Qbits of the output
register, leaving the former
m unchanged but changing
the number represented by
the output register from y
to y ⊕ f (x). Finally, the
inverse V

†
f of V f is applied

to the n + r Qbits on the
top two bars, to restore
them to their
(unentangled) initial states.

doing nothing to the output register. Because there is no action on
the output register, the n + r Qbits on which V acts continue to
have a state of their own. If the initial state of the input register is
|x〉n the unitary transformation V is designed, using standard tricks
of reversible classical computation (about which we shall have more
to say in Section 2.6) to construct f (x) in an appropriate m-Qbit
subset of the n + r Qbits, given x in the input register.

(2) Next change the y initially in the output register to y ⊕ f (x),
as (2.1) or (2.26) specifies, without altering the state of the n + r
other Qbits. This can be done with m cNOT gates that combine
to make up a unitary transformation Cm . The m control Qbits are
those among the n + r that represent the result of the computation
f (x); the m target Qbits are the ones in the corresponding positions
of the output register.

(3) Since the state of the n + r Qbits is not altered by the application
of Cm , we can finally apply to them the inverse transformation V†

to restore them to their original state. We have thus produced the
required unitary transformation W in (2.26), with the final state
|φ〉r of the r additional Qbits being identical to their initial state
|ψ〉r . This whole construction is illustrated by the circuit diagrams
of Figures 2.4–2.7.

The need for this, or some equivalent procedure, negates some of the
hype one sometimes encounters in discussions of Deutsch’s problem.
It is sometimes said that by using a quantum computer one can learn
whether or not f (x) = f (y) in no more time than it takes to perform a
single evaluation of f . This is true only under the first, arithmetically
uninteresting, interpretation of Deutsch’s problem. If, however, one is
thinking of f as a function of mathematical interest evaluated by an
elaborate subroutine, then to evaluate f for a single value of x there is
no need to undo the effect of the unitary transform V on the additional
registers. But for the trick that determines whether or not f (x) = f (y)
it is absolutely essential to applyV† to undo the effect ofV. This doubles
the time of the computation.

This misrepresentation of the situation is not entirely dishonor-
able, however, since in almost all other examples the speed-up is by
considerably more than a factor of two, and the necessary doubling of
computational time is an insignificant price to pay. We turn immediately
to an elementary example.

50 GENERAL FEATURES AND SOME S IMPLE EXAMPLES

y y

x x

==C5 C5

+ x

Fig 2.7 A more detailed picture of the Cm unitary transformation in
Figure 2.6, for the case m = 5. Each of the input and output bars
contains five Qbits, represented by sets of five thin lines (wires). Five
different 2-Qbit controlled-NOT gates link the five upper wires
representing f (x) to the five lower wires representing the
corresponding positions in the output register. The action of a single
such cNOT gate is shown in the lower part of the figure. Note the
alternative convention for a cNOT gate: the black dot on the wire
representing the control Qbit is connected by a vertical line to an open
circle on the wire representing the target Qbit. The other convention
(used above in Figures 2.1–2.3) replaces the open circle by a square
box containing the NOT operator X that may act on the target Qbit.
The advantages of the circle representation are that it suggests the
symbol ⊕ that represents the XOR operation, and that it is easier to
draw quickly on a blackboard. The advantages of using X are that it
makes the algebraic relations more evident when NOT operations X,
Z operations, or controlled-Z operations also appear, and that it
follows the form used for all other controlled unitaries.

2.4 The Bernstein–Vazirani problem

Like many of the examples discovered before Shor’s factoring algo-
rithm, this has a somewhat artificial character. Its significance lies not
in the intrinsic arithmetical interest of the problem, but in the fact that
it can be solved dramatically and unambiguously faster on a quantum
computer.

Let a be an unknown non-negative integer less than 2n . Let f (x)
take any other such integer x into the modulo-2 sum of the products of
corresponding bits of a and x, which we denote by a · x (in recognition
of the fact that it is a kind of bitwise modulo-2 inner product):

a · x = a0x0 ⊕ a1x1 ⊕ a2x2 · · ·. (2.27)

2.4 THE BER NSTE IN–VAZ IRANI PROBLEM 51

Suppose that we have a subroutine that evaluates f (x) = a · x. How
many times do we have to call that subroutine to determine the value
of the integer a? Here and in all subsequent examples, we shall assume
that any Qbits acted on by such subroutines, except for the Qbits of
the input and output registers, are returned to their initial state at the
end of the computation, as discussed in Section 2.3.

The m th bit of a is a · 2m , since the binary expansion of 2m has 1 in
position m and 0 in all the other positions. So with a classical computer
we can learn the n bits of a by applying f to the n values x = 2m , 0 ≤
m < n. This, or any other classical method one can think of, requires n
different invocations of the subroutine. But with a quantum computer
a single invocation is enough to determine a completely, regardless of
how big n is!

I first describe the conventional way of seeing how this can be done,
and then describe a much simpler way to understand the process. The
conventional way exploits a trick (implicitly exploited in our solution to
Deutsch’s problem) that is useful in dealing with functions like f that
act on n Qbits with output to a single Qbit. If the 1-Qbit output register
is initially prepared in the state HX|0〉 = H|1〉 = (1/

√
2)

(|0〉 − |1〉)
then, since U f applied to the computational basis state |x〉n |y〉1 flips
the value y of the output register if and only if f (x) = 1, we have

U f |x〉n
1√
2

(|0〉 − |1〉) = (−1) f (x)|x〉n
1√
2

(|0〉 − |1〉). (2.28)

So by taking the state of the 1-Qbit output register to be (1/
√

2)
(|0〉 −

|1〉), we convert a bit flip to an overall change of sign. This becomes
useful because of a second trick, which exploits a generalization of the
action (2.5) of H⊗n on |0〉n .

The action of H on a single Qbit can be compactly summarized as

H|x〉1 = 1√
2

(|0〉 + (−1)x |1〉) = 1√
2

1∑
y=0

(−1)xy|y〉. (2.29)

If we apply H⊗n to an n-Qbit computational-basis state |x〉n we can
therefore express the result as

H⊗n |x〉n = 1
2n/2

1∑
yn−1=0

· · ·
1∑

y0=0

(−1)
∑n−1

j=0 x j yj |yn−1〉 · · · |y0〉

= 1
2n/2

2n−1∑
y=0

(−1)x·y|y〉n , (2.30)

where the product x · y is the one defined in (2.27). (Because −1 is
raised to the power

∑
x j yj , all that matters about the sum is its value

modulo 2.)
So if we start with the n-Qbit input register in the standard initial

state H⊗n |0〉, put the 1-Qbit output register into the state H|1〉, apply

52 GENERAL FEATURES AND SOME S IMPLE EXAMPLES

 f(x)y

4

3

2

1

0

a = 1

a = 0

a = 0

a = 1

a = 1

3

4

0

1

2

4x

3x

2x

1
x

0x

x

x

x

x

x

X X X y +

Fig 2.8 An illustration of a
circuit that implements the
unitary subroutine U f

taking n-Qbit input and
1-Qbit output registers,
initially in the state
|x〉n |y〉1, into
|x〉n |y ⊕ f (x)〉1, where
f (x) = a · x = ∑n−1

j=0 a j x j

(mod 2). The Bernstein–
Vazirani problem asks us to
determine all the bits of a
with a single invocation of
the subroutine. In the
illustration n = 5 and
a = 25 = 11001. For
j = 0, . . . , n − 1, each of
the cNOT gates adds 1
(mod 2) to the output
register if and only if
a j x j = 1. In addition to
their normal labeling with
the 1-Qbit states they
represent, the wires of the
input register are labeled
with the bits of a , to make
it clear which (those
associated with a j = 1) act
as control bits for a cNOT
targeted on the output
register.

U f , and then again apply H⊗n to the input register, we get(
H⊗n ⊗ 1

)
U f

(
H⊗n ⊗ H

)|0〉n |1〉1

= (
H⊗n ⊗ 1

)
U f

(
1

2n/2

2n−1∑
x=0

|x〉
)

1√
2

(|0〉 − |1〉)

= 1
2n/2

(
H⊗n

2n−1∑
x=0

(−1) f (x)|x〉
)

1√
2

(|0〉 − |1〉)

= 1
2n

2n−1∑
x=0

2n−1∑
y=0

(−1) f (x) + x·y|y〉 1√
2

(|0〉 − |1〉). (2.31)

We do the sum over x first. If the function f (x) is a · x then this
sum produces the factor

2n−1∑
x=0

(−1)(a·x)(−1)(y·x) =
n∏

j=1

1∑
x j =0

(−1)(a j +yj)x j . (2.32)

At least one term in the product vanishes unless every bit yj of y is
equal to the corresponding bit a j of a – i.e. unless y = a . Therefore
the entire computational process (2.31) reduces to

H⊗(n+1)U f H
⊗(n+1)|0〉n |1〉1 = |a〉n |1〉1, (2.33)

where I have applied a final H to the 1-Qbit output register to make the
final expression look a little neater and more symmetric. (I have also
restored subscripts to the state symbols for the n-Qbit input register
and 1-Qbit output register.)

So by putting the input and output registers into the appropriate
initial states, after a single invocation of the subroutine followed by an
application of H⊗n to the input register, the state of the input register
becomes |a〉. As promised, all n bits of the number a can now be
determined by measuring the input register, even though we have called
the subroutine only once!

There is a second, complementary way to look at the Bernstein–
Vazirani problem that bypasses all of the preceding analysis, making
it evident why (2.33) holds, by examining a few circuit diagrams. The

2.4 THE BER NSTE IN–VAZ IRANI PROBLEM 53

0

0

0

0

1

0

a = 1

a = 0

a = 0

a = 1

a = 1

2

3

4

0

1

X X X

H

H

H

H

H

H

H

H

H

H

H

H

Fig 2.9 The solution to
the Bernstein–Vazirani
problem is to start with the
input register in the state
|0〉n and the output register
in the state |1〉1 and apply
Hadamard transforms to all
n + 1 registers before
applying U f . Another
n + 1 Hadamards are
applied after U f has acted.
The cNOT gates
reproduce the action of
U f , as shown in Figure 2.8.
The conventional analysis
deduces the final state by
calculating the effect of the
Hadamards on the initial
state of the Qbits and on
the state subsequently
produced by the action of
U f . A much easier way to
understand what is going
on is to examine the effect
of the Hadamards on the
collection of cNOT gates
equivalent to U f . This is
shown in Figure 2.10.

idea is to note, just as we did for the black box of Deutsch’s problem
in (2.14), that the actions of the black boxes that implement U f for
the different available choices of f are identical to the actions of some
simple circuits.

When f (x) = a · x, the action of U f on the computational basis
is to flip the 1-Qbit output register once, whenever a bit of x and the
corresponding bit of a are both 1. When the state of the input register
is |x〉n this action can be performed by a collection of cNOT gates all
targeted on the output register. There is one cNOT for each nonzero
bit of a , controlled by the Qbit representing the corresponding bit of
x. The combined effect of these cNOT gates on every computational-
basis state is precisely that of U f . Therefore the effect of any other
transformations preceding and/or following U f can be understood by
examining their effect on this equivalent collection of cNOT gates, even
though U f may actually be implemented in a completely different way.

The encoding of a in the disposition of the equivalent cNOT gates
is illustrated in Figure 2.8. The application (2.33) of H to every Qbit in
the input and output registers both before and after the application of
U f , pictured in Figure 2.9, converts every cNOT gate in the equivalent
representation of U f from Ci j to

(
Hi H j

)
Ci j

(
Hi H j

) = C j i , as pictured
in Figure 2.10 (see also Equation (1.44).) After this reversal of target
and control Qbits, the output register controls every one of the cNOT
gates, and since the state of the output register is |1〉, every one of the
NOT operators acts. That action flips just those Qbits of the input
register for which the corresponding bit of a is 1. Since the input
register starts in the state |0〉n , this changes the state of each Qbit of
the input register to |1〉, if and only if it corresponds to a nonzero bit
of a . As a result, the state of the input register changes from |0〉n to
|a〉n , just as (2.33) asserts.

Note how different these two explanations are. The first applies U f

to the quantum superposition of all possible inputs, and then applies
operations that lead to perfect destructive interference of all states in
the superposition except for the one in which the input register is in the
state |a〉. The second suggests a specific mechanism for representing
the subroutine that executesU f and then shows that sandwiching such a

54 GENERAL FEATURES AND SOME S IMPLE EXAMPLES

=

=

X

X

X

XXX

X

XH

H H

H

H

H

H

H

H

H

H

H

H

H

H

H

Fig 2.10 Sandwiching a
cNOT gate between
Hadamards that act on the
control and target Qbits
has the effect of
interchanging control and
target, as shown at the top
of the figure. (See
Equation (1.44) or Figure
2.2.) Consequently the
action of all the Hadamards
in Figure 2.9 on the cNOT
gates between them is
simply to interchange the
control and target Qbits, as
shown in the lower part of
the figure. In establishing
this one uses the fact that
H2 = 1, so that the H gates
on wires that are not
control or target Qbits
combine to give 1, and
pairs of Hadamards can be
introduced between every
X on the lowest wire,
converting HXXXH into
(HXH)(HXH)(HXH).
After the action of the
Hadamards the cNOT
gates are controlled by the
output register, so if the
output register is in the
state |1〉 then all the X act
on their input-register
targets. If the initial state of
the input register is |0〉n

then the effect of each X is
to change to |1〉 the state of
each Qbit associated with a
bit of a that is 1. This
converts the state of the
input register to |a〉n .

mechanism between Hadamards automatically imprints a on the input
register.

Interestingly, quantum mechanics appears in the second method
only because it allows the reversal of the control and target Qbits of
a cNOT operation solely by means of 1-Qbit (Hadamard) gates. One
can also reverse control and target bits of a cNOT classically, but this
requires the use of 2-Qbit SWAP gates, rather than 1-Qbit Hadamards.
You can confirm for yourself that this circuit-theoretic solution to the
Bernstein–Vazirani problem no longer works if one tries to replace all
the Hadamard gates by any arrangement of SWAP gates.

2.5 Simon’s problem

Simon’s problem, like the Bernstein–Vazirani problem, has an n-bit
nonzero number a built into the action of a subroutine U f , and the aim
is to learn the value of a with as few invocations of the subroutine as
possible. In the Bernstein–Vazirani problem a classical computer must
call the subroutine n times to determine the value of a , while a quantum
computer need call the subroutine only once. The number of calls grows
linearly with n in the classical case, while being independent of n in
the quantum case. In Simon’s problem the speed-up with a quantum
computer is substantially more dramatic. With a classical computer the
number of times one must call the subroutine grows exponentially in
n, but with a quantum computer it grows only linearly.

This spectacular speed-up involves a probabilistic element charac-
teristic of many quantum computations. The characterization of how
the number of calls of the subroutine scales with the number of bits in a
applies not to calculating a directly, but to learning it with probability
very close to 1.

2.5 S IMON’S PROBLEM 55

The subroutine U f in Simon’s problem evaluates a function f on
n bits that is two to one – i.e. it is a function from n to n − 1 bits. It is
constructed so that f (x) = f (y) if and only if the n-bit integers x and
y are related by x = y ⊕ a or, equivalently and more symmetrically,
x ⊕ y = a , where ⊕ again denotes bitwise modulo-2 addition. One
can think of this as a period-finding problem. One is told that f is
periodic under bitwise modulo-2 addition,

f (x ⊕ a) = f (x) (2.34)

for all x, and the problem is to find the period a . Simon’s problem is
thus a precursor of Shor’s much subtler and spectacularly more useful
period-finding algorithm – the heart of his factoring procedure – where
one finds the unknown period a of a function that is periodic under
ordinary addition: f (x + a) = f (x).

To find the value of a in (2.34) with a classical computer all you can
do is feed the subroutine different x1, x2, x3, . . ., listing the resulting
values of f until you stumble on an x j that yields one of the previously
computed values f (xi). You then know that a = x j ⊕ xi . At any stage
of the process prior to success, if you have picked m different values
of x, then all you know is that a �= xi ⊕ x j for all pairs of previously
selected values of x. You have therefore eliminated at most 1

2 m (m − 1)
values of a . (You would have eliminated fewer values of a if you were
careless enough to pick an x equal to xi ⊕ x j ⊕ xk for three values
of x already selected.) Since there are 2n − 1 possibilities for a , your
chances of success will not be appreciable while 1

2 m (m − 1) remains
small compared with 2n . You are unlikely to succeed until m becomes
of the order of 2n/2, so the number of times the subroutine has to be
run to give an appreciable probability of determining a grows with the
number of bits n as 2n/2 – i.e. exponentially. If a has 100 bits a classical
computer would have to run the subroutine about 250 ≈ 1015 times
to have a significant chance of determining a . At ten million calls per
second it would take about three years.

In contrast, a quantum computer can determine a with high prob-
ability (say less than one chance in a million of failing) by running the
subroutine not very much more than n times – e.g. with about 120
invocations of the subroutine if a has 100 bits. This remarkable feat
can be accomplished with the following strategy.

We return to the standard procedure and apply the unitary transfor-
mationU f only after the state of the input register has been transformed
into the uniformly weighted superposition (2.5) of all possible inputs
by the application of H⊗n , so that the effect of U f is to assign to the
input and output registers the entangled state

1
2n/2

2n−1∑
x=0

|x〉| f (x)〉. (2.35)

56 GENERAL FEATURES AND SOME S IMPLE EXAMPLES

If we now subject only the output register to a measurement, then the
measurement gate is equally likely to indicate each of the 2n−1 different
values of f . Since each value of f appears in two terms in (2.35) that
have the same amplitudes, the generalized Born rule tells us that the
input register will be left in the state

1√
2

(|x0〉 + |x0 ⊕ a〉) (2.36)

for that value of x0 for which f (x0) agrees with the random value of f
given by the measurement.

At first glance this looks like great progress. We have produced a
superposition of just two computational-basis states, associated with
two n-bit integers, that differ (in the sense of ⊕) by a . If we knew those
two integers their bitwise modulo 2 sum would be a . But unfortunately,
as already noted, when a register is in a given quantum state there is in
general no way to learn what that state is. To be sure, if we could clone
the state, then by measuring a mere ten copies of it in the computational
basis we could with a probability of about 0.998 learn both x0 and x0 ⊕ a
and therefore a itself. But unfortunately, as we have also noted earlier,
one cannot clone an unknown quantum state. Nor does it help to run
the algorithm many times, since we are overwhelmingly likely to get
states of the form (2.36) for different random values of x0. By subjecting
(2.36) to a direct measurement all we can learn is either x0 – a random
number, or x0 ⊕ a – another random number. The number a that we
would like to know appears only in the relation between two random
numbers, only one of which we can learn.

Nevertheless, as in Deutsch’s problem, if we renounce the possibility
of learning either number (which alone is of no interest at all), then
by applying some further operations before measuring we can extract
some useful partial information about their relationship – in this case
their modulo-2 sum a . With the input register in the state (2.36), we
apply the n-fold Hadamard transformation H⊗n . Equation (2.30) then
gives

H⊗n 1√
2

(|x0〉 + |x0 ⊕ a〉) = 1
2(n+1)/2

2n−1∑
y=0

(
(−1)x0·y + (−1)(x0⊕a)·y)|y〉.

(2.37)

Since (−1)(x0⊕a)·y = (−1)x0·y(−1)a·y, the coefficient of |y〉 in (2.37) is
0 if a · y = 1 and 2(−1)x0·y if a · y = 0. Therefore (2.37) becomes

1
2(n−1)/2

∑
a·y=0

(−1)x0·y|y〉, (2.38)

where the sum is now restricted to those y for which the modulo-2
bitwise inner product a · y is 0 rather than 1. So if we now measure the
input register, we learn (with equal probability) any of the values of y

2.5 S IMON’S PROBLEM 57

for which a · y = 0 – i.e. for which

n−1∑
i=0

yi ai = 0 (mod 2), (2.39)

where ai and yi are corresponding bits in the binary expansions of a
and y.

This completes our description of the quantum computation: with
each invocation of U f we learn a random y satisfying a · y = 0. What
remains is the purely mathematical demonstration that this information
enables us to determine a with high probability with not many more
than n invocations. To see that this is plausible, note first that with just
a single invocation of U f , unless we are unlucky enough to get y = 0
(which happens with the very small probability 1/2n−1), we learn a
nonzero value of y, and therefore a nontrivial subset of the n bits of
a whose modulo-2 sum vanishes. One of those bits is thus entirely
determined by the others in the subset, so we have cut the number of
possible choices for a in half, from 2n − 1 (the −1 reflecting the fact that
we are told that a �= 0) to 2n−1 − 1. In one invocation of the subroutine
we can, with very high probability, eliminate half the candidates for a !
(Contrast this to the classical case, in which a single invocation of U f

can tell us nothing whatever about a .)
If we now repeat the whole procedure, then with very high proba-

bility the new value of y that we learn will be neither 0 nor the same
as the value we learned the first time. We will therefore learn a new
nontrivial relation among the bits of a , which enables us to reduce the
number of candidates by another factor of 2, eliminating three quarters
of the possibilities available for a with two invocations of the subrou-
tine. (Compare this to the classical situation in which only a single value
of a can be removed with two invocations.)

If every time we repeat the procedure we have a good chance of
reducing the number of choices for a by another factor of 2, then with n
invocations of the subroutine we might well expect to have a significant
chance of learning a . This intuition is made precise in Appendix G,
where some slightly subtle but purely mathematical analysis shows that
with n + x invocations of U f the probability q of acquiring enough
information to determine a is

q =
(

1 − 1
2n+x

) (
1 − 1

2n+x−1

)
· · ·

(
1 − 1

2x+2

)
> 1 − 1

2x+1
.

(2.40)
Thus the odds are more than a million to one that with n + 20 invoca-
tions of U f we will learn a , no matter how large n may be.

The intrusion of some mildly arcane arithmetic arguments, to con-
firm that the output of the quantum computer does indeed provide
the needed information in the advertised number of runs, is charac-
teristic of many quantum-computational algorithms. The action of the

58 GENERAL FEATURES AND SOME S IMPLE EXAMPLES

quantum computer itself is rather straightforward, but we must engage
in more strenuous mathematical exertions to show that the outcome
of the quantum computation does indeed enable us to accomplish the
required task.

2.6 Constructing Toffoli gates

As noted in Section 1.6, constraints on what is physically feasible
limit us to unitary transformations that can be built entirely out of
1- and 2-Qbit gates. It is assumed that 1-Qbit unitary gates will be rel-
atively straightforward to make, though even this can be challenging for
many of the physical systems proposed for Qbits. Making 2-Qbit gates
presents an even tougher challenge to the quantum-computational en-
gineer, since they will require one to manipulate with precision the
physical interaction between the two Qbits. Making an inherently 3-
Qbit gate goes beyond present hopes.

It has been known since before the arrival of quantum computa-
tion that to build up all arithmetical operations on a reversible classical
computer it is necessary (and sufficient) to use at least one classically
irreducible 3-Qbit gate – for example controlled-controlled-NOT (cc-
NOT) gates, known as Toffoli gates. Such 3-Qbit gates cannot be built
up out of 1- and 2-Cbit gates. This would appear to be bad news for
the prospects of practical quantum computation.

Remarkably, however, the linear extension of the Toffoli gate to
Qbits can be built up out of 1-Qbit unitary gates acting in suitable
combination with 2-Qbit cNOT gates. The quantum extension of this
classically irreducible 3-Cbit gate can be realized with a rather small
number of 1- and 2-Qbit gates.

The 3-Qbit Toffoli gate T acts on the computational basis to flip
the state of the third (target) Qbit if and only if the states of both of the
first two (control) Qbits) are 1:

T|x〉|y〉|z〉 = |x〉|y〉|z ⊕ xy〉. (2.41)

Since T is its own inverse, it is clearly reversible, and therefore its linear
extension from the classical basis to arbitrary 3-Qbit states is unitary,
by the general argument in Section 1.6.

The Toffoli gate enables one to calculate the logical AND of two bits
(i.e. their product) since T|x〉|y〉|0〉 = |x〉|y〉|xy〉. Since all Boolean
operations can be built up out of AND and NOT, and since all of
arithmetic can be constructed out of Boolean operations, with Tof-
foli gates one can build up all of classical computation through re-
versible operations. (One can even produce NOT with a Toffoli gate:
T|1〉|1〉|x〉 = |1〉|1〉|x〉, but this would be a ridiculously hard way to
implement NOT on a quantum computer.)

There are (at least) two rather different ways to construct a ccNOT
gate T out of cNOT gates and 1-Qbit unitaries. The first way to be

2.6 CONSTRUCT ING TOFFOL I GATES 59

found requires eight cNOT gates. Later a more efficient construction
was discovered that requires only six cNOT gates. Nobody has found
a construction with fewer than six cNOT gates, but I do not know
of a proof that six are required. I describe both constructions, since
they take advantage of and therefore illustrate several useful quantum-
computational tricks.

The construction of a Toffoli gate from eight cNOT gates is based
on three ingredients. (a) For any 1-Qbit unitary U one defines the 2-
Qbit controlled-U gate CU

10 as one that acts on the computational basis
as the identity if the state of Qbit 1 (the control Qbit) is |0〉 and acts on
Qbit 0 (the target Qbit) as U if the state of the control Qbit is |1〉:

CU
10|x1x0〉 = Ux1

0 |x1x0〉. (2.42)

(The cNOT operation C is thus a CX operation, but so important a
one as to make it the default form when no U is specified.) We shall
show that a controlled-U gate for arbitrary U can be built out of two
cNOT gates and 1-Qbit unitaries. (b) We shall show that a 3-Qbit
doubly-controlled-U2 gate, which takes |x2x1x0〉 into (U2x2x1

0)|x2x1x0〉,
can be constructed out of two controlled-U gates, one controlled-U†

gate, and two additional cNOT gates, making a total of eight cNOT
gates. (c) We shall show that there is a unitary square-root-of-NOT
gate,

√
X. Taking U in (b) to be

√
X gives the desired Toffoli gate. We

now elaborate on each part of the construction.
(a) Let V and W be two arbitrary 1-Qbit unitary transformations

and consider the product

V0C10V
†
0W0C10W

†
0. (2.43)

One easily confirms that (2.43) acts on the computational basis as CU
10

with

U = (VXV†)(WXW†) = (
V(−→x · −→σ)V†)(

W(−→x · −→σ)W†). (2.44)

As shown in Appendix B, one can pick V and W so that(
V(−→x · −→σ)V†)(

W(−→x · −→σ)W†)
= (−→a · −→σ)(−→b · −→σ) = −→a · −→b + i (−→a ⊗ −→b) · −→σ , (2.45)

for arbitrary unit vectors −→a and −→b . Appendix B also establishes that
any 1-Qbit unitary transformation has, to within a multiplicative nu-
merical phase factor e iα, the form

u(−→n , θ) = exp(i 1
2θ

−→n · −→σ) = cos(1
2θ) 1 + i sin(1

2θ) −→n · −→σ .

(2.46)

If a and b are in the plane perpendicular to n and the angle between them
is 1

2θ , then U = u(n, θ). The 1-Qbit unitary transformation E = e iαn,
applied to Qbit 1, multiplies by the phase factor e iα if and only if the

60 GENERAL FEATURES AND SOME S IMPLE EXAMPLES

=
U W VV

E

W ††

Fig 2.11 How to construct
a controlled-U gate CU

from unitary 1-Qbit gates
and two controlled-NOT
gates. If the control Qbit is
in the state |0〉, the
operations on the target
wire combine to give
(VV†)(WW†) = 1. But if
the control Qbit is in the
state |1〉 then the
operations combine to give
U = (VσxV

†) (WσxW
†),

where σx = −→x · −→σ = X.
To within an overall
numerical phase factor a
general two-dimensional
unitary transformation can
always be put in this form
for appropriate V and W.
The E on the control wire
is the unitary
transformation

E = e iαn =
(

1 0
0 e iα

)
,

which supplies such a
phase factor when the state
of the control Qbit is |1〉.
The two unitary gates
between the cNOT gates
on the lower wire, W and
V†, can be combined into
the single unitary gate
V†W, so in addition to the
two cNOT gates the
construction uses four
1-Qbit unitaries.

computational-basis state of Qbit 1 is |1〉. The resulting circuit for
constructing CU is shown in Figure 2.11.

(b) Given such a controlled-U gate CU
i j with Qbit i the control and

j the target, a doubly-controlled-U2 gate, controlled by Qbits 2 and 1
and targeting Qbit 0, can be constructed out of three such controlled-U
gates and two more cNOT gates:

CU2 = CU
10C21C

U†
10 C21C

U
20. (2.47)

The corresponding circuit diagram is shown in Figure 2.12. It is
straightforward to establish that the sequence of operators on the right
of (2.47) acts on the 3-Qbit computational-basis states as 1 unless Qbits
2 and 1 are both in the state |1〉, in which case it acts on Qbit 0 as U2.

(c) Finally, note that

√
Z =

(
1 0
0 i

)
, (2.48)

which is clearly unitary. Therefore, since X = HZH and H2 = 1, we
have

√
X = H

√
ZH. (2.49)

This plays the role of U in (b) to make the Toffoli gate.
The alternative construction of the Toffoli gate that uses only six

cNOT gates has an action that is somewhat more transparent. It is
illustrated in Figure 2.13. If A and B are any two unitaries with A2 =
B2 = 1 then the 3-Qbit gate

CB
10C

A
20C

B
10C

A
20 (2.50)

clearly acts as the identity on the computational basis, unless the
states of Qbits 1 and 2 are both |1〉, in which case it acts as (BA)2

on Qbit 0, so it is a doubly-controlled-(BA)2 gate. Take A = −→a · −→σ
and B = −→b · −→σ for unit vectors −→a and −→b . Since −→n · −→σ can be
expressed as V†(−→x · −→σ)

V = V†XV for appropriate unitary V, each
controlled-A and controlled-B gate can be constructed with a single
controlled-NOT gate and 1-Qbit unitaries. The product BA is the
unitary

(−→b · −→σ)(−→a · −→σ) = (−→b · −→a)1 + i
(−→b × −→a) · −→σ . Pick the

unit vectors −→b and −→a with the angle between them π/4, lying in
the plane perpendicular to x with their vector product directed along−→x , so that

(−→b · −→σ)(−→a · −→σ) = cos(π/4)1 + i sin(π/4)−→x · −→σ . (For

2.6 CONSTRUCT ING TOFFOL I GATES 61

U2 U UU

=
†

Fig 2.12 How to construct a 3-Qbit controlled-controlled-U2 gate
from 2-Qbit controlled-NOT, controlled-U, and controlled-U† gates.
If Qbits 2 and 1 (top and middle wires) are both in the state |1〉 then U
acts twice on Qbit 0 (bottom wire) but U† does not. If Qbits 2 and 1 are
both in the state |0〉 nothing acts on Qbit 0. If Qbits 2 and 1 are in the
states |1〉 and |0〉 then only the U on the left and the U† act on Qbit 0
(and their product is 1), and if Qbits 2 and 1 are in the states |0〉 and
|1〉 only the U on the right and the U† act on Qbit 0 (and their product
is again 1.)

X

U

B BA A

=

Fig 2.13 How to make a doubly-controlled-NOT (Toffoli) gate using
six cNOT gates and 1-Qbit unitaries. The unitary operators A and B
are given by A = −→a · −→σ and B = −→b · −→σ for appropriately chosen
real unit vectors −→a and −→b . Because −→n · −→σ = V†(−→x · −→σ)

V for
appropriate unitary V, each controlled-A and controlled-B gate can be
constructed with a single controlled-NOT gate and 1-Qbit unitaries.
Because A2 = B2 = 1, the controlled-A and controlled-B gates act
together as a doubly-controlled-(BA)2 gate. One can pick the
directions −→a and −→b so that (BA)2 = iX. The controlled-U gate on
the right corrects for this unwanted factor of i . Here U is the 1-Qbit
unitary e−i (π/2)n. Since any controlled-U gate can be constructed with
two cNOT gates and 1-Qbit unitaries, this adds two more cNOT gates
to the construction, making a total of six.

example take −→b = −→z and −→a = (1/
√

2)(−→z − −→y).) Then (BA)2 =
cos(π/2)1 + i sin(π/2)−→x · −→σ = i−→x · −→σ = iX.

Thus (2.50) produces a doubly-controlled-NOT gate except for an
extra factor of i accompanying the NOT. We can correct for this by
applying an additional CU

21 gate, where U is the 1-Qbit unitary e−i (π/2)n.
This controlled-U gate acts as the identity on the computational basis
unless the states of Qbits 2 and 1 are both |1〉, in which case it multiplies
the state by e−iπ/2 = −i , thereby getting rid of the unwanted factor
of i . Since we have just established that any controlled-U gate can be

62 GENERAL FEATURES AND SOME S IMPLE EXAMPLES

constructed with two cNOT gates and 1-Qbit unitaries, correcting the
phase adds two more cNOT gates to the construction, making a total
of six.

Alternatively, one can view this as a way to construct a Toffoli gate
from four cNOT gates and a single controlled-phase gate of precisely
the kind that plays a central role in the quantum Fourier transform de-
scribed in Chapter 3. If quantum computation ever becomes a working
technology, it might well be easier to construct controlled-phase gates
as fundamental gates in their own right – pieces of 2-Qbit hardware as
basic as cNOT gates.

As this and subsequent examples reveal, the cNOT gate is of funda-
mental importance in quantum computation. Appendix H gives some
examples of how such gates might actually be realized. That appendix is
addressed primarily to physicists, but readers with other backgrounds
might find it an interesting illustration of the rather different questions
that arise when one starts thinking about how actually to produce some
of the basic quantum-computational hardware.

Chapter 3

Breaking RSA encryption

3.1 Period finding, factoring, and cryptography

Simon’s problem (Section 2.5) starts with a subroutine that calculates
a function f (x), which satisfies f (x) = f (y) for distinct x and y if and
only if y = x ⊕ a , where ⊕ denotes the bitwise modulo-2 sum of the
n-bit integers a and x. The number of times a classical computer must
invoke the subroutine to determine a grows exponentially with n, but
with a quantum computer it grows only linearly.

This is a rather artificial example, of interest primarily because it
gives a simple demonstration of the remarkable computational power
a quantum computer can possess. It amounts to finding the unknown
period a of a function on n-bit integers that is “periodic” under bitwise
modulo-2 addition. A more difficult, but much more natural problem
is to find the period r of a function f on the integers that is periodic
under ordinary addition, satisfying f (x) = f (y) for distinct x and y
if and only if x and y differ by an integral multiple of r . Finding the
period of such a periodic function turns out to be the key to factoring
products of large prime numbers, a mathematically natural problem
with quite practical applications.

One might think that finding the period of such a periodic function
ought to be easy, but that is only because when one thinks of periodic
functions one tends to picture slowly varying continuous functions
(like the sine function) whose values at a small sample of points within
a period can give powerful clues about what that period might be. But
the kind of periodic function to keep in mind here is a function on the
integers whose values within a period r are virtually random from one
integer to the next, and therefore give no hint of the value of r .

The best known classical algorithms for finding the period r of such a
function take a time that grows faster than any power of the number n of
bits of r (exponentially with n1/3). But in 1994 Peter Shor discovered
that one can exploit the power of a quantum computer to learn the
period r , in a time that scales only a little faster than n3.

Because the ability to find periods efficiently, combined with some
number-theoretic tricks, enables one to factor efficiently the prod-
uct of two large prime numbers, Shor’s discovery of super-efficient
quantum period finding is of considerable practical interest. The very
great computational effort required by all known classical factorization

63

64 BREAKING RSA ENCRYPT ION

techniques underlies the security of the widely used RSA1 method of
encryption. Any computer that can efficiently find periods would be
an enormous threat to the security of both military and commercial
communications. This is why research into the feasibility of quantum
computers is a matter of considerable interest in the worlds of war and
business.

Although the elementary number-theoretic tricks that underlie the
RSA method of encryption have nothing directly to do with how a quan-
tum computer finds periods, they motivate the problem that Shor’s
quantum-computational algorithm so effectively solves. Furthermore,
examining the number-theoretic basis of RSA encryption reveals that
Shor’s period-finding algorithm can be used to defeat it directly, with-
out any detour into factoring. We therefore defer the number-theoretic
connection between period finding and factoring to Section 3.10. If
you are interested only in applying Shor’s period-finding algorithm
to decoding RSA encryption, Section 3.10 can be skipped. If you are
not interested in the application of period finding to commerce and
espionage, you can also skip the number theory in Sections 3.2 and 3.3
and go directly to the quantum-computational part of the problem –
super-efficient period finding – in Section 3.4.

3.2 Number-theoretic preliminaries

The basic algebraic entities behind RSA encryption are finite groups,
where the group operation is multiplication modulo some fixed integer
N. In modulo-N arithmetic all integers that differ by multiples of N
are identified, so there are only N distinct quantities, which can be
represented by 0, 1, . . ., N − 1. For example 5 × 6 ≡ 2 (mod 7) since
5 × 6 = 30 = 4 × 7 + 2. One writes ≡ (mod N) to emphasize that the
equality is only up to a multiple of N, reserving = for strict equality.
One can develop the results that follow using arithmetic rather than
group theory, but the group-theoretic approach is simpler and uses
properties of groups so elementary that they can be derived from the
basic definitions in hardly more than a page. This is done in Appendix
I, which readers unacquainted with elementary group theory should
now read.

Let GN be the set of all positive integers less than N (including 1)
that have no factors in common with N. Since factoring into primes is
unique, the product of two numbers in GN (either the ordinary or the

1 Named after the people who invented it in 1977, Ronald Rivest, Adi Shamir,
and Leonard Adleman. RSA encryption was independently invented by
Clifford Cocks four years earlier, but his discovery was classified top secret
by British Intelligence and he was not allowed to reveal his priority until
1997. For this and other fascinating tales about cryptography, see Simon
Singh, The Code Book, New York, Doubleday (1999).

3.2 NUMBER-THEORET IC PREL IMINAR IES 65

modulo-N product) also has no factors in common with N, so GN is
closed under multiplication modulo N. If a , b , and c are in GN with
ab ≡ ac (mod N), then a(b − c) is a multiple of N, and since a has
no factors in common with N, it must be that b − c is a multiple of N,
so b ≡ c (mod N). Thus the operation of multiplication modulo N by
a fixed member a of GN takes distinct members of GN into distinct
members, so the operation simply permutes the members of the finite
set GN. Since 1 is a member of GN, there must be some d in GN

satisfying ad = 1 – i.e. a must have a multiplicative inverse in GN.
Thus GN satisfies the conditions, listed in Appendix I, for it to be a
group under modulo-N multiplication.

Every member a of a finite group G is characterized by its order k,
the smallest integer for which (in the case of GN)

ak ≡ 1 (mod N). (3.1)

As shown in Appendix I, the order of every member of G is a divisor of
the number of members of G (the order of G). If p is a prime number,
then the group G p contains p − 1 numbers, since no positive integer
less than p has factors in common with p . Since p − 1 is then a multiple
of the order k of any a in G p , it follows from (3.1) that any integer a
less than p satisfies

a p−1 ≡ 1 (mod p). (3.2)

This relation, known as Fermat’s little theorem, extends to arbitrary
integers a not divisible by p , since any such a is of the form a =
m p + a ′ with m an integer and a ′ less than p .

RSA encryption exploits an extension of Fermat’s little theorem to
a case characterized by two distinct primes, p and q . If an integer a is
divisible neither by p nor by q , then no power of a is divisible by either
p or q . Since, in particular, aq −1 is not divisible by p , we conclude
from (3.2) that

[aq −1]p−1 ≡ 1 (mod p). (3.3)

For the same reason

[a p−1]q −1 ≡ 1 (mod q). (3.4)

The relations (3.3) and (3.4) state that a (q −1)(p−1) − 1 is a multiple both
of p and of q . Since p and q are distinct primes, it must therefore be a
multiple of pq , and therefore

a (q −1)(p−1) ≡ 1 (mod pq). (3.5)

(You are urged to check relations like (3.5) for yourself in special cases.
If, for example p = 3 and q = 5 then (3.5) requires 28 − 1 to be divis-
ible by 15, and indeed, 255 = 17 × 15.)

66 BREAKING RSA ENCRYPT ION

As an alternative derivation of (3.5), note that since a is divisible
neither by p nor by q , it has no factors in common with pq and is
therefore in G pq . The number of elements of G pq is pq − 1 − (p −
1) − (q − 1) = (p − 1)(q − 1), since there are pq − 1 integers less
than pq , among which are p − 1 multiples of q and another distinct
q − 1 multiples of p . Equation (3.5) follows because the order (p −
1)(q − 1) of G pq must be a multiple of the order of a .

We get the version of (3.5) that is the basis for RSA encryption by
taking any integral power s of (3.5) and multiplying both sides by a :

a1+s (q −1)(p−1) ≡ a (mod pq). (3.6)

(The relation (3.6) holds even for integers a that are divisible by p or
q . It holds trivially when a is a multiple of pq . And if a is divisible by
just one of p and q , let a = kq . Since a is not divisible by p neither
is any power of a , and therefore Fermat’s little theorem tells us that
[as (q −1)]p−1 = 1 + np for some integer n. On multiplying both sides
by a we have a1+s (q −1)(p−1) ≡ a + nap ≡ a + nkq p, so (3.6) continues
to hold.)

Note finally that if c is an integer having no factor in common with
(p − 1)(q − 1) then c is in G(p−1)(q −1) and therefore has an inverse in
G(p−1)(q −1); i.e. there is a d in G(p−1)(q −1) satisfying

cd ≡ 1
(
mod (p − 1)(q − 1)

)
. (3.7)

So for some integer s ,

cd = 1 + s (p − 1)(q − 1). (3.8)

In view of (3.8) and (3.6), any integer a must satisfy

acd ≡ a (mod pq). (3.9)

So if

b ≡ ac (mod pq), (3.10)

then

b d ≡ a (mod pq). (3.11)

The elementary arithmetical facts summarized in this single paragraph
constitute the entire basis for RSA encryption.

3.3 RSA encryption

Bob wants to receive a message from Alice encoded so that he alone can
read it. To do this he picks two large (say 200-digit) prime numbers p
and q . He gives Alice, through a public channel, their product N = pq
and a large encoding number c that he has picked to have no factors

3.3 RSA ENCRYPT ION 67

in common with2 (p − 1)(q − 1). He does not, however, reveal the
separate values of p and q and, given the practical impossibility of
factoring a 400-digit number with currently available computers, he
is quite confident that neither Alice nor any eavesdropper Eve will be
able to calculate p and q knowing only their product N. Bob, however,
because he does know p and q , and therefore (p − 1)(q − 1), can find
the multiplicative inverse d of c mod (p − 1)(q − 1), which satisfies
(3.7).3 He keeps d strictly to himself for use in decoding.

Alice encodes a message by representing it as a string of fewer than
400 digits using, for example, some version of ASCII coding. If her
message requires more than 400 digits she chops it up into smaller
pieces. She interprets each such string as a number a less than N.
Using the coding number c and the value of N = pq she received
from Bob, she then calculates b ≡ ac (mod pq), and sends it on to Bob
through a public channel. With c typically a 200-digit number, you
might think that this would itself be a huge computational task, but it
is not, as noted in Section 3.8. When he receives b , Bob exploits his
private knowledge of d to calculate b d (mod pq), which (3.11) assures
him is Alice’s original message a .

Were the eavesdropper Eve able to find the factors p and q of N, she
could calculate (p − 1)(q − 1) and find the decoding integer d from the
publicly available coding integer c , the same way Bob did. But factoring
a number as large as N is far beyond her classical computational powers.
Efficient period finding is of interest in this cryptographic setting not
only because it leads directly to efficient factoring (as described in
Section 3.10), but also because it can lead Eve directly to an alternative
way to decode Alice’s message b without her knowing or having to
compute the factors p and q of N. Here is how it works:

Eve uses her efficient period-finding machine to calculate the order
r of Alice’s publicly available encoded message b = ac in4 G pq . Now
the order r of Alice’s encoded message b = ac in G pq is the same

2 As shown in Appendix J, the probability that two large random numbers
have no common factor is greater than 1

2 , so such c are easily found. Whether
two numbers do have any factors in common (and what their greatest
common factor is) can be determined by a simple algorithm known to Euclid
and easily executed by Bob on a classical computer. The Euclidean algorithm
is described in Appendix J.

3 This can easily be done classically as a straightforward embellishment of the
Euclidean algorithm. See Appendix J.

4 I assume that Alice’s unencoded message a , and hence her coded message b ,
is in G pq – i.e. that a is not a multiple of p or q . Since p and q are huge
prime numbers, the odds against a being such a multiple are astronomical.
But if Eve wants to be insanely careful she can find the greatest common
factor of b and N, using the Euclidean algorithm. In the grossly improbable
case that it turns out not to be 1, Eve will have factored N and can decode
Alice’s message the same way Bob does.

68 BREAKING RSA ENCRYPT ION

as the order of a . This is because the subgroup of G pq generated by
a contains ac = b , and hence it contains the subgroup generated by
b ; but the subgroup generated by b contains b d = a , and hence the
subgroup generated by a . Since each subgroup contains the other, they
must be identical. Since the order of a or b is the number of elements
in the subgroup it generates, their orders are the same. So if Eve can
find the order r of Alice’s code message b , then she has also learned
the order of Alice’s original text a .

Since Bob has picked c to have no factors in common with
(p − 1)(q − 1), and since r divides the order (p − 1)(q − 1) of G pq ,
the coding integer c can have no factors in common with r . So c is
congruent modulo r to a member c ′ of Gr , which has an inverse d ′ in
Gr , and d ′ is also a modulo-r inverse of c :

cd ′ ≡ 1 (mod r). (3.12)

Therefore, given c (which Bob has publicly announced) and r (which
Eve can get with her period-finding program from Alice’s encoded
message b and the publicly announced value of N = pq), it is easy for
Eve to calculate d ′ with a classical computer, using, modulo r , the same
extension of the Euclidean algorithm as Bob used to find d , modulo
(p − 1)(q − 1). It then follows that for some integer m

b d ′ ≡ acd ′ = a1+mr = a
(
ar)m ≡ a (mod pq). (3.13)

Eve has thus used her ability to find periods to decode Alice’s encoded
message b = ac to reveal Alice’s original message a .

This use of period finding to defeat RSA encryption is summarized
in Table 3.1.

3.4 Quantum period finding: preliminary remarks

So we can crack the RSA code if we have a fast way to find the period
r of the known periodic function

f (x) = b x (mod N). (3.14)

This might appear to be a simple task, especially since periodic func-
tions of the special form (3.14) have the simplifying feature that
f (x + s) = f (x) only if s is a multiple of the period r . But b x (mod N)
is precisely the kind of function whose values within a period hop about
so irregularly as to offer no obvious clues about the period. One could
try evaluating f (x) for random x until one found two different values
of x for which f agreed. Those values would differ by a multiple of
the period, which would provide some important information about
the value of the period itself. But this is an inefficient way to proceed,
even classically.

3.4 QUANTUM PER IOD F INDING: PREL IMINARY REMARKS 69

Table 3.1. A summary of RSA encryption and how to break it with a fast period-finding routine on a
quantum computer. Bob has chosen the encoding number c to have an inverse d modulo (p − 1)(q − 1)
so c can have no factors in common with (p − 1)(q − 1). Since Alice’s encoded message b is in G pq ,
its order r is a factor of the order (p − 1)(q − 1) of G pq . So c can have no factors in common with r ,
and therefore has an inverse d ′ modulo r . Because b is a power of a and vice versa, each has the same
order r in G pq . Therefore b d ′ ≡ acd ′ ≡ a1+mr ≡ a modulo N.

Bob knows Alice knows Public knows

p and q (primes); a (her message); b (encoded message);
c and d satisfying only c (not d) and only N = pq; only c (not d);

cd ≡ 1 (mod (p − 1)(q − 1)); b ≡ ac (mod N) (encoded message). only N = pq.
b (encoded message).

Decoding: Quantum decoding:
a ≡ bd (mod N). Quantum computer

finds r : br ≡ 1 (mod N);
classical computer finds

d′: cd′ ≡ 1 (mod r);
a ≡ bd′

(mod N).

Let n0 be the number of bits in N = pq , so that 2n0 is the smallest
power of 2 that exceeds N. If N is a 500-digit number – a typical size
for cryptographic applications – n0 will be around 1700. This also sets
the scale for the typical number of bits in the other relevant numbers
a , b , and their modulo-N period r . To have an appreciable probability
of finding r by random searching requires a number of evaluations of
f that is exponential in n0 (just as in the classical approach to Simon’s
problem, described in Chapter 2). There are classical ways to improve
on random searching, using, for example, Fourier analysis, but no clas-
sical approach is known that does not require a time that grows faster
than any power of n0. With a quantum computer, however, quantum
parallelism gets us tantalizingly close (but, as in Simon’s problem, not
close enough) to solving the problem with a single application of U f ,
and enables us to solve it completely with probability arbitrarily close
to unity in a time that grows only as a low-order polynomial in n0.

To deal with values of x and f (x) = b x (mod N) between 0 and N,
both the input and output registers must contain at least n0 Qbits. For
reasons that will emerge in Section 3.7, however, to find the period r
efficiently the input register must actually have n = 2n0 Qbits. Dou-
bling the number of Qbits in the input register ensures that the range of
values of x for which f (x) is calculated contains at least N full periods
of f . This redundancy turns out to be essential for a successful deter-
mination of the period by Shor’s method. (We shall see in Section 3.7
that if p and q both happen to be primes of the form 2 j + 1 then – and
only then – the method works without doubling the size of the input
register. Thus N = 15 = (2 + 1)(22 + 1) does not provide a realistic

70 BREAKING RSA ENCRYPT ION

test case for laboratory attempts to demonstrate Shor’s algorithm for
small p and q with real Qbits.)

We begin the quantum period-finding algorithm by using our quan-
tum computer in the familiar way to construct the state

1
2n/2

2n−1∑
x=0

|x〉n | f (x)〉n0 (3.15)

with a single application of U f . In Section 3.8 we take a closer look at
how this might efficiently be done in the case of interest, f (x) = b x

(mod N). Once the state of the registers has become (3.15), we can
measure the n-Qbit output register.5 If the measurement yields the
value f0, then the generalized Born rule tells us that the state of the
n-Qbit input register can be taken to be

|�〉n = 1√
m

m−1∑
k=0

|x0 + kr 〉n . (3.16)

Here x0 is the smallest value of x (0 ≤ x0 < r) for which f (x0) = f0,
and m is the smallest integer for which mr + x0 ≥ 2n , so

m =
[

2n

r

]
or m =

[
2n

r

]
+ 1, (3.17)

depending on the value of x0 (where [x] is the integral part of x – the
largest integer less than or equal to x). As in the examples of Chapter 2,
if we could produce a small number of identical copies of the state (3.16)
the job would be done, for a measurement in the computational basis
would yield a random one of the values x0 + kr , and the difference
between the results of pairs of measurements on such identical copies
would give us a collection of random multiples of r from which r itself
could straightforwardly be extracted. But this possibility is ruled out by
the no-cloning theorem. All we can extract is a single value of x0 + kr
for unknown random x0, which is useless for determining r . And, of
course, if we ran the whole algorithm again, we would end up with a state
of the form (3.16) for another random value of x0, which would permit
no useful comparison with what we had learned from the first run.

But, as with Simon’s problem, we can do something more clever
to the state (3.16) before making our final measurement. The problem
is the displacement by the unknown random x0, which prevents any
information about r from being extracted in a single measurement. We
need a unitary transformation that transforms the x0 dependence into

5 It is not, in fact, necessary to measure the output register. One can continue
to work with the full state (3.15) in which one breaks down the sum on x into
a sum over all the different values of f and a sum over all the values of x
associated with each value of f . The only purpose of the measurement is to
clarify the analysis by eliminating a lot of uninteresting additional structure,
coming from the sum on the values of f , that plays no role beyond making
many of the subsequent expressions somewhat lengthier.

3.5 THE QUANTUM FOURIER TRANSFORM 71

a harmless overall phase factor. This is accomplished with the quantum
Fourier transform.

3.5 The quantum Fourier transform

The heart of Shor’s algorithm is a superfast quantum Fourier trans-
form, which can be carried out by a spectacularly efficient quantum
circuit built entirely out of 1-Qbit and 2-Qbit gates. The n-Qbit quan-
tum Fourier transform is defined to be that unitary transformation UFT

whose action on the computational basis is given by

UFT|x〉n = 1
2n/2

2n−1∑
y=0

e 2π i xy/2n |y〉n . (3.18)

The product xy is here ordinary multiplication.6 One easily verifies that
UFT|x〉 is normalized to unity and that UFT|x〉 is orthogonal to UFT|x ′〉
unless x = x ′, so UFT is unitary. Unitarity also emerges directly from
the analysis that follows, which explicitly constructs UFT out of 1- and
2-Qbit unitary gates. The unitary UFT is useful because, as one also
easily verifies, applied to a superposition of states |x〉 with complex
amplitudes γ (x), it produces another superposition with amplitudes
that are related to γ (x) by the appropriate discrete Fourier transform:

UFT

(
2n−1∑
x=0

γ (x)|x〉
)

=
2n−1∑
x=0

γ̃ (x)|x〉, (3.19)

where

γ̃ (x) = 1
2n/2

2n−1∑
y=0

e 2π i xy/2n
γ (y). (3.20)

The celebrated classical fast Fourier transform is an algorithm re-
quiring a time that grows with the number of bits as n2n (rather than(
2n

)2
as the obvious direct approach would require) to evaluate γ̃ . But

there is a quantum algorithm for executing the unitary transformation
UFT exponentially faster than fast, in a time that grows only as n2.
The catch, as usual, is that one does not end up knowing the complete

6 A warning to physicists (which others can ignore). This looks deceptively
like a (discretized) transformation from a position to a momentum
representation, and one’s first reaction might be that it is (perhaps
disappointingly) familiar. But it has, in fact, an entirely different character.
The number x is the integer represented by the state |x〉; it is not the
position of anything. Changing x to x + 1 induces an arithmetically natural
but physically quite unnatural transformation on the computational-basis
states, determined by the laws of binary addition, including carrying. It bears
no resemblance to anything that could be associated with a spatial translation
in the physical space of Qbits. So your eyes should not glaze over, and you
should regard UFT as a new and unfamiliar physical transformation of Qbits.

72 BREAKING RSA ENCRYPT ION

set of Fourier coefficients, as one does after applying the classical fast
Fourier transform. One just has n Qbits described by the state given
by the right side of (3.19), and as we have repeatedly noted, having a
collection of Qbits in a given state does not enable one to learn what that
state actually is. There is no way to extract all the Fourier coefficients
γ̃ , given an n-Qbit register in the state (3.19). But if γ is a periodic
function with a period that is no bigger than 2n/2, then a register in
the state (3.19) can give powerful clues about the precise value of the
period r , even though r can be hundreds of digits long.

Notice the resemblance of the quantum Fourier transform (3.18)
to the n-fold Hadamard transformation. Since −1 = eπ i , the n-fold
Hadamard (2.30) assumes the form

H⊗n |x〉n = 1
2n/2

2n−1∑
y=0

eπ i x·y|y〉n . (3.21)

Aside from the different powers of 2 appearing in the quantum Fourier
transform (3.18) – so the factors of modulus 1 in the superposition are
not just 1 and−1 – the only other difference between the two transforms
is that xy is ordinary multiplication in the quantum Fourier transform,
whereas x · y is the bitwise inner product in the n-fold Hadamard.
Because the arithmetic product xy is a more elaborate function of
x and y than x · y, the quantum Fourier transformation cannot be
built entirely out of 1-Qbit unitary gates as the n-fold Hadamard is.
But, remarkably, it can be constructed entirely out of 1- and 2-Qbit
gates. Even more remarkably, when the procedure is used for period
finding all of the 2-Qbit gates can be replaced by 1-Qbit measurement
gates followed by additional 1-Qbit unitary gates whose application is
contingent on the measurement outcomes.

To construct a circuit to execute the quantum Fourier transform
UFT, it is convenient to introduce an n-Qbit unitary operator Z , diag-
onal in the computational basis:

Z|y〉n = e 2π i y/2n |y〉n . (3.22)

This can be viewed as a generalization to n Qbits of the 1-Qbit operator
Z, to which it reduces when n = 1. Using the familiar relation

H⊗n |0〉n = 1
2n/2

2n−1∑
y=0

|y〉n , (3.23)

we can reexpress the definition (3.18) as

UFT|x〉n = Z xH⊗n |0〉n . (3.24)

This gives UFT|x〉n as an x-dependent operator acting on the state |0〉.
We next reexpress the right side of (3.24) as an x-independent linear

operator acting on the state |x〉n . Since the computational-basis states

3.5 THE QUANTUM FOURIER TRANSFORM 73

|x〉n are a basis, this will give us an alternative expression for UFT

itself. The construction of this alternative form for (3.24) is made more
transparent by specializing to the case of four Qbits. The structure
that emerges in the case n = 4 has an obvious extension to general n.
Dealing with the case of general n from the start only obscures things.

When n = 4 we want to find an appropriate form for

UFT|x3〉|x2〉|x1〉|x0〉 = Z xH3H2H1H0|0〉|0〉|0〉|0〉. (3.25)

As usual, we number the Qbits by the power of 2 with which they
are associated, with the least significant on the right, so that, reading
from right to left, the Qbits are labeled 0, 1, 2, and 3; Hi acts on
the Qbit labeled i (and as the identity on all other Qbits). If |y〉4 =
|y3〉|y2〉|y1〉|y0〉 in the definition (3.22) of Z , so that y = 8y3 + 4y2 +
2y1 + y0, then the operator Z can be constructed out of single-Qbit
number operators:

Z = exp
(

iπ
8

(
8n3 + 4n2 + 2n1 + n0

))
. (3.26)

The operator Z x appearing in (3.25) then becomes

Z x = exp
(

iπ
8

(
8x3 + 4x2 + 2x1 + x0

)(
8n3 + 4n2 + 2n1 + n0

))
.

(3.27)
Because the 1-Qbit operator exp(2π in) acts as the identity on either

of the 1-Qbit states |0〉 and |1〉, and because any 1-Qbit state is a
superposition of these two, n obeys the operator identity

exp(2π in) = 1. (3.28)

Therefore, in multiplying out the two terms(
8x3 + 4x2 + 2x1 + x0

)(
8n3 + 4n2 + 2n1 + n0

)
(3.29)

appearing in the exponential (3.27), we can drop all products xi n j

whose coefficients are a power of 2 greater than 8, getting

Z x = exp
[
iπ

(
x0n3 + (x1 + 1

2 x0)n2 + (x2 + 1
2 x1 + 1

4 x0)n1

+ (x3 + 1
2 x2 + 1

4 x1 + 1
8 x0)n0

)]
. (3.30)

Note next that the number and Hadamard operators for any single
Qbit obey the relation

exp(iπxn)H|0〉 = H|x〉. (3.31)

This is trivial when x = 0, and when x = 1 it reduces to the correct
statement

(−1)n 1√
2
(|0〉 + |1〉) = 1√

2
(|0〉 − |1〉). (3.32)

74 BREAKING RSA ENCRYPT ION

(Alternatively, note that exp(iπn) = Z and ZH = HX.) The effect on
(3.25) of the four terms in (3.30) that do not contain factors of 1

2 ,
1
4 , or

1
8 is to produce the generalization of (3.31) to several Qbits:

exp
[
iπ

(
x0n3 + x1n2 + x2n1 + x3n0

)]
H3H2H1H0|0〉|0〉|0〉|0〉

= [
exp

(
iπx0n3)H3

][
exp

(
iπx1n2)H2

][
exp

(
iπx2n1)H1

]
×[

exp
(
iπx3n0)H0

]|0〉|0〉|0〉|0〉
= H3H2H1H0|x0〉|x1〉|x2〉|x3〉. (3.33)

We have used the fact that number operators associated with different
Qbits commute with one another. Note also that because the number
operator ni is multiplied by x3−i on the left side of (3.33), the state of
the Qbit labeled i on the right is |x3−i 〉.

The remaining six terms in (3.30) (containing fractional coefficients)
further convert (3.25) to the form

UFT|x3〉|x2〉|x1〉|x0〉 = exp
[
iπ

(1
2 x0n2 + (1

2 x1 + 1
4 x0)n1

+ (1
2 x2 + 1

4 x1 + 1
8 x0)n0

)]
H3H2H1H0|x0〉|x1〉|x2〉|x3〉. (3.34)

Since the Hadamard transformation Hi commutes with the number
operator n j when i �= j , we can regroup the terms in (3.34) so that each
number operatorni appears immediately to the left of its corresponding
Hadamard operator Hi :

UFT|x3〉|x2〉|x1〉|x0〉 = H3 exp
[
iπn2

1
2 x0

]
H2 exp

[
iπn1(1

2 x1 + 1
4 x0)

]
H1

× exp
[
iπn0(1

2 x2 + 1
4 x1 + 1

8 x0)
]
H0

× |x0〉|x1〉|x2〉|x3〉. (3.35)

The state |x0〉|x1〉|x2〉|x3〉 is an eigenstate of the number operators
n3, n2, n1, n0 with respective eigenvalues x0, x1, x2, x3. If we did not
have to worry about Hadamard operators interposing themselves be-
tween number operators and their eigenstates, we could replace each
xi in (3.35) by the number operator n3−i of which it is the eigenvalue
to get

UFT|x3〉|x2〉|x1〉|x0〉 = H3 exp
[
iπ 1

2n2n3
]
H2 exp

[
iπn1(1

2n2 + 1
4n3)

]
× H1 exp

[
iπn0(1

2n1 + 1
4n2 + 1

8n3)
]
H0

× |x0〉|x1〉|x2〉|x3〉. (3.36)

But as (3.36) makes clear, we do indeed not have to worry, because every
Hi appears safely to the left of every ni that has replaced an x3−i .

If we define 2-Qbit unitary operators by

Vi j = exp
(
iπni n j /2|i− j |), (3.37)

3.5 THE QUANTUM FOURIER TRANSFORM 75

then (3.36) assumes the more readable form

UFT|x3〉|x2〉|x1〉|x0〉
= H3

(
V32H2

)(
V31V21H1

)(
V30V20V10H0

)|x0〉|x1〉|x2〉|x3〉. (3.38)

I have put in unnecessary parentheses to guide the eye to the simple
structure, whose generalization to more than four Qbits is, as promised,
obvious.

If we define the unitary operator P to bring about the permutation
of computational basis states

P|x3〉|x2〉|x1〉|x0〉 = |x0〉|x1〉|x2〉|x3〉, (3.39)

then (3.38) becomes

UFT|x3〉|x2〉|x1〉|x0〉
= H3

(
V32H2

)(
V31V21H1

)(
V30V20V10H0

)
P|x3〉|x2〉|x1〉|x0〉. (3.40)

Since (3.40) holds for all computational-basis states it holds for arbi-
trary states and is therefore equivalent to the operator identity

UFT = H3(V32H2)(V31V21H1)(V30V20V10H0)P. (3.41)

The form (3.41) expresses UFT as a product of unitary operators,
thereby independently establishing what we have already noted directly
from its definition, that UFT is unitary. More importantly it gives an
explicit construction of UFT entirely out of one- and two-Qbit unitary
gates, whose number grows only quadratically with the number n of
Qbits. (The permutation P can be constructed out of cNOT gates and
one additional Qbit, initially in the state |0〉 – an instructive exercise
to think about – but in the application that follows it is much easier to
build directly into the circuitry the rearranging of Qbits accomplished
by P.)

The permutation operator P plays an important role in establishing
that the circuit (3.41) that produces the quantum Fourier transform
UFT has an inverse U

†
FT possessing the structure one expects for an

inverse Fourier transform. Since the adjoint of a product is the product
of the adjoints in the opposite order, and since Hadamards and P are
self-adjoint, we have from (3.41)

U
†
FT = P(H0V

†
10V

†
20V

†
30)(H1V

†
21V

†
31)(H2V

†
32)H3. (3.42)

One can insert 1 = PP on the extreme right of (3.42) and then note
that the effect of sandwiching all the Hadamards and 1-Qbit unitaries
between two Ps is simply to alter all their indices by the permutation
taking 0123 → 3210. Therefore

U
†
FT = (H3V

†
23V

†
13V

†
03)(H2V

†
12V

†
02)(H1V

†
01)H0P. (3.43)

76 BREAKING RSA ENCRYPT ION

x3

x

x

x

0

1

2

x

x

x

x

3

2

1

0

H

P

V1 V2 V3

H V1 V2

H V1

H

Fig 3.1 A diagram of a circuit that illustrates, for four Qbits, the
construction of the quantum Fourier transform UFT defined in (3.18)
as the product of 1- and 2-Qbit gates given in (3.40).

If we now move every V† to the right past as many Hadamards as we
can, keeping in mind that each V commutes with all Hadamards except
those sharing either of its indices, then we have

U
†
FT = (H3V

†
23)(H2V

†
13V

†
12)(H1V

†
03V

†
02V

†
01)H0P. (3.44)

Finally, if we note from (3.37) that each V is symmetric in its indices,
and rearrange the parentheses in (3.44) to make easier the comparison
with the form (3.41) of UFT, we have

U
†
FT = H3(V†

32H2)(V†
31V

†
21H1)(V†

30V
†
20V

†
10H0)P. (3.45)

This is precisely the form (3.41) of UFT itself, except that each V is
replaced by its adjoint, which (3.37) shows amounts to replacing each
i by −i in the arguments of all the phase factors. This is exactly what
one does to invert the ordinary functional Fourier transform.

3.6 Eliminating the 2-Qbit gates

A circuit diagram that compactly expresses the content of (3.40) is
shown in Figure 3.1. As is always the case in such diagrams, the order
in which the gates act is from left to right, although in the equation
(3.40) that the diagram represents, the order in which the gates act is
from right to left. The diagram introduces an artificial asymmetry into
the 2-Qbit unitary gate Vi j , treating one Qbit as a control bit, which
determines whether or not the unitary operator e iπn/2|i− j |

acts on the
other Qbit, taken to be the target. Although this is the most common
way of representing the circuit for the quantum Fourier transform, the
figure could equally well have been drawn with the opposite convention,
as in Figure 3.2.

Both Figure 3.1 and Figure 3.2 follow the usual convention, in which
Qbits representing more significant bits are represented by lines higher
in the figure. Acting on the computational basis, however, the first gate

3.6 EL IMINAT ING THE 2-QB IT GATES 77

x

x

x

x

3

2

1

0x

x

x

x

0

1

2

3

H

P
V1

V2

H

V1

V2

H

1V HV3

Fig 3.2 Since the action (3.37) of the controlled-V gates is symmetric
in i and j , Figure 3.1 can be redrawn with control and target Qbits
interchanged.

on the left, P, permutes the states of the Qbits, exchanging the states of
the most and least significant Qbits, the states of the next most signifi-
cant and next least significant Qbits, etc. Rather than introducing such
a permutation gate, it makes more sense simply to reverse the conven-
tion for the input state, associating Qbits that represent more significant
bits with lower lines in the figure. The gate P is then omitted, and the
conventional ordering of significant bits is reversed for the input. The
complete figure thus reduces to the portion to the right of the per-
mutation gate P. For the output, of course, the conventional ordering
remains in effect: Qbits on higher lines represent more significant bits.

If the input on the left of the complete Figure 3.1 or 3.2 (with the gate
P) is the computational-basis state |x〉4 = |x3〉|x2〉|x1〉|x0〉 the output
on the right will be UFT|x〉4, the superposition (3.18) of computational-
basis states |y〉4 = |y3〉|y2〉|y1〉|y0〉, defined in (3.18).

There is no need for the figures to have subscripts on the Hadamard
gates appearing in (3.40), since each is explicitly attached to the line
associated with the Qbit on which it acts. For the same reason each
2-Qbit controlled-V gate requires only a single subscript, which spec-
ifies the unitary operator Vk that acts on the target Qbit when the
computational-basis state of the control Qbit is |1〉; the subscript k is
the number of “wires” the target Qbit is away from the control Qbit.
The explicit form of Vk is e iπn/2k

, where n is the number operator for
the target Qbit.

Figure 3.2 reveals a further simplification of great practical inter-
est, if all the Qbits are measured as soon as the action of the quantum
Fourier transformation is completed. This simplification, pointed out
by Griffiths and Niu, allows the 2-Qbit controlled-V gates to be re-
placed by 1-Qbit gates that act or not, depending on the outcome of
a prior measurement of the control Qbit, as shown in Figure 3.3. The
simplification is made possible by the following general fact.

If a controlled operation CU , or a series of consecutive controlled
operations all with the same control Qbit, is immediately followed by

78 BREAKING RSA ENCRYPT ION

x

x

x

x

3

2

1

0

y

y

y

y

2

3

1

0

3V

M

1
V

2V

M

y 1
V M

y

M

y
0

1V

2V

0

0

0
y

y

y
y
1

y
1

y
1

2

2
y

3

H

H

H

H

Fig 3.3 If the Qbits are all measured immediately after all the gates of
the quantum Fourier transform have acted, then the 1-Qbit
measurement gates can be applied to each Qbit immediately after the
action of the Hadamard gate on that Qbit, and the controlled-V gates
that follow the action of the Hadamards in Figure 3.2 can be replaced
by 1-Qbit gates that act or not depending on whether the outcome y of
the 1-Qbit measurement is 1 or 0.

a measurement of the control Qbit, then the possible final states of all
the Qbits and the probabilities of those states are exactly the same as
they would be if the measurement of the control Qbit took place before
the application of the controlled operation, and then the target Qbit(s)
were acted upon or not by U, depending on whether the result of the
prior measurement was 0 or 1. To confirm this, write an n-Qbit state as

|�〉n = α0|0〉1|�0〉n−1 + α1|1〉1|�1〉n−1, (3.46)

where the state of the control Qbit is on the left, the states |�i 〉 are unit
vectors, and the unitary operation U acts on some or all of the remaining
n − 1 Qbits. Applying the controlled-U operation CU to �n gives

CU|�〉n = α0|0〉1|�0〉n−1 + α1|1〉1U|�1〉n−1. (3.47)

If this is immediately followed by a measurement of the control Qbit,
the post-measurement states and associated probabilities are

|0〉|�0〉, p = |α0|2; |1〉U|�1〉, p = |α1|2, (3.48)

according to the generalized Born rule. On the other hand if we
measure the control Qbit before applying the controlled-U, the
resulting states and associated probabilities are

|0〉|�0〉, p = |α0|2; |1〉|�1〉, p = |α1|2, (3.49)

so if we then apply U to the remaining n − 1 Qbits if and only if the
result of the earlier measurement was 1, we end up with exactly the
same states and probabilities as in (3.48).

We shall see that if one’s aim is to find the period of the function
f , one can indeed measure each Qbit immediately after applying the

3.7 F IND ING THE PER IOD 79

quantum Fourier transform. So this replacement of controlled uni-
tary gates by 1-Qbit unitary gates, which act or not depending on the
outcome of the measurement, is of great importance from the tech-
nological point of view, 1-Qbit unitaries being far easier to implement
than 2-Qbit controlled gates.

To see how the general procedure works in this particular case,
consider first the bottom wire in Figure 3.2. Once H and the three
controlled-V gates have acted on it, nothing further happens to that
Qbit until its final measurement. If the result of that measurement
is 1, the state of all four Qbits reduces to that component of the
full superposition in which V1, V2, and V3 have acted on the three
wires above the bottom wire; if the result of the measurement is 0, the
4-Qbit state reduces to the component in which they have not acted.
We can produce exactly the same effect if we measure the least signif-
icant output Qbit immediately after H has acted on the bottom wire,
before any of the other gates have acted, and then apply or do not apply
the three unitary transformations to the other three Qbits, depending
on whether the outcome of the measurement is 1 or 0. Next, we apply
the Hadamard transformation to the second wire from the bottom. We
then immediately measure that Qbit and, depending on the outcome,
apply or do not apply the appropriate 1-Qbit unitary transformations
to each of the remaining two Qbits. Continuing in this way, we end up
producing exactly the same statistical distribution of measurement re-
sults as we would have produced had we used the 2-Qbit controlled-V
gates, measuring none of the Qbits until the full unitary transformation
UFT had been produced. Thus Figure 3.2, followed by measurements
of all four Qbits on the right yielding the values y3, y2, y1, and y0, is
equivalent to Figure 3.3.

The most attractive (but least common) way of representing the
quantum Fourier transform with a circuit diagram is shown in Figure
3.4.7 In this form the inversion in order from most to least significant
Qbits between the input and the output is shown by bending the Qbit
lines, rather than by inverting the order in the state symbols. The 2-
Qbit gates V are also displayed in a symmetric way that does not suggest
an artificial distinction between control and target Qbits.

3.7 Finding the period

The period r of f appears in the state (3.16) of the input-register Qbits
produced from a single application of U f . To get valuable information

7 The figure is based on one drawn by Robert B. Griffiths and Chi-Sheng Niu
in their paper setting forth the Griffiths–Niu trick, “Semiclassical Fourier
transform for quantum computation,” Physical Review Letters 76, 3228–3231
(1996) (http://arxiv.org/abs/quant-ph/9511007).

80 BREAKING RSA ENCRYPT ION

x

x

x

x

0

1

2

3 H H H HFig 3.4 A more symmetric
way of drawing Figure 3.1
or 3.2, due to Griffiths and
Niu. Although it is
superior to the
conventional diagram, it
does not seem to have
caught on. The
permutation P that in
effect permutes the Qbits
in the input register is now
built into the diagram by
using lines that no longer
connect input-register
Qbits to output-register
Qbits at the same
horizontal level. Because
the lines now cross one
another, the unitary
operators V can be
represented by the circles
at the intersections of the
lines associated with the
Qbits that they couple,
eliminating the artificial
distinction between control
and target Qbits used in
Figures 3.1 and 3.2. The
form of each such operator
is V = exp

(
iπnn′/2k

)
,

where n and n′ are the Qbit
number operators
associated with the two
lines that cross at the dot,
and k = 1, 2, or 3
depending on whether the
dot lies in the first, second,
or third horizontal row
below the top row of
Hadamard
transformations. The
larger the phase produced
by V, the blacker the circle.

about r we apply the quantum Fourier transformation (3.18) to the
input register:

UFT
1√
m

m−1∑
k=0

|x0 + kr 〉 = 1
2n/2

2n−1∑
y=0

1√
m

m−1∑
k=0

e 2π i (x0+kr)y/2n |y〉

=
2n−1∑
y=0

e 2π i x0 y/2n 1√
2nm

(
m−1∑
k=0

e 2π i kr y/2n

)
|y〉.

(3.50)

If we now make a measurement, the probability p(y) of getting the
result y is just the squared magnitude of the coefficient of |y〉 in (3.50).
The factor e 2π i x0 y/2n

, in which the formerly troublesome x0 explicitly
occurs, drops out of this probability8 and we are left with

p(y) = 1
2nm

∣∣∣∣∣
m−1∑
k=0

e 2π i kr y/2n

∣∣∣∣∣
2

. (3.51)

This completes the quantum-computational part of the process,
except that, as noted below, we may have to repeat the procedure a
small number of times (of order ten or so) to achieve a high probability
of learning the period r . To see why the form (3.51) of p(y) makes this
possible, we require some further purely mathematical analysis, that at
a certain point will exploit yet another branch of elementary number
theory.

The probability (3.51) is a simple explicit function of the integer y,
whose magnitude has maxima when y is close9 to integral multiples of

8 The random value of x0 < r also determines whether m is given by rounding
the enormous value of 2n/r up or down to the nearest integer – see Equation
(3.17) and the surrounding text – but this makes a negligible difference in
what follows.

9 Such sums of phase factors are familiar to physicists (to whom this
cautionary footnote is addressed), particularly in the context of
time-dependent perturbation theory, where one approximates them in terms
of Dirac delta-functions concentrated in the maximum values. The analysis

3.7 F IND ING THE PER IOD 81

2n/r . In fact we now show that the probability is at least 0.4 that the
measured value of y will be as close as possible to – i.e. within 1

2 of –
an integral multiple of 2n/r . To see this we calculate a lower bound for
p(y) when

y = yj = j 2n/r + δ j , (3.52)

with |δ j | ≤ 1
2 . Only the term in δ j contributes to the exponentials in

(3.51). The summation is a geometric series, which can be explicitly
summed to give

p(yj) = 1
2nm

sin2(πδ j mr/2n)

sin2(πδ j r/2n)
. (3.53)

Since (3.17) tells us that m is within an integer of 2n/r , and since
2n/r ≥ N2/r > N, we can with negligible error replace mr/2n by 1
in the numerator of (3.53), and replace the sine in the denominator by
its (extremely small) argument. This gives

p(yj) = 1
2nm

(
sin(πδ j)
πδ j r/2n

)2

= 1
r

(
sin(πδ j)

πδ j

)2

. (3.54)

When x is between 0 and π/2, the graph of sin x lies above the
straight line connecting the origin to the maximum at x = π/2:

x
/(1

2π
) ≤ sin x, 0 ≤ x ≤ π/2. (3.55)

Since δ j ≤ 1
2 the probability (3.54) is bounded below by

p(yj) ≥ (4/π 2)/r. (3.56)

Since there are at least r − 1 different values of j , and since r is a large
number,10 one has at least a 40% chance (4/π 2 = 0.4053) of getting
one of the special values (3.52) for y – a value that is within 1

2 of an
integral multiple of 2n/r .

Note, in passing, that as δ j → 0 in (3.54) the probability p(yj)
becomes 1/r , so that if all the δ j are 0 – i.e. if the period r is exactly a
power of 2 – then the probability of measuring an integral multiple of
2n/r is essentially 1. Indeed, you can easily check that in this (highly
unlikely) case the probability remains 1 even if we do not double the
number of Qbits in the input register and take n = n0. Thus the case
r = 2 j avoids some of the major complications of quantum period

required here is different in two important ways. Because we need to know
the enormous integer r exactly we must pay much more careful attention to
just how much of the probability is concentrated in those special values of
y, and we must also solve the subtle problem of how to get from such
maximum values to the precise period r itself.

10 One can easily test with a classical computer all values of r less than, say,
100, to see whether they are periods of f ; one need resort to the quantum
computation only if r itself is enormous.

82 BREAKING RSA ENCRYPT ION

finding. Since r divides (p − 1)(q − 1), all periods modulo pq must be
powers of 2 if p and q are both primes of the form 2n + 1. The smallest
such primes are 3, 5, 17, and 257. Hence claims to have realized the
Shor algorithm for factoring 15 are to be taken cum grano salis, as should
possible future claims based on factoring 51, 85, and 771.

Note also that the derivation of (3.56) requires only that the argu-
ment of the sine in the denominator of (3.53) be small. This will be the
case if 2n is any large multiple of N – i.e. if the input register is large
enough to contain many periods of b x (mod N). The stronger require-
ment that 2n should be as large as N2 – that the input register should
actually be able to accomodate at least N full periods – emerges when
we examine whether it is possible to learn r itself, given an integral
multiple of 2n/r .

Suppose that we have found a y that is within 1
2 of j2n/r for some

integer j . It follows that ∣∣∣ y
2n

− j
r

∣∣∣ ≤ 1
2n+1

. (3.57)

Since y is the result of our measurement and we know n, the number
of input-register Qbits, we have an estimate for the fraction j/r . It is
here that our use of an n-Qbit input register with 2n > N2 is crucial.
By using twice as many Qbits as needed to represent all the integers
up to N, we have ensured that our estimate (3.57) of j/r is off by
no more than 1/(2N2). But since r < N, and since any two distinct
fractions with denominators less than N must differ11 by at least 1/N2,
the measured value of y and the fact that r is less than N is enough to
determine a unique value of the rational number j/r .

That value of j/r can be efficiently extracted from the known value
of y/2n by an application of the theory of continued fractions. This
exploits the theorem that if x is an estimate for j/r that differs from it
by less than 1/(2r 2), then j/r will appear as one of the partial sums in
the continued-fraction expansion of x. The application of the theorem
in this context is illustrated in Appendix K. The continued-fraction
expansion of y/2n gives us not j and r separately, but the fraction j/r
reduced to lowest terms – i.e. it gives us integers j0 and r0 with no
common factors that satisfy j0/r0 = j/r . The r0 we learn is thus a
divisor of r .

Since r is r0 times the factors j has in common with r , if we were
lucky enough to get a j that is coprime to r , then r0 = r . Since, as shown
in Appendix J, two random numbers j and r have a better than even
chance of having no common factors, we do not have to be terribly lucky.

11 For ∣∣∣a
b

− c
d

∣∣∣ ≥ 1
bd

unless the two fractions are identical.

3.8 CALCULAT ING THE PER IODIC FUNCT ION 83

We can easily check to see whether r0 itself is the period r by computing
(with a classical computer) br0 (mod N) and seeing whether or not it is
b . If it is not, we can try several low multiples, 2r0, 3r0, 4r0, . . ., since
it is unlikely that j will share a large factor with r .

If this fails, we can repeat the entire quantum computation from
the beginning. We now get j ′/r , where j ′ is another (random) integer,
yielding another divisor r ′

0 of r , which is r divided by the factors it has
in common with j ′. If j and j ′ have no factors in common – which
has a better than even chance of happening – then r will be the least
common multiple12 of its two divisors r0 and r ′

0. We can again test to see
whether we have the right r by evaluating br (mod N) to see whether
it is indeed equal to b . If it is not, we can again try some of the lower
multiples of our candidate for r and, if necessary, go through the whole
business one more time to get yet another random multiple of 1/r .

Because we are not certain that our measurement gives us one of the
yj and thus a divisor of r , we may have to repeat the whole procedure
several (but not a great many) times before succeeding, carrying out
some not terribly taxing mathematical detective work, with the aid of a
classical computer, to find the period r . The detective work is greatly
simplified by the fact (established in Appendix L) that when N is the
product of two primes, the period r is not only less than N, but also
less than 1

2 N. As a result, a more extended analysis shows that the
probability of learning a divisor of r from the measured value of y is
bounded from below not just by 0.4, but by more than 0.9. Furthermore,
by adding just a small number q of additional Qbits to the input register,
so that n exceeds 2n0 + q , the probability of learning a divisor of r in a
single run can be made quite close to 1. These refinements are described
in Appendix L.

3.8 Calculating the periodic function

We have assumed the existence of an efficient subroutine that calcu-
lates b x (mod N). You might think that calculating f (x) = b x (mod
N) for arbitrary values of x less than, say, 2n = 10800 would require
astronomical numbers of multiplications, but it does not. We simply
square b (mod N), square the result (mod N), square that, etc., cal-
culating the comparatively small number of powers b 2 j

(mod N) with
j < n. The binary expansion of x = xn−1xn−2 . . . x1x0 tells us which
of these must be multiplied together to get b x = ∏

j (b
2 j

)x j .
So if we start with x in the input register, 1 (i.e. 000 . . . 001) in

the output register, and b in an additional work register, then we can
proceed as follows:

12 The least common multiple of two numbers is their product divided by
their greatest common divisor; the greatest common divisor can be found
with the Euclidean algorithm, as shown in Appendix J.

84 BREAKING RSA ENCRYPT ION

(a) multiply the ouput register by the work register if and only if
x0 = 1;

(b) replace the contents of the work register by its modulo-N square;
(a′) repeat (a) with the multiplication now conditional on x1 = 1;
(b′) repeat (b);
(a′′) repeat (a) with the multiplication now conditional on x2 = 1; etc.

At the end of this process we will still have x in the input register (which
serves only as a set of control bits for the n controlled multiplications),
and we will have b x (mod N) in the output register. The work register
will contain b 2n

whatever the value of x in the input register, and it
will therefore be unentangled with the input and output registers and
can be ignored when we take our starting point to be a superposition
of classical inputs.13

Note the striking difference between classical and quantum pro-
gramming styles. One’s classical computational instincts would direct
one to make a look-up table of all n modulo-N multiple squares of b ,
since (a) Cbits are cheap and stable and (b) otherwise to get b x (mod
N) for all the needed values of x one would have to recalculate the
successive squares so many times that this would become ridiculously
inefficient. But the situation is quite the opposite with a quantum
computer, since (a) Qbits are expensive and fragile and (b) “quantum
parallelism” makes it possible to produce the state (3.15) with only a
single execution of the procedure that does the successive squarings,
thereby relieving us of any need to store all the modulo-N squares, at
a substantial saving in Qbits.

As usual with quantum parallelism, there is the major catch that an
immediate measurement of Qbits in the state (3.15) can reveal only the
value of a single (random) one of the modulo-N powers of b . But by
applying UFT to the input register of the state (3.15) and only then
making the measurement, we can get important collective information
about the modulo-N values of b x – in this case a divisor of the crucial
period r – at the (unimportant) price of losing all information about
the individual values of b x .

3.9 The unimportance of small phase errors

To execute the quantum Fourier transform one needs 2-Qbit gates
Vi j = e iπnin j /2|i− j |

or, if one exploits the Griffiths–Niu trick, 1-Qbit
gates V j = e iπn j /2 j

. Since we need to deal with numbers of many
hundreds of digits, the 2 j appearing in these phase gates can be larger
than 10100. Producing such tiny phase shifts requires a degree of control
over the gates that is impossible to achieve. Typically such phase-shift

13 As noted in Chapter 2, any additional registers used in the squaring and
multiplication subroutines must also be restored to their initial states to
insure that they are also disentangled from the input and output registers.

3.9 THE UNIMPORTANCE OF SMALL PHASE ERRORS 85

gates would allow two Qbits to interact in a carefully controlled way
for an interval of time that was specified very precisely, but obviously
not to hundreds of significant figures. It is therefore crucial that the
effectiveness of the period-finding algorithm not be greatly affected by
small errors in the phase shifts.

On the face of it this seems worrisome. Since we need to know the
period r to hundreds of digits, don’t we have to get the phase shifts right
to a comparable precision? Here the fundamentally digital character of
the actual output of a quantum computation saves the day. To learn r
we require the outcomes of several hundreds of 1-Qbit measurements,
each of which has just two possible outcomes (0 or 1). The action of the
unitary gates that precede the measurements is like that of an analog
computer, involving continuously variable phase shifts that cannot be
controlled with perfect precision. But this analog evolution affects only
the probabilities of the sharply defined digital outputs. Small alterations
in the phases produce small alterations in the probabilities of getting
that extremely precise digital information, but not the precision of the
information itself, once it is acquired.14

Suppose that the phase of each term in the quantum Fourier trans-
form (3.18) is incorrect by an amount ϕ(x, y), and that each of these
altered phases is bounded in magnitude by ϕ � 1. The probability
p(y) in (3.51) will be changed to

pϕ(y) = 1
2nm

∣∣∣∣∣
m−1∑
k=0

e 2π i kr y/2n
e iϕk(y)

∣∣∣∣∣
2

, (3.58)

where ϕk(y) = ϕ(x0 + kr, y). Since all the phases ϕk(y) are small com-
pared with unity,

e iϕk(y) ≈ 1 + iϕk(y), (3.59)

and therefore

pϕ(y) ≈ 1
2nm

∣∣∣∣∣
m−1∑
k=0

e 2π i kr y/2n (
1 + iϕk(y)

)∣∣∣∣∣
2

. (3.60)

What effect does this have on the probability of learning from the
measurement one of the special values y j given in (3.52)?

We have

pϕ(yj) ≈ 1
2nm

∣∣∣∣∣
m−1∑
k=0

e 2π i kr δ j /2n (
1 + iϕ j k

)∣∣∣∣∣
2

, (3.61)

14 For a long time this crucial point seems to have been discussed only in an
unpublished internal IBM report by D. Coppersmith. In 2002 that 1994
report finally appeared: D. Coppersmith, “An approximate Fourier
transform useful in quantum factoring,”
http://arxiv.org/abs/quant-ph/0201067.

86 BREAKING RSA ENCRYPT ION

where ϕ j k = ϕk(yj). If we expand to linear order in the small quantities
ϕ j k, we get

pϕ(yj) ≈ p(yj) + 2
2nm

Im

[(
m−1∑
k=0

e−2π i kr δ j /2n
ϕ j k

)(
m−1∑
k′=0

e 2π i k′r δ j /2n

)]
.

(3.62)
We can get an upper bound on the magnitude of the difference be-

tween the exact and approximate probabilities by replacing the imagi-
nary part of the product of the two sums by the product of the absolute
values of the sums, and then replacing each term in each sum by its
absolute value. Since the absolute value of each ϕ j k is bounded by ϕ,
we can conclude that

|p(yj) − pϕ(yj)| ≤ 2m
2n

ϕ = 2
r
ϕ. (3.63)

Since there are r different yj , the probability of getting one of the
special values yj is altered by less than 2ϕ. So if one is willing to
settle for a probability of getting a special value that is at worst 1%
less than the ideal value of about 0.4, then one can tolerate phase
errors up to ϕ = 0.4/200 = 1/500. If one leaves out of the quan-
tum Fourier transform circuit all controlled-phase gates eπ inin j /2|i− j |

with |i − j | > �, the maximum phase error ϕ this can produce in any
term is ϕ = nπ/2�, and therefore the probability will be within 1% of
its ideal value if 1/2� < 1/(500nπ).

The number n of Qbits in the input register might be as large as 3000
for problems of interest (factoring a 500-digit N). Consequently for all
practical purposes one can omit from the quantum Fourier transform
all controlled-phase gates connecting Qbits that are more than about
� = 22 wires apart in the circuit diagram. This has two major advan-
tages. Of crucial importance, quantum engineers will not have to pro-
duce impossibly precise phase changes. Furthermore, the size of the cir-
cuit executing the quantum Fourier transform has to grow only linearly
with large n rather than quadratically. Since n is likely to be of order
103 for practical code breaking, this too is a significant improvement.

3.10 Period finding and factoring

Since Shor’s period-finding quantum algorithm is always described as
a factoring algorithm, we conclude this chapter by noting how period
finding leads to factoring. We consider only the case relevant to RSA
encryption, where one wants to factor the product of two large primes,
N = pq , although the connection between period finding and factoring
is more general.

If we have a way to determine periods (such as Shor’s algorithm)
and want to find the large prime factors of N = pq , we pick a random

3.10 PER IOD F INDING AND FACTORING 87

number a coprime to N. The odds that a random a happens to be
a multiple of p or of q are minuscule when p and q are enormous,
but if you are the worrying kind you can check that it isn’t, using the
Euclidean algorithm. (In the overwhelmingly unlikely event that a is
a multiple of p or q then the Euclidean algorithm applied to a and N
will give you p or q directly, and you will have factored N.) Using our
period-finding routine, we find the order of a in G pq : the smallest r
for which

ar ≡ 1 (mod pq). (3.64)

We can use this information to factor N if our choice of a was lucky in
two ways.

Suppose first that we are fortunate enough to get an r that is even.
We can then calculate

x = ar/2 (mod pq) (3.65)

and note that

0 ≡ x2 − 1 ≡ (x − 1)(x + 1) (mod pq). (3.66)

Now x − 1 = ar/2 − 1 is not congruent to 0 modulo pq , since r is the
smallest power of a congruent to 1. Suppose in addition – our second
piece of good fortune – that

x + 1 = ar/2 + 1 �≡ 0 (mod pq). (3.67)

In that case neither x − 1 nor x + 1 is divisible by N = pq , but (3.66)
tells us that their product is. Since p and q are prime this is possible
only if one of them, say p , divides x − 1 and the other, q , divides
x + 1. Because the only divisors of N are p and q , it follows that p is
the greatest common divisor of N and x − 1, while q is the greatest
common divisor of N and x + 1. We can therefore find p or q by a
straightforward application of the Euclidean algorithm.

So it all comes down to the likelihood of our being lucky. We show in
Appendix M that the probability is at least 0.5 that a random number
a in G pq has an order r that is even with ar/2 �≡ −1 (mod pq). So we
do not have to repeat the procedure an enormous number of times to
achieve a very high probability of success. If you’re willing to accept
the fact that you don’t have to try out very many random numbers a
in order to succeed, then this elementary argument is all you need to
know about why period finding enables you to factor N = pq . But if
you’re curious about why the probability of good fortune is so high,
then you must contend with Appendix M, where I have constructed an
elementary but rather elaborate argument, by condensing a fairly large
body of number-theoretic lore into the comparatively simple form it
assumes when applied to the special case in which the number N is the
product of two primes.

Chapter 4

Searching with a quantum computer

4.1 The nature of the search

Suppose you know that exactly one n-bit integer satisfies a certain
condition, and suppose you have a black-boxed subroutine that acts
on the N = 2n different n-bit integers, outputting 1 if the integer sat-
isfies the condition and 0 otherwise. In the absence of any other infor-
mation, to find the special integer you can do no better with a classical
computer than to apply the subroutine repeatedly to different random
numbers until you hit on the special one. If you apply it to M different
integers the probability of your finding the special number is M/N.
You must test 1

2 N different integers to have a 50% chance of success.
If, however, you have a quantum computer with a subroutine that

performs such a test, then you can find the special integer with a prob-
ability that is very close to 1 when N is large, using a method that calls
the subroutine a number of times no greater than (π/4)

√
N.

This very general capability of quantum computers was discovered
by Lov Grover, and goes under the name of Grover’s search algorithm.
Shor’s period-finding algorithm and Grover’s search algorithm,
together with their various modifications and extensions, constitute
the two masterpieces of quantum-computational software.

One can think of Grover’s black-boxed subroutine in various ways.
The subroutine might perform a mathematical calculation to determine
whether the input integer is the special one. Here is a simple example. If
an odd number p can be expressed as the sum of two squares, m 2 + n2,
then since one of m or n must be even and the other odd, p must be of
the form 4k + 1. It is a fairly elementary theorem of number theory that
if p is a prime number of the form 4k + 1 then it can always be expressed
as the sum of two squares, and in exactly one way. (Thus 5 = 4 + 1,
13 = 9 + 4, 17 = 16 + 1, 29 = 25 + 4, 37 = 36 + 1, 41 = 25 + 16,
53 = 49 + 4, 61 = 36 + 25, etc.) Given any such prime p , the simple-
minded way to find the two squares is to take randomly selected integers
x with 1 ≤ x ≤ N, with N the largest integer less than

√
p/2, until

you find the one for which
√

p − x2 is an integer a . If p is of the
order of a trillion, then following the simple-minded procedure you
would have to calculate

√
p − x2 for nearly a million x to have a better

than even chance of succeeding. But using Grover’s procedure with
an appropriately programmed quantum computer you could succeed

88

4.2 THE GROVER ITERAT ION 89

with a probability of success extremely close to 1 by calling the quantum
subroutine that evaluated

√
p − x2 fewer than a thousand times.

Mathematically well-informed friends tell me that for this particular
example there are ways to proceed with a classical computer that are
much more efficient than random testing, but the quantum algorithm to
be described below enables even mathematical ignoramuses, equipped
with a quantum computer, to do better than random testing by a fac-
tor of 1/

√
N. And Grover’s algorithm will provide this speed-up on

arbitrary problems.
Alternatively, the black box could contain Qbits that have been

loaded with a body of data – for example alphabetically ordered names
and phone numbers – and one might be looking for the name that went
with a particular phone number. It is with this kind of application in
mind that Grover’s neat trick has been called searching a database.
Using as precious a resource as Qbits, however, merely to store clas-
sical information would be insanely extravagant, given our current or
even our currently foreseeable ability to manufacture Qbits. Finding a
unique solution – or one of a small number of solutions, as described in
Section 4.3 – to a tough mathematical puzzle seems a more promising
application.

4.2 The Grover iteration

Grover’s algorithm assumes that we have been given a quantum search
subroutine that indicates, when presented with any n-bit integer x,
whether or not x is the special a being sought, returning this informa-
tion as the value of a function f (x) satisfying

f (x) = 0, x �= a ; f (x) = 1, x = a. (4.1)

Grover discovered a completely general way to do significantly better
than the classical method of merely letting the subroutine operate on
different numbers from the list of 2n candidates until it produces the
output 1. The quantum-computational speed-up relies on the usual
implementation of the subroutine that calculates f , in the form of a
unitary transformation U f that acts on an n-Qbit input register that
contains x and a 1-Qbit output register that is or is not flipped from 0
to 1, depending on whether x is or is not the special number a :

U f
(|x〉n |y〉1

)= |x〉n |y ⊕ f (x)〉1. (4.2)

An example of a simple circuit that has precisely this action is shown
in Figure 4.1. The figure can be viewed as providing a minimalist
version of Grover’s algorithm, reminiscent of the Bernstein–Vazirani
problem (Section 2.4), though not susceptible to the special trick that
worked in that simpler case. In this minimalist example we are given a
black box containing the circuit depicted in Figure 4.1, but are not told

90 SEARCHING WITH A QUANTUM COMPUTER

x

x

x

x

x

4

3

2

1

0

x

x

x

x

x

4

3

2

1

0

y y + f(x)

a = 10010

X

X

X X

X

X

X

Fig 4.1 A possible
realization of a black box
that executes the unitary
transformation
U f (|x〉n |y〉1) =
|x〉n |y ⊕ f (x)〉1, where
f (x) = 0, x �= a ;
f (x) = 1, x = a. The
input register has n = 5
Qbits and the special
number a is 10010. The
6-Qbit gate in the center of
the figure is a
five-fold-controlled-NOT,
which acts on the
computational basis to flip
the target bit if and only if
every one of the five
control bits is in the state
|1〉. The construction of
such a gate out of more
elementary gates is shown
in Figures 4.4–4.7.

which of the n control Qbits are acted on by NOT gates – information
specified by the unknown n-bit integer a . If there were n Qbits in the
input register and the computer were classical, we could do no better
than to try each of the N = 2n possible inputs until we found the one
for which the output register was flipped. But using Grover’s algorithm
we can determine this information with probability quite close to 1, by
invoking the search subroutine no more than

√
N = 2n/2 times – more

precisely (π/4)
√

N times – when N is large.
As in the Bernstein–Vazirani problem, it is useful to alter the flip of

the state of the output register into an overall sign change, by trans-
forming the 1-Qbit output register into the state

H|1〉 = 1√
2
(|0〉 − |1〉) (4.3)

prior to the application of U f . The action of U f is then to multiply the
(n + 1)-Qbit state by −1 if and only if x = a :

U f (|x〉 ⊗ H|1〉) = (−1) f (x)|x〉 ⊗ H|1〉. (4.4)

In this form, the effect of U f on the states |x〉 ⊗ H|1〉 is exactly the
same as doing nothing at all to the 1-Qbit output register, while acting
on the n-Qbit input register with an n-Qbit unitary transformation V

that acts on the computational basis as follows:

V|x〉 = (−1) f (x)|x〉 =
{ |x〉, x �= a,

−|a〉, x = a.
(4.5)

Since U f is linear, so is V. Acting on a general superposition |�〉 =∑
x |x〉〈x|�〉 of computational basis states, V changes the sign of the

component of the state along |a〉, while leaving unchanged the com-
ponent orthogonal to |a〉:

V|�〉 = |�〉 − 2|a〉〈a|�〉. (4.6)

4.2 THE GROVER ITERAT ION 91

So we can write V as

V = 1 − 2|a〉〈a|, (4.7)

where |a〉〈a| is the projection operator1 on the state |a〉.
As we shall see, U f is the only unitary transformation appearing

in Grover’s algorithm that acts as anything other than the identity
on the output register. Because the output register starts in the state
H|1〉, unentangled with the input register, and because U f maintains
the output register in this particular state, the output register remains
unentangled with the input register and in the state H|1〉 throughout
Grover’s algorithm. We could continue to describe things in terms of
U f and retain the 1-Qbit output register, expanding (4.6), for example,
to the form

U f (|�〉 ⊗ H|1〉) = [|�〉 − 2|a〉〈a|�〉] ⊗ H|1〉. (4.8)

But it is simpler to suppress all explicit reference to the unaltered output
register, which is always unentangled with the input register and always
in the state H|1〉. We simply replace the (n + 1)-Qbit unitary U f with
the n-Qbit unitary V that acts on the n-Qbit input register, and define
all other operators that appear in the algorithm only by their action on
the input register, with the implicit understanding that they act as the
identity on the output register.

To execute Grover’s algorithm, we once again initially transform
the n-Qbit input register into the uniform superposition of all possible
inputs,

|φ〉 = H⊗n |0〉n = 1
2n/2

2n−1∑
x=0

|x〉n . (4.9)

In addition to V, Grover’s algorithm requires a second n-Qbit unitary
W that acts on the input register in a manner similar to V, but with a
fixed form that does not depend on a . The unitary transformation W

preserves the component of any state along the standard state |φ〉 given
in (4.9), while changing the sign of its component orthogonal to |φ〉:

W = 2|φ〉〈φ| − 1, (4.10)

where |φ〉〈φ| is the projection operator on the state |φ〉. We defer to
Section 4.3 the not entirely obvious question of how to build W out of
1- and 2-Qbit unitary gates.

Given implementations of V and W, Grover’s algorithm is quite
straightforward. It consists of simply applying many times the product
WV to the input register, taken initially to be in the state |φ〉. Each
such application requires one invocation of the search subroutine.

1 This notation for projection operators is developed in Appendix A.

92 SEARCHING WITH A QUANTUM COMPUTER

aq
q

W V

a

f

= V
f

a

a

Fig 4.2 Real linear
combinations of the special
state |a〉, and the uniform
superposition
|φ〉 = 2−n/2 ∑ |x〉, define a
plane in which these two
states are very nearly
orthogonal. The state |a⊥〉
in that plane is orthogonal
to |a〉, and therefore makes
a small angle θ with |φ〉.
The unitary transformation
V takes any vector in the
plane into its reflection in
the line through the origin
along |a⊥〉, so it leaves |a⊥〉
invariant. The unitary
transformation W takes
any vector in the plane into
its reflection in the line
through the origin along
|φ〉, so it rotates |a⊥〉
counterclockwise through
the angle 2θ . Therefore the
combined operation WV
rotates |a⊥〉
counterclockwise through
2θ , and since WV is a
rotation it does the same to
any vector in the plane.

To see what is accomplished by repeatedly applying WV to the
initial state |φ〉, note that both V and W acting on either |φ〉 or |a〉 give
linear combinations of these two states. Since 〈a|φ〉 = 〈φ|a〉 = 1/2n/2,
whatever the value of a , the linear combinations have real coefficients
and are given by

V|a〉 = −|a〉, V|φ〉 = |φ〉 − 2
2n/2

|a〉;
(4.11)

W|φ〉 = |φ〉, W|a〉 = 2
2n/2

|φ〉 − |〉a.

So if we start with the state |φ〉 and let any sequence of these two
operators act successively, the states that result will always remain in
the two-dimensional plane spanned by real linear combinations of |φ〉
and |a〉. Finding the result of repeated applications of WV to the initial
state |φ〉 reduces to an exercise in plane geometry.

It follows from the form (4.9) of |φ〉 that |φ〉 and |a〉, considered as
vectors in the plane of their real linear combinations, are very nearly
perpendicular, since the cosine of the angle γ between them is given by

cos γ = 〈a|φ〉 = 2−n/2 = 1/
√

N, (4.12)

which is small when N is large. It is convenient to define |a⊥〉 to be
the normalized real linear combination of |φ〉 and |a〉 that is strictly
orthogonal to |a〉 and makes the small angle θ = π/2 − γ with |φ〉,
as illustrated in Figures 4.2 and 4.3. Since

sin θ = cos γ = 2−n/2 = 1/
√

N, (4.13)

θ is very accurately given by

θ ≈ 2−n/2 (4.14)

when
√

N is large.

4.2 THE GROVER ITERAT ION 93

f

f
a

a

WV

f
q
q2

V
q

Fig 4.3 Since the rotation
WV rotates any vector in
the plane of real linear
combinations of |a〉 and |φ〉
clockwise through an angle
2θ , it takes |φ〉 into a vector
WV|φ〉 that makes an angle
3θ with |a⊥〉. This can also
be seen directly from the
separate behaviors of V and
W: V takes |φ〉 into its
mirror image in |a⊥〉, and
W then takes V|φ〉 into its
mirror image in |φ〉.

Since W leaves |φ〉 invariant and reverses the direction of any vector
orthogonal to |φ〉, its geometrical action on any vector in the two-
dimensional plane containing |φ〉, |a〉, and |a⊥〉 is simply to replace
the vector by its reflection in the mirror line through the origin along
|φ〉. On the other hand V reverses the direction of |a〉 while leaving any
vector orthogonal to |a〉 invariant, so it acts on a general vector in the
two-dimensional plane by replacing it with its reflection in the mirror
line through the origin along |a⊥〉. The product WV, being a product of
two two-dimensional reflections, is a two-dimensional rotation.2 The
angle of that rotation is most easily seen by considering the effect of WV

on |a⊥〉 (see Figure 4.2). The application of V leaves |a⊥〉 invariant,
and the subsequent action of W on |a⊥〉 reflects it in the line through
the origin along the direction of |φ〉. So the net effect of the rotation
WV on |a⊥〉 is to rotate |a⊥〉 past |φ〉 through a total angle that is twice
the angle θ between |a⊥〉 and |φ〉.

Because WV is a rotation, the result of applying it to any other
vector in the plane is also to rotate that vector through the angle 2θ
in the direction from |a⊥〉 to |φ〉. So applying WV to the initial state
|φ〉 gives a vector rotated away from |a⊥〉 by 3θ , since |φ〉 is already
rotated away from |a⊥〉 by θ (Figure 4.3). Applying WV a second time
results in a vector rotated away from |a⊥〉 by 5θ , and each subsequent
application of WV increases the angle between the final state and |a⊥〉

2 A two-dimensional reflection can be achieved by adding a third dimension
perpendicular to the plane and performing a 180◦ rotation with the mirror
line as axis. This reverses the irrelevant direction orthogonal to the plane.
The product of two such three-dimensional rotations is also a rotation, takes
the plane into itself, and does not reverse the third orthogonal direction, so it
is a two-dimensional rotation in the plane.

94 SEARCHING WITH A QUANTUM COMPUTER

by another 2θ . Since θ is very close to 2−n/2, after an integral number
of applications as close as possible to

(π/4)2n/2, (4.15)

the resulting state will be very nearly orthogonal to |a⊥〉 in the plane
spanned by |φ〉 and |a〉 – i.e. it will be very nearly equal to |a〉 itself.

Consequently a measurement of the input register in the computa-
tional basis will yield a with a probability very close to 1. We can check
to see whether we have been successful by “querying the oracle.” If
f (a) is 1, as it will be with very high probability, this confirms that we
have found the desired a . If we were unlucky we might have to repeat
the whole procedure a few more times before achieving success.

4.3 How to construct W

It remains to specify how to construct W out of 1- and 2-Qbit unitary
gates. Now −W works just as well as W for purposes of the search
algorithm, since it leads to a final state that differs, if at all, only by a
harmless overall minus sign. It follows from (4.9) and (4.10) and the
fact that H⊗n is its own inverse that

−W = 1 − 2|φ〉〈φ| = H⊗n (1 − 2|00 . . . 00〉〈00 . . . 00|)H⊗n , (4.16)

so we need a gate that acts as the identity on every computational-
basis state except |00 . . . 00〉, which it multiplies by −1. This is just the
action of an (n − 1)-fold-controlled-Z gate, with the roles of the 1-Qbit
states |0〉 and |1〉 interchanged. This interchange is accomplished by
sandwiching the (n − 1)-fold-controlled-Z between X⊗n gates, and we
therefore have

−W = H⊗nX⊗n (cn−1Z)X⊗nH⊗n . (4.17)

Z Z

=

Fig 4.4 The
n-fold-controlled-Z
transformation, cnZ, acts
as the identity on states of
the computational basis
unless all n control Qbits
are in the state |1〉, when it
acts on the target Qbit as Z.
Here it is constructed out
of doubly controlled gates,
using an additional n − 2
ancilliary Qbits, all initially
in the state |0〉. One uses
2(n − 2) c2X (Toffoli)
gates and a c2Z gate. The
construction is illustrated
for the case n = 5. The top
three wires are the three
ancillary Qbits. The next
five wires from the top are
the five control Qbits, and
the bottom wire is the
target Qbit. One easily
verifies (by applying the
circuit to computational-
basis states, with each of
the ancillary Qbits in the
state |0〉) that Z acts on the
target Qbit if and only if
every one of the five
control Qbits is in the state
|1〉. The Toffoli gates are
symmetrically disposed on
both sides of the diagram
to ensure that at the end of
the process each of the
three ancillary Qbits is set
back to its initial state |0〉.
This is essential if the
ancillary Qbits are not to
become entangled with the
Qbits on which the Grover
iteration acts, represented
by the bottom six wires.

4.3 HOW TO CONSTRUCT W 95

Z

=

Z Z

Fig 4.5 An improved version of Figure 4.4, with twice as many gates.
Gates have been added on the left and right to ensure that the circuit
works for arbitrary initial computational-basis states of the three
ancillary Qbits at the top, restoring them to their initial states at the
end of the computation. To see this note that because Toffoli gates or
c2Z gates are their own inverses, the circuit acts as the identity on
those computational-basis states of all nine Qbits in which any one of
the five control Qbits (second through sixth wires from the bottom) is
in the state |0〉, regardless of the computational-basis states of the
other Qbits. This is because, as an examination of the figure reveals,
replacing the gate governed by any one of the five control Qbits by the
identity always results in a pairwise cancellation of all the remaining
gates. It remains only to confirm that when all five control Qbits are in
the state |1〉, the circuit acts as Z on the target Qbit at the bottom, and
the state of the three ancillary Qbits at the top is unchanged. This is
established in Figure 4.6, which shows the operation of the gates in
Figure 4.5 when the five control Qbits are all in the state |1〉. Because
X = HZH one can also use this circuit to produce a multiply-
controlled-NOT gate, by applying Hadamard gates to the bottom wire
on the far right and left.

We can construct W by constructing cn−1Z, the (n − 1)-fold-
controlled-Z.

Figure 4.4 shows a straightforward but not terribly efficient way to
make a cn−1Z gate for the case n = 6. We use n − 3 ancillary Qbits, all
initially in the state |0〉, 2(n − 3) c2X (Toffoli) gates, and one c2Z gate.
As explained in Section 2.6, these can all be built out of 1- and 2-Qbit
gates. It is essential for the success of the algorithm that each ancillary
Qbit be restored to its initial state |0〉, since our analysis of the Grover
algorithm assumes that the input and output registers have states of
their own, unentangled with any other Qbits, after each application of
W and V.

96 SEARCHING WITH A QUANTUM COMPUTER

Z

= =

Z

(a)

(b)

Fig 4.6 Part (a)
reproduces what remains
of Figure 4.5 when all five
control Qbits are in the
state |1〉. One easily verifies
that two identical cNOT
gates, separated by a NOT
acting on their control
Qbit, have exactly the same
action on the
computational basis as
NOT gates acting on both
the control and target
Qbits. As a result each of
the two identical sets of five
adjacent gates acting on the
three ancillary Qbits at the
top of part (a) reduces
simply to three NOT gates,
as shown in part (b).
Making this further
simplification in part (a),
note that because each of
the three ancillary Qbits is
acted on by two NOT
gates, its state is unaltered.
The two NOT gates acting
on the upper wire also
ensure that precisely one of
the two cZ gates applies Z
to the bottom Qbit,
whatever the state of the
upper wire.

The construction of Figure 4.4 is rather expensive in Qbits, requir-
ing n − 3 ancillas to apply the algorithm to an n-bit set of possibilities
for the special number a . At a cost of four times as many Toffoli gates,
one can reduce the number of ancillas to a single one, regardless of the
size of n. The way to do this is developed in Figures 4.5–4.7. Figures 4.5
and 4.6 show how nearly doubling the number of gates makes it possible
for the construction of Figure 4.4 to work for arbitrary initial states of
the ancillas. Figure 4.7 then shows how, by an additional doubling, one
can, with the aid of a single ancilla, divide an n-fold-controlled-Z into
two multiply-controlled-NOT gates and two multiply-controlled-Z
gates, each acting on about 1

2 n Qbits. (Since X = HZH, one can convert
a multiply-controlled-Z gate into a multiply-controlled-NOT gate by
applying Hadamard gates to the target Qbit at the beginning and end
of the circuit.) The multiply-controlled-Z gates in Figure 4.7 are able
nondisruptively to use the control Qbits of the multiply-controlled-
NOT gates as their ancillary Qbits in the construction of Figure 4.5.
And the multiply-controlled-NOT gates in Figure 4.7 can make similar
use of the control Qbits of the multiply-controlled-Z gates.

4.4 Generalization to several special numbers

If there are several special numbers, essentially the same algorithm can
be used to find one of them, if we know how many there are. The
function f in (4.1) now becomes

f (x) = 0, x �= a1, . . ., am ; f (x) = 1, x = a1, . . ., am .

(4.18)

4.4 GENERAL IZAT ION TO SEVERAL SPEC IAL NUMBERS 97

=

Z Z Z

Fig 4.7 The identity illustrated by the circuit is easily confirmed.
There is only one ancilla, whose state is left unchanged. By
introducing circuits of the form in Figure 4.5 into this circuit one can
produce cnZ or cnX gates with the aid of just a single ancilla. (Since
X = HZH Figure 4.5 works for either type.) In constructing each of
the multiply-controlled-NOT gates in Figure 4.7 out of Toffoli gates,
one can borrow the control Qbits of the multiply-controlled-Z gates to
use as ancillary Qbits in the expansions of Figure 4.5, since those
expansions work whatever the state of their ancillary Qbits, and restore
that state to its original form. For the same reasons one can also
borrow the control Qbits of the multiply-controlled-NOT gates to
construct the multiply-controlled-Z gates.

The n-Qbit unitary transformation V extracted from (4.4) becomes
one whose action on computational-basis states in the input register is
given by

V|x〉 = |x〉, x �= a1, . . ., am ; V|x〉 = −|x〉, x = a1, . . ., am .

(4.19)
If we replace the state |a〉 by

|ψ〉 = 1√
m

m∑
i=1

|ai 〉, (4.20)

then starting with |φ〉, which continues to have the form (4.9), the
transformations V and W now keep the state of the input register in
the two-dimensional plane spanned by the real linear combinations of
|ψ〉 and |φ〉. The unitary transformation V changes the sign of |ψ〉 but
preserves the linear combination of |φ〉 and |ψ〉 orthogonal to |ψ〉, so
V is now a reflection in the line through the origin along the vector
|ψ⊥〉 perpendicular to |ψ〉 in the plane. Everything else is just as in the
case of a single special number except that now the angle � between
|ψ⊥〉 and |φ〉 satisfies

sin � = cos(π/2 − �) = 〈ψ |φ〉 =
√

m/2n . (4.21)

98 SEARCHING WITH A QUANTUM COMPUTER

When m/2n << 1, we can arrive at a state very close to |ψ〉 with

(π/4)2n/2/
√

m (4.22)

applications of WV. A measurement then gives us, with a probability
very close to 1, a random one of the special values ai . Note that the
mean number of invocations of the subroutine decreases only as 1/

√
m

with the number m of marked items, in contrast to a classical search,
for which doubling the number of acceptable solutions would halve the
time of the search. When m/2n is not small we have to reexamine the ex-
pression (4.22) for the optimal number of iterations, but at that point the
quantum search offers little significant advantage over a classical one.

We must know how many special numbers there are for the procedure
to work, since we have to know how many times to do the Grover
iteration before making our measurement. By exploiting the fact that
the Grover iteration is periodic, restoring the initial state after about
π2n/2/

√
m iterations, it is possible to combine Grover iterations with a

clever application of the quantum Fourier transform to learn the value
of m with enough accuracy to enable one then to apply the Grover
iteration the right number of times to ensure a high probability of
success, even when m is not known at the start.

4.5 Searching for one out of four items

The simplest nontrivial application of Grover’s algorithm is to the case
n = 2, or N = 4. (When n = 1 a single invocation of the subroutine
suffices to identify a even with a classical computer.) When n = 2,
(4.13) tells us that sin θ = 1

2 , so θ = 30◦. Consequently 3θ = 90◦, and
the probability of identifying a with a single invocation of the subrou-
tine is exactly 1.

This is a significant improvement on the classical computer, with
which one can do no better than trying each of the four possibilities
for a in random order. It is equally likely that the marked item will
be the first, second, third, or fourth on the list. Since the probability
is 1

4 that the marked item is first on the list, 1
4 that it is second, and

1
4 + 1

4 = 1
2 that it is third or fourth, the mean number of attempts

is 1
4 × 1 + 1

4 × 2 + 1
2 × 3 = 2 1

4 . (It is not necessary to make a fourth
attempt, since if the first three attempts fail to produce a , then one
knows that a is the one remaining untested number.)

The case n = 2 is also special in that one does not have to resort
to the elaborate procedure specified in Figures 4.4–4.7 to produce the
n-fold-controlled-Z gate. A single Toffoli gate sandwiched between
Hadamards on the target Qbit does the job.

Chapter 5

Quantum error correction

5.1 The miracle of quantum error correction

Correcting errors might sound like a dreary practical problem, of little
aesthetic or conceptual interest. But aside from being of crucial im-
portance for the feasibility of quantum computation, it is also one of
the most beautiful and surprising parts of the subject. The surprise
is that error correction is possible at all, since the only way to detect
errors is to make measurements, but measurement gates disruptively
alter the states of the measured Qbits, apparently making things even
worse. “Quantum error correction” would seem to be an oxymoron.
The beauty lies in the ingenious ways that people have found to get
around this apparently insuperable obstacle.

The discovery in 1995 of quantum error correction by Peter Shor
and, independently, Andrew Steane had an enormous impact on the
prospects for actual quantum computation. It changed the dream of
building a quantum computer capable of useful computation from a
clearly unattainable vision to a program that poses an enormous but
not necessarily insuperable technological challenge.

Error correction is not a major issue for classical computation. In a
classical computer the physical systems that embody individual bits –
the Cbits – are immense on the atomic scale. The two states of a Cbit
representing 0 and 1 are so grossly different that the probability is
infinitesimal for flipping from one to the other as a result of thermal
fluctuations, mechanical vibrations, or other irrelevant extraneous in-
teractions.

Error correction does become important, even classically, in the
transmission of information over large distances, because the farther
the signal travels, the more it attenuates. One can deal with this in a
variety of straightforward or ingenious ways. One of the crudest is to
encode each logical bit in three actual bits, replacing |0〉 and |1〉 by the
codewords

|0〉 = |0〉|0〉|0〉 = |000〉, |1〉 = |1〉|1〉|1〉 = |111〉. (5.1)

One can then monitor each codeword, checking for flips in any of
the individual Cbits and restoring them by applying the principle of
majority rule whenever a flip is detected. Monitoring has to take place

99

100 QUANTUM ERROR CORRECT ION

often enough to make negligible the probability that more than a single
bit has flipped in a single codeword between inspections.

Quantum error correction also uses multi-Qbit codewords and also
requires monitoring at a rate that renders certain kinds of compound
errors highly improbable. But there are several ways in which error
correction in a quantum computer is quite different.

(a) A quantum computer, unlike a classical computer, requires error
correction. The physical Qbits are individual atomic-scale physical
systems such as atoms, photons, trapped ions, or nuclear magnetic
moments. Any coupling to anything not under the explicit con-
trol of the computer and its program can substantially disrupt the
state associated with those Qbits, entangling them with computa-
tionally irrelevant features of the computer or the world outside
the computer, thereby destroying the computation. For a quantum
computer to work without error correction, each Qbit would have to
be impossibly well isolated from irrelevant interactions with other
parts of the computer and anything else in its environment.

(b) In contrast to classical error correction, checking for errors in a
quantum computer is problematic. The obvious way to monitor a
Qbit is to measure it. But the result of measuring a Qbit is to alter
its state, if it has one of its own, and, more generally, to destroy
its quantum correlations with other Qbits with which it might be
entangled. Such disruptions are stochastic – i.e. unpredictable –
and introduce major errors of their own. One must turn to less
obvious forms of monitoring.

(c) Bit flips are not the only errors. There are entirely nonclassical
sources of trouble. For example phase errors, such as the alteration
of |0〉 + |1〉 to |0〉 − |1〉, can be just as damaging.

(d) Unlike the discrete all-or-nothing bit-flip errors suffered by Cbits,
errors in the state of Qbits grow continuously out of their uncor-
rupted state.

We begin our discussion of error correction by examining in
Section 5.2 a simple model of quantum error correction that works
when the possible errors are artificially limited to a few specific kinds
of disruption. Although this is clearly unrealistic, the error-correction
procedure is easy to follow. It also introduces in a simple setting most
of the tricks that continue to work in the more realistic case.

5.2 A simplified example

Much of the flavor of quantum error correction is conveyed by an
artificially simple model in which the only errors a collection of Qbits
is allowed to experience are the classically meaningful errors: random

5.2 A S IMPL I F I ED EXAMPLE 101

0 1ba +

0

0

000 111+ ba

Fig 5.1 A unitary circuit
that encodes the 1-Qbit
state α|0〉 + β|1〉 into the
3-Qbit code state
α|000〉 + β|111〉, using
two cNOT gates and two
other Qbits each initially in
the state |0〉. The circuit
clearly works for the
computational-basis states
|0〉 and |1〉, and therefore,
by linearity, it works for
arbitrary superpositions.flips of individual Qbits. We shall examine the more general possibilities

for quantum errors in Section 5.3 below.
Bit-flip errors in a computation can be modeled by a circuit that

differs from the ideal error-free circuit only in the occasional presence
of extraneous 1-Qbit NOT gates. If such randomly occurring error-
producing NOT gates are sufficiently rare, then since the only allowed
errors are bit-flip errors, one might hope to be able to correct the
corruptions they introduce by tripling the number of Qbits and using
precisely the 3-Qbit code (5.1) that corrects for bit-flip errors in the
classical case. Because of the disruptive effect of measurement gates
in diagnosing errors, it is not at all clear that such a 3-Qbit code can
be effective for bit-flip errors in the quantum case. It can nevertheless
be made to work, though the way in which one does the encoding and
performs the error correction is much subtler for Qbits than it is for
Cbits.

To begin with, there is the question of encoding. Classically one
merely replaces each of the two computational-basis states |x〉 by the
codeword states |x〉 = |x〉|x〉|x〉, for x = 0 or 1. Qbits, however, can
also be in superpositions α|0〉 + β|1〉, and one requires a circuit that
automatically encodes this into α|0〉 + β|1〉 = α|0〉|0〉|0〉 + β|1〉|1〉|1〉
for arbitraryα andβ, in the absence of any knowledge of what the values
of α and β might be. This can be done with two cNOT gates that target
two additional Qbits initially both in the state |0〉, as illustrated in
Figure 5.1:

α|0〉 + β|1〉 = α|0〉|0〉|0〉 + β|1〉|1〉|1〉 = C21C20
(
α|0〉 + β|1〉)|0〉|0〉.

(5.2)
Having produced such a 3-Qbit codeword state, we must then guard

against its corruption by the possible action of an extraneous NOT
gate that acts on at most one of the three Qbits, as illustrated in
Figure 5.2. This is easily done for Cbits, for which there are only
two possible uncorrupted initial states, |000〉 and |111〉, and examining
them is unproblematic. To see whether either initial state has been cor-
rupted by the action of a single NOT gate, one nondisruptively reads

102 QUANTUM ERROR CORRECT ION

0 1ba +

0

0

000 111+ ba

random flip of
at most 1 Qbit

X

X

or

or

X

Fig 5.2 The encoded state
of Figure 5.1 may or may
not be corrupted by the
action of a single
extraneous NOT gate. The
error-inducing gates are
depicted in a lighter font –
X instead of X – and inside
a noisy-looking corrupted
box.

the three Cbits. If this reveals all three Cbits to be in the same state,
there is no corruption to correct. If one of them is found to be in a
different state from the other two, that particular Cbit is the one that
was acted upon by the extraneous NOT gate, and applying a second
NOT gate to that Cbit restores the initial state.

One cannot, however, nondisruptively “read” the state of a collec-
tion of Qbits. The only way to extract information is by the action of
measurement gates. But measuring any of the three Qbits immediately
destroys the uncorrupted superposition

|�〉 = α|000〉 + β|111〉, (5.3)

converting it either to |000〉 (with probability |α|2) or to |111〉 (with
probability |β|2). There is a similar coherence-destroying effect on
each of the three possible corrupted states,

|�0〉 = X0|�〉 = α|001〉 + β|110〉,
|�1〉 = X1|�〉 = α|010〉 + β|101〉, (5.4)

|�2〉 = X2|�〉 = α|100〉 + β|011〉,
obliterating any dependence of the post-measurement state on the com-
plex amplitudes α and β. This might appear (and for some time was
thought) to be the end of the story: quantum error correction is im-
possible because of the disruptive effect of the measurement needed to
diagnose the error.

But there are subtler ways to extract the information needed to di-
agnose and correct possible errors. Although there continues to be a
disruption in these refined procedures, the damaging effects are shifted
from the codeword Qbits to certain ancillary Qbits. By coupling the
codeword Qbits to these ancillary Qbits with appropriate 2-Qbit unitary

5.2 A S IMPL I F I ED EXAMPLE 103

gates, and then applying measurement gates only to the ancillas, one can
extract information about certain relations prevailing among the code-
word Qbits. This more limited information turns out to be enough to
diagnose and correct certain errors in a coherence-preserving manner,
without revealing anything about the original uncorrupted codeword
state. Acquiring no information about the uncorrupted state is a neces-
sary restriction on any error-correction procedure capable of perfectly
restoring the uncorrupted state. If one could get even partial infor-
mation about the structure of a state without disrupting it, one could
continue collecting additional information nondisruptively until one
was well on the way to violating the no-cloning theorem.

Note that all possible forms for the uncorrupted 3-Qbit codeword
(5.3) – given by assigning all possible values to the amplitudes α and β –
lie in a two-dimensional subspace of the full eight-dimensional space
containing all possible 3-Qbit states. Furthermore, each of the three
allowed corruptions (5.4) also lies in a two-dimensional subspace of
the full 3-Qbit space, and the three subspaces containing the three
allowed corruptions are each orthogonal to the subspace containing
the uncorrupted codeword, and orthogonal to each other. This turns
out to be crucial to the success of the enterprise.

More generally, if we wanted to use an n-Qbit codeword in a model
in which the only allowed errors were flips of a single Qbit, then we
would require 2(1 + n) dimensions to accommodate the n + 1 mutually
orthogonal two-dimensional subspaces associated with a general un-
corrupted state and its n different 1-Qbit corruptions. Since all possible
states of n Qbits span a 2n-dimensional space, a necessary condition
for an n-Qbit bit-flip-error-correcting code to be possible is

2n−1 ≥ 1 + n. (5.5)

The smallest n satisfying (5.5) is n = 3, for which it holds as an equality.
This shows that the 3-Qbit code is, in this sense, perfect for the purpose
of correcting errors limited to flips of a single Qbit.

Figure 5.3 shows that 3-Qbit codewords, as well as meeting this
necessary condition for the correction of quantum bit-flip errors, actu-
ally do permit it to be carried out. The error detection and correction
requires two additional ancillary Qbits (the upper two wires), initially
both in the state |0〉. Both ancillas are targeted by pairs of cNOT gates
controlled by subsets of the three codeword Qbits. Note first that if
the 3-Qbit codeword has not been corrupted, so its state remains (5.3),
then both the ancillary Qbits remain in the state |0〉 after the action of
the cNOT gates, since the term |000〉 in the codeword results in none
of the target Qbits being flipped, while the term |111〉 results in both
of the target Qbits being flipped twice, which is equivalent to no flip.

In a similar way each of the three corruptions (5.4) results in a
different unique final state for the ancillary Qbits. The first of those

104 QUANTUM ERROR CORRECT ION

M
x

M

y

random flip of
at most 1 Qbit

0

0

000 +a

111b

000 +a

111b

xy

xyX

X

or

or

X

y

x

X

xy
X

0 = 1
1 = 0

X

~

~

~

~

Fig 5.3 How to detect and correct the three possible single-bit-flip
errors shown in Figure 5.2. One requires two ancillary Qbits (the upper
two wires), each initially in the state |0〉, coupled to the codeword
Qbits by cNOT gates. After the cNOT gates have acted each ancilla is
measured. If both measurements give 0, then none of the erroneous
NOT gates on the left have acted and none of the error-correcting
NOT gates on the right need to be applied. If the upper measurement
gate shows x = 1 and the lower one shows y = 0, then the uppermost
of the three erroneous NOT gates has acted on the left. Its action is
undone by applying the uppermost of the three NOT gates on the
right. The other two possible 1-Qbit errors are similarly corrected.

corruptions results in |0〉 for the upper ancilla and |1〉 for the lower,
since either term in the superposition α|001〉 + β|110〉 results in zero
or two flips for the upper ancilla, and a single flip for the lower ancilla.
The next form in (5.4) produces a single flip for both ancillas, resulting
in |1〉 for both. The third results in |1〉 for the upper and |0〉 for the
lower ancilla.

So if the two ancillary Qbits are measured after the cNOT gates
have acted, the four possible readings, 00, 01, 10, and 11, of the two

5.2 A S IMPL I F I ED EXAMPLE 105

measurement gates reveal whether or not a random one of the codeword
Qbits has been flipped and, in the event of a flip, which of the three has
suffered it. On the basis of this information one can either accept the
codeword as uncorrupted or apply a NOT gate to the Qbit that has been
identified as the flipped one, thereby restoring the initial uncorrupted
state. One easily confirms that this is precisely what is accomplished
by the NOT gates on the extreme right of Figure 5.3.

This accomplishes what any valid quantum error-correction pro-
cedure must do: it restores the original uncorrupted state without re-
vealing any information whatever about what the form of that state –
the particular values of the amplitudes α and β – might actually be.
The procedure succeeds in preserving the superposition by extracting
information only about correlations among the Qbits making up the
codeword, without ever extracting information about individual Qbits.
Working only with correlations makes it possible to apply a single linear
test that works equally well for diagnosing 1-Qbit errors in either |000〉
or |111〉, and therefore also works for any superposition of those states.

This simple example of quantum error correction requires the use
of measurement gates to diagnose the error. The outputs of the mea-
surement gates are noted, and then used to determine which, if any, of a
collection of error-correcting NOT gates should be applied. The pro-
cedure can be automated into a bigger quantum circuit that eliminates
(or almost eliminates) the need to use measurement gates combined
with unitary gates, which are or are not applied depending on the read-
ings of the measurement gates. This can be achieved by a combination
of cNOT and Toffoli gates, controlled by the ancillary Qbits, as shown
in Figure 5.4.

Replacing measurement gates by additional cNOT gates does not
entirely eliminate the need for measurement, because at the end of the
process the state of the ancillary Qbits will depend on the character of
the error and will in general no longer be the state |0〉|0〉 with which the
error-correction procedure starts. If one wishes to reuse these ancillary
Qbits for further error correction, it is necessary to reset them to their
initial state |0〉|0〉. This can efficiently be done by measuring them and
applying the appropriate NOT gates if either is found to be in the state
|1〉. Thus measurement gates followed by NOT gates that depend on
the measurement outcome are still needed to prepare the circuit for a
possible future error correction.

This procedure (automated or not) will continue to work even when
the codeword Qbits are entangled with many other codeword Qbits, as
they will be in the course of a nontrivial computation. In such a case
the codeword Qbits have no state of their own, the state of all the many
codeword Qbits being of the form

α|000〉|�〉 + β|111〉|�〉, (5.6)

106 QUANTUM ERROR CORRECT ION

0

0

random flip of
at most 1 Qbit

111b

000 +a

111b

000 +a

X

X

or

or

X

Ψ

Fig 5.4 Automation of the error-correction process of Figure 5.3. The
three controlled gates on the right – one of them a doubly controlled
Toffoli gate with multiple targets – have precisely the same
error-correcting effect on the three codeword Qbits as does the
application of NOT gates contingent on measurement outcomes in
Figure 5.3. The final state |�〉 of the ancillas (which is also the state
that determines the action of the three controlled gates on the right) is
|00〉 if none of the erroneous NOT gates on the left has acted. It is |10〉
if only the upper erroneous NOT gate has acted, |11〉 if only the
middle one has acted, and |01〉 if only the lower one has acted.

with the error correction applied to the three Qbits on the left.
One easily confirms that the added complication of entanglement
with other Qbits has no effect on the validity of the error-correction
procedure.

There is an alternative way of representing the use of cNOT gates in
Figure 5.3 to diagnose the error, which is useful in correcting quantum
errors in more realistic cases. The alternative point of view is based
on the easily confirmed fact that the uncorrupted state (5.3) is left
unaltered by either of the operators Z2Z1 and Z1Z0, while the three
corruptions (5.4) are each eigenstates of Z2Z1 and Z1Z0 with distinct

5.2 A S IMPL I F I ED EXAMPLE 107

Table 5.1. Two operators that diagnose the error syndrome
for the 3-Qbit code that protects against bit-flip errors. The
four entries in each of the two rows indicate whether the
operator for that row commutes (+) or anticommutes (−) with
the operators at the top of the four columns

X2 X1 X0 1

Z2Z1 − − + +
Z1Z0 + − − +

sets of eigenvalues: 1 and −1 in the case of |�0〉; −1 and −1 in the case
of |�1〉; and −1 and 1 in the case of |�2〉.

While these last three facts can be confirmed directly from the ex-
plicit forms of |�0〉, |�1〉, and |�2〉 on the right of (5.4), it is worth
noting, for purposes of comparison with some of the more complex
cases that follow, that they also follow from the facts that Z2Z1 and
Z1Z0 act as the identity on the uncorrupted state |�〉, that the cor-
rupted states are of the form |� j 〉 = X j |�〉, and that X j commutes
with Zi when i �= j , while X j anticommutes with Z j : Z j X j = −X j Z j .
The resulting pattern of commutations (+) or anticommutations (−)
is summarized in Table 5.1.

Thus the joint eigenvalues of the commuting operators Z2Z1 and
Z1Z0 distinguish among the uncorrupted state and each of the three
possible corruptions. A procedure that takes advantage of this by
sandwiching controlled Z2Z1 and controlled Z1Z0 gates between
Hadamards acting on the control Qbits is shown in Figure 5.5.
Although it takes a little thought to confirm directly from the fig-
ure that Figure 5.5 does indeed accomplish error correction – we shall
work this out in Section 5.4 as a special case of a much more gen-
eral procedure – one can confirm that it does by simply noting that
Figure 5.5 is mathematically equivalent to Figure 5.3. This equiva-
lence follows from the facts that X = HZH, that H2 = 1, and that the
action of controlled-Z is unaltered by exchanging the target and control
Qbits.

This oversimplified example, in which only bit-flip errors are al-
lowed, illustrates most of the features of quantum error correction that
one encounters in more realistic cases. The more general procedure
is complicated by the fact that, as noted above and made precise in
Section 5.3 below, the general error a Qbit can experience is more
complicated than just a single bit flip. As a result, one needs codewords
containing more than three Qbits to correct general single-Qbit errors,
and one requires more complicated diagnostic and corrective proce-
dures than those of Figures 5.3–5.5, involving more than just a pair
of ancillary Qbits. But although the codewords and error-correcting

108 QUANTUM ERROR CORRECT ION

random flip of
at most 1 Qbit

0

0

M
x

M

y

y

x

000 +a

111b

000 +a

111b

xy

xyX

X

or

or

X

H

H

H

H

Z

Z X

xy
X

X

0 = 1
1 = 0

Z

Z

~
~

~

~

Fig 5.5 An apparently unnecessary complication of the
error-correcting circuit in Figure 5.3, which transforms it into the
more general form described in Section 5.4. The circuit is equivalent
to that in Figure 5.3: (1) the cNOT gates in Figure 5.3 can be replaced
by controlled-Z gates if Hadamard gates act on each ancilla before and
after the controlled gates act; (2) each of the four controlled-Z gates
acts in the same way if its control and target Qbits are interchanged;
and (3) pairs of controlled gates with the same control Qbit and two
different targets can be combined into a single controlled gate with
that control Qbit and a 2-Qbit target operation that is just the product
of the two 1-Qbit target operations. The part of the circuit between
and including the pairs of Hadamards on the right and left is a simple
example of the more complex error-diagnosing circuits that appear in
Figures 5.8, 5.9, and N.2 (in Appendix N).

circuits are more elaborate, once we have identified the more general
form of quantum errors there are no further conceptual complications
in understanding the kinds of procedures that can correct them.

The more general form Qbit errors can assume is discussed in
Section 5.3. Somewhat surprisingly, it turns out that the general 1-
Qbit error can be viewed as a simple extension of what we have just

5.3 THE PHYS ICS OF ERROR GENERAT ION 109

described: in addition to the possibility of an extraneous X gate acting
on the Qbit, there might also be an extraneous Z gate or an ext-
raneous Y = ZX gate. If we can diagnose and correct for each of these
three possible corruptions, then we can correct for arbitrary 1-Qbit
errors.

Section 5.4 describes a generalization of the diagnostic scheme we
have just exploited for extracting relational information about the Qbits
that make up a codeword, by coupling groups of them to ancillary
Qbits, which are then measured. It turns out that the operators needed
to diagnose the error – generalizations of the operators Z2Z1 and Z1Z0

for the 3-Qbit code – are also useful for defining the more general
codewords.

In Section 5.5 we examine two of the most important n-Qbit codes
with n > 3 that are able to correct general single-Qbit errors: the 5-
Qbit and 7-Qbit codes. The 5-Qbit code is the ideal code for general
1-Qbit errors in the same way that the 3-Qbit code is ideal for bit-flip
errors. The 7-Qbit code is more likely to be of practical interest, for
reasons we shall describe. The earliest quantum error-correcting code –
the 9-Qbit code discovered by Shor – is now of only historical interest,
and is relegated to Appendix N.

5.3 The physics of error generation

Errors are not, of course, produced by extra gates accidentally appear-
ing in a circuit, as in the oversimplified example of Section 5.2. They
are produced by extraneous interactions with the world external to the
computer or with computationally irrelevant degrees of freedom of
the computer itself. Although one would like the state of the Qbits to
evolve only under the action of the unitary transformations imposed
by the gates of the computer, inevitably Qbits will interact, even if only
weakly, with other physical systems or degrees of freedom having noth-
ing to do with the computation in which the Qbits are participating.
In a well-designed computer such spurious interactions will be kept
to a minimum, but their disruptive effects on the quantum state of
the Qbits can grow continuously from zero, in contrast to disruptive
effects on Cbits, which have to exceed a large threshold before a Cbit
can change its state. In a quantum computer such spurious changes of
state will eventually accumulate to the point where the calculation falls
apart, unless ongoing efforts are made to eliminate them.

To characterize the most general way in which a Qbit can be deflected
from its computational task, we must finally acknowledge that Qbits are
not the only things in the world that are described by quantum states.
The quantum theory provides the most fundamental description we
have of everything in the world, and it describes everything in the
world – not just Qbits – by means of quantum states.

110 QUANTUM ERROR CORRECT ION

This spectacular expansion of the scope of quantum states might not
come as a complete surprise to the nonphysicist reader. I have stressed
all along that the quantum state of a Qbit or a collection of Qbits is not
a property carried by those Qbits, but a way of concisely summarizing
everything we know that has happened to them, to enable us to make
statistical predictions about the information we might then be able to
extract from them. If quantum states are not properties inherent in the
system they describe, but states of the knowledge we have managed
to acquire about the prior history of the system – if they somehow
incorporate fundamental aspects of how we exchange information with
the world outside of us – then they might indeed have an applicability
going beyond the particular kinds of systems we have applied them to
up until now.

Indeed, nowhere in this exposition of quantum computation has it
been necessary to refer to the individual character of the Qbits. Whether
they are spinning electrons, polarized photons, atoms in cavities, or
any number of other things, the quantum-mechanical description of
their computational behavior has been exactly the same. So insofar
as the assignment of quantum states to physical systems is a general
feature of how we come to grips with the external world, it might
not be unreasonable to assign a quantum state |e〉 to whatever part
of the world comes into interactive contact with the Qbit or Qbits –
their environment. We will not make any specific assumptions about the
character of that environment or of the quantum state |e〉 associated
with it, beyond noting that, unlike the state of a single Qbit, the state
of the environment is likely to be a state in a space of enormously many
dimensions if there is any complexity to the environment that couples,
however weakly, to the Qbit.

If, in spite of this recommended point of view, you still feel un-
comfortable applying quantum states to noncomputational degrees of
freedom, then I invite you to regard |e〉 as the state of some enormous
collection of extra Qbits, from which one would like the computation
to be completely decoupled, but which, for reasons beyond our con-
trol, somehow manage to interact weakly with the Qbits we are actually
interested in. I offer this invitation as a conceptual aid to computer
scientists uncomfortable with my claim that quantum states apply to
the description of arbitrary physical systems. But I also note that in re-
cent years a few physicists have suggested that the entire world should
indeed be viewed as an enormous collection of Qbits – a position that
has not attracted many adherents to date.

Returning from grand world views to the practical reality of errors
in a quantum computation, we shall regard a single Qbit, initially in
the state |x〉 (x = 0 or 1), as being part of a larger system consisting
of the Qbit plus its environment, initially in the state |e〉|x〉. In the
ideal case, as the Qbit evolves under 1-Qbit unitary gates or interacts
with other Qbits under 2-Qbit unitary gates, it stays unentangled with

5.3 THE PHYS ICS OF ERROR GENERAT ION 111

its environment. The environmental component of the state is then
irrelevant to the computational process and can be ignored, as we have
been doing up to now.

Unfortunately, however, interactions with the environment will in
general transform and entangle the states of the Qbit and its environ-
ment. The most general way in which this can come about can be
expressed in the form

|e〉|0〉 → |e0〉|0〉 + |e1〉|1〉,
(5.7)|e〉|1〉 → |e2〉|0〉 + |e3〉|1〉,

where |e〉 is the initially uncorrelated state of the environment and
|e0〉, . . ., |e3〉 are possible final environmental states. The environmen-
tal final states are not necessarily orthogonal or normalized, and are
constrained only by the requirement that the two states on the right
side of (5.7) should be orthogonal, since the Qbit–environment in-
teraction is required, like any other physical interaction, to lead to a
unitary development in time. This corruption of a computation by the
entanglement of the state of Qbits with the state of their environment
is called decoherence. It is the primary enemy of quantum computation.

Included in (5.7) are cases like the oversimplified one we examined
in Section 5.2, in which the Qbit remains isolated from the environ-
ment (|ei 〉 = ai |e〉, i = 0, . . ., 3) but still suffers in that isolation an
unintended unitary evolution. But (5.7) also includes the case of major
practical interest. This is the case in which the interaction with the
environment has a small but otherwise quite general entangling effect
on the Qbit:

|e0〉 ≈ |e3〉 ≈ |e〉; 〈e1|e1〉, 〈e2|e2〉 � 1. (5.8)

In dealing with such entangling interactions with the environment,
it is useful to introduce projection operators

Px = 1 + (−1)xZ

2
, (5.9)

which project onto the 1-Qbit states |x〉, x = 0, 1. Using these
projection operators, we can combine the two time evolutions in (5.7)
into a single form:

|e〉|x〉 → ([|e0〉1 + |e1〉X
]
P0

)|x〉 + ([|e2〉X + |e3〉1
]
P1

)|x〉. (5.10)

In (5.10) I have introduced the convenient notation |e〉U to describe
the linear operator from a 1-Qbit to a many-Qbit space that takes
the 1-Qbit state |ψ〉 into the many-Qbit state |e〉 ⊗ U|ψ〉; like most
embellishments of Dirac notation it is defined so that the appropriate
form of the associative law holds:(|e〉U)|ψ〉 = |e〉 ⊗ U|ψ〉. (5.11)

112 QUANTUM ERROR CORRECT ION

Using the explicit form (5.9) of the two projection operators, defining1

Y = ZX, (5.12)

and continuing to use the notational convention (5.11), we can rewrite
(5.10) as

|e〉|x〉 →
(|e0〉 + |e3〉

2
1 + |e0〉 − |e3〉

2
Z

+ |e2〉 + |e1〉
2

X + |e2〉 − |e1〉
2

Y

)
|x〉. (5.13)

There is nothing special about the particular environmental states
appearing in (5.13), so we can rewrite it more compactly in terms of four
other (in general neither normalized nor orthogonal) states |a〉, |b〉, |c〉,
and |d 〉 of the environment as

|e〉|x〉 → (|d 〉1 + |a〉X + |b〉Y + |c〉Z)|x〉. (5.14)

The time development represented by the arrow in (5.14) is unitary and
therefore linear, so the combination of environmental states and unitary
operators on the right side of (5.14) acts linearly on |x〉. Therefore
(5.14) holds not only for |e〉|0〉 and |e〉|1〉 but also for any superposition
α|e〉|0〉 + β|e〉|1〉 = |e〉(α|0〉 + β|1〉) = |e〉|ψ〉, in the form

|e〉|ψ〉 → (|d 〉1 + |a〉X + |b〉Y + |c〉Z)|ψ〉. (5.15)

The actions of X, Z, and Y on the uncorrupted state |ψ〉 are some-
times described as subjecting the Qbit to a bit-flip error, a phase error,
and a combined bit-flip and phase error. Using this terminology, a gen-
eral environmental degradation of the state of a Qbit, which can always
be put in the form (5.15), can be viewed as a superposition of no error
(1), a bit-flip error (X), a combined bit-flip and phase error (Y), and
a phase error (Z). The oversimplified example of Section 5.2 ignored
the possibility of phase errors (Z) and combined errors (Y).

If we were to extend this analysis to the corruption of an n-Qbit
codeword |�〉n , we would end up with a combined state of the codeword
and the environment of the form

|e〉|�〉 →
3∑

µ1=0

· · ·
3∑

µn=0

|eµ1···µn 〉X(µ1) ⊗ · · · ⊗ X(µn)|�〉, (5.16)

where

X(0) = 1, X(1) = X, X(2) = Y, X(3) = Z. (5.17)

The construction of error-correcting codewords requires a physical
assumption analogous to the assumption in Section 5.2 that at most a

1 This Y differs by a factor of i from the Y briefly used in Section 1.4.

5.4 D IAGNOS ING ERROR SYNDROMES 113

single Qbit in a codeword suffers a flip error. If |�〉 is a state of a small
number n of Qbits that make up an n-Qbit codeword, then the proba-
bility of corruption of the codeword is so small that the terms in (5.16)
differing from the term 1 ⊗ · · · ⊗ 1 that reproduces the uncorrupted
state are dominated by those in which only a single one of the X(µi)

differs from 1. If this condition is met, then the general form (5.16) of
a corrupted n-Qbit codeword is a superposition of terms in which each
individual Qbit making up the word has suffered a degradation of the
form (5.15):

|e〉|�〉 →
(

|d 〉1 +
n−1∑
i=0

|ai 〉Xi + |bi 〉Yi + |c i 〉Zi

)
|�〉. (5.18)

One can allow for the more general possibility of two or more Qbits
in a codeword being corrupted together if one is willing to use longer
codewords to correct such errors. The examples of error correction
given below are all at the level of single-Qbit errors of the form (5.18)
in the codeword. The extent to which the dominant sources of error
will actually be of this form may well depend on the kind of physical
system used to realize the Qbits. Eventually the theory of quantum
error correction will have to face this issue. Meanwhile this possible
future source of difficulty should not distract you from appreciating
how remarkable it is that an error-correction procedure exists at all,
even in the restricted setting of single-Qbit errors.

To correct 1-Qbit errors we require a procedure that restores a
corrupted state of the form

|d 〉|�〉 +
n−1∑
i=0

(|ai 〉Xi |�〉 + |bi 〉Yi |�〉 + |c i 〉Zi |�〉) (5.19)

to the uncorrupted form

|e〉|�〉, (5.20)

where |e〉 is the environmental state accompanying whichever of the
3n + 1 terms in (5.19) our error-correction procedure has projected
the corrupted state onto. If the term in Xi were the only one present
in (5.19), we could use a 3-Qbit codeword and achieve this projec-
tion by applying precisely the error-correction technique described in
Section 5.2. But to deal with the additional possibilities associated with
the terms in Yi and Zi we require longer codewords and more elaborate
diagnostic methods.

5.4 Diagnosing error syndromes

Before turning to specific quantum error-correcting codes, it is useful to
anticipate the general structure of the gates we will be using to identify

114 QUANTUM ERROR CORRECT ION

and project onto a particular term in the general 1-Qbit corruption
(5.19) of a codeword. As noted earlier, these will be generalizations
of the controlled Z2Z1 and Z1Z0 gates used to diagnose errors in the
artificial case in which only bit-flip errors are allowed.

Let A be any n-Qbit Hermitian operator whose square is the unit
operator:

A2 = 1. (5.21)

It follows from (5.21) that A is unitary, since A† = A. The eigenvalues
of A can only be 1 or −1, since A acting twice on an eigenstate must
act as the identity 1. The projection operators onto the subspaces of
states with eigenvalue +1 and −1 are, respectively,

PA
0 = 1 + A

2
and PA

1 = 1 − A

2
. (5.22)

Since P0 + P1 = 1, any state |ψ〉 can be expressed as a superposition
of its projections onto these two subspaces: |ψ〉 = P0|ψ〉 + P1|ψ〉.

The operators Z2Z1 and Z1Z0 encountered in the 3-Qbit code for
correcting bit-flip errors are examples of such A. In the more general
cases we shall be examining, the operators A will be more general
products of both Z and X operators associated with different Qbits in
the codeword; for example A = Z4X3Z2X1X0.

In addition to the n Qbits on which A acts, we introduce an ancillary
Qbit and consider the controlled operator CA, which we write here
in the alternative form cA to avoid having subscripts on superscripts,
which acts as A on the n Qbits when the state of the ancilla is |1〉 and
as the identity when the state of the ancilla is |0〉. If the state of the
ancilla is a superposition of |0〉 and |1〉, the action of cA is defined by
linearity. When A is a product of 1-Qbit operators, the operator cA

can be taken to be a product of ordinary 2-Qbit controlled operators. If
A = Z4X3Z2X1X0, then cA would be cZ4cX3cZ2cX1cX0, where each
of the five terms has a different target Qbit, but all are controlled by
one and the same ancilla.

If the ancilla is initially in the state |0〉 and one applies a Hadamard
transform H to the ancilla both before and after applying cA to the
n + 1 Qbits and the initial state of the n Qbits is |�〉, then the n Qbits
will end up entangled with the ancilla in the state

(
H ⊗ 1

)
cA

(
H ⊗ 1

)|0〉|�〉 = (
H ⊗ 1

)
cA 1√

2

(|0〉 + |1〉)|�〉
= (

H ⊗ 1
) 1√

2

(|0〉|�〉 + |1〉A|�〉)
= 1

2

(|0〉 + |1〉)|�〉 + 1
2

(|0〉 − |1〉)A|�〉
= |0〉 1

2

(
1 + A

)|�〉 + |1〉 1
2

(
1 − A

)|�〉
= |0〉PA

0 |�〉 + |1〉PA
1 |�〉. (5.23)

5.4 D IAGNOS ING ERROR SYNDROMES 115

P

x

M

Py

0

yy
x

x

Z

X

Z

X

X

x
y

H H
Fig 5.6 The way in which
measurement gates are
employed in quantum
error correction. The
ancilla (upper wire) is
initially in the state zero.
The remaining five Qbits
are initially in the state
|ψ〉. If the measurement
gate acting on the ancilla
gives the result x (0 or 1)
then the final state of the
five Qbits will be the
(renormalized) projection
Px |ψ〉 of the initial state
into the subspace spanned
by the eigenstates of
Z4X3Z2X1X0 with
eigenvalue (−1)x .

If we now measure the ancilla, then according to the generalized Born
rule, if the measurement gate indicates 0 or 1, then the state of the n
Qbits becomes the (renormalized) projection of |�〉 into the subspace
of positive (eigenvalue +1) or negative (eigenvalue −1) eigenstates of
A. This is illustrated for the case A = Z4X3Z2X1X0 in Figure 5.6.

This procedure is called measuring A or a measurement of A. The
terminology reflects the fact that it is a generalization of the ordinary
process of measuring a single Qbit, to which it reduces when n = 1 and
A = Z. In that case the subspaces spanned by the positive and negative
eigenstates of Z are just the one-dimensional subspaces spanned by |0〉
and |1〉, and the probabilities of the two outcomes, as one can easily
check, are indeed given by the Born rule.

In error correction one needs several such Hermitian operators,
each squaring to unity, all acting on the same n Qbits. For concreteness
consider the case of three such operators, A, B, and C. Introduce an
ancillary Qbit for each operator, labeling the ancillas 0, 1, and 2, and
introduce controlled operators cA, cB, and cC, each controlled by the
corresponding ancilla. Now apply Hadamards to each of the ancillas
(each initially taken to be in the state |0〉), both before and after the
product of all the controlled operators acts. The result (see Figure 5.7)
is the obvious generalization of (5.23), taking |0〉|0〉|0〉|�〉 into

(
H2H1H0

)(
cCcBcA

)(
H2H1H0

)|0〉|0〉|0〉|�〉

=
1∑

x2=0

1∑
x1=0

1∑
x0=0

|x2〉|x1〉|x0〉
(

1 + (−1)x2C

2

)(
1 + (−1)x1B

2

)

×
(

1 + (−1)x0A

2

)
|�〉

=
1∑

x2=0

1∑
x1=0

1∑
x0=0

|x2〉|x1〉|x0〉PC
x2
PB

x1
PA

x0
|�〉. (5.24)

116 QUANTUM ERROR CORRECT ION

0

0

0

Ψ

H

H

H

A B C

H

H

H

Fig 5.7 A, B, and C are
commuting operators
satisfying
A2 = B2 = C2 = 1. They
act on the n-Qbit state |�〉
associated with the thick
lower wire. The effect of
measuring the three
ancillas (top three wires) is
to project the state of the n
Qbits associated with the
lower wire into its
component in one of the
eight eigenspaces of A, B,
and C. If the results of
measuring the control bits
associated with A, B, and
C are x0, x1, and x2 then
the projection is into the
eigenspace with
eigenvalues (−1)x0, (−1)x1,

and (−1)x2 . Such a process
is called “measuring A, B,
and C.” When n = 3 and
A, B, and C are three
different 1-Qbit Z
operators, the process is
equivalent to an ordinary
measurement of the three
Qbits on which the three Z
operators act.

If A,B, and C all commute – which is always the case in the examples
relevant to error correction – then the state

PC
x2
PB

x1
PA

x0
|�〉 =

(
1 + (−1)x2C

2

)(
1 + (−1)x1B

2

)(
1 + (−1)x0A

2

)
(5.25)

is an eigenstate of all the operators C, B, and A, with respective
eigenvalues

(−1)x2, (−1)x1, and (−1)x0 . (5.26)

This follows directly from the fact that if V2 = 1 then

V

(
1 + (−1)xV

2

)
= (−1)x

(
1 + (−1)xV

2

)
. (5.27)

So measurement of the three ancillas projects the n Qbits into one of
the eight simultaneous eigenspaces of the three commuting operators
C, B, and A, and the outcome x2x1x0 of the measurement determines
which eigenspace it is. This process is described as a joint measurement
of C, B, and A.

Note that if A, B, and C are 1-Qbit operators Zi , Z j , and Zk that
act on the i th, j th, and kth of the n Qbits, then this process reduces to
the ordinary measurement of those three Qbits, since 1

2 (1 + (−1)xZ)
projects onto the 1-Qbit state |x〉. The two equivalent error-correction
circuits in Figures 5.3 and 5.5 are measurements, in this generalized
sense, of the two commuting operators A = Z2Z1 and B = Z1Z0.

The form (5.18) of a general 1-Qbit error on an n-Qbit codeword re-
veals that to correct errors it is necessary to make a measurement, in this
more general sense of the term, that projects a possibly corrupted code-
word into an identifiable one of 1 + 3n orthogonal two-dimensional
spaces: one two-dimensional subspace for the uncorrupted codeword
|�〉, and 3n additional two-dimensional subspaces for each of the 1-
Qbit error terms Xi |�〉, Yi |�〉, and Zi |�〉, i = 0, . . ., n − 1, in (5.18).
Thus the 2n-dimensional space spanned by all the states of the n Qbits
must be large enough to contain 1 + 3n orthogonal two-dimensional
subspaces, giving us the condition

2n−1 ≥ 3n + 1 (5.28)

on an n-Qbit code capable of correcting a general 1-Qbit error. The
lowest n satisfying this condition is n = 5, for which it holds as an

5.5 THE 5-QB IT ERROR-CORRECT ING CODE 117

equality. Remarkably, there is indeed a 5-Qbit code for which this can
be done. This is reminiscent of the situation in Section 5.2, where it
was necessary only to discriminate between the uncorrupted codeword
|�〉 and the n NOT-corruptions Xi |�〉. There the number of Qbits
had to satisfy (5.5), which is first satisfied (again as an equality) when
n = 3.

The 5-Qbit code is the most compact and elegant of the quantum
error-correcting codes, but it suffers from the fact that it is difficult
to construct the appropriate generalizations of 1- and 2-Qbit gates
between codewords. I therefore go on to describe a second, 7-Qbit code,
which overcomes this problem. The first quantum error-correcting
code, discovered by Peter Shor, which uses a 9-Qbit generalization of
the 3-Qbit code of Section 5.2, is now of solely historical interest. It is
described in Appendix N.

5.5 The 5-Qbit error-correcting code

The two 5-Qbit code words |0〉 and |1〉 are most conveniently defined in
terms of the very operators, described in general terms in Section 5.4,
that will be used to diagnose the error syndrome. So we begin by
specifying those operators.

To distinguish 1 + (3 × 5) = 16 mutually orthogonal two-
dimensional subspaces we require four such mutually commuting
Hermitian operators that square to unity, since each can independently
have two eigenvalues (±1) and 24 = 16. These operators are defined
as follows:

M0 = Z1X2X3Z4,

M1 = Z2X3X4Z0,
(5.29)

M2 = Z3X4X0Z1,

M3 = Z4X0X1Z2.

Each of theMi squares to unity because each is a product of commut-
ing operators that square to unity. To check that the Mi are mutually
commuting, note that all the individual Xi and Z j operators commute
with one another except for an Xi and Zi with the same index, which
anticommute: Xi Zi = −Zi Xi . But in converting the product of any
two different Mi to the product in the reverse order by reversing the
orders of the individual Xi and Zi operators that make them up, one
always encounters exactly two interchanges that result in a minus sign.

One might be tempted to break the irritating asymmetry of (5.30)
by adding to the list

M4 = Z0X1X2Z3, (5.30)

118 QUANTUM ERROR CORRECT ION

but it is not independent of the other four. Every Xi and Zi appears
exactly twice in the product of all five Mi , so the product must be either
1 or −1. One easily checks that

M0M1M2M3M4 = 1, (5.31)

and therefore

M4 = M0M1M2M3. (5.32)

The 5-Qbit codewords are most clearly and usefully defined in terms
of the Mi (rather than writing out their lengthy explicit expansions in
computational-basis states):

|0〉 = 1
4 (1 + M0)(1 + M1)(1 + M2)(1 + M3)|00000〉,

(5.33)
|1〉 = 1

4 (1 + M0)(1 + M1)(1 + M2)(1 + M3)|11111〉.
Before examining how one might produce five Qbits in either of these
states, we discuss how the states work to correct 1-Qbit errors.

Since eachMflips two Qbits, |0〉 is a superposition of computational-
basis states with an odd number of zeros (and an even number of ones),
while |1〉 is a superposition of states with an odd number of ones (and
an even number of zeros). Consequently the two codeword states are
orthogonal. They are also normalized to unity. Since M2

i = 1,

(1 + Mi)2 = 2(1 + Mi). (5.34)

So we have

〈0|0〉 = 〈00000|(1 + M0)(1 + M1)(1 + M2)(1 + M3)|00000〉,
(5.35)

〈1|1〉 = 〈11111|(1 + M0)(1 + M1)(1 + M2)(1 + M3)|11111〉.
If we expand the products of 1 + Mi into 16 terms, the term 1 con-
tributes 1 to 〈0|0〉 and to 〈1|1〉. Each of the remaining 15 terms can
be reduced, using (5.31) (and the fact that each M2

i = 1), to either a
single Mi or a product of two (i = 0, . . ., 4). So each of the 15 terms
flips either two or four Qbits and contributes 0 to the inner products.

Because the Mi all commute and because

Mi (1 + Mi) = 1 + Mi , (5.36)

the states |0〉, |1〉, and their superpositions

|�〉 = α|0〉 + β|1〉 (5.37)

are all eigenstates of each of the Mi with eigenvalue 1.
The 15 possible corruptions of (5.37) appearing in the corrupted

state (5.18) are also eigenstates of the Mi , distinguished by the

5.5 THE 5-QB IT ERROR-CORRECT ING CODE 119

Table 5.2. The four error-syndrome operators Mi for the 5-Qbit
code, and whether each of them commutes (+) or anticommutes (−)
with each of the 15 operators Xi ,Yi , and Zi , i = 1, . . ., 5, associated
with the 15 different terms in the corrupted codeword. Note that
each of the 15 columns, and the 16th column associated with 1 (no
error), has a unique pattern of + and − signs.

X0Y0Z0 X1Y1Z1 X2Y2Z2 X3Y3Z3 X4Y4Z4 1

M0 = Z1X2X3Z4 + + + − − + + − − + − − − − + +
M1 = Z2X3X4Z0 − − + + + + − − + + − − + − − +
M2 = Z3X4X0Z1 + − − − − + + + + − − + + − − +
M3 = Z4X0X1Z2 + − − + − − − − + + + + − − + +

15 = 24 − 1 other possible sets of eigenvalues ±1 that the four Mi

(i = 0, . . ., 3) can have. To see this, note first that each Xi ,Yi , and
Zi commutes or anticommutes with all four Mi . Therefore each of
the terms Xi |�〉, Yi |�〉, and Zi |�〉 appearing in (5.18) is indeed an
eigenstate of each Mi with eigenvalue 1 or −1.

Table 5.2 indicates whether eachMi commutes (+) or anticommutes
(−) with each of the Xi ,Yi , Zi , and (trivially) the unit operator 1. In-
spection of the table reveals that each of the 16 possible binary columns
of four symbols (+ or −) appears in exactly one column. Therefore,
when the four Mi are measured, the corrupted state (5.18) is projected
back to its original form if all four eigenvalues are +1, or projected onto
one of the 15 corrupted states X0|�〉, . . .,Z4|�〉 depending on which
column in the table describes the eigenvalues. In each corrupted case
the original state can be restored by application of the corresponding
unitary transformation Xi , −Yi = Xi Zi , or Zi to the appropriate Qbit.
A circuit that measures the four operators (5.29) is shown in
Figure 5.8.

The perfect efficiency of the 5-Qbit code leads to a straightfor-
ward way to manufacture the two 5-Qbit codeword states (5.33).
As noted above, the 16 distinct sets of eigenvalues for the four
mutually commuting operators Mi decompose the 32-dimensional
space of five Qbits into 16 mutually orthogonal two-dimensional sub-
spaces, spanned by |0〉 and |1〉 and by each of their 15 pairs of 1-Qbit
corruptions.

The two-fold degeneracy of the four Mi within each of these 16
subspaces is lifted by the operator

Z = Z0Z1Z2Z3Z4, (5.38)

which commutes with all the Mi . Since |00000〉 and |11111〉 are eigen-
states of Z with eigenvalues 1 and −1, and since Z commutes with Zi ,

120 QUANTUM ERROR CORRECT ION

H

H

H

H

H

H

H

H

Z

X

X

Z

X

Z

X

Z

Z

X

X

Z

X

Z

Z

X

Fig 5.8 A circuit to
measure the error
syndrome for the 5-Qbit
code. The five Qbits are the
five lower wires. The four
upper wires are the ancillas
to be measured in the
manner of Figure 5.7,
associated with measuring
the four commuting
operators Z1X2X3Z4,

Z2X3X4Z0, Z3X4X0Z1,

and Z4X0X1Z2 of (5.29).
When controlled-Z gates
are present together with
controlled-NOT gates, the
figure is more readable if
the cNOT gates are
represented as
controlled-X gates.

while anticommuting with Xi and Yi , it follows that

Z|0〉 = |0〉, Z|1〉 = −|1〉,
ZZi |0〉 = Zi |0〉, ZZi |1〉 = −Zi |1〉,
ZXi |0〉 = −Xi |0〉, ZXi |1〉 = Xi |1〉,
ZYi |0〉 = −Yi |0〉, ZYi |1〉 = Yi |1〉.

(5.39)

Consequently if one takes five Qbits in any state you like (perhaps
most conveniently |00000〉) and measures the four Mi together with Z,
one projects the Qbits into one of the 32 states

|0〉, Xi |0〉, Yi |0〉, Zi |0〉, |1〉, Xi |1〉, Yi |1〉, Zi |1〉, (5.40)

and learns from the results of the measurement which it is. Just as in the
error-correction procedure, if the state is not |0〉 or |1〉 we can restore
it to either of these forms by applying the appropriate Xi , Yi , or Zi . If
we wish to initialize the five Qbits to |0〉 we can apply X, where

X = X0X1X2X3X4, (5.41)

should the measurement indicate that the error-corrected state is |1〉.
This process of using a generalized measurement to produce five Qbits
in the state |0〉 is analogous to the procedure of using an ordinary
measurement to produce a single Qbit in the state |0〉 described in
Section 1.10.

There is quite a different way to construct the 5-Qbit codewords, by
applying a set of 1- and 2-Qbit unitary gates to an uncoded 1-Qbit state
and four ancillary Qbits all initially in the state |0〉. This is described
in Section 5.9.

5.6 THE 7-QB IT ERROR-CORRECT ING CODE 121

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

X

Z

Z

Z

Z

Z

Z

Z

Z

Z Z

Z

Z X

X

X

X

X

X

X

X

X

X

X

Fig 5.9 A circuit to
measure the error
syndrome for the 7-Qbit
code. The seven Qbits are
the seven lower wires. The
six upper wires are the
ancillas to be measured,
resulting in a measurement
of the six commuting
operators Z0Z4Z5Z6,

Z1Z3Z5Z6, Z2Z3Z4Z6,

X0X4X5X6, X1X3X5X6,

and X2X3X4X6 of (5.42).

5.6 The 7-Qbit error-correcting code

The 5-Qbit code is theoretically ideal but suffers from the problem
that circuits performing extensions of many of the basic 1- and 2-
Qbit operations to the 5-Qbit codewords are cumbersome. The current
favorite is a 7-Qbit code, devised by Andrew Steane, which permits
implementations of many basic operations on codewords, which are not
only quite simple but also themselves susceptible to error correction.

The Steane code uses six mutually commuting operators to diagnose
the error syndrome:

M0 = X0X4X5X6, N0 = Z0Z4Z5Z6,

M1 = X1X3X5X6, N1 = Z1Z3Z5Z6,

M2 = X2X3X4X6, N2 = Z2Z3Z4Z6.

(5.42)

The six operators in (5.42) clearly square to give the unit operator. The
Mi trivially commute among themselves as do the Ni , and each Mi

commutes with each N j , in spite of the anticommutation of each Xk

with the corresponding Zk, because in every case they share an even
number of such pairs. A circuit that measures the six operators (5.42)
is shown in Figure 5.9.

122 QUANTUM ERROR CORRECT ION

The 7-Qbit codewords are defined by

|0〉 = 2−3/2(1 + M0)(1 + M1)(1 + M2)|0〉7,

|1〉 = 2−3/2(1 + M0)(1 + M1)(1 + M2)X|0〉7,
(5.43)

where

X = X0X1X2X3X4X5X6, (5.44)

so that

|1111111〉 = X|0000000〉. (5.45)

We again defer our discussion of how to produce these states until after
our discussion of how they are used in error correction.

The two states in (5.43) are orthogonal, since each M flips four
Qbits while X flips all seven of them, so the first state is a superposition
of 7-Qbit states with an odd number of zeros while the second is a
superposition with an even number of zeros. They are normalized to
unity, for essentially the same reasons as in the case of 5-Qbit code.

Since X commutes with all the Mi , a general superposition of the
two codewords can be written as

|�〉 = α|0〉 + β|1〉 = (
α1 + βX

)|0〉, (5.46)

and its corruption (5.18) assumes the form

|e〉|�〉 →
(

|d 〉1 +
7∑

i=1

[|ai 〉Xi + |bi 〉Yi + |c i 〉Zi
])

|�〉. (5.47)

Because the Mi all commute and Mi (1 + Mi) = 1 + Mi , and be-
cause the N j commute with the the Mi and with X and have |0000000〉
as an eigenstate with eigenvalue 1, it follows that |0〉, |1〉, and the gen-
eral superposition (5.46) are eigenstates of each of the Mi and Ni with
eigenvalue 1. The 21 possible corruptions of (5.46) appearing in (5.47)
are also eigenstates, distinguished by the possible sets of eigenvalues
±1 that the three Mi and three Ni can have. As in the 5-Qbit case, this
is because each Xi ,Yi , and Zi commutes or anticommutes with each of
the Mi and Ni , so each state appearing in (5.47) is indeed an eigenstate
of each Mi and Ni with eigenvalue 1 or −1.

To see why the results of the six measurements of the Mi and Ni

determine a unique one of the 22 terms in (5.47), examine Table 5.3,
which indicates by a bullet (•) whether an Xi appears in each of the Mi

and whether a Zi appears in each of the Ni . Each Mi commutes with
every X j ; it anticommutes with Y j and Z j if a bullet appears in the
column associated with X j and commutes if there is no bullet; each Ni

commutes with every Z j ; it anticommutes with X j and Y j if a bullet
appears in the column associated with Z j and commutes if there is no
bullet.

5.6 THE 7-QB IT ERROR-CORRECT ING CODE 123

Table 5.3. The six error-syndrome operators Mi and Ni , i = 0, 1, 2,
for the 7-Qbit code. A bullet (•) indicates whether a given Xi appears
in each Mi and whether a given Zi appears in each Ni .

X0 X1 X2 X3 X4 X5 X6

M0 • • • •
M1 • • • •
M2 • • • •

Z0 Z1 Z2 Z3 Z4 Z5 Z6

N0 • • • •
N1 • • • •
N2 • • • •

The signature of anXi error (or no error) is that all threeMi measure-
ments give +1. The pattern of −1 eigenvalues in the Ni measurements
then determines which of the seven possible Xi characterize the error.
(If all three Ni measurements also give +1 there is no error.)

In the same way, the signature of a Zi error (or no error) is that all
three Ni measurements give +1 and then the pattern of −1 eigenvalues
in the Mi measurements determines which of the seven possible Zi

characterize the error.
Finally, the signature of a Yi error is that at least some of both the

Mi and the Ni measurements give −1. The resulting pattern of −1
eigenvalues (which will be the same for both the Mi and the Ni mea-
surements) then determines which of the seven possible Yi characterize
the error.

So the six measurements project the corrupted state into a unique
one of the 22 terms in (5.47) and establish which term it is. One can
then undo the corruption by applying the appropriate one of the 22
operators 1, X0, . . .,Z6.

To produce the 7-Qbit codewords one cannot immediately extend
the method we used in Section 5.5 to produce the 5-Qbit codewords,
because the two 7-Qbit codewords and their 21 1-Qbit corruptions
constitute only 44 mutually orthogonal states, while the space of seven
Qbits has dimension 27 = 128. One can, however, provide the missing
84 dimensions by noting the following.

The 2 × 7 × 6 = 84 states given by

Xi Z j |0〉 and Xi Z j |1〉, i �= j, (5.48)

are also easily verified to be eigenstates of all the Mi and Ni . These
states can be associated with some of the possible 2-Qbit errors, but
this is not pertinent to the use to which we put them here. Like the
1-Qbit Yi errors, these states result in at least some of both the Mi and

124 QUANTUM ERROR CORRECT ION

the Ni measurements giving −1, but unlike the Yi errors, the resulting
pattern of −1 eigenvalues will not be the same for both the Mi and the
Ni measurements, since i �= j . Each of the 7 × 6 = 42 possibilities for
Xi Z j leads to its own characteristic pattern of +1 and −1 eigenvalues.

This gets us back to the situation we encountered in the 5-Qbit case.
By measuring the seven mutually commuting operators Mi , Ni , and

Z = Z0Z1Z2Z3Z4Z5Z6, (5.49)

we can produce from seven Qbits in an arbitrarily chosen state a unique
one of the 128 mutually orthogonal states given by |0〉, |1〉, their 42
different 1-Qbit corruptions, and their 84 different special kinds of
2-Qbit corruptions. The results of the measurement tell us the char-
acter (if any) of the corruption, from which we know what operators
(Xi ,Yi ,Zi , or Xi Z j , possibly combined with X) we must apply to the
post-measurement state to convert it into |0〉.

A simpler way to produce 7-Qbit codewords is to start with seven
Qbits in the standard initial state |0〉7, and then measure M0,M1, and
M2. The resulting state will be one of the eight states

2−3/2(1 ± M0)(1 ± M1)(1 ± M2)|0〉7, (5.50)

with the specific pattern of + and − signs being revealed by the mea-
surement. The upper part of Table 5.3 now permits one to choose a
unique Zi that commutes or anticommutes with each Mi depending on
whether it appears in (5.50) with a + or a − sign. Since Zi |0〉7 = |0〉7,
acting on the seven Qbits with that particular Zi converts their state to

2−3/2(1 + M0)(1 + M1)(1 + M2)|0〉7 = |0〉. (5.51)

In Section 5.8 we examine a surprisingly simple circuit that encodes
a general 1-Qbit state into a 7-Qbit codeword state in the manner of
Figure 5.1, without using any measurement gates.

5.7 Operations on 7-Qbit codewords

The virtue of the 7-Qbit code, that makes it preferable to the 5-Qbit
code in spite of its greater expenditure of Qbits, is that many of the
fundamental 1- and 2-Qbit gates are trivially extended to 7- and 14-
Qbit gates acting on the codewords. Because, for example, X commutes
with the Mi and flips all seven Qbits, it implements the logical NOT
on the codewords (5.43):

X|0〉 = |1〉, X|1〉 = |0〉. (5.52)

Similarly, Z commutes with the Mi , anticommutes with X, and leaves
|0〉7 invariant, so it implements the logical Z on the codewords:

Z|0〉 = |0〉, Z|1〉 = −|1〉. (5.53)

5.7 OPERAT IONS ON 7-QB IT CODEWORDS 125

This much works equally well for the 5-Qbit code. More remarkably,
for the 7-Qbit code the bitwise Hadamard transformation,

H = H0H1H2H3H4H5H6, (5.54)

also implements the logical Hadamard transformation on the code-
words:

H|0〉 = 1√
2

(|0〉 + |1〉), H|1〉 = 1√
2

(|0〉 − |1〉). (5.55)

(This does not hold for the 5-Qbit code.)
To see this, note first that two normalized states |φ〉 and |ψ〉 are

identical if and only if their inner product is 1. (For one can always
express |ψ〉 in the form |ψ〉 = α|φ〉 + β|χ〉, where |χ〉 is orthogonal
to |φ〉 and |α|2 + |β|2 = 1. We then have 〈φ|ψ〉 = α, so if 〈φ|ψ〉 = 1,
thenα = 1 andβ = 0.) Since |0〉 and |1〉 are normalized and orthogonal
and since H is unitary and therefore preserves the normalization of |0〉
and |1〉, the four states appearing in the two equalities in (5.55) are all
normalized. Therefore, to establish those equalities it suffices to show
that

1 = 1√
2

(〈0|H|0〉 + 〈0|H|1〉), 1 = 1√
2

(〈1|H|0〉 − 〈1|H|1〉).
(5.56)

This in turn would follow if we could show that the matrix of the
encoded Hadamard in the encoded states is the same as the matrix of
the 1-Qbit Hadamard in the 1-Qbit states:

〈0|H|0〉 = 〈0|H|1〉 = 〈1|H|0〉 = 1√
2
, 〈1|H|1〉 = − 1√

2
. (5.57)

To establish (5.57), note that it follows from the definition (5.43) of
the codewords |0〉 and |1〉 that the four matrix elements appearing in
(5.57) are

〈x|H|y〉 = 2−3
7〈0|Xx

(1 + M0)(1 + M1)(1 + M2)H(1 + M0)

× (1 + M1)(1 + M2)X
y|0〉7. (5.58)

Since HX = ZH and XH = HZ, and since each Ni differs from Mi

only by the replacement of each X by the corresponding Z, it follows
that

HMi = Ni H, Mi H = HNi . (5.59)

So we can bring all three terms 1 + Mi in (5.58) on the right of H over
to the left if we replace each by 1 + Ni . But since the Ms and Ns all
commute we can then bring all three terms 1 + Mi on the left of H

over to the right if we again replace each by 1 + Ni . The effect of these
interchanges is simply to change all the Ms in (5.58) into Ns:

〈x|H|y〉 = 2−3
7〈0|Xx

(1 + N0)(1 + N1)(1 + N2)H(1 + N0)

× (1 + N1)(1 + N2)X
y|0〉7. (5.60)

126 QUANTUM ERROR CORRECT ION

Since each Ni commutes with X (there are four anticommutations)
we have

〈x|H|y〉 = 2−3
7〈0|(1 + N0)(1 + N1)(1 + N2)X

x
HX

y
(1 + N0)

× (1 + N1)(1 + N2)|0〉7, (5.61)

but since each Ni acts as the identity on |0〉7, each of the six 1 + Ni can
be replaced by a factor of 2, reducing (5.61) simply to

〈x|H|y〉 = 23
7〈0|Xx

HX
y|0〉7. (5.62)

Since X, H, and |0〉7 are tensor products of the seven 1-Qbit quantities
X, H, and |0〉, (5.62) is just

〈x|H|y〉 = 23 〈x|H|y〉7. (5.63)

But since

〈0|H|0〉 = 〈0|H|1〉 = 〈1|H|0〉 = 1√
2
, 〈1|H|1〉 = − 1√

2
, (5.64)

(5.63) does indeed reduce to (5.57), establishing that H = H⊗7 does
indeed act as a logical Hadamard gate on the codewords.

Nor is it difficult to make a 14-Qbit logical cNOT gate that takes the
pair of codewords |x〉|y〉 into |x〉|x ⊕ y〉. One simply applies ordinary
cNOT gates to each of the seven pairs of corresponding Qbits in the
two codewords. This works because each of the codewords in (5.43) is
left invariant by each of the Mi . If the control codeword is in the state
|0〉 then the pattern of flips applied to the target codeword for each of
the eight terms in the expansion of the control codeword

|0〉 = 2−3/2(
1 + M0 + M1 + M2 + M1M2 + M2M0

+M0M1 + M0M1M2
)|0〉7 (5.65)

is simply given by the corresponding product of Mi . Since each Mi acts
as the identity on both |0〉 and |1〉, the target codeword is unchanged.
On the other hand, if the control codeword is in the state |1〉 then
the pattern of flips applied to the target codeword differs from this
by an additional application of X, which has precisely the effect of
interchanging |0〉 and |1〉.

Because of the simplicity of all these encoded gates, one can use
error correction to eliminate malfunctions of the elementary gates
themselves, if the rate of malfunctioning is so low that only a sin-
gle one of the seven elementary gates is likely to malfunction. In the
case of the 1-Qbit encoded gates, their elementary components act only
on single Qbits in the codeword, so if only a single one of them mal-
functions then only a single Qbit in the codeword will be corrupted and
the error-correction procedure described above will restore the correct
output. But this works as well for the encoded cNOT gate, since if
only a single one of the elementary 2-Qbit cNOT gates malfunctions,

5.8 A 7-QB IT ENCODING CIRCUIT 127

0

0

0

0

0

0

y

0

1

2

3

4

5

6

Ψ

H

H

H

Fig 5.10 A 7-Qbit encoding circuit (a) that takes |ψ〉 = α|0〉 + β|1〉
into the corresponding superposition of the two 7-Qbit codewords
given in (5.43), |�〉 = α|0〉 + β|1〉. The numbering of the Qbits from
6 to 0 is made explicit to facilitate comparison with the form
(5.42)–(5.44) of the codewords.

this will affect only single Qbits in each of the two encoded 7-Qbit
words, and the correct output will again be restored by applying error
correction to both of the codewords.

Another virtue of codeword gates that can be constructed as ten-
sor products of uncoded gates is that they cannot (when functioning
correctly) convert single-Qbit errors to multiple-Qbit errors, as more
elaborate constructions of codeword gates might do. This highly de-
sirable property is called fault tolerance. The great advantage of the
7-Qbit code is that many of the most important logical gates can be
implemented in a fault-tolerant way.

5.8 A 7-Qbit encoding circuit

The circuit in Figure 5.10 encodes a general 1-Qbit state into a 7-Qbit
codeword without using any measurement gates, in a manner analogous
to the way Figure 5.1 produces 3-Qbit codewords.

Since the circuit is unitary and therefore linear, it is enough to show
that it works when |ψ〉 = |0〉 and when |ψ〉 = |1〉. This follows from
the fact that if the (n + 1)-Qbit gate CU is a controlled n-Qbit unitary
U, then

CU(
H|0〉) ⊗ |�〉n = CU 1√

2

(|0〉 + |1〉) ⊗ |�〉n

= 1√
2

(
1 + X ⊗ U

)|0〉 ⊗ |�〉n , (5.66)

where the control Qbit is on the left. If this is applied to the
three controlled triple-NOT gates in Figure 5.10 then, reading from
left to right, the resulting operations are (1/

√
2)(1 + X2X3X4X6) =

128 QUANTUM ERROR CORRECT ION

(1/
√

2)(1 + M2), (1/
√

2)(1 + X1X3X5X6) = (1/
√

2)(1 + M1), and
(1/

√
2)(1 + X0X4X5X6) = (1/

√
2)(1 + M0).

When |ψ〉 = |0〉 the controlled double-NOT on the left acts as the
identity, so the circuit does indeed produce the codeword |0〉 in (5.43).
When |ψ〉 = |1〉, the controlled double-NOT on the left acts as X4X5.
The circuit after that action is exactly the same as when |ψ〉 = |0〉,
except that the initial state of Qbits 3, 4, and 5 on the left is |1〉 rather
than |0〉. Since all Xi commute, the state that results is not |0〉 but
X3X4X5|0〉. But

X3X4X5 = X0X1X2X3X4X5X6M0M1M2 = XM0M1M2. (5.67)

Since M0M1M2 acts as the identity on |0〉, the resulting state is indeed
|1〉 = X|0〉.

A less direct method to confirm that Figure 5.10 produces the 7-
Qbit encoding, analogous to the method described in Section 5.9 for
the 5-Qbit encoding, is given in Appendix O.

5.9 A 5-Qbit encoding circuit

The circuit in Figure 5.11 encodes a general 1-Qbit state into a 5-Qbit
codeword without using any measurement gates.

The circuit differs from one reported by David DiVincenzo2 only
by the presence of the 1-Qbit gates ZHZ on the left. When |ψ〉 = |x〉
DiVincenzo’s circuit produces two orthogonal linear combinations of
the codewords (5.43), which are, of course, equally valid choices. But
to get the codewords in (5.43) one needs these additional gates. (I have
written them in the symmetric form ZHZ rather than in the simpler
equivalent form YH both to spare the reader from having to remember
that Y = ZX and not XZ, and also to spare her the confusion of having
to reverse the order of gates when going from a circuit diagram to the
corresponding equation.)

In contrast to the superficially similar circuit for the 7-Qbit code in
Figure 5.10, there does not seem to be a transparently simple way to
demonstrate that the circuit in Figure 5.11 does produce the 5-Qbit
codewords. One can always, of course, write down the action of each
successive gate in the circuit, and check that the resulting unwieldy
expressions are identical to the explicit expansions of the codewords
(5.33) in computational-basis states. A less clumsy proof follows from
the fact that |0〉 is the unique (to within an overall phase factor e iϕ)
joint eigenvector with all eigenvalues 1 of the five mutually commuting
operators consisting of the four error-syndrome operators M0, . . .,M3

2 David P. DiVincenzo, “Quantum Gates and Circuits,” Proceedings of the
Royal Society of London A 454, 261–276 (1998),
http://arxiv.org/abs/quant-ph/9705009.

5.9 A 5-QB IT ENCODING CIRCUIT 129

0

0

0

0

x

x
H

H

H

H

H H

H

Z H Z

_

Fig 5.11 A 5-Qbit encoding circuit. If the initial state of the Qbit on
the top wire is |ψ〉 = α|0〉 + β|1〉, then the circuit produces the
corresponding superposition of the two 5-Qbit codewords given in
(5.33), |�〉 = α|0〉 + β|1〉. This fact is established in Figures
5.12–5.20. The figure illustrates this for the states |0〉 and |1〉 (x = 0 or
1) on the upper wire. Since a product of unitary gates is linear, the
circuit encodes arbitrary superpositions of these states.

of Equation (5.29) and the operator Z of Equation (5.38). So if we can
establish that the state |x〉 produced in Figure 5.11 is invariant under
the four Mi , that it is invariant under Z when x = 0, and that applying
the 5-Qbit X to |x〉 is the same as applying the 1-Qbit X to |x〉, then we
will have shown that the circuit produces the 5-Qbit encoding to within
an overall phase factor e iϕ . Having done this, we can then confirm that
e iϕ = 1 by evaluating the projection on |0〉5 of the state produced by
the circuit when x = 0.

To learn the actions of various products of 1-Qbit Xs and Zs on the
state produced by the circuit in Figure 5.11, we apply them on the right
side of the diagram, and then bring them to the left through the cNOT
gates and 1-Qbit gates that make up the circuit, until they act directly
on the input state on the left. In doing this we must use the fact that
bringing an X (or a Z) through a Hadamard converts it to a Z (or an
X), bringing an X through a Z introduces a factor of −1, and bringing
an X or a Z through a cNOT has the results shown in Figure 5.12: a
Z on the control Qbit (or an X on the target Qbit) commutes with a
cNOT, while bringing a Z through the target Qbit (or an X through
the control Qbit) introduces an additional Z on the control Qbit (or X

on the target Qbit).
Figure 5.13 uses these elementary facts to show that M0 =

Z1X2X3Z4 leaves both codewords invariant, by demonstrating that it
can be brought to the left through all the gates in the circuit to act on
the input state |x0000〉 as Z2. Figures 5.14–5.16 show similar things
for M1 = Z2X3X4Z0, M2 = Z3X4X0Z1, and M3 = Z4X0X1Z2, which
can be brought to the left through all the gates to act on the input state
as Z0, Z3, and Z1. Figure 5.17 shows that X = X0X1X2X3X4 can be
brought to the left through all the gates of the circuit to act on the
input state |x0000〉 as X4Z2Z1, which simply interchanges x = 0 and

130 QUANTUM ERROR CORRECT ION

=

=

=

=

(a) (b)

(d)(c)

X X

X XX

Z Z

Z Z

Z

Fig 5.12 Easily verifiable identities useful in determining how various
products of Xs and Zs act on the circuit of Figure 5.11. (a) A cNOT
can be interchanged with an X acting on the control Qbit, if another X
acting on the target Qbit is introduced. (b) A cNOT commutes with an
X acting on the target Qbit. (c) A cNOT can be interchanged with a Z
acting on the target Qbit, if another Z acting on the control Qbit is
introduced. (d) A cNOT commutes with a Z acting on the control
Qbit.

x = 1, thereby demonstrating thatX acts as logical Xon the codewords.
Figure 5.18 shows the analogous property for Z = Z0Z1Z2Z3Z4, which
can be brought to the left through all the gates of the circuit to act on the
input state |x0000〉 as Z4Z3Z0, which multiplies it by (−1)x , thereby
demonstrating that Z acts as logical Z on the codewords. Finally Fig-
ures 5.19 and 5.20 show that the inner product of the codeword state |0〉
with the computational-basis state |00000〉 is 1

4 , thereby demonstrating
that the circuit produces the codewords (5.33) with the right phase.

In Appendix O this circuit-theoretic approach is used to give a sec-
ond (more complicated, but instructive) demonstration of the validity
of the 7-Qbit encoding circuit of Figure 5.10.

5.9 A 5-QB IT ENCODING CIRCUIT 131

0

0

0

0

x

0

1

3

4

2

0

1

3

4

2

(a)(b)(d) (c)(e)(f)(g)

M 0

H

H

Z

X

Z

X

H

H

H

H

H

Z

X

Z

X

X

Z

X

Z

Z

Z

X

X

Z

Z

X

Z

Z

ZZZ

Z H Z

Fig 5.13 Demonstration that M0 = Z1X2X3Z4 acting on the output
of the encoding circuit in Figure 5.11 is the same as Z2 acting on the
input, which leaves the input invariant. On the extreme left M0 is
applied to the output of the circuit. The insets (a)–(g) show what
happens as the X and Z gates making up M0 are moved to the left
through the gates of the circuit. (a) Z4 and X3 are changed to X4 and
Z3 as a result of having been brought through Hadamard gates. (b)
Bringing the two X gates through the control Qbits of cNOT gates
produces a pair of cancelling X gates on the common target Qbit, so
the set of gates in (a) is unchanged when it is moved to (b). (c) The
Hadamard gates convert X4 and Z1 to Z4 and X1. (d) Bringing X2

through the control Qbit of the cNOT produces an X on its target
Qbit which cancels the X already there. (e) The Hadamard on Qbit 2
converts the X to a Z. (f) Moving the Z2 through the targets of the two
cNOTs produces Z gates on their control Qbits which cancel the two
Z gates already there. (g) The resulting Z2 can be moved all the way to
the left.

132 QUANTUM ERROR CORRECT ION

0

0

0

0

x

0

1

3

4

2

0

1

3

4

2

M 1

(a)(c) (b)

H

H

H

H

H

H

H

Z

X

X

Z

Z

Z ZZ

Z H Z

Z

Z

Fig 5.14 Using the identities in Figure 5.12 and the fact that bringing
a Z through a Hadamard converts it to an X and vice versa establishes
that M1 can be brought to the left through the gates of the encoding
circuit to act directly on |x0000〉 as Z0.

0

0

0

0

x

0

1

3

4

2

0

1

3

4

2

M 2

(a)(b)(c)(d)(e)(f)(g)(h)

H

H

H

H

H

H

H

Z

X

X

Z

Z H Z

X

X

X

X

Z

X

Z

Z

X

Z

X

X

X

X

Z

ZZZ

Fig 5.15 M2 can be brought to the left through the gates of the
encoding circuit to act directly on |x0000〉 as Z3.

0

0

0

0

x

0

1

3

4

2

0

1

3

4

2

(d)

M 3

(a)(b)(c)(e)

H

H

H

H

H

H

H

Z

X

X

Z

X

X

ZZ

X

Z

Z

ZZZ

Z H Z

XX

Fig 5.16 M3 can be brought to the left through the gates of the
encoding circuit to act directly on |x0000〉 as Z1.

X

0

0

0

0

x

−Z −Z4

3

2

1

0

(a)(b)(c)(e) (d)(i) (g)(h) (f)

2

1

4

3

0

H

H

H

H

H

X

X

X Z X Z

X Z

ZZ

H

H

Z H Z

Z

Z

XZ Z

Z

Z

Z

Z

X

X

X

Z

Z

X

Z

Z

X

X

Z

X

Z Z

XZ

X

Z

Z

X

Z X

X

Fig 5.17 Demonstration that X = X0X1X2X3X4 acting on the output
of the encoding circuit in Figure 5.11 is the same as X4Z2Z1 acting on
the input, which interchanges |00000〉 and |10000〉. (a) Bringing X4

and X3 through the Hadamards converts them to Z4 and Z3. (b)
Bringing X2 through the cNOT controlled by Qbit 2 produces an X on
the target Qbit 0, which cancels the X already there. (c) The
Hadamards convert Z4 and X1 to X4 and Z1. (d) Bringing X4 and X2 to
the left produces two X1 gates which cancel; bringing Z1 to the left
then produces additional Z4 and Z2 gates. (e) The Hadamard H2

interchanges the X2 and Z2 gates. (f) First bring to the left the Z2 gate,
then the X4 gate. (g) The H4 converts ZXZ to XZX = −Z. (h) No
further changes. (i) Z commutes with itself, is changed to X on passing
through H, and acquires another minus sign on passage through Z.

134 QUANTUM ERROR CORRECT ION

0

0

0

0

x

(a)(c)(e)(i) (g)(h) (f)

Z

(b)(d)

4

3

2

1

0

4

3

2

1

0

H

H

H

H

H

H

H

Z H Z

Z

ZZ

Z

Z

Z Z Z

XZ

ZX

Z

XZ

ZX

Z

Z

Z

X

X

Z

Z

Z

ZX Z

XZ

ZX

XZ

ZX

XZ

ZX

Z

Z

Z

X

X

Z Z

−X

Fig 5.18 Demonstration that Z = Z0Z1Z2Z3Z4 acting on the output
of the encoding circuit in Figure 5.11 is the same as Z4Z3Z0 acting on
the input, which takes |x0000〉 into (−1)x |x0000〉.

Φ Ψ Φ

ΩΨ Φ ΩA B ΩBA= Φ

BA BA=

=

(a)

(b)

Fig 5.19 A circuit-theoretic way to evaluate inner products. (a) A
circuit taking the input |�〉 into the output |�〉 = BA|�〉. The inner
product 〈�|�〉 of the output state � with some other state |�〉 is given
by 〈�|A†B†|�〉. The diagram on the right in (b) shows this inner
product being evaluated by first letting B† act on |�〉, then letting A†

act on the result, and then taking the inner product with the input state
|�〉. Evidently this generalizes to the product of many gates. If the
gates are all Hermitian, as they are in the circuit of Figure 5.11, then
the circuit on the right of (b) is identical to the circuit on the left of (a).
The resulting evaluation of the inner product of |�〉 = |0〉5 with the
state |0〉 produced by letting the circuit of Figure 5.11 act on
|�〉 = |0〉5 is carried out in Figure 5.20.

0

0 0

1
2

00

11
4 1

1
=

=

=

=

+
0

0 11
4

0

1
4

1
40 1

1

0

0 111
4

=

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

01

(a)

(b)

(c)

(d)

(e)

H

HH

ZH

H

ZH

H

H

H

H

H

H

H

H

H

H H

H

Z H Z

H

H

H

H

H H

H

X H

H

Z

Fig 5.20 Demonstration that the state produced by the encoding
circuit in Figure 5.11 when x = 0 has an inner product with the state
|0〉5 that is 1

4 , thereby establishing that the phase factor e iϕ = 1 – i.e.
that the state is precisely |0〉 without any additional phase factor. (a)
Circuit-theoretic representation of the inner product, following the
procedure developed in Figure 5.19; all gates now act to the right. (b)
Elimination of operations in (a) that act as the identity: the cNOT on
the extreme right of (a) can be dropped since its control Qbit is in the
state |0〉; since H|0〉 is invariant under X, the pair of cNOT gates
targeting Qbit 1 can be dropped, as can the pair targeting Qbit 2. (c) A
pair of Hadamards on Qbit 4 in (b) cancel; a Hadamard on Qbit 3 in (b)
is moved to the left converting a cNOT to a controlled-Z; Qbits 2 and
1 in (b) simply give the matrix element 〈0|H|0〉 = 1√

2
, resulting in an

overall factor of 1
2 . (d) Expanding both states H|0〉 = 1√

2
(|0〉 + |1〉) on

the right of (c), the effect of the two cNOT gates in (c) is that only the
terms in |0〉|0〉 and |1〉|1〉 give nonzero contributions. (e) The action of
the controlled-Z gates in (d) has been carried out, leaving a sum of
products of matrix elements of H.

Chapter 6

Protocols that use just a few Qbits

6.1 Bell states

In this chapter we examine some elementary quantum information-
theoretic protocols which are often encountered in the context of quan-
tum computation, though they also have applications in the broader
area of quantum information processing. Because they use only a small
number of Qbits, they have all been carried out in at least one laboratory,
unlike any but the most trivial and atypical examples of the protocols
we have considered in earlier chapters.

Most of these examples make use of the 2-Qbit entangled state,

|ψ00〉 = 1√
2

(|00〉 + |11〉). (6.1)

This state can be assigned to two Qbits, each in the state |0〉, by applying
a Hadamard to one of them, and then using it as the control Qbit for a
cNOT that targets the other (Figure 6.1(a)):

|ψ00〉 = C10H1|00〉. (6.2)

We generalize (6.2) by letting the original pair of unentangled Qbits
be in any of the four 2-Qbit computational-basis states |00〉, |01〉, |10〉,
and |11〉 (Figure 6.1(b)):

|ψxy〉 = C10H1|xy〉. (6.3)

Since the four states |xy〉 are an orthonormal set and the Hadamard
and cNOT gates are unitary, the four entangled states |ψxy〉 are also an
orthonormal set, called the Bell basis to honor the memory of the physi-
cist John S. Bell, who discovered in 1964 one of the most extraordinary
facts about 2-Qbit entangled states. We examine a powerful 3-Qbit
version of Bell’s theorem in Section 6.6.

If we rewrite (6.3) as

|ψxy〉 = C10H1X
x
1X

y
0 |00〉, (6.4)

and recall that HX = ZH and that either a Z on the control Qbit or an
X on the target Qbit commutes with a cNOT, then we have

|ψxy〉 = Zx
1X

y
0C10H1|00〉 = Zx

1X
y
0

1√
2

(|00〉 + |11〉), (6.5)

136

6.2 QUANTUM CRYPTOGRAPHY 137

00 xy

(a) (b)

H
y

0

0 H

y

x
y

Fig 6.1 (a) A circuit that creates the entangled state
|ψ00〉 = 1√

2

(|00〉 + |11〉) from the unentangled computational-basis
state |00〉. (b) A circuit that creates the four orthonormal entangled
Bell states |ψxy〉 from the unentangled computational-basis state |xy〉.

xy
y = = =

y

x H

0

0
x H

yX 0

0 H x

yX

X Z

Fig 6.2 The Bell states |ψxy〉 can be constructed from
|ψ00〉 = 1√

2

(|00〉 + |11〉) by flipping a single Qbit, changing the sign
from + to −, or doing both of these.

as illustrated in Figure 6.2. This shows that the other Bell states are
obtained from (1/

√
2)(|00〉 + |11〉) by flipping one of the Qbits, by

changing the + to a −, or by doing both. This, of course, can also be
derived directly from (6.3) by letting the Hadamard and cNOT act for
each of the four choices for the pair xy.

We now examine a few simple protocols in which some or all of
the Bell states (or, in Section 6.6, their 3-Qbit generalizations) play an
important role.

6.2 Quantum cryptography

A decade before Shor’s discovery that quantum computation posed a
threat to the security of RSA encryption, it was pointed out that Qbits
(though the term did not exist at the time) offered a quite different and
demonstrably secure basis for the exchange of secret messages.

Of all the various possible applications of quantum mechanics to in-
formation processing, quantum cryptography arguably holds the most
promise for becoming a practical technology. There are several reasons
for this. First of all, it works Qbit by Qbit. The only relevant gates are
a small number of simple 1-Qbit gates. Interactions between pairs of
Qbits like those mediated by cNOT gates play no role, at least in the
most straightforward versions of the protocol.

Furthermore, in actual realizations of quantum cryptography the
physical Qbits are extremely simple. Each Qbit is a single photon

138 PROTOCOLS THAT USE JUST A FEW QBITS

of light. The state of the Qbit is the linear polarization state of the
photon. If the states |0〉 and |1〉 describe photons with vertical and
horizontal polarization, then the states H|0〉 = (1/

√
2)

(|0〉 + |1〉) and
H|1〉 = (1/

√
2)

(|0〉 − |1〉) describe photons diagonally polarized, ei-
ther at 45◦ or at −45◦ to the vertical. Photons in any of these four
polarization states can be prepared in any number of ways, most sim-
ply (if not most efficiently) by sending a weak beam of light through an
appropriately oriented polaroid filter. Once a photon has been prepared
in its initial polarization state it does not have to be manipulated any
further beyond eventually measuring either its horizontal–vertical or
its diagonal polarization by, for example, sending it through an appro-
priately oriented birefringent crystal and seeing which beam it emerges
in, or seeing whether it does or does not get through another appropri-
ately oriented polaroid filter. Photons can effectively be shielded from
extraneous interactions by sending them through optical fibers, where
they can travel in a polarization-preserving manner at the speed of light.

This procedure can be viewed as the simplest possible quantum
computation. First the Qbit is assigned an initial state by sending it
through a 1-Qbit measurement gate. Then a 1-Qbit unitary gate is
or is not applied (depending on whether a subsequent polarization
measurement is to be along the same direction as the first). And finally
the Qbit is sent through a second 1-Qbit measurement gate.

The usefulness of easily transportable single Qbits for secret com-
munication stems from one important cryptographic fact: Alice and
Bob can have an unbreakable code if they share newly created identi-
cal strings of random bits, called one-time codepads. If they both have
such identical random strings, then Alice can take her message, in the
form of a long string of zeros and ones, and transform it into its bitwise
modulo-2 sum (also called the exclusive or or XOR) with a random string
of zeros and ones of the same length taken from her one-time codepad.
Flipping or not flipping each bit of a coherent message according to
whether the corresponding bit of a random string is 0 or 1 converts
the message into another random string. (If this is not obvious, think
of the process as flipping or not flipping each bit of the random string,
according to whether the corresponding bit of the coherent message is
0 or 1.) Nobody can reconstruct the original string without knowing
the random string used to encode it, so only Bob can decode the mes-
sage. He does this by taking the XOR of the now meaningless string
of zeros and ones, received from Alice, with his own copy of the ran-
dom string that she used to do the encoding. The string he gets in this
way is M ⊕ S ⊕ S, where M is the message, S is the random string,
and M ⊕ S is the encoded message from Alice. Since S ⊕ S = 0, Bob
recovers the original message.

The problem with one-time codepads is that they can be used only
once. If an eavesdropper (Eve) picks up two messages encoded with

6.2 QUANTUM CRYPTOGRAPHY 139

the same pad, she can take the XOR of the two encoded messages. The
random string used to encode the two messages drops out of the pro-
cess, leaving the XOR of the two unencoded messages. But the XOR
of two meaningful messages, combined with the usual code-breaking
tricks based on letter frequencies, can be used (with more subtlety
than would be required for a single message) to separate and decode
both texts. So to be perfectly secure Alice and Bob must continu-
ally refresh their one-time codepad with new identical random strings
of bits.

The problem of exchanging such random strings in a secure way
might appear to be identical to the original problem of exchanging
meaningful messages in a secure way. But at this point quantum me-
chanics comes to the rescue and provides an entirely secure means for
exchanging identical sequences of random bits. Pause to savor this sit-
uation. Nobody has figured out how to exploit quantum mechanics to
provide a secure means for directly exchanging meaningful messages.
The secure exchange is possible only because the bit sequences are
random. On the face of it one would think nothing could be more use-
less than such a transmission of noise. What is bizarre is that human
ingenuity combined with human perversity has succeeded in inventing
a context in which the need to hide information from a third party
actually provides a purpose for such an otherwise useless exchange of
random strings of bits.

The scheme for doing this is known as BB84 after its inventors,
Charles Bennett and Gilles Brassard, who published the idea in 1984.
Alice sends Bob a long sequence of photons. For each photon Alice ran-
domly chooses a polarization type for the photon (horizontal–vertical
or diagonal) and within each type she randomly chooses a polariza-
tion state for the photon – one of the two orthogonal states associated
with that type of polarization. In Qbit language Alice sends Bob a long
sequence of Qbits randomly chosen to be in one of four states: |0〉 (polar-
ized horizontally), |1〉 (polarized vertically), H|0〉 = (1/

√
2)(|0〉 + |1〉)

(polarized diagonally along 45◦), or H|1〉 = (1/
√

2)(|0〉 − |1〉) (polar-
ized diagonally along −45◦).

Reverting from photon-polarization language to our more familiar
quantum-computational language, we divide the four equally likely
types of Qbits that Alice sends to Bob into two categories: those with
state |0〉 or |1〉, which we call type-1 Qbits, and those with state H|0〉 or
H|1〉, which we call type-H Qbits. As each Qbit arrives Bob randomly
decides whether to send it directly through a measurement gate, or
to apply a Hadamard and only then send it through a measurement
gate. We call these two options type-1 and type-H measurements. The
Qbits must be individually identifiable – for example by the sequence
in which they arrive – so that Alice and Bob can compare what each of
them knows about each one.

140 PROTOCOLS THAT USE JUST A FEW QBITS

2 91 3 4 5 6 7 8

Type:

State:

Outcome:

1

0

1 1 0 0 1 1 1 0 0

00101101

H

H H H 1 1 1 H

H H 1 1 H 1 1 1

. . .

. . .

. . .
Bob:

Alice:
. . .

. . .

ment type:
Measure-

H

Fig 6.3 Quantum
cryptography. For each
Qbit she sends to Bob,
Alice randomly decides
which type of state to
prepare it in (type 1 means
|x〉 and type H means
H|x〉) and which state of
that type (x = 0 or 1) to
prepare. For each Qbit he
receives from Alice, Bob
randomly decides whether
(H) or not (1) to apply a
Hadamard gate before
measuring it. In those cases
(about half, enclosed in
rectangular boxes) for
which Bob’s choice of
measurement type is the
same as Alice’s choice of
state, they acquire identical
random bits. When their
choices differ they acquire
no useful information.

When Bob has measured all the Qbits in this way, Alice tells him
over an insecure channel which of the Qbits she sent him were type-
1 and which were type-H. But she does not reveal which of the two
possible states she prepared within each type: |0〉 or |1〉 for type-1 Qbits
and H|0〉 or H|1〉 for type-H. For those Qbits (about half of them) for
which Bob’s random choice of measurement type agrees with Alice’s
random choice of which type to send, Bob learns from the result of his
measurement the actual random bit – 0 or 1 – that Alice chose to send.
For those Qbits (the other half) for which Bob’s choice of which type to
measure disagrees with Alice’s choice of which type to send, the result
of his measurement is completely uncorrelated with Alice’s choice of
bit, and reveals nothing about it. This is illustrated in Figure 6.3.

Finally, Bob tells Alice, over an insecure channel, which of the Qbits
he subjected to a type of measurement that agreed with her choice of
which type to prepare – i.e. which Qbits were of the kind that provides
them with identical random bits. They discard the useless half of their
data for which Bob’s type of measurement differed from Alice’s type of
preparation. They are then able to construct their one-time codepads
from the identical strings of random bits they have acquired.

You might wonder why Bob doesn’t wait to decide what type of
measurement to make on each Qbit until he learns Alice’s choice of
type for that photon, thereby doubling the number of shared random
bits. This would indeed be a sensible strategy if Bob could store the
Qbits he received from Alice. However, storing individual photons
in a polarization-preserving manner is difficult. For feasible quantum
cryptography today, Bob must make his decision and measure the po-
larization of each photon as it arrives.

The reason Alice randomly varies the type of Qbit she sends to
Bob is to provide security against eavesdroppers. If Alice sent all Qbits
of the same type, then an eavesdropper, Eve, could acquire the same
information as Bob without being detected. If, for example, Alice and
Bob had agreed that all the Qbits would be type-1 and Eve learned
of this, then she could intercept each Qbit before it reached Bob and
send it directly through a measurement gate without altering its state,
subsequently sending it (or another Qbit she prepared in the state she
just learned) on to Bob. In this way she too could acquire the random

6.2 QUANTUM CRYPTOGRAPHY 141

bit that Alice sends out and that Bob subsequently acquires when he
makes his own type-1 measurement. Nothing in the protocol would
give Bob a clue that Eve was listening in. But by making each Qbit
secretly and randomly of type 1 or type H Alice deprives Eve of this
strategy.

The best Eve can do, like Bob, is to make type-1 or type-H measure-
ments randomly. In doing so she necessarily reveals her presence. Bob
and Alice can determine that Eve has compromised the security of their
bits by sacrificing some of the supposedly identical random bits they
extracted from the Qbits they both ended up treating in the same way.
They take a sample of these bits and check (over an insecure channel)
to see whether they actually do agree, as they would in the absence of
eavesdropping. If Eve intercepts the Qbits, randomly making type-1 or
type-H measurements of her own before sending them on to Bob, then
for about half of the useful Qbits her choice will differ from the common
choice of Alice and Bob. In about half of those cases, Eve’s intervention
will result in the outcome of Bob’s measurement disagreeing with what
Alice sent him. If, for example, Eve makes a type-1 measurement of a
Qbit that Alice has prepared in the state H|0〉, then she will necessarily
change its state to one or the other of the two states |0〉 or |1〉. In either
case if Bob then applies a Hadamard before measuring he will get the
result 0 only half the time.

So if Eve is systematically intercepting Qbits, Bob’s result will fail
to agree with Alice’s preparation for about a quarter of their sample.
This warns them that the transmission was insecure. If all the sample
data agree except for a tiny fraction, then they can set an upper limit
to the fraction of bits that Eve might have picked up, enabling them to
make an informed judgment of the security with which they can use
the remaining ones.

Can Eve do better by a more sophisticated attack, that involved
capturing each of Alice’s Qbits and processing it in a quantum computer
that restored it to its initial state, before sending it on to Bob? This
would eliminate the possibility of her eavesdropping being revealed to
Bob. But the requirement that Alice’s Qbit be returned to its initial
state also eliminates the possibility of Eve learning anything useful, for
reasons rather like our earlier proof of the no-cloning theorem.

Let |φµ〉, µ = 0, . . ., 3, be the four possible states of Alice’s Qbit:
|0〉, |1〉, H|0〉, and H|1〉. Let |�〉 be the initial state of the n Qbits in
Eve’s computer, and let U be the (n + 1)-Qbit unitary transformation
the computer executes on its own Qbits and Alice’s. Since Alice’s Qbit
must emerge in its original state, we have

U
(
|φµ〉 ⊗ |�〉

)
= |φµ〉 ⊗ |�µ〉. (6.6)

Eve’s hope is to devise a U that yields four |�µ〉 whose differences
enable her, by subsequent processing and measurement, to extract

142 PROTOCOLS THAT USE JUST A FEW QBITS

useful information about which of the four possible states |φµ〉 was.
But unitary transformations preserve inner products, so

〈φν |φµ〉〈�|�〉 = 〈φν |φµ〉〈�ν |�µ〉. (6.7)

Because 〈�|�〉 = 1 and because 〈φν |φµ〉 �= 0 for µν = 02, 03, 12, 13,
it follows that

〈�ν |�µ〉 = 1, µν = 02, 03, 12, 13. (6.8)

Since the inner product of two normalized states can be 1 only if they
are identical, it follows from (6.8) that

|�0〉 = |�1〉 = |�2〉 = |�3〉. (6.9)

The price Eve pays for eliminating all traces of her eavesdropping is
that the resulting state of her quantum computer can teach her nothing
whatever about the four possible states of Alice’s Qbit.

There is a less practical version of this cryptographic protocol that
appears, at first sight, to be different, but turns out to be exactly the
same. Suppose that there were some central source that produced pairs
of Qbits in the entangled state

|�〉 = 1√
2

(|00〉 + |11〉), (6.10)

and then sent one member of each pair to Alice and the other to Bob.
One easily verifies that(

H ⊗ H
) 1√

2

(|00〉 + |11〉) = 1√
2

(|00〉 + |11〉), (6.11)

so if Alice and Bob make measurements of the same type, they will get
identical random results.

This might seem even more secure than the first protocol, since
the Qbits are in an entangled state until Alice or Bob actually makes a
measurement. The correlated bits – the outcomes of the measurement –
do not even exist until a measurement has been made, and that does
not happen until both Qbits are safely in Alice’s and Bob’s separate
possession. But this is only the case if Eve does not intercept a Qbit. If
she does measure one before it gets to Bob or Alice, then the correlated
bits do come into existence at the moment of her own measurement.
This is later than in the first protocol (when each bit exists from the
moment Alice performs her measurement) but early enough to help
Eve in the same way as before.

If Alice and Bob decided to produce their perfectly correlated ran-
dom bits by always making type-1 measurements then if Eve finds this
out she can intercept one member of the pair with type-1 measurements
of her own, disentangling the state prematurely, but in a way that en-
ables her to learn what each random bit is, while not altering the perfect
correlations between the values Alice and Bob will subsequently mea-
sure. Alice and Bob can guard against this possibility by each randomly

6.3 B IT COMMITMENT 143

(and, necessarily, independently) alternating between type-1 and type-
H measurements, and then following a procedure identical to the one
they used when Alice sent Bob Qbits in definite states.

This returns us to the original protocol that made no use of entangled
pairs. Indeed, if Alice measures her member of the entangled pair
(making either a type-1 or a type-H measurement) before Bob measures
his, this is equivalent to her sending Bob a Qbit with a randomly selected
state that she knows. The only difference is that now the random choice
of which of the two states to send within each type is not made by
Alice tossing a coin, but by the basic laws of quantum mechanics that
guarantee that the outcome of her own measurement is random.

6.3 Bit commitment

One can try to formulate a similar protocol for a procedure called bit
commitment. Suppose that Alice wishes to assure Bob that she has
made a binary decision by a certain date, but does not wish to reveal
that decision until some future time. She can do this by writing YES or
NO on a card, putting the card in a box, locking the box, and sending
the box, but not the key, to Bob. Once the box is in Bob’s possession he
can be sure that Alice has not altered her decision, but while the key is
in Alice’s possession she can be sure that Bob has not learned what that
decision was. When it is time for her to reveal the decision she sends
the key to Bob who opens the box and learns what it was.

Of course Alice might worry about Bob breaking into the box by
other means. Quantum mechanics offers a more secure procedure (but
with an exotic loophole, which we return to momentarily). Alice pre-
pares a large number n of labeled Qbits. If her answer is YES, she takes
each Qbit to be randomly in the state |0〉 or the state |1〉. If her answer
is NO, she prepares each Qbit randomly in the state H|0〉 or H|1〉. In
either case she notes which Qbits are in which state, and then sends
them all off to Bob, who stores them in a way that preserves both their
state and their labels. (As noted above, such storage is beyond the range
of current technology for polarized photons.)

If Bob has a collection of n Qbits, each of which has been chosen
with equal probability to be in one of two orthogonal states |φ〉 and |ψ〉,
then there is no way for Bob to get any hint of what the two orthogonal
states are. If, for example, he measures every Qbit, then the probability
of getting 0 is

p(0) = 1
2 |〈0|φ〉|2 + 1

2 |〈0|ψ〉|2. (6.12)

But

|〈0|φ〉|2 + |〈0|ψ〉|2 = 1, (6.13)

144 PROTOCOLS THAT USE JUST A FEW QBITS

since this is the sum of the squared moduli of the amplitudes of the
expansion of |0〉 in the orthonormal basis given by |φ〉 and |ψ〉:

|0〉 = |φ〉〈φ|0〉 + |ψ〉〈ψ |0〉. (6.14)

So p(0) = 1
2 . Bob’s measurement outcomes are completely random,

regardless of what the orthogonal pair of states actually is.
In Appendix P it is shown, more generally, that no information Bob

can extract from his collection of Qbits can distinguish between the
case in which each has a 50–50 chance of being in the state |0〉 or |1〉
and the case in which each has a 50–50 chance of being in the state
H|0〉 or H|1〉. There is no way Bob can learn Alice’s choice from the
Qbits that Alice has sent him. He cannot break into the locked box.

(It is crucial for Bob’s inability to learn Alice’s choice that, regardless
of what that choice is, she sends him a collection of Qbits each of whose
two possible states is picked randomly. If, for example, she sent him
exactly 1

2 n Qbits in the state |0〉 and 1
2 n in the state |1〉, in some random

order, then with probability 1 Bob would get an equal number of zeros
and ones if he measured in the computational basis. But if he applied H

before measuring, the outcome of each measurement would be random,
and the probability of getting equal numbers of zeros and ones for his
measurements would be quite small (asymptotically

√
2/(πn)) for large

n. So if he got equal numbers of zeros and ones he could be rather sure
that Alice had sent him photons in the states |0〉 and |1〉 rather than in
the states H|0〉 and H|1〉.)

When the time comes for Alice to reveal her choice for the pair of
orthogonal states, she says to Bob something like this: “My answer was
YES, so each of the Qbits I sent you was either in the state |0〉 or in the
state |1〉. To prove this I now tell you that I put Qbits 1, 2, 4, 6, 7, 11,
. . . into the state |0〉 and I put Qbits 3, 5, 8, 9, 10, 12, . . . into the state
|1〉. You can confirm that I’m telling the truth by measuring each Qbit
directly.”

Bob makes the direct measurements and gets every one of Alice’s
predicted outcomes. If instead Alice had sent him Qbits whose states
were randomly H|0〉 or H|1〉 she could do the same trick by telling Bob
exactly what he would find if he preceded each of his measurements
with a Hadamard gate. But there is no way she could do the trick
for measurements preceded by Hadamard gates in the first case or
for direct measurements in the second. The best she could do if she
wanted to deceive Bob would be to make random guesses for each
outcome, and with n Qbits she would succeed in fooling him only with
probability 1/2n . So this works perfectly well, and without the worry
of Bob possessing unexpected safe-cracking skills.

But, as noted above, there is a loophole – in fact, a fatal problem.
The technological skills required to take advantage of the loophole are
spectacularly greater than those required for the naive protocol, so one
could imagine a stretch of years, decades, or even centuries during

6.3 B IT COMMITMENT 145

which the naive protocol might actually be useful. But ultimately it
will be insecure. Suppose that Alice, unknown to Bob, has actually
prepared n labeled pairs in the entangled state (6.10), sending one
member to Bob while retaining the other for herself. Then the Qbits
Bob receives will have no states of their own, being entangled with the
Qbits Alice keeps for herself. Nevertheless, if Bob chooses to test some
of them with measurements, (6.11) insures that the results he gets will
be indistinguishable from the random outcomes he would have got if
Alice had been playing the game honestly. No hint of her deception
will be revealed by any test Bob can perform.

But now when the time comes for Alice to reveal her choice, if she
wants to prove to Bob that it was YES, she makes a direct measurement
on each of the Qbits she has kept and correctly informs Bob what he will
get if he makes a direct measurement on each of the paired Qbits. But if
she wants to prove that it was NO, she instead applies Hadamards before
measuring each of her Qbits, enabling her, because of the identity (6.11),
to tell Bob what he will find if he also applies Hadamards before mea-
suring his own Qbits. So she can use entangled pairs of Qbits to cheat at
what would otherwise be a perfectly secure bit-commitment protocol.

Alice can cheat in the same way even if Bob measures his Qbits
(randomly applying or not applying a Hadamard before each measure-
ment) before she “reveals” her commitment. If she wants to “prove”
to Bob she had sent him YES she directly measures each of her Qbits
and tells Bob all her results. He notes that they do indeed agree with
all the results he found for his direct measurements, and is persuaded
that she had indeed sent him YES. To “prove” she sent him NO she
applies Hadamards before measuring each of her Qbits.

Of course the success of Alice’s cheating depends crucially on Bob’s
knowing all about 1-Qbit states, but never having taken the kind of
course in quantum mechanics that would have taught him anything
about entangled 2-Qbit states. If Bob is as sophisticated a student of
the quantum theory as Alice, they will both realize that the protocol is
fatally flawed, since it can be defeated by entanglement.

It is in this context that Einstein’s famous complaint about spooky
actions at a distance (“spukhafte Fernwirkungen”) seems pertinent. By
finally measuring her members of the entangled pairs, Alice seems to
convert the distant Qbits in Bob’s possession into the kind she decep-
tively said she had sent him long ago, while retaining until the last
minute the option of which of the two kinds to pick. But of course
Alice’s action is not so much on the Qbits in Bob’s possession as it is on
what it is possible for her to tell him about what he can learn from those
Qbits. It is this peculiar tension between what is objective (ontology)
and what is known (epistemology) that makes quantum mechanics such
a source of delight (or anguish) to the philosophically inclined.

Something like Alice’s discovery of the value of entanglement for
cheating actually happened in the historical development of these ideas

146 PROTOCOLS THAT USE JUST A FEW QBITS

about quantum information processing. When the bit-commitment
protocol described above was first put forth it was realized that entan-
gled pairs could be used to thwart it, but more sophisticated versions
were proposed that were believed to be immune to cheating with en-
tanglement. There developed a controversy over whether some form
of bit commitment could or could not be devised that would be secure
even if entanglement were fully exploitable. The current consensus is
that there is no way to use Qbits in a bit-commitment protocol that
cannot be defeated by using entangled states. Indeed, it has even been
suggested that the structure of quantum mechanics might be uniquely
determined by requiring it to enable the secure exchange of random
strings of bits, as in quantum cryptography, but not to enable bit com-
mitment. Nobody has managed to show this. It does seem implausible
that God would have taken as a fundamental principle of design that
certain kinds of covert activity should be possible while others should
be forbidden.

6.4 Quantum dense coding

Although an infinite amount of information is needed to specify the
state |ψ〉 = α|0〉 + β|1〉 of a single Qbit, there is no way for somebody
who has acquired possession of the Qbit to learn what that state is, as we
have often noted. If Alice prepares a Qbit in the state |ψ〉 and sends it
to Bob, all he can do is apply a unitary transformation of his choice and
then measure the Qbit, getting the value 0 or 1. After that the state of
the Qbit is either |0〉 or |1〉 and no further measurement can teach him
anything about its original state |ψ〉. The most Alice can communicate
to Bob by sending him a single Qbit is a single bit of information.

If, however, Alice has one member of an entangled pair of Qbits in
the state

|�〉 = 1√
2

(|0〉|0〉 + |1〉|1〉) (6.15)

and Bob has the other, then by suitably preparing her member of the
pair and then sending it to Bob, she can convey to him two bits of
information. She does this by first applying the transformation 1,X,Z,

or ZX to her Qbit, depending on whether she wants to send Bob the
message 00, 01, 10, or 11. If hers is the Qbit on the left in (6.15) these
transform the state of the pair into one of the four mutually orthogonal
Bell states (6.5),

1a |�〉 = 1√
2

(|0〉|0〉 + |1〉|1〉),
Xa |�〉 = 1√

2

(|1〉|0〉 + |0〉|1〉),
(6.16)

Za |�〉 = 1√
2

(|0〉|0〉 − |1〉|1〉),
ZaXa |�〉 = 1√

2

(|0〉|1〉 − |1〉|0〉).

6.4 QUANTUM DENSE CODING 147

She then sends her Qbit over to Bob. He sends the pair through the
controlled-NOT gate Cab , using the Qbit he received from Alice as
control, to get

Cab1a |�〉 = 1√
2

(|0〉 + |1〉)|0〉,
CabXa |�〉 = 1√

2

(|0〉 + |1〉)|1〉,
(6.17)

CabZa |�〉 = 1√
2

(|0〉 − |1〉)|0〉,
CabZaXa |�〉 = 1√

2

(|0〉 − |1〉)|1〉,
and then he applies a Hadamard transform to get

HaCab1a |�〉 = |0〉|0〉,
HaCabXa |�〉 = |0〉|1〉,

(6.18)
HaCabZa |�〉 = |1〉|0〉,

HaCabZaXa |�〉 = |1〉|1〉.
Measuring the two Qbits then gives him 00, 01, 10, or 11 – precisely
the two-bit message Alice wished to send.

This process of transforming the Bell basis back into the compu-
tational basis – i.e. undoing the process (6.3) by which the Bell basis
was constructed from the computational basis – and then measuring is
called “measuring in the Bell basis.”

One can directly demonstrate that this works with circuit diagrams,
without going through any of the analysis in (6.15)–(6.18). Suppose
that Alice represents the two bits x and y she wishes to transmit to Bob
as the computational-basis state |x〉|y〉 of two Qbits (the top two wires,
Figure 6.4(a)). If Bob has two Qbits initially in the state |0〉|0〉 (the
bottom two wires in Figure 6.4(a)), then the circuit in Figure 6.4(a)
gets the two bits to Bob in a straightforward classical way, transforming
the state |x〉|y〉|0〉|0〉 on the right to |x〉|y〉|x〉|y〉 on the left by means
of direct Qbit-to-Qbit coupling via two cNOT gates. The procedure
involves only classical operations on classically meaningful states. It
gets the two bits from Alice to Bob by explicit interactions between her
Qbits and his. It would work equally well for Cbits.

One can transform this direct classical procedure into the more
exotic quantum protocol by expanding the cNOT gates into products
of quantum gates. One first expands one of the C gates into HCZH in
Figure 6.4(b). Because Z acting on the control Qbit commutes with C

and because C is its own inverse, we can further expand Figure 6.4(b)
to Figure 6.4(c). We can then bring the H and C gates on either side
of the CZ to the extreme left and right to get Figure 6.4(d). We can
also expand the two C gates on the left of Figure 6.4(d) into the three
C gates on the left of Figure 6.4(e), since the action of either set is to
flip the target Qbit if and only if the computational-basis states of the
two control Qbits are different, while leaving the states of the control

148 PROTOCOLS THAT USE JUST A FEW QBITS

X

X

x

y

y

xx

y

0

0 H HZ

X

X

H HZ

XX

X

Z

HX

X

X Z

X

X Z x

x

y

y

x

y

0

0

(a) (b)

(c)

(d)

(e)

(f)

=

=

=

=

=

H

H H

HH

XX

X X

Fig 6.4 A circuit-theoretic
derivation of the quantum
dense-coding protocol.

6.5 TELEPORTAT ION 149

Qbits unaltered. Because the state H|0〉 = (1/
√

2)(|0〉 + |1〉) is invari-
ant under the action of X, the C on the extreme left of Figure 6.4(e)
acts as the identity, and Figure 6.4(e) simplifies to Figure 6.4(f).

The fact that Figure 6.4(f) has the same action as Figure 6.4(a)
contains all the content of the dense-coding protocol. The pair of gates
C10H1 on the left of Figure 6.4(f) acts on the state |0〉|0〉 to produce
the entangled state (6.15). The bottom Qbit of the pair, Qbit 0, is given
to Bob and the upper one, Qbit 1, is given to Alice, who also possesses
the upper two, Qbits 2 and 3. The pair of gates CZ

31 C21 acts as 1,X,Z,

or ZX on Qbit 1 depending on whether the states of Qbits 3 and 2
are |0〉|0〉, |0〉|1〉, |1〉|0〉, or |1〉|1〉. This reproduces the transformation
Alice applies to the member of the entangled pair in her possession,
depending on the values of the two bits she wishes to transmit to Bob.
Alice then sends Qbit 1 to Bob. The final pair H1C10 on the right is
precisely the transformation (6.18) that Bob performs on the reunited
entangled pair before making his measurement, which yields the values
x, y that Alice wished to transmit.

Like dense coding, many tricks of quantum information theory, in-
cluding the one we examine next, teleportation, rely on two or more
people sharing entangled Qbits, prepared some time ago, carefully
stored in their remote locations awaiting an occasion for their use.
While the preparation of entangled Qbits (in the form of photons) and
their transmission to distant places has been achieved, putting them
into entanglement-preserving, local, long-term storage remains a dif-
ficult challenge.

6.5 Teleportation

Suppose that Alice has a Qbit in a state

|ψ〉 = α|0〉 + β|1〉, (6.19)

but she does not know the amplitudes α and β. Carol, for example, may
have prepared the Qbit for Alice by taking a Qbit initially assigned the
standard state |0〉, applying a specific unitary transformation to it, and
then giving it to Alice, without telling her what unitary transformation
she applied.

Alice would like to reassign that precise state to another Qbit pos-
sessed by Bob. Neither Alice nor Bob (who could be far away from
Alice) has any access to the other’s Qbit. Alice is, however, allowed to
send “classical information” to Bob – e.g. she can talk to him over the
telephone. And, crucially, Bob’s Qbit shares with a second Qbit of Alice
the 2-Qbit entangled state

|�〉 = 1√
2

(|0〉|0〉 + |1〉|1〉). (6.20)

150 PROTOCOLS THAT USE JUST A FEW QBITS

The no-cloning theorem prohibits duplicating the unknown state
of Alice’s first Qbit, either far away from her or nearby. But it turns
out to be possible for Alice and Bob to cooperate over the telephone
in assigning the state |ψ〉 to Bob’s member of the entangled pair. The
no-cloning theorem is not violated because in doing so Alice obliterates
all traces of the state |ψ〉 from either of her own Qbits. The process –
called teleporting the state from Alice to Bob – also eliminates the en-
tanglement Alice and Bob formerly shared. For each shared entangled
pair, they can teleport just a single 1-Qbit state. The term “teleporta-
tion” emphasizes that the state assignment acquired by Bob’s Qbit no
longer applies to Alice’s; it has been transported from her Qbit to his.

Here is how teleportation works. Alice’s first Qbit and the entangled
pair she shares with Bob are characterized by the 3-Qbit state

|ψ〉a |�〉ab = (
α|0〉a + β|1〉a

) 1√
2

(|0〉a |0〉b + |1〉a |1〉b
)
, (6.21)

where I have given the state symbols for the Qbits in Alice’s and Bob’s
possession subscripts a and b . To teleport the unknown state of her
Qbit to Bob’s member of the entangled pair, Alice first applies a cNOT
gate, using her first Qbit in the state |ψ〉 as the control and her member
of the shared entangled pair as the target. This produces the 3-Qbit
state

α|0〉a
1√
2

(|0〉a |0〉b + |1〉a |1〉b
) + β|1〉a

1√
2

(|1〉a |0〉b + |0〉a |1〉b
)
.

(6.22)
Next she applies a Hadamard transformation H to her first Qbit, giving
all three Qbits the state

α 1√
2

(|0〉a + |1〉a
) 1√

2

(|0〉a |0〉b + |1〉a |1〉b
)

+ β 1√
2

(|0〉a − |1〉a
) 1√

2

(|1〉a |0〉b + |0〉a |1〉b
)

= 1
2 |0〉a |0〉a

(
α|0〉b + β|1〉b

) + 1
2 |1〉a |0〉a

(
α|0〉b − β|1〉b

)
+ 1

2 |0〉a |1〉a
(
α|1〉b + β|0〉b

) + 1
2 |1〉a |1〉a

(
α|1〉b − β|0〉b

)
. (6.23)

Now Alice measures both Qbits in her possession. (As remarked
in Section 6.4, such an application of cNOT and Hadamard gates,
immediately followed by measurement gates, is called “measuring in
the Bell basis.”) If the result is 00, Bob’s Qbit will indeed acquire the
state |ψ〉 originally possessed by Alice’s first Qbit (whose state would
then be reduced to |0〉). But if the result of Alice’s measurement is 10,
01, or 11 then the state of Bob’s Qbit becomes

α|0〉b − β|1〉b , α|1〉b + β|0〉b , or α|1〉b − β|0〉b . (6.24)

In each of these three cases there is a unitary transformation that re-
stores the state of Bob’s Qbit to Alice’s original state |ψ〉. In the first
case we can apply Z (which leaves |0〉 alone but changes the sign of |1〉),
in the second case, X (which interchanges |0〉 and |1〉), and in the third
case, ZX.

6.5 TELEPORTAT ION 151

So all Alice need do to transfer the state of her Qbit to Bob’s member
of their entangled pair is to telephone Bob and report to him the results
of her two measurements. He then knows whether the state has already
been transferred (if Alice’s result is 00) or what unitary transformation
he must apply to his member of the entangled pair in order to com-
plete the transfer (if Alice’s result is one of the other three.) Note the
resemblance to quantum error correction: by making a measurement
Alice acquires the information needed for Bob to reconstruct a partic-
ular quantum state, without anybody acquiring any information about
what the state actually is.

This appears to be remarkable. A general state of a Qbit is described
by two complex numbers α and β that take on a continuum of values,
constrained only by the requirement that |α|2 + |β|2 = 1. Yet, with the
aid of a standard entangled pair, whose state does not depend on α and
β, Alice is able to provide Bob with a Qbit described by the unknown
state, at the price of only two bits of classical information (giving the
results of her two measurements) and the loss of the entanglement of
their pair.

But of course the teleportation process does not communicate to Bob
the information that can be encoded in α and β. Bob is no more able to
learn the values of α and β from manipulating his Qbit, now assigned
the state |ψ〉, than Alice was able to do when it was her Qbit that was
assigned the same state |ψ〉. On the other hand Alice’s state could be
produced at a crucial stage of an elaborate quantum computation, and
its transfer to Bob could enable him to continue with the computation
on his own far-away quantum computer, so one can achieve a nontrivial
objective by such teleportations.

Like dense coding, teleportation can also be constructed by manip-
ulating an elementary classical circuit diagram, without going through
any of the analysis in (6.21)–(6.24). Figure 6.5(a) shows a circuit that
exchanges the state |ψ〉 = |x〉 of Alice’s Cbit with the state |0〉 of Bob’s
Cbit, regardless of whether x = 0 or 1. The transfer is achieved by
direct physical coupling between the two Cbits. As a linear quantum
circuit it continues to perform this exchange for arbitrary superpo-
sitions, |ψ〉 = α|0〉 + β|1〉. The entire teleportation protocol can be
constructed by appropriately expanding the two gates in Figure 6.5(a),
with the aid of an ancillary Qbit. The aim of the expansion is to elim-
inate the direct interaction between Alice’s and Bob’s Qbits through
the two cNOT gates in Figure 6.5(a), in favor of the telephoned mes-
sage from Alice to Bob, and the interaction necessary to produce their
shared pair of entangled Qbits (which can take place well before Alice
has even acquired her Qbit in the state |ψ〉).

In Figure 6.5(b) an ancillary Qbit, not acted upon throughout the
process, is introduced in the state

|φ〉 = H|0〉 = 1√
2

(|0〉 + |1〉). (6.25)

152 PROTOCOLS THAT USE JUST A FEW QBITS

M

X

y
f
0 y

f
0

X

X

X Z

H H

y
f
0 X

ZH H

X

y
f
0

y
f
0 y

f
0X

X

y

0 X y

0

X

y
0
0 y

f
f

H

Z

H

X

X

y
0
0

H

M

X

X

X

H

Z y
or

or0
0

1
1

y
or

or

0
0

1
1y

0
0

H

X

X

H

ZX

M

M

=

=

(a)

=

=

(b)

(f)

(g)

(e)

(d)

(c)

Fig 6.5 A circuit-theoretic derivation of the quantum teleportation
protocol.

6.5 TELEPORTAT ION 153

In Figure 6.5(c) the identities X = HZH and 1 = HH have been
used to rewrite the cNOT gate on the right of Figure 6.5(b), and an
additional cNOT gate has been added on the left, which acts as the
identity, since X acts as the identity on the state H|0〉.

Figure 6.5(d) follows from Figure 6.5(c) because the action of CZ

is independent of which Qbit is the control and which the target, and
because the two cNOT gates on the left of Figure 6.5(c) have exactly
the same action as the three cNOT gates on the left of Figure 6.5(d):
acting on the computational basis, both sets of gates apply X on both
of the bottom two wires if the state of the top wire is |1〉 and act as the
identity if the state of the top wire is |0〉.

Figure 6.5(e) follows from Figure 6.5(d) if we write the |φ〉 on the
left of Figure 6.5(d) as H|0〉 and explicitly write the |0〉 on the right
of Figure 6.5(d) as H|φ〉. But Figure 6.5(e) is an automated version
of teleportation. To relate it to ordinary teleportation, introduce mea-
surements of the upper two Qbits after the circuit of Figure 6.5(e) has
acted, as in Figure 6.5(f). Their effect is to collapse the states of each
of the two upper wires randomly and independently to |0〉 or |1〉. But
as noted in Section 3.6, measurement of a control Qbit commutes with
any operation controlled by that Qbit, so the measurement gates can
be moved to the positions they occupy in Figure 6.5(g).

Figure 6.5(g) is precisely the teleportation protocol. The two gates
on the left transform the two lower Qbits into the entangled state
(6.20). The subsequent applications to the top two Qbits of cNOT
followed by H followed by two measurement gates are precisely Alice’s
“measurement in the Bell basis.” Since Alice knows the outcomes of
the measurements, she knows whether the subsequent cNOT and CZ

gates will or will not act, and she can replace these physical couplings
by a phone call to Bob telling him whether or not to apply X and/or Z

directly to his own Qbit.
Figure 6.6 demonstrates that entanglement can also be teleported.

The figure reproduces parts (b), (e), and (g) of Figure 6.5 with three
changes. (1) A bar representing n Qbits in the n-Qbit state |�〉i has
been added above each part of the figure. No operations act on these
additional Qbits. (2) The state to be teleported has been given a sub-
script i so it is now one of several possible states |ψi 〉. (3) Because
of the linearity of the unitary gates we may sum over the index i .
The effect of the circuit is to transfer participation in the entangled
state

∑
i |�i 〉|ψi 〉 from the third wire from the bottom to the bottom

wire.
So even if Alice’s Qbit has no state of its own but is entangled with

other Qbits, Alice can use the same protocol to teleport its role in
the entangled state over to Bob’s Qbit. The result is that Bob’s Qbit
becomes entangled in exactly the same way Alice’s was, and Alice’s
Qbit becomes entirely unentangled.

154 PROTOCOLS THAT USE JUST A FEW QBITS

X

X

f
y i

Φi

0

X

H

Z

H

X

X

X X

H X M

MH

Z

y i

0

0

f
f
y i

Φi

y i

0

0 y i

Φi

or

or

0

0

1

1

Φi Φi

f

i

i

i

0

Φ
y

i

i

=

=

Fig 6.6 Figure 6.6. A
demonstration that
entanglement can be
teleported.

6.6 The GHZ puzzle

We conclude with another illustration of just how strange the behavior
of Qbits can be. The situation described below is a 3-Qbit version of
one first noticed by Daniel Greenberger, Michael Horne, and Anton
Zeilinger (“GHZ”) in the late 1980s, which gives a very striking version
of Bell’s theorem. An alternative version, discovered by Lucien Hardy
in the early 1990s, is given in Appendix D.

Consider the 3-Qbit state

|�〉 = 1
2

(|000〉 − |110〉 − |011〉 − |101〉). (6.26)

Note that the form of |�〉 is explicitly invariant under any permutation
of the three Qbits. Numbering the Qbits from left to right 2, 1, and 0,
we have

|�〉 = C21H2X2
1√
2

(|000〉 − |111〉). (6.27)

Since

1√
2

(|000〉 − |111〉) = C21C20H2X2|000〉, (6.28)

6.6 THE GHZ PUZZLE 155

(6.27) and (6.28) provide an explicit construction of |�〉 from elemen-
tary 1- and 2-Qbit gates acting on the standard state |0〉3.

Because |�〉 in the form (6.26) and the state (1/
√

2)(|000〉 − |111〉)
appearing in (6.27) are both invariant under permutations of the Qbits
0, 1, and 2, any of the other five forms of (6.27) associated with permu-
tations of the subscripts 0, 1, and 2 are equally valid. In particular

|�〉 = C12H1X1
1√
2

(|000〉 − |111〉). (6.29)

It follows from (6.29) that

H2H1|�〉 = H2H1C12H1X1
1√
2

(|000〉 − |111〉)
= (

H2H1C12H1H2
)
H2X1

1√
2

(|000〉 − |111〉)
= C21H2X1

(|000〉 − |111〉) (6.30)

(since sandwiching a cNOT between Hadamards exchanges target and
control Qbits). Comparing the last expression in (6.30) with the form
of |�〉 in (6.27) reveals that

H2H1|�〉 = Z2X1|�〉 (6.31)

(which can, of course, be confirmed more clumsily directly from the
definition (6.26) of |�〉.) Because of the invariance of |�〉 under per-
mutation of the three Qbits we also have

H2H0|�〉 = Z2X0|�〉, (6.32)

H1H0|�〉 = Z1X0|�〉. (6.33)

Now suppose that we have prepared three Qbits in the state |�〉 and
then allowed no further interactions among them. If we measure each
Qbit, it follows from the form (6.26) that because |�〉 is a superposition
of computational-basis states having either none or two of the Qbits in
the state |1〉, the three outcomes are constrained to satisfy

x2 ⊕ x1 ⊕ x0 = 0 (6.34)

(where ⊕, as usual, denotes addition modulo 2).
Suppose, on the other hand, that we apply Hadamards to Qbits

2 and 1 before measuring all three. According to (6.31) this has the
effect of flipping the state of Qbit 1 in each term of the superposition
(6.26) (and changing the signs of some of the terms). As a result the
3-Qbit state (6.26) is changed into a superposition of computational-
basis states having either one or three of the Qbits in the state |1〉. So
if the outcomes are x H

2 , x H
1 , and x0, we must have

x H
2 ⊕ x H

1 ⊕ x0 = 1. (6.35)

156 PROTOCOLS THAT USE JUST A FEW QBITS

Similarly, if we apply Hadamards to Qbits 2 and 0 before measuring all
three, then (6.32) requires that the outcomes must obey

x H
2 ⊕ x1 ⊕ x H

0 = 1, (6.36)

and if Hadamards are applied to Qbits 1 and 0 then according to (6.33)
if all three are measured we will have

x2 ⊕ x H
1 ⊕ x H

0 = 1. (6.37)

Consider now the following question. If we are talking about a single
trio of Qbits, assigned the state |�〉, must the x0 appearing in (6.34) be
the same as the x0 appearing in (6.35)? A little reflection reveals that
this question makes no sense. After all, (6.34) describes the outcomes of
immediately measuring the three Qbits, whereas (6.35) describes the
outcomes of measuring them after Hadamards have been applied to
Qbits 2 and 1. Since only one of these two possibilities can actually be
carried out, there is no way to compare the results of measuring Qbit
0 in the two cases. You can’t compare the x0 you found in the case you
actually carried out with the x0 you might have found in the case you
didn’t carry out. It’s just a stupid question.

Or is it? Suppose that Qbits 2 and 1 are measured before Qbit 0 is
measured. If no Hadamards were applied before the measurements of
2 and 1, then (6.34) assures us that when 0 is finally measured the result
will be

x0 = x1 ⊕ x2. (6.38)

So the outcome of measuring Qbit 0 is predetermined by the outcomes
of the earlier measurements of Qbits 2 and 1. Since all interactions
among the Qbits ceased after the state |�〉 had been prepared, subject-
ing Qbits 2 and 1 to measurement gates can have no effect on Qbit 0.
Since the outcomes of the measurements of Qbits 2 and 1 determine
in advance the outcome of the subsequent measurement of Qbit 0, it
would seem that Qbit 0 was already predisposed to give the result (6.38)
upon being measured. Because the Qbits did not interact after their
initial state was prepared, it would seem that Qbit 0 must have had
that predisposition even before Qbits 2 and 1 were actually measured
to reveal what the result of measuring Qbit 0 would have to be.

This is a bit disconcerting, since prior to any measurements the
state of the Qbits was (6.26), in which none of them was individually
predisposed to reveal any particular value. Indeed, it would seem that
the 3-Qbit state (6.26) gives an incomplete description of the Qbits.
The omitted predisposition of Qbit 0 seems to be an additional element
of reality that a more complete description than that afforded by the
quantum theory would take into account.

6.6 THE GHZ PUZZLE 157

But if Qbit 0 did indeed have a predetermined predisposition to give
x0 when measured, even before Qbits 1 and 2 were measured to reveal
what x0 actually was, then the value of x0 surely would not be altered if
Hadamards were applied to Qbits 1 and 2 before they were measured,
since the Qbits have ceased to interact, and the predisposition to give
x0 was present before the decision to apply Hadamards or not had been
made. This means that the value x0 appearing in (6.34) must indeed be
identical to the value of x0 appearing in (6.35). So our question is not
meaningless. The answer is Yes!

Such an argument for elements of reality – predetermined values –
was put forth in 1935 (in a different context) by Albert Einstein, Boris
Podolsky, and Nathan Rosen (EPR). The controversy and discussion
it has given rise to has steadily increased over the past seven decades.
The terms “incomplete” and “element of reality” originated with EPR.
Today it is Einstein’s most cited paper.

The wonderful thing about three Qbits in the state (6.26) is that
they not only provide a beautiful illustration of the EPR argument,
but also, when examined further, reveal that the appealing argument
establishing predetermined measurement outcomes cannot be correct.
To see this, note that exactly the same reasoning establishes that the
values of x1 appearing in (6.34) and (6.36) must be the same, as well as
the values of x2 appearing in (6.34) and (6.37). And the same line of
thought establishes that the values of x H

0 in (6.37) and (6.36) must be
the same, as well as the values of x H

1 in (6.37) and (6.35) and the values
of x H

2 in (6.36) and (6.35).
If all this is true, then adding together the left sides of (6.34)–(6.37)

must give 0 modulo 2, since each of x2, x1, x0, x H
2 , x H

1 , and x H
0 appears

in exactly two of the equations. But the modulo 2 sum of the right sides
is 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1.

So the appealing EPR argument must be wrong. There are no el-
ements of reality – no predetermined measurement outcomes that a
more complete theory would take into account. The answer to what
is mistaken in the simple and persuasive reasoning that led Einstein,
Podolsky, and Rosen to the existence of elements of reality is still a mat-
ter of debate more than 70 years later. How, after all, can Qbit 0 and its
measurement gate “know” that if they interact only after Qbits 1 and 2
have gone through their own measurement gates (and no Hadamards
were applied) then the result of the measurement of Qbit 0 must be
given by (6.38)?

The best explanation anybody has come up with to this day is to
insist that no explanation is needed beyond what one can infer from
the laws of quantum mechanics. Those laws are correct. Quantum
mechanics works. There is no controversy about that. What fail to
work are attempts to provide underlying mechanisms, that go be-
yond the quantum-mechanical rules, for how certain strong quantum

158 PROTOCOLS THAT USE JUST A FEW QBITS

correlations can actually operate. One gets puzzled only if one tries to
understand how the rules can work not only for the actual situation
in which they are applied, but also in alternative situations that might
have been chosen but were not.

By concluding with this “paradoxical” state of affairs, I am not
suggesting that there is anything wrong with the quantum-theoretic
description of Qbits and the gates that act on them. On the contrary, the
quantum theory has to be regarded as the must accurate and successful
theory in the history of physics, and there is no doubt whatever among
physicists that if the formidable technological obstacles standing in
the way of building a quantum computer can be overcome, then the
computer will behave exactly as described in the preceding chapters.

But I cannot, in good conscience, leave you without a warning that
the simple theory of Qbits developed here, though correct, is in some
respects exceedingly strange. The strangeness emerges only when one
seeks to go beyond the straightforward rules enunciated in Chapter 1.
In particular one must not ask for an underlying mechanism that ac-
counts not only for the behavior of the circuit actually applied to a
particular collection of Qbits, but also for the possible behavior of
other circuits that might have been applied to the very same collection
of Qbits, but were not.

A good motto for the quantum physicist and for future quantum
computer scientists might be “What didn’t happen didn’t happen.” On
that firm note I conclude (except for the 16 appendices that follow).

Appendix A

Vector spaces: basic properties
and Dirac notation

In quantum computation the integers from 0 to N are associated with
N + 1 orthogonal unit vectors in a vector space of D = N + 1 dimen-
sions over the complex numbers. The nature of this association is the
subject of Chapter 1. Here we review some of the basic properties of
such a vector space, while relating conventional vector-space notation
to the Dirac notation used in quantum computer science. Usually the
dimension D is a power of 2, but this does not matter for our summary
of the basic facts and nomenclature.

In conventional notation such a set of D = N + 1 orthonormal
vectors might be denoted by symbols such as φ0, φ1, φ2, . . ., φN. The
orthogonality and normalization conditions are expressed in terms of
the inner products (φx, φy):

(φx, φy) =
{

0, x �= y;
1, x = y.

(A.1)

In quantum computation the indices x and y describing the integers
associated with the vectors play too important a role to be relegated
to tiny fonts in subscripts. Fortunately quantum mechanics employs
a notation for vectors, invented by the physicist Paul Dirac, which is
well suited for representing such information more prominently. One
replaces the symbols φx and φy by |x〉 and |y〉, and represents the inner
product (φx, φy) by the symbol 〈x|y〉. The orthonormality condition
(A.1) becomes

〈x|y〉 =
{

0, x �= y;
1, x = y.

(A.2)

Vectorial character is conveyed by the symbol | 〉, with the specific
vector being identified by whatever it is that goes between the bent
line 〉 and the vertical line | . This notational strategy is reminiscent of
the notation for vectors in ordinary three-dimensional physical space
(which we will use here for such vectors) in which vectorial character
is indicated by a horizontal arrow above a symbol denoting the specific
vector being referred to: −→r .

Symbols likeφ andψ remain useful in the notation of quantum com-
putation for representing generic vectors, but for consistency with the
notation for vectors associated with specific integers, and to emphasize
their vectorial character, they too are enclosed between a bent line 〉

159

160 APPENDIX A

and a vertical line |, becoming |φ〉 and |ψ〉. Some mathematicians
disapprove of this practice. Why write |ψ〉, introducing the spurious
symbols 〉 and |, when ψ by itself does the job perfectly well? This gets
it backwards. The real point is that the important information – for
example the number 7798 – is easier to read in the form |7798〉 than
when presented in small print in the form φ7798. Why introduce in a
normal font the often uninformative symbol φ, at the price of demoting
the most important information to a mere subscript?

The vector space that describes the operation of a quantum com-
puter consists of all linear combinations |ψ〉 of the N + 1 orthonormal
vectors |x〉, x = 0, . . ., N, with coefficients αx taken from the complex
numbers:

|ψ〉 = α0|0〉 + α1|1〉 + · · · + αN|N〉 =
N∑

x=0

αx |x〉, (A.3)

where αx = u x + ivx , u x and vx are real numbers, and i = √−1.
The mathematicians’ preference for writing ψ instead of |ψ〉 for

generic vectors is explicitly acknowledged in the useful convention
that |αψ + βφ〉 is nothing more than an alternative way of writing the
vector α|ψ〉 + β|φ〉:

|αψ + βφ〉 = α|ψ〉 + β|φ〉. (A.4)

In a vector space over the complex numbers the inner product of
two general vectors is a complex number satisfying

〈ψ |φ〉 = 〈φ|ψ〉∗, (A.5)

where ∗ denotes complex conjugation:

(u + iv)∗ = u − iv, u, v real. (A.6)

The inner product is linear in the right-hand vector,

〈φ|αψ1 + βψ2〉 = α〈φ|ψ1〉 + β〈φ|ψ2〉, (A.7)

and therefore, from (A.5), “anti-linear” in the left-hand vector,

〈αφ1 + βφ2|ψ〉 = α∗〈φ1|ψ〉 + β∗〈φ2|ψ〉. (A.8)

The inner product of a vector with itself is a real number satisfying

〈φ|φ〉 > 0, |φ〉 �= 0. (A.9)

It follows from the orthonormality condition (A.2) that the inner
product of the vector |ψ〉 in (A.3) with another vector

|φ〉 = β0|0〉 + β1|1〉 + · · · + βN|N〉 =
∑

x

βx |x〉 (A.10)

APPENDIX A 161

is given in terms of the expansion coefficients αx and βx (called ampli-
tudes in quantum computation) by

〈φ|ψ〉 =
∑

x

β∗
x αx . (A.11)

The squared magnitude of a vector is its inner product with itself, so
(A.11) gives for the squared magnitude

〈ψ |ψ〉 =
∑

x

|αx |2, (A.12)

where

|u + iv|2 = u2 + v2, u, v real. (A.13)

The form (A.12) gives an explicit confirmation of the rule (A.9).
A linear transformation A associates with every vector |ψ〉 another

vector, called A|ψ〉, subject to the rule (linearity)

A
(
α|ψ〉 + β|φ〉) = αA|ψ〉 + βA|φ〉. (A.14)

With a nod to the mathematicians, it is notationally useful to define

|Aψ〉 = A|ψ〉. (A.15)

A linear transformation that preserves the magnitudes of all vectors
is called unitary, because it follows from linearity that all magnitudes
will be preserved if and only if unit vectors (vectors of magnitude
1) are taken into unit vectors. It also follows from linearity that if a
linear transformation U is unitary then it must preserve not only the
inner products of arbitrary vectors with themselves, but also the inner
products of arbitrary pairs of vectors. This follows straightforwardly
for two general vectors |φ〉 and |ψ〉 from the fact that U preserves the
magnitudes of both of them, as well as the magnitudes of the vectors
|φ〉 + |ψ〉 and |φ〉 + i |ψ〉.

One can associate with any given vector |φ〉 the linear functional
that takes every vector |ψ〉 into the number 〈φ|ψ〉. Linearity follows
from property (A.7) of the inner product. The set of all such linear
functionals is itself a vector space, called the dual space of the original
space. The functional associated with the vector α|φ〉 + β|ψ〉 is the
sum of α∗ times the functional associated with |φ〉 and β∗ times the
functional associated with |ψ〉. It is an easy exercise to show that any
linear functional on the original space is associated with some vector in
the dual space. Dirac called vectors in the original space ket vectors and
vectors in the dual space bra vectors. He denoted the bra associated with
the ket |φ〉 by the symbol 〈φ|, so that the symbol 〈φ|ψ〉 can equally
well be viewed as the inner product of the two kets |φ〉 and |ψ〉 or as a
compact way of expressing the action 〈φ|(|ψ〉) of the associated linear

162 APPENDIX A

functional 〈φ| on the vector |ψ〉. Note that one has

〈αφ + βψ | = α∗〈φ| + β∗〈ψ |. (A.16)

A linear transformation A on the space of ket vectors induces a linear
transformation A† (called “A-adjoint”) on the dual space of bra vectors,
according to the rule

〈Aψ | = 〈ψ |A†. (A.17)

The operation adjoint to the trivial linear transformation that multiplies
by a given complex number is multiplication by the complex conjugate
of that number.

It is convenient to extend the dagger notation to the vectors them-
selves, defining (|ψ〉)† = 〈ψ |, (A.18)

so that the bra dual to a given ket is viewed as adjoint to that ket. The
definition (A.17) of A† then becomes(|Aψ〉)† = 〈ψ |A†, (A.19)

or, with (A.15), (
A|ψ〉)† = 〈ψ |A†, (A.20)

which provides a simple example of a very general rule that the adjoint
of a product of quantities is the product of their adjoints taken in the
opposite order. Another instance of the rule which follows from (A.20)
is that

〈φ|(AB
)† = 〈ABφ| = 〈Bφ|A† = 〈φ|B†A†. (A.21)

Since this holds for arbitrary 〈φ| we have(
AB

)† = B†A†. (A.22)

Although the adjoint A† of a linear transformation A on kets is a
linear transformation on bras, one can also define its action on kets.
One does so by requiring that the action of 〈φ| on A†|ψ〉 should be
equal to the action of 〈φ|A† on |ψ〉. This amounts to stipulating that the
symbol 〈φ|A†|ψ〉 should be unambiguous; it does not matter whether
it is read as (〈φ|A†)|ψ〉 or as 〈φ|(A†|ψ〉). Implicit in this definition is
the fact that a vector is completely defined by giving its inner product
with all vectors. This in turn follows from the fact that a vector |ψ〉
can be defined by giving all the amplitudes αx in its expansion (A.3) in
the complete orthonormal set |x〉. But αx = 〈x|ψ〉. Similarly, a linear
operator A is completely defined by giving its matrix elements 〈φ|A|ψ〉
for arbitrary pairs of vectors, since the subset 〈x|A|y〉 is already enough
to determine its action on a general vector (A.3).

APPENDIX A 163

Note that any matrix element of A† is equal to the complex conjugate
of the transposed (with φ and ψ exchanged) matrix element of A:

〈φ|A†|ψ〉 = 〈Aφ|ψ〉 = 〈ψ |Aφ〉∗ = 〈ψ |A|φ〉∗. (A.23)

It follows from this that (
A†)† = A. (A.24)

Since a unitary transformation U preserves inner products, we have

〈φ|ψ〉 = 〈Uφ|Uψ〉 = 〈φ|U†U|ψ〉, (A.25)

and therefore

U†U = 1, (A.26)

where 1 is the unit (identity) operator that takes every vector into itself.
It follows from (A.26) that

UU†U = U. (A.27)

In a finite-dimensional vector space a unitary transformation U always
takes an orthonormal basis into another orthonormal basis, so any U

clearly has a right inverse – the linear transformation that takes the
second basis back into the first. Multiplying (A.27) on the right by that
inverse tells us that

UU† = 1, (A.28)

so U† and U are inverses regardless of the order in which they act.
The vector |ψ〉 is an eigenvector of the linear operator A if the action

of A on |ψ〉 is simply to multiply it by a complex number a , called an
eigenvalue of A:

A|ψ〉 = a|ψ〉. (A.29)

Since the number a can be expressed as a = 〈ψ |A|ψ〉/〈ψ |ψ〉, it follows
from (A.23) that if A = A† (such operators are said to be self-adjoint or
Hermitian) then a is a real number. Eigenvalues of Hermitian operators
are necessarily real.

Since A is Hermitian and a is a real number, it follows from (A.29)
(by forming the adjoints of both sides) that

〈ψ |A = a〈ψ |, (A.30)

so the vector dual to an eigenket of a Hermitian operator is an eigenbra
with the same eigenvalue. It follows immediately that if |φ〉 is another
eigenvector of A with eigenvalue a ′, then

a〈ψ |φ〉 = 〈ψ |A|φ〉 = a ′〈ψ |φ〉, (A.31)

164 APPENDIX A

so if a ′ �= a then 〈ψ |φ〉 = 0: eigenvectors of a Hermitian operator with
different eigenvalues are orthogonal.

It can be shown that for any Hermitian operator A, one can choose an
orthonormal basis for the entire D-dimensional space whose members
are eigenvectors of A. The basis is unique if and only if all the D
eigenvalues of A are distinct. In the contrary case (in which A is said
to be degenerate) one can pick arbitrary orthonormal bases within
each of the subspaces spanned by eigenvectors of A with the same
eigenvalue. More generally, if A,B,C, . . . are mutually commuting
Hermitian operators then one can choose an orthonormal basis whose
members are eigenstates of every one of them.

If B is any linear operator, then A1 = B + B† and A2 = i
(
B† − B

)
are both Hermitian, and commute if B and B† commute. Since a joint
eigenvector of A1 and A2 is also a joint eigenvector of B = A1 + iA2

and B† = A1 − iA2, it follows that if B commutes with B† then one can
choose an orthonormal basis of eigenvectors of B. In particular, since
a unitary transformation U satisfies UU† = U†U = 1, one can choose
an orthonormal basis consisting of eigenvectors of U. Since unitary
transformations preserve the magnitudes of vectors, the eigenvalues
of U must be complex numbers of modulus 1. In the quantum theory
such complex numbers are often called phase factors.

Given two vector spaces of dimensions D1 and D2, and given any
two vectors |ψ1〉 and |ψ2〉 in the two spaces, one associates with each
such pair a tensor product |ψ1〉 ⊗ |ψ2〉 (often the tensor-product sign ⊗
is omitted) which is bilinear:

|ψ1〉 ⊗ (
α|ψ2〉 + β|φ2〉

) = α|ψ1〉 ⊗ |ψ2〉 + β|ψ1〉 ⊗ |φ2〉,
(A.32)(

α|ψ1〉 + β|φ1〉
) ⊗ |ψ2〉 = α|ψ1〉 ⊗ |ψ2〉 + β|φ1〉 ⊗ |ψ2〉.

With the further rule that |ψ1〉 ⊗ |ψ2〉 = |φ1〉 ⊗ |φ2〉 only if |φ1〉 and
|φ2〉 are scalar multiples of |ψ1〉 and |ψ2〉, one easily sees that the set of
all tensor products of vectors from the two spaces forms a vector space
of dimension D1 D2.

One defines the inner product of |ψ1〉 ⊗ |ψ2〉 with |φ1〉 ⊗ |φ2〉 to be
the ordinary product 〈ψ1|φ1〉〈ψ2|φ2〉 of the inner products in the two
original spaces. Given orthonormal bases for each of the two spaces,
the set of tensor products of all pairs of vectors from the two bases
forms an orthonormal basis for the tensor-product space. If A1 and A2

are linear operators on the two spaces, one defines the tensor-product
operator A1 ⊗ A2 to satisfy

(
A1 ⊗ A2

)(|ψ1〉 ⊗ |ψ2〉
)=|A1ψ1〉 ⊗ |A2ψ2〉=

(
A1|ψ1〉

) ⊗ (
A2|ψ2〉

)
,

(A.33)
and easily shows that it can be extended to a linear operator on the
entire tensor-product space.

APPENDIX A 165

All of this generalizes in the obvious way to n-fold tensor products
of n vector spaces.

If A is a linear operator whose eigenvectors constitute an orthonor-
mal basis – i.e. if A is Hermitian or, more generally, if A and A† com-
mute – and if f is a function taking complex numbers to complex
numbers, then one can define f (A) by specifying that each eigenvector
|φ〉 of A, in the basis with eigenvalue a , is also an eigenvector of f (A)
with eigenvalue f (a). This defines f (A) on a basis, and it can therefore
be extended to arbitrary vectors by requiring it to be linear. It follows
from this definition that if f (z) is a polynomial or convergent power
series in z then f (A) is the corresponding polynomial or convergent
power series in A.

In Dirac notation one defines the outer product of two vectors |φ〉
and |ψ〉 to be the linear operator, denoted by |φ〉〈ψ |, that takes any
vector |γ 〉 into |φ〉 multiplied by the inner product 〈ψ |γ 〉:

(|φ〉〈ψ |)|γ 〉 = |φ〉(〈ψ |γ 〉). (A.34)

As is always the case with Dirac notation, the point is to define things
in such a way that the evaluation of an ambiguous expression such as
|φ〉〈ψ |γ 〉 does not depend on how you read it; the notation is designed
always to enforce the associative law.

Note that |ψ〉〈ψ | is the projection operator onto the one-
dimensional subspace spanned by the unit vector |ψ〉; i.e. any vector
|γ 〉 can be written as the sum of a vector |γ 〉‖ in the one-dimensional
subspace and a vector |γ 〉⊥ perpendicular to the one-dimensional sub-
space, and

(|ψ〉〈ψ |)|γ 〉 = |γ 〉‖. (A.35)

Similarly, if one has a set of orthonormal vectors |ψi 〉 then∑
i |ψi 〉〈ψi | projects onto the subspace spanned by all the |ψi 〉. If

the orthonormal set is a complete orthonormal set – for example
|x〉, x = 0, . . ., N – then the set spans the entire vector space and
the projection operator is the unit operator 1:

N∑
x=0

|x〉〈x| = 1. (A.36)

This trivial identity can be surprisingly helpful. Any vector |ψ〉, for
example, satisfies

|ψ〉 = 1|ψ〉 =
∑

x

|x〉〈x|ψ〉, (A.37)

which tells us that the amplitudes αx appearing in the expansion (A.3)
of |ψ〉 are just the inner products 〈x|ψ〉. Similarly, any linear operator

166 APPENDIX A

A satisfies

|A〉 = 1A1 =
(∑

x

|x〉〈x|
)

A

(∑
y

|y〉〈y|
)

=
∑

xy

|x〉〈y|(〈x|A|y〉),
(A.38)

which reveals the matrix elements 〈x|A|y〉 to be the expansion co-
efficients of the operator A in the “operator basis” |x〉〈y|. And note
that

〈x|AB|y〉 = 〈x|A1B|y〉 =
∑

z

〈x|A|z〉〈z|B|y〉, (A.39)

which gives the familiar matrix-multiplication rule for constructing
the matrix of a product out of the matrix elements of the individual
operators.

If you prefer to think of vectors in terms of their components in a
specific basis, then you might note that the (ket) vector |ψ〉, with the
expansion (A.3) with amplitudes αx in the orthonormal basis |x〉, can
be represented by a column vector:

|ψ〉 −→

⎛
⎜⎜⎝

α0

α1
...

αN

⎞
⎟⎟⎠. (A.40)

The associated bra vector is then the row vector:

〈ψ | −→ (
α∗

0 α∗
1 . . . α∗

N

)
. (A.41)

If

|φ〉 −→

⎛
⎜⎜⎝

β0

β1
...

βN

⎞
⎟⎟⎠, (A.42)

then the inner product 〈φ|ψ〉 is given by the ordinary matrix product
of the row and column vectors:

〈φ|ψ〉 = (
β∗

0 β∗
1 . . . β∗

N

)
⎛
⎜⎜⎝

α0

α1
...

αN

⎞
⎟⎟⎠. (A.43)

The outer product |ψ〉〈φ| is also a matrix product:

|ψ〉〈φ| =

⎛
⎜⎜⎝

α0

α1
...

αN

⎞
⎟⎟⎠ (

β∗
0 β∗

1 . . . β∗
N

)
. (A.44)

APPENDIX A 167

Note that in Dirac notation (A.43) is nothing more than the state-
ment that

〈φ|ψ〉 = 〈φ|1|ψ〉 =
∑

x

〈φ|x〉〈x|ψ〉 =
∑

x

〈x|φ〉∗〈x|ψ〉, (A.45)

while (A.44) asserts that

〈x|
(
|ψ〉〈φ|

)
|y〉 = 〈x|ψ〉〈φ|y〉 = 〈x|ψ〉〈y|φ〉∗. (A.46)

Appendix B

Structure of the general 1-Qbit
unitary transformation

I describe here some relations among Pauli matrices, 1-Qbit unitary
transformations, and rotations of real-space three-dimensional vectors.
The relations are of fundamental importance in many applications of
quantum mechanics, and are an essential part of the intellectual equip-
ment of anybody wanting to understand the mathematical structure of
three-dimensional rotations. The reason for mentioning them here is
that they can also make certain circuit identities quite transparent. The
quantum-computation literature contains some unnecessarily cumber-
some derivations of many such identities, suggesting that these useful
mathematical facts deserve to be more widely known in the field.

The two-dimensional unit matrix 1 and the three Pauli matrices
form a basis,

1 =
(

1 0
0 1

)
, σx =

(
0 1
1 0

)
,

(B.1)
σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

for the four-dimensional algebra of two-dimensional matrices: any two-
dimensional matrix u has a unique expansion of the form

u = u01 + −→u · −→σ (B.2)

for some complex number u0 and 3-vector −→u with complex compo-
nents u x, u y, and uz. Here −→σ represents the “3-vector” whose com-
ponents are the Pauli matrices σx , σy, and σz, so in expanded form
(B.2) reads

u = u01 + u xσx + u yσy + uzσz =
(

u0 + uz u x − i u y

u x + i u y u0 − uz

)
.

(B.3)
As what follows demonstrates, however, it is invariably simpler to use
the form (B.2) together with the multiplication rule (see Section 1.4)

(−→a · −→σ)(−→b · −→σ) = (−→a · −→b)1 + i (−→a × −→b) · −→σ , (B.4)

rather than dealing explicitly with two-dimensional matrices.
Impose on (B.2) the condition

uu† = u†u = 1 (B.5)

168

APPENDIX B 169

that u be unitary. Since any unitary matrix remains unitary if it is
multiplied by an overall multiplicative phase factor e iθ with θ real, we
can require u0 to be real and arrive at a form which is general except for
such an overall phase factor. Since the Pauli matrices are Hermitian,
we then have

u† = u01 + −→u ∗ · −→σ . (B.6)

The rule (B.4) now tells us that for u to be unitary we must have

0 = 1−u†u=(
1−u2

0−−→u ∗ · −→u)
1−(

u0(−→u +−→u ∗)+i−→u ∗ × −→u) · −→σ .

(B.7)
Since 1, σx , σy, and σz are linearly independent in the four-
dimensional algebra of 1-Qbit operators, the coefficients of all four
of them in (B.7) must vanish and we have

1 = u2
0 + −→u ∗ · −→u , 0 = u0(−→u + −→u ∗) + i−→u ∗ × −→u . (B.8)

The second of these requires the real and imaginary parts of the
vector −→u to satisfy

u0 Re −→u = Re −→u × Im −→u . (B.9)

If u0 �= 0, it follows from (B.9) that Re−→u · Re −→u = 0, so Re −→u = 0,
and the vector −→u must be i times a real vector −→v . On the other hand
if u0 = 0 then (B.9) requires the real and imaginary parts of −→u to
be parallel vectors, so that −→u itself is just a complex multiple of a
real vector. But if u0 = 0 we retain the freedom to pick the overall
phase of the operator u, which we can choose to make the vector −→u
purely imaginary. So irrespective of whether or not u0 = 0, the general
form for a two-dimensional unitary u is, to within an overall phase
factor,

u = u01 + i−→v · −→σ , (B.10)

where u0 is a real number, −→v is a real vector, and, from the first of
(B.8),

u2
0 + −→v · −→v = 1. (B.11)

The identity (B.11) allows us to parametrize u0 and −→v in terms of
a real unit vector −→n parallel to −→v and a real angle γ so that

u = cos γ 1 + i sin γ (−→n · −→σ). (B.12)

An alternative way of writing (B.12) is

u = exp(iγ−→n · −→σ). (B.13)

This follows from the forms of the power-series expansions of the
exponential, sine, and cosine, together with the fact that (−→n · −→σ)2 = 1

170 APPENDIX B

for any unit vector −→n as a special case of (B.4). (The argument is the
same as the argument that e iϕ = cos ϕ + i sin ϕ for any real number
ϕ.)

A remarkable connection between these two-dimensional unitary
matrices and ordinary three-dimensional rotations emerges from the
fact that each of the three Pauli matrices in (B.1) has zero trace, and
that the operator unitary transformation

A → uAu† (B.14)

preserves the trace of A.1

Note first that if −→a is a real vector then u(−→a · −→σ)u† is Hermitian
and can therefore be expressed as a linear combination of 1 and the
three Pauli matrices with real coefficients. Since σx , σy, and σz all
have zero trace, so does −→a · −→σ and therefore so does u(−→a · −→σ)u†.
Its expansion as a linear combination of 1 and the three Pauli matrices
must therefore be of the form −→a ′ · −→σ for some real vector −→a ′ (since
1 alone among the four matrices has nonzero trace):

u(−→a · −→σ)u† = −→a ′ · −→σ . (B.15)

It follows that

u(−→a · σ)(−→b · −→σ)u† =
(
u(−→a · −→σ)u†

)(
u(−→b · −→σ)u†

)
=

(−→a ′ · −→σ
)(−→b ′ · −→σ

)
.

(B.16)
Since unitary transformations preserve the trace,

Tr(−→a · −→σ)(−→b · −→σ) = Tr(−→a ′ · −→σ)(−→b ′ · −→σ)
. (B.17)

Hence, from (B.4),

−→a ′ · −→b ′ = −→a · −→b . (B.18)

It follows directly from the form (B.15) of the transformation from
unprimed to primed vectors that (−→a + −→b)′ = −→a ′ + −→b ′

and (λ−→a)′ =
λ−→a ′ – i.e. the transformation −→a → −→a ′ is linear. But the most general
real, linear, inner-product-preserving transformation on real 3-vectors
is a rotation. Consequently the transformation from real 3-vectors −→a
to real 3-vectors −→a ′ induced by any two-dimensional unitary u through
(B.15) is a rotation:

−→a ′ = Ru
−→a . (B.19)

Furthermore, by applying the (unitary) product uv of two unitary

1 The trace of a matrix is the sum of its diagonal elements. Recall also the
(easily verified) fact that the trace of a product of two matrices is
independent of the order in which the matrices are multiplied, even when
the matrices do not commute.

APPENDIX B 171

transformations in two steps,

(uv)(−→a · −→σ)(uv)† = u
(
v(−→a · −→σ)v†

)
u† = u

(
[Rv

−→a] · −→σ)
u†

= [RuRv
−→a] · −→σ , (B.20)

we deduce that

Ruv = RuRv. (B.21)

Thus the association of three-dimensional rotations with two-
dimensional unitary matrices preserves the multiplicative structure
of the rotation group: the rotation associated with the product of two
unitary transformations is the product of the two associated rotations.

Which rotation is associated with which unitary transformation? To
answer this, note first that when the vector −→a in (B.15) is taken to be
the vector −→n appearing in u (in (B.12) or (B.13)) then −→n ′ = −→n , since
u then commutes with −→n · −→σ . Therefore −→n is along the axis of the
rotation associated with u = exp(iγ−→n · −→σ). To determine the angle
θ of that rotation, let −→m be any unit vector perpendicular to the axis−→n , so that

cos θ = −→m · −→m ′
. (B.22)

We then have

cos θ = 1
2 Tr

(
(−→m · −→σ)(−→m ′ · −→σ)

)
= 1

2 Tr
(
(−→m · −→σ)(cos γ 1 + i sin γ −→n · −→σ)(−→m · σ)

× (cos γ 1 − i sin γ −→n · −→σ)
)

= 1
2 Tr

(
(cos γ −→m − sin γ −→m × −→n) · −→σ)

× (cos γ −→m + sin γ −→m × −→n) · −→σ)
)

= cos2γ − sin2γ = cos(2γ), (B.23)

where we have made repeated use of (B.4) and the fact that −→m · −→n = 0.
So the unitary matrix (B.13) is associated with a rotation about the

axis −→n through the angle 2γ . Since the identity rotation is associ-
ated both with u = 1 and with u = −1, the correspondence between
these unitary matrices and three-dimensional proper rotations is 2-to-
1. It is useful to introduce the notation u(−→n , θ) for the 1-Qbit unitary
transformation associated with the rotation R(−→n , θ) about the axis −→n
through the angle θ :

u(−→n , θ) = exp
(
i 1

2θ
−→n · −→σ) = cos

(1
2θ

) + i (−→n · −→σ)sin
(1

2θ
)
. (B.24)

The three-dimensional rotations arrived at in this way are all proper
(i.e. they preserve rather than invert handedness) because they can all
be continuously connected to the identity. Any proper rotation can be
associated with a u, and in just two different ways (u and −u clearly
being associated with the same rotation). The choice of phase leading

172 APPENDIX B

to the general form (B.10) with real u0 can be imposed by requiring
that the determinant of u must be 1, so in mathematical language we
have a 2-to-1 homomorphism from the group SU(2) of unimodular
unitary two-dimensional matrices to the group SO(3) of proper three-
dimensional rotations.

Although this may all seem tediously abstract, it is surprisingly
useful at a very practical level. It can reduce some highly nontriv-
ial three-dimensional geometry to elementary algebra, just as Euler’s
relation e iφ = cos φ + i sin φ reduces some slightly nontrivial two-
dimensional trigonometry to simple algebra. Suppose, for example,
that you combine a rotation through an angle α about an axis given
by the unit vector −→a with a rotation through β about −→b . The re-
sult, of course, is a single rotation. What are its angle γ and axis −→c ?
Answering this question can be a nasty exercise in three-dimensional
geometry. But to answer it using the Pauli matrices you need only note
that u(−→c , γ) = u(−→a , α)u(−→b , β), i.e.

cos
(1

2γ
)
1+i sin

(1
2γ

)
(−→c · −→σ) = (

cos
(1

2α
)
1+i sin

(1
2α

)
(−→a · −→σ)

)
×(

cos
(1

2β
)
1+i sin

(1
2β

)
(−→b ·−→σ)

)
.

(B.25)

Now multiply out the right side of (B.25), using (B.4). To get the angle
γ take the trace of both sides (or identify the coefficients of 1) to find

cos
(1

2γ
) = cos

(1
2α

)
cos

(1
2β

) − (−→a · −→b)sin
(1

2α
)
sin

(1
2β

)
. (B.26)

To get the axis −→c , identify the vectors of coefficients of the Pauli
matrices:

sin
(1

2γ
)−→c = sin

(1
2β

)
cos

(1
2α

)−→b + sin
(1

2α
)
cos

(1
2β

)−→a
− sin

(1
2α

)
sin

(1
2β

)
(−→a × −→b). (B.27)

Note that (B.26) and (B.27) are trivially correct when −→a and −→b are
parallel. A little geometrical thought reveals that they are also correct
when α and β are both 180◦. To try to see geometrically why they
are correct more generally is to acquire a deep appreciation for the
remarkable power of the representation of three-dimensional rotations
in terms of two-dimensional unitary transformations. Other examples
of the power of the representation are illustrated in the derivations of
circuit identities in Section 2.6, in the characterization of the general
1-Qbit state in Appendix C, and in the construction of the Hardy state
in Appendix D.

Appendix C

Structure of the general 1-Qbit state

The 1-Qbit computational-basis states |0〉 and |1〉 can be characterized
to within an overall phase by the fact that they are eigenstates of the
number operator n with eigenvalues 0 and 1 or, equivalently, that they
are eigenstates of 1 − 2n = Z = −→z · −→σ with eigenvalues 1 and −1.

Let |φ〉 be any 1-Qbit state, and let |ψ〉 be the orthogonal state
(unique to within an overall phase), satisfying 〈ψ |φ〉 = 0. Since |0〉
and |1〉 are linearly independent there is a unique linear transformation
taking them into |φ〉 and |ψ〉. But since |φ〉 and |ψ〉 are an orthonormal
pair (as are |0〉 and |1〉) this linear transformation preserves the inner
product of arbitrary pairs of states, so it is a unitary transformation u.

Since

|φ〉 = u|0〉, |ψ〉 = u|1〉, (C.1)

the operator n′ = unu† acts as a Qbit number operator on |φ〉 and |ψ〉:
n ′|φ〉 = 0, n ′|ψ〉 = |ψ〉. (C.2)

Since, as shown in Appendix B, any 1-Qbit unitary transformation u

is associated with a rotation R(−→m , θ), we have

n′ = unu† = 1
2

(
1 − u(−→z · −→σ)u†

) = 1
2 (1 − −→z ′ · −→σ), (C.3)

where −→z ′ = R(−→m , θ)−→z .

Thus n′ , which functions as a number operator for the states |φ〉 =
u(−→m , θ)|0〉 and |ψ〉 = u(−→m , θ)|1〉, is constructed out of the compo-
nent of the vector of operatorsσ along the direction −→z ′ = R(−→m , θ)−→z
in exactly the same way that n , the number operator for the compu-
tational basis states |0〉 and |1〉, is constructed out of the component
along −→z . This suggests that there might be nothing special about the
choice of |0〉 and |1〉 to form the computational-basis states for each
Qbit – that any pair of orthogonal states, |0′〉 = u|0〉 and |1′〉 = u|1〉,
could serve equally well. Furthermore, it is at least a consistent pos-
sibility that to make an apparatus to measure the Qbits in this new
basis we need do nothing more than apply the rotation R associated
with u to the apparatus that served to measure them in the original
basis.

This physical possibility is realized by some, but by no means all, of
the physical systems that have been proposed as possible embodiments

173

174 APPENDIX C

of Qbits. It is realized for certain atomic magnets – also called spins –
which have the property that when the magnetization of such a spin is
measured along any given direction, after the measurement the magnet
is either maximally aligned along that direction or maximally aligned
opposite to that direction. These two possible outcomes for a particular
direction – conventionally taken to be −→z – are associated with the
values 0 and 1 for the Qbit. After such a measurement the spin is left in
the state |0〉 or |1〉. Any other state |φ〉 and its orthogonal partner |ψ〉
specify an alternative direction, along which the magnetization might
have been measured, associated with an alternative scheme for reading
out values for the Qbits.

For this example the continuum of possible states available to a Qbit,
compared with the pair of states available to a Cbit, reflects the contin-
uum of ways in which one can read a Qbit (measuring its magnetization
along any direction) as opposed to the single option available for read-
ing a Cbit (finding out what value it actually has). For Qbits that are not
spins, the richness lies in the possibility of applying an arbitrary unitary
transformation to each Qbit, before measuring it in the computational
basis. What makes spins special is that applying the unitary transfor-
mation to the Qbits (which is not always that easy to arrange) can be
replaced by straightforwardly applying the corresponding rotation to
every 1-Qbit measurement gate.

Appendix D

Spooky action at a distance

As a further exercise in applying the quantum-computational formal-
ism to Qbits, and as a subject of interest in itself, though not directly
related to quantum computation, I describe here a thought-provoking
state of affairs illustrated with an example discovered by Lucien Hardy.
(Similar thoughts are provoked by an example discovered by Daniel
Greenberger, Michael Horne, and Anton Zeilinger, described in Sec-
tion 6.6.)

Suppose that Alice and Bob each has one member of a pair of Qbits,
which have been prepared in the 2-Qbit state

|�〉 = 1√
12

(
3|00〉 + |01〉 + |10〉 − |11〉). (D.1)

A specification of how to prepare two Qbits in such a Hardy state,
somewhat more transparent than the general procedure described in
Section 1.11, is given after the extraordinary properties of the Hardy
state are described. One easily verifies that the state |�〉 can also be
written as

|�〉 = 1√
3

(
2|00〉 − HaHb |11〉), (D.2)

where we take Ha to act on the left (Alice’s) Qbit and Hb to act on the
right (Bob’s) Qbit. Note the following four elementary properties of a
pair of Qbits in the state |�〉.

(i) If Alice and Bob each measures their own Qbit, then (D.1) shows
that there is a nonzero probability (1

12) that both get the result 1.
(ii) If Alice and Bob each applies a Hadamard to their own Qbit then,

since H2 = 1, the state (D.2) of the Qbits becomes

HaHb |�〉 = 1√
3

(
2HaHb |00〉 − |11〉) = 1√

3

(|00〉 + |01〉 + |10〉),
(D.3)

so if they measure their Qbits after each has applied a Hadamard, then
the probability that both get the value 1 is zero.

(iii) If only Alice applies a Hadamard to her Qbit, then the state
(D.2) of the two Qbits becomes

Ha |�〉 = 1√
3

(
2Ha |00〉 − Hb |11〉). (D.4)

Since Ha |00〉 is a linear combination of |00〉 and |10〉, and since Hb |11〉
is a linear combination of |10〉 and |11〉, the state |01〉 does not appear

175

176 APPENDIX D

Table D.1. Four ways to measure two Qbits in
the Hardy state (D.1)

Gates Result Possible?

Alice Bob Alice Bob

1 1 1 1 Yes
1 H 1 0 No
H 1 0 1 No
H H 1 1 No

in the expansion of Ha |�〉 in computational-basis states. So when the
Qbits are subsequently measured the probability is zero that Alice will
get the value 0 and Bob the value 1.

(iv) If only Bob applies a Hadamard to his Qbit, then by the same
reasoning (except for the interchange of Alice and Bob) when the Qbits
are subsequently measured the probability is zero that Alice will get
the value 1 and Bob the value 0.

Taken together, these four cases seem to have some very strange
implications. The cases are summarized in the four rows of Table D.1
above. On the left is indicated whether (H) or not (1) Alice or Bob
sends their Qbit through a Hadamard gate before sending it through a
measurement gate. In the center is listed the measurement outcome of
interest for each case. The column on the right specifies whether that
outcome can or cannot occur for that particular case.

To see what is strange, suppose that Alice and Bob each indepen-
dently decides, by tossing coins, whether or not to apply a Hadamard
to their Qbit before sending it through a measurement gate. There is
a nonzero probability (1

4 × 1
12 = 1

48) that neither applies a Hadamard
and both measurement gates show 1 (see the first row of Table D.1).
In the one time in 48 that this happens, it is tempting to conclude that
each Qbit was, even before the coins were tossed, capable of producing
a 1 when directly subjected to a measurement gate because, after all,
each Qbit did produce a 1 when directly subjected to a measurement
gate.

But if Alice’s Qbit did indeed have such a capability, then, in the
absence of spooky interactions between Bob’s Hadamard and Alice’s
Qbit, her Qbit surely would have retained that capability, even if Bob’s
coin had come up the other way and he had applied a Hadamard to
his own Qbit before measuring it. But if Alice’s Qbit was indeed ca-
pable of registering a 1 when measured directly, then Bob’s Qbit must
have been incapable of registering a 0 if measured after a Hadamard,
since (see the second row of Table D.1) when Bob applies a Hadamard
before his measurement and Alice does not, it is impossible for Bob’s
measurement to give 0 while Alice’s gives 1.

APPENDIX D 177

By the same reasoning (interchanging Alice and Bob and referring
to the third row of Table D.1) we conclude that Alice’s Qbit must also
have been incapable of registering a 0 when measured after a Hadamard.

So in each of the slightly more than 2% of the cases in which neither
Alice nor Bob applies Hadamards and both their measurement gates
register 1, we conclude that if the tosses of both coins had come out
the other way and both had applied Hadamards before measuring, then
neither Qbit could have registered 0 when measured: both would have
had to register 1. But according to the fourth row of Table D.1 this can
never happen.

Although this particular argument was discovered by Lucien Hardy
only in the early 1990s, similar situations (where the paradox is not
as directly evident) have been known since a famous paper by John
Bell appeared in 1964. Over the years passions have run high on the
significance of this. Some claim that it shows that the value Alice or
Bob finds upon measuring her or his Qbit does depend on whether or
not the other, who, with his or her Qbit, could be far away, does or
does not apply a Hadamard to his or her own Qbit before measuring it.
They call this “quantum nonlocality” or “spooky action at a distance”–
a translation of Einstein’s disparaging spukhafte Fernwirkungen.

My own take on it is rather different. With any given pair of Qbits,
Alice and Bob each either does or does not apply a Hadamard prior
to their measurement. Only one of the four possible cases is actually
realized. The other three cases do not happen. In a deterministic world
it can make sense to talk about what would have happened if things
had been other than the way they actually were, since the hypothetical
situation can entail unique subsequent behavior. But in the intrinsically
nondeterminstic case of measuring Qbits, one cannot infer, from what
Alice’s Qbit actually did, that it has a “capability” to do what it actually
did, which it retains even in a hypothetical situation that did not, in
fact, take place. To characterize the possible behavior of Alice’s Qbit
in a fictitious world requires more than just the irrelevance of Bob’s
decision whether or not to apply a Hadamard. It also requires that
whatever it is that actually is relevant to Alice’s outcome remains the
same in both worlds and plays the same role in bringing about that
outcome. But the reading of a measurement gate has an irreducible
randomness to it: nothing need play a role in bringing it about.1

The real lesson here is that if one has a single pair of Qbits and
various choices of gates to apply to them before sending them through
a measurement gate, then it makes no sense to infer, from the actual

1 Conscience requires me to report here the existence of a small deviant
subculture of physicists, known as Bohmians, who maintain that there is a
deterministic substructure, unfortunately inaccessible to us, that underlies
quantum phenomena. Needless to say, all Bohmians believe in real
instantaneous action at a distance.

178 APPENDIX D

outcome of the measurement for the actual choice of gates, additional
constraints, going beyond those implied by the initial state of the Qbits,
on the hypothetical outcomes of measurements in the fictional case in
which one made a different choice of gates. It is nonsense to insist that
Alice’s Qbit has to retain the “capability” to do what it actually did, if
we imagine turning back the clock and doing it over again. Assigning
a “capability” to Alice’s Qbit prior to the measurement is rather like
assigning it a state. But the pre-measurement state (D.1) is an entangled
state, so Alice’s Qbit has no state of its own.

One can, however, let Alice and Bob repeatedly play this game with
many different pairs of Qbits, always preparing the Qbits in the same
initial 2-Qbit state (D.1). It is then entirely sensible to ask whether the
statistics of the values Bob finds upon measuring his Qbit depend on
whether Alice applied a Hadamard transform to her Qbit. For Alice and
Bob can accumulate a mass of data, and directly compare the statistics
Bob got when Alice applied the Hadamard with those he got when
she did not. If Bob got a different statistical distribution of readings
depending on whether Alice did or did not apply a Hadamard to her
faraway Qbit before she measured it, this would permit nonspooky
action at a distance which could actually be used to send messages. So
it is important to note that Bob’s statistics do not, in fact, depend on
whether or not Alice applies a Hadamard.

We can show this under quite general conditions. Suppose that n
Qbits are divided into two subsets, each of which may be indepen-
dently manipulated (i.e. subjected to unitary transformations) prior to
a measurement. Let the na Qbits on the left constitute one such group
and the nb = n − na on the right, the other. Think of the first group
as under the control of Alice and the second as belonging to Bob. If
the n Qbits are always prepared in the state |�〉, then if Alice and Bob
separately measure their Qbits, the Born rule tells us that the joint
probability p(x, y) of Alice getting x and Bob y is

p� (x, y) = 〈�|Pa
xP

b
y|�〉, (D.5)

where the projection operator Pa acts only on Alice’s Qbits (i.e. it acts
as the identity on Bob’s) and Pb only on Bob’s.

Suppose, now, that Alice acts on her Qbits with the unitary transfor-
mation Ua before making her measurement and Bob acts on his with
Ub . Then the state |�〉 is changed into

|�〉 = UaUb |�〉. (D.6)

Now the probability of their measurements giving x and y, conditioned
on their choices of unitary transformation, is

p� (x, y|Ua ,Ub) = 〈
�|Pa

xP
b
y|�

〉 = 〈
�|U†

bU
†
a

(
Pa

xP
b
y

)
UaUb |�

〉
= 〈

�|(U†
aP

a
xUa

)(
U

†
bP

b
yUb

)|�〉
(D.7)

APPENDIX D 179

(where we have used the fact that all operators that act only on Alice’s
Qbits commute with all operators that act only on Bob’s).

It follows from the fact that∑
x

U†
aP

a
xUa = U†

a

(∑
x

Pa
x

)
Ua = U†

a1Ua = 1 (D.8)

that Bob’s marginal statistics do not depend on what Alice chose to do
to her own Qbits:

p� (y|UaUb)=
∑

x

p� (x, y|Ua ,Ub)=〈�|(U†
bP

b
yUb

)|�〉= p� (y|Ub),

(D.9)
which does not depend on the particular unitary transformation Ua

chosen by Alice. Therefore the statistics of the measurement outcomes
for any group of Qbits are not altered by anything done to other Qbits
(provided, of course, that the other Qbits do not subsequently interact
with those in the original group, for example by the application of
appropriate 2-Qbit gates).

Like any 2-Qbit state, the state (D.1) leading to this remarkable set
of data can be constructed with a single cNOT gate and three 1-Qbit
unitary gates. Here is a construction that is somewhat more direct than
the general construction given in Section 1.11. It exploits the connec-
tion between 1-Qbit unitary transformations and three-dimensional
rotations developed in Appendix B.

It follows from (D.3) that

|�〉 = HaHb
1√
3

(|00〉 + |01〉 + |10〉)
= HaHb

(√
2
3Hb |00〉 +

√
1
3 |10〉

)

= Ha

(√
2
3 |00〉 +

√
1
3Hb |10〉

)

= HaC
H
ab

[(√
2
3 |0〉 +

√
1
3 |1〉

)
|0〉

]
= HaC

H
abwa |00〉, (D.10)

where w is any 1-Qbit unitary transformation that takes |0〉 into√
2
3 |0〉 +

√
1
3 |1〉, and CH is a 2-Qbit controlled-Hadamard gate:

CH
10|xy〉 = Hx

0 |xy〉. (D.11)

To construct a controlled-Hadamard CH from a controlled-NOT C,
note that the NOT operation X is x · σ while the Hadamard transfor-
mation is H = (1/

√
2)

(
X + Z

) = (1/
√

2)
(
x + z

) · σ. It follows from
the discussion of 1-Qbit unitaries in Appendix B that

H = uXu†, (D.12)

where u is the 1-Qbit unitary associated with any rotation that takes x

180 APPENDIX D

into (1/
√

2)(x + z). Since we also have 1 = uu†, it follows that

CH
10 = u0Cu

†
0. (D.13)

So (D.10) reduces to the compact form

|�〉 = HaubCabwau
†
b |00〉.

If you want an explicit form for w, its matrix in the computational
basis could be ⎛

⎝
√

2
3 −

√
1
3√

1
3

√
2
3

⎞
⎠. (D.14)

To get an explicit form for u, note that a rotation through π/4 about
the y-axis takes x into (1/

√
2)(x + z). The associated unitary transfor-

mation is

u = exp
(
i (π/8)σy

) = cos(π/8)1 + i sin(π/8)σy. (D.15)

Since the matrix for σy in the computational basis is(
0 − i
i 0

)
,

the matrix for u is (
cos(π/8) sin(π/8)

− sin(π/8) cos(π/8)

)
. (D.16)

Since the matrices for X and H are(
0 1
1 0

)
and

1√
2

(
1 1
1 −1

)
you can easily confirm that these three matrices do indeed satisfy (D.12).
Verifying this should give you an appreciation for the power of the
method described in Appendix B.

Appendix E

Consistency of the generalized
Born rule

A general state of m + n Qbits can be written as

|�〉m+n =
∑
x,y

αxy|x〉m |y〉n . (E.1)

The most general form of the Born rule asserts that if just the m
Qbits associated with the states |x〉m in (E.1) are measured, then with
probability

p(x) =
∑

y

|αxy|2 (E.2)

the result will be x, and after the measurement the state of all m + n
Qbits will be the product state

|x〉m |�x〉n , (E.3)

where the (correctly normalized) state of the n unmeasured Qbits is
given by

|�x〉n = 1√
p(x)

∑
y

αxy|y〉n . (E.4)

This strongest form of the Born rule satisfies the reasonable con-
sistency requirement that measuring r Qbits and then immediately
measuring s more, before any other gates have had a chance to act,
is equivalent to measuring all the r + s Qbits together. An important
consequence is that an n-Qbit measurement gate can be constructed
by applying n 1-Qbit measurement gates to the n individual Qbits, as
illustrated in Figure 1.8.

To establish this consistency condition, write the state of r + s + u
Qbits as

|�〉n =
∑
x,y,z

αxyz|x〉r |y〉s |z〉u . (E.5)

If the r + s Qbits are all measured together then a direct application
of the rule tells us that the result will be xy with probability

p(xy) =
∑

z

|αxyz|2, (E.6)

181

182 APPENDIX E

and that the post-measurement state of the Qbits will be

|x〉r |y〉s |�xy〉u = |x〉r |y〉s
1√

p(xy)

∑
z

αxyz|z〉u . (E.7)

On the other hand if just the first r Qbits are measured then the rule
tells us that the result will be x with probability

p(x) =
∑
y,z

|αxyz|2, (E.8)

and that the post-measurement state will be

|x〉r |�x〉s +u = |x〉r
1√
p(x)

∑
y,z

αxyz|y〉s |z〉u . (E.9)

Given that the result of the first measurement is x, so that the post-
measurement state is (E.9), a further application of the rule tells us that
if the next s Qbits are measured, the result will be y with probability

p(y|x) =
∑

z

∣∣∣αxyz/
√

p(x)
∣∣∣2

, (E.10)

and that the post-measurement state after the second measurement
will be

|x〉r |y〉s |�xy〉u , (E.11)

where

|�xy〉u = 1√
p(y|x)

1√
p(x)

∑
z

αxyz|z〉u . (E.12)

Since the joint probability of getting x and then getting y is related
to the conditional probability p(y|x) by

p(xy) = p(x)p(y|x), (E.13)

this final state and probability are exactly the same as the probability
(E.6) and final state (E.7) associated with a direct measurement of all
r + s Qbits.

Appendix F

Other aspects of Deutsch’s problem

Suppose that one attempted to solve Deutsch’s problem, not by the
trick that does the job in Chapter 2, but by doing the standard thing:
starting with input and output registers in the state |0〉|0〉, applying a
Hadamard to the input register, and then using the one application of
U f to associate with the two Qbits the state

|ψ〉 = 1√
2
|0〉| f (0)〉 + 1√

2
|1〉| f (1)〉. (F.1)

A direct measurement of both Qbits reveals the value of f at either 0
or 1 (randomly), but gives no information whatever about the question
under investigation, whether or not f (0) = f (1).

Is there anything further one can do to two Qbits in the state (F.1) to
learn whether or not f (0) = f (1) (without any further application of
U f)? The answer is yes, there is. But it works only half the time. Here
is one such procedure.

For each of the four possibilities for the unknown function f , the
corresponding forms for the state (F.1) are

f (0) = 0, f (1) = 0 : |ψ〉00 = 1√
2

(|0〉 + |1〉)|0〉, (F.2)

f (0) = 1, f (1) = 1 : |ψ〉11 = 1√
2

(|0〉 + |1〉)|1〉, (F.3)

f (0) = 0, f (1) = 1 : |ψ〉01 = 1√
2

(|0〉|0〉 + |1〉|1〉), (F.4)

f (0) = 1, f (1) = 0 : |ψ〉10 = 1√
2

(|0〉|1〉 + |1〉|0〉). (F.5)

We know that |ψ〉 has one of these four forms, and wish to distinguish
between two cases:

Case 1: |ψ〉 = |ψ〉00 or |ψ〉11; Case 2: |ψ〉 = |ψ〉01 or |ψ〉10.

By applying Hadamards to both Qbits we change the four possible
states to

(
H ⊗ H

)|ψ〉00 = 1√
2

(|0〉|0〉 + |0〉|1〉), (F.6)(
H ⊗ H

)|ψ〉11 = 1√
2

(|0〉|0〉 − |0〉|1〉), (F.7)(
H ⊗ H

)|ψ〉01 = 1√
2

(|0〉|0〉 + |1〉|1〉), (F.8)(
H ⊗ H

)|ψ〉10 = 1√
2

(|0〉|0〉 − |1〉|1〉). (F.9)

183

184 APPENDIX F

Now measure both Qbits. If we have one of the Case-1 states, (F.6)
or (F.7), we get 00 half the time and 01 half the time; and if we have
one of the Case-2 states, (F.8) or (F.9), we get 00 half the time and 11
half the time. So regardless of what the state is, half the time we get 00
and learn nothing whatever, and half the time we get 01 or 11 and learn
which case we are dealing with.

This way of dealing with Deutsch’s problem – with a 50% chance
of success – was noticed before the discovery of the 100%-effective
method described in Chapter 2. One might wonder whether some more
clever choice of operations on the state (F.1) could enable one always
to make the discrimination. It is easy to show that this is impossible.

We wish to apply some general 2-Qbit unitary transformation U to
|ψ〉 with the result that every possible outcome of a subsequent mea-
surement must rule out one or the other of the two cases. For this to
be so it must be that those computational-basis states that appear in
the expansions of the states U|ψ〉00 and U|ψ〉11 cannot appear in the
computational-basis expansions of the states U|ψ〉01 and U|ψ〉10, and
vice versa, for otherwise there would be a nonzero probability of a mea-
surement outcome that did not enable us to discriminate between the
two cases. Consequently U|ψ〉00 and U|ψ〉11 must each be orthogonal
to each of U|ψ〉01 and U|ψ〉10. But this is impossible, because uni-
tary transformations preserve inner products, while (F.2)–(F.5) show
that the inner product of any Case-1 state |ψ〉i j with any Case-2
state is 1

2 .
One can, in fact, show under very general circumstances that, start-

ing with two Qbits in the state (F.1), one cannot do better than ap-
plying Hadamards to both before measuring: there must be at least a
50% chance that the measurement outcomes will not enable one to
discriminate between Case 1 and Case 2. The proof that 50% is the
best one can do provides an instructive illustration of many features of
the quantum-mechanical formalism.

Suppose that we bring in n additional (ancillary) Qbits to help us out.
These might be used to process the input and output registers further
through some elaborate quantum subroutine, producing an arbitrary
unitary transformation W that acts on all n + 2 Qbits before a final
measurement of the n + 2 Qbits is made. (This, of course, reduces to
the simpler case of no ancillary Qbits, if W acts as the identity except
on the original two Qbits, hereafter called the pair.)

Let the ancillary Qbits start off in some state |χ〉n , which we can
take to be |0〉n . (Any other n-Qbit state is related to |0〉n by a unitary
transformation in the ancillary subspace, which can be absorbed into
W.) Let the pair be in one of the four states |ψ〉 given in (F.2)–(F.5).
After W acts the probability of a measurement giving x (0 ≤ x ≤ 3)
for the pair and y (0 ≤ y < 2n) for the ancillary Qbits is

p |ψ〉(x, y) = |〈x, y|W|ψ, 0〉|2, (F.10)

APPENDIX F 185

where it is convenient to write a (2 + n)-Qbit state of the form |ψ〉2 ⊗
|χ〉n as |ψ, χ〉.

Note next that for arbitrary pair states |φ〉

p |φ〉(x, y) = 0 if and only if 〈x, y|W|φ, 0〉 = 0, (F.11)

so if p |φ〉(x, y) vanishes for several different states |φ〉, linearity re-
quires it also to vanish for any state in the subspace they span. There-
fore any measurement outcome that enables us to discriminate between
Case 1 and Case 2 must have zero probability either for both of the states
(F.2) and (F.3) and therefore for any state in the subspace they span, or
for any state in the subspace spanned by the states (F.4) and (F.5). Now
(F.2)–(F.5) reveal that the state

|α〉 = 1
2

(|00〉 + |01〉 + |10〉 + |11〉) (F.12)

belongs to both of these subspaces. So if there are any measurement
outcomes x, y with

p |α〉(x, y) �= 0, (F.13)

then such outcomes are uninformative. Therefore the probability of a
measurement outcome that fails to discriminate between Case 1 and
Case 2 is at least

pmin =
∑
x,y

′
p |ψ〉(x, y), (F.14)

where the prime indicates that the sum is restricted to those measure-
ment outcomes x, y that satisfy (F.13).

Now it is easy to verify that every one of the four possible forms
(F.2)–(F.5) for |ψ〉 is of the form

|ψ〉 = 1√
2

(|α〉 + |β〉), (F.15)

where |α〉 is given in (F.12) and |β〉 is orthogonal to |α〉. Since |ψ〉 has
the form (F.15), we have from (F.14) and (F.10) that

pmin = 1
2

∑
x,y

′(
p |α〉(x, y) + 2 Re[〈β, 0|W†|x, y〉〈x, y|W|α, 0〉]

+ p |β〉(x, y)
)
. (F.16)

Although the sum in (F.16) is restricted to those x, y satisfying (F.13),
we can extend it in each of the first two terms to all x, y since this
adds either zero probabilities (first term) or (because of (F.11)) zero
amplitudes (second term). The first term then gives∑

all x,y

p|α〉(x, y) = 1, (F.17)

186 APPENDIX F

while the second gives

2 Re
∑

all x,y

〈β, 0|W†|x, y〉〈x, y|W|α, 0〉 = 2 Re〈β, 0|W†W|α, 0〉

= 2 Re〈β, 0|1|α, 0〉 = 0,

(F.18)

since |α〉 and |β〉 are orthogonal. Hence

pmin = 1
2

(
1 +

∑
x,y

′
p |β〉(x, y)

)
≥ 1

2 . (F.19)

One must fail at least half the time.

Appendix G

The probability of success in
Simon’s problem

Section 2.5 gives a rough argument that the number of runs necessary
to determine the n-bit number a in Simon’s problem is of order n.
Further analysis is needed to get a more accurate estimate of how many
runs give a high probability of learning a .

If we invoke U f m times, we learn m independently selected random
numbers y, whose bits yi satisfy

a · y =
n−1∑
i=0

yi ai = 0 (mod 2). (G.1)

If we have n − 1 relations (G.1) for n − 1 linearly independent sets of
yi , then this gives us enough equations to determine a unique nonzero
a . “Linearly independent” in this context means linear independence
over the integers modulo 2; i.e. no subsets of the ys should satisfy y ⊕
y′ ⊕ y′′ ⊕ · · · = 0 (mod 2). We have to invoke the subroutine enough
times to give us a high probability of coming up with n − 1 linearly
independent values of y.

Regardless of the size of n, for not terribly large x the probability
becomes extremely close to 1 that a set of n + x random vectors from an
(n − 1)-dimensional subspace of the space of n-dimensional vectors,
with components restricted to the modulo 2 integers 0 and 1, contains
a linearly independent subset. This is obvious for ordinary vectors with
continuous components, since the probability that a randomly selected
vector in an (n − 1)-dimensional space lies in a specified subspace of
lower dimensionality is zero – it is certain to have a nonzero component
outside of the lower-dimensional subspace. The argument is trickier
here because components are restricted to only two values: 1 or 0.

Introduce a basis in the full (n − 1)-dimensional subspace of all vec-
tors y with a · y = 0, so that a random vector in the subspace can be
expressed as a linear combination of the basis vectors with coefficients
that are randomly and independently 1 or 0. Arrange the resulting
(n + x) random vectors of ones and zeros into a matrix of n + x rows
and n − 1 columns. Since the row rank (the number of linearly inde-
pendent rows) of a matrix is the same as the column rank, even when
arithmetic is confined to the integers modulo 2, the probability that
some subset of n − 1 of the n + x (n − 1)-dimensional row vectors is
linearly independent is the same as the probability that all n − 1 of the

187

188 APPENDIX G

(n + x)-dimensional column vectors are linearly independent. But it
is easy to find a lower bound for this last probability.

Pick a column vector at random. The probability that it is nonzero
is 1 − (1/2n+x). If so, take it as the first member of a basis in which we
expand the remaining column vectors. The probability that a second,
randomly selected column vector is independent of the first is 1 −
(1/2n+x−1), since it will be independent unless every one of its (random)
components along the remaining n + x − 1 vectors is zero. Continuing
in this way, we conclude that the probability q of all n − 1 column
vectors being linearly independent is

q =
(

1 − 1
2n+x

)(
1 − 1

2n+x−1

)
· · ·

(
1 − 1

2x+2

)
. (G.2)

(If you’re suspicious of this argument, reassure yourself by checking
that it gives the right q when n = 3, a = 111, and x = 0, by explicitly
enumerating which of the 64 different sets of three ys, all satisfying
a · y = 0, contain two linearly independent vectors.)

Finally, to get a convenient lower bound on the size of q , note that
if we have a set of non-negative numbers a, b , c , . . . whose sum is less
than 1, then the product (1 − a)(1 − b)(1 − c) . . . exceeds 1 − (a +
b + c + · · ·). (This is easily proved by induction on the number of
numbers in the set.) The probability q is therefore greater than

1 − 1
2x+2

− 1
2x+3

− · · · − 1
2x+n

, (G.3)

and this, in turn, is greater than

1 − 1
2x+1

. (G.4)

So if we want to determine a with less than one chance in a million of
failure, it is enough to run the subroutine n + 20 times.

Appendix H

One way to make a cNOT gate

This more technical appendix is addressed to physicists curious about
how one might, at least in principle, construct a cNOT gate, exploit-
ing physically plausible interactions between two Qbits. Readers with
no background in quantum physics will find some parts rather ob-
scure. It is relevant only to readers curious about the possibilities for
quantum-computational hardware, and plays no role in subsequent
developments.

The controlled-NOT gate C10 with control Qbit 1 and target Qbit
0 can be written as

C10 = H0C
ZH0, (H.1)

where the controlled-Z operation is given by

CZ = 1
2

(
1 + Z1 + Z0 − Z1Z0

)
. (H.2)

Because of its symmetry under interchange of the two Qbits, we may
write CZ without the subscripts distinguishing control and target. To
within 1-Qbit Hadamard transformations, the problem of constructing
a controlled-NOT gate is the same as that of constructing a controlled-
Z gate.

Since (CZ)2 = 1, CZ satisfies the identity

exp(iCZθ) = cos θ + iCZ sin θ. (H.3)

We can therefore rewrite (H.2) as

CZ = −i exp
(
i π

2 CZ) = −i exp
[
i
(

π
4

)
(1 + Z1 + Z0 − Z1Z0)

]
= e−i (π/4) exp

[
i
(

π
4

)
(Z1 + Z0 − Z1Z0)

]
. (H.4)

The point of writing CZ in this clumsy way is that the unitary
transformations one can construct physically are those of the form

U = exp(iHt), (H.5)

where h̄H is the Hamiltonian that describes the external fields acting
on the Qbits and the interactions between Qbits. So to within an over-
all constant phase factor we can realize a CZ gate by letting the two
Qbits interact through a Hamiltonian proportional to Z1 + Z0 − Z1Z0

for a precisely specified interval of time. If each Qbit is a spin- 1
2 , then

189

190 APPENDIX H

(since Z = σz) this Hamiltonian describes two such spins with a highly
anisotropic interaction that couples only their z-components (Ising
interaction) subject to a uniform magnetic field with a magnitude appro-
priately proportional to the strength of their coupling. This is perhaps
the simplest example of how to make a cNOT gate.

Ising interactions, however, are rather hard to arrange. A much more
natural interaction between two spins is the exchange interaction

→σ (1) · →σ (0) = σ(1)
x σ(0)

x + σ(1)
y σ(0)

y + σ(1)
z σ(0)

z , (H.6)

which is invariant under spatial rotations, as described in Appendix B.
One can also build a CZ gate out of two spins interacting through

(H.6), if one applies to each spin magnetic fields that are along the same
direction but have different magnitudes and signs.1

What we must show is that to within an overall constant phase factor
it is possible to express CZ in the form

CZ = exp(iHt), (H.7)

with a Hamiltonian H of the form

H = J →σ (1) · →σ (0) + B1σ
(1)
z + B0σ

(0)
z , (H.8)

for appropriate choices of J (known as the exchange coupling), of B1

and B0 (proportional to the magnetic fields acting on the two spins –
hereafter we ignore the proportionality constant and refer to them
simply as the “magnetic fields”), and of the time t during which the
spins interact with each other and with the magnetic fields.

To see that the parameters in (H.8) can indeed be chosen so that
H gives rise to CZ through (H.7), recall first2 that the operator 1

2 (1 +→σ (1) · →σ (0)) acts as the swap operator on any 2-Qbit computational-
basis state:

1
2

(
1 + →σ (1) · →σ (0))|xy〉 = |yx〉. (H.9)

It follows from (H.9) that the three states (called triplet states)

|11〉, |00〉, 1√
2

(|01〉 + |10〉) (H.10)

are eigenstates of →σ (1) · →σ (0) with eigenvalue 1, while the state

1√
2

(|01〉 − |10〉) (H.11)

1 What follows was inspired by Guido Burkard, Daniel Loss, David P.
DiVincenzo, and John A. Smolin, “Physical optimization of quantum error
correction circuits,” Physical Review B 60, 11 404–11 416 (1999),
http://arxiv.org/abs/cond-mat/9905230.

2 This was established in Equation (1.53). It is why the interaction is called the
exchange interaction.

APPENDIX H 191

(called the singlet state) is an eigenstate of →σ (1) · →σ (0) with eigen-
value −3.3

The four states (H.10) and (H.11) are also eigenstates of 1
2 (σ(1)

z +
σ

(0)
z), the three triplet states (in the order in which they appear in

(H.10)) having eigenvalues −1, 1, and 0, and the singlet state having
eigenvalue 0.

Note also that the first two triplet states in (H.10) are eigenstates of
1
2 (σ(1)

z − σ
(0)
z) with eigenvalue 0, while 1

2 (σ(1)
z − σ

(0)
z) takes the third of

the triplet states into the singlet state, and vice versa.
So the eigenstates of the Hamiltonian

H = J →σ (1) · →σ (0) + B1σ
(1)
z + B0σ

(0)
z

= J →σ (1) · →σ (0) + B+ 1
2 (σ(1)

z + σ(0)
z) + B− 1

2 (σ(1)
z − σ(0)

z), (H.12)

where

B± = B1 ± B0, (H.13)

can be taken to be the first two of the triplet states (H.10) and two
appropriately chosen orthogonal linear combinations of the third triplet
state and the singlet state (H.11). The eigenvalues of H associated
with the first and second triplet states are J − B+ and J + B+; those
associated with the last two states are the eigenvalues of the matrix(

J B−
B− −3J

)

of H in the space spanned by the last two; i.e. −J ±
√

4J2 + B2−.

Now the four states (H.10) and (H.11) are also eigenstates of CZ,
the first of the three triplet states having eigenvalue −1 and the other
three having eigenvalue 1. Consequently these eigenstates of H are
also eigenstates of CZ with respective eigenvalues −1, 1, 1, and 1. We
will therefore produce CZ (to within a constant phase factor) if we can
choose the exchange coupling J , the magnetic fields B1 and B0, and
the time t during which H acts to satisfy

−e i t(J−B+) = e i t(J+B+) = e i t(−J+
√

4J2+B2−) = e i t(−J−
√

4J2+B2−).

(H.14)
The last equality is equivalent to

e 2i t
√

4J2+B2− = 1, or e i t
√

4J2+B2− = ±1; (H.15)

the first is equivalent to

e 2i t B+ = −1, or e i t B+ = ±i ; (H.16)

3 If |0〉 is the state |↑〉 of spin-up along z, and |1〉 is |↓〉, then the singlet state
is the state of zero total angular momentum and the three triplet states are
the states of angular momentum 1 with z-components −h̄ , 0, and h̄ .

192 APPENDIX H

and the second is equivalent to

e−2i t J = e i t B+e−i t
√

4J2+B2− . (H.17)

The identities (H.15) and (H.16) require the right side of (H.17) to
be ±i . For the (positive) time t for which the gate acts to be as small
as possible we should choose −i , which gives

Jt = π/4. (H.18)

With this value of t we can satisfy (H.15) (with the minus sign) and

(H.16) (with the plus sign) by taking
√

4J2 + B2− = 4J and B+ = 2J .

So we can produce the gate CZ (to within an overall constant phase
factor) by taking the magnetic fields in the Hamiltonian (H.12) and the
time for which it acts to be related to the exchange coupling by

B+ = 2J, B− = 2
√

3J, t = 1
4π/J, (H.19)

or, in terms of the fields on each spin,

B1 = (1 +
√

3)J, B0 = (1 −
√

3)J, t = 1
4π/J. (H.20)

Note the curious fact that although, as (H.2) makes explicit, the
gate CZ acts symmetrically on the two spins, the realization of CZ by
the unitary transformation e iHt requires the fields acting on the spins
to break that symmetry. Of course the symmetry survives in the fact
that the alternative choice of fields B1 = (1 − √

3)J, B0 = (1 + √
3)J

works just as well.

Appendix I

A little elementary group theory

A set of positive integers less than N constitutes a group under multi-
plication modulo N if the set (a) contains 1, (b) contains the modulo-N
inverse of any of its members, and (c) contains the the modulo-N prod-
ucts of all pairs of its members. A subset of a group meeting conditions
(a)–(c) is called a subgroup. The number of members of a group is called
the order of the group. An important result of the elementary theory of
finite groups (Lagrange’s theorem) is that the order of any of its sub-
groups is a divisor of the order of the group itself. This is established
in the next three paragraphs.

If S is any subset of a group G (not necessarily a subgroup) and a is
any member of G (which might or might not be in S), define a S (called
a coset of S) to be the set of all members of G of the form g = as ,
where s is any member of S. (Throughout this appendix equality will
be taken to mean equality modulo N.) Distinct members of S give rise
to distinct members of a S, for if s and s ′ are in S and as = as ′, then
multiplying both sides by the inverse of a gives s = s ′. So any coset a S
has the same number of members as S itself.

If the subset S is a subgroup of G and s is a member of S, then every
member of the coset s S must be in S. Since sS has as many distinct
members as S has, sS = S. If two cosets a Sand bSof a subgroup Shave
a common member then there are members s and s ′ of S that satisfy
as = bs ′, so (as)S = (bs ′)S. But (as)S = a(sS) = a S, and similarly
(bs ′)S = b S. Therefore a S = b S: two cosets of a subgroup are either
identical or have no members in common.

If S is a subgroup and a is a member of G, then since 1 is in S,
a is in the coset a S. Since every member of G is thus in some coset,
and since the cosets of a subgroup are either identical or disjoint, it
follows that the distinct cosets of a subgroup S partition the whole
group G into disjoint subsets, each of which has the same number of
members as S does. Consequently the total number of members of G
must be an integral multiple of the number of members of any of its
subgroups S: the order of any subgroup Sis a divisor of the order of the whole
group G.

Of particular interest is the subgroup given by all the distinct powers
of any particular member a of G. Since G is a finite set, the set of distinct
powers of a is also finite, and therefore for some n and m with n > m
we must have an = am , or a (n−m) = 1. The order of a is defined to be

193

194 APPENDIX I

the smallest nonzero k with ak = 1. The subset a, a2, . . ., ak of G is a
subgroup of G, since it contains 1 = ak and the inverses and products
of all its members. It is called the subgroup generated by a , and its order
is the order k of a . Since the order of any subgroup of G divides the
order of G, we conclude that the order of any member of G divides the
order of G.

Appendix J

Some simple number theory

J.1 The Euclidean algorithm

We wish to find the greatest common divisor of two numbers f and c ,
with f > c . The Euclidean algorithm is the iterative procedure that
replaces f and c by f ′ = c and c ′ = f − [f/c]c , where [x] is the
largest integer less than or equal to x. Evidently any factors common
to f and c are also common to f ′ and c ′ and vice versa. Furthermore,
f ′ and c ′ decrease with each iteration and each iteration keeps f ′ > c ′,
until the procedure reaches c ′ = 0. Let f0 and c0 be the values of f
and c at the last stage before c ′ = 0. They have the same common
factors as the original f and c , and f0 is divisible by c0, since the next
stage is c ′

0 = 0. Therefore c0 is the greatest common divisor of f
and c .

J.2 Finding inverses modulo an integer

We can use the Euclidean algorithm to find the inverse of an integer c
modulo an integer f > c , when f and c have no common factors. In this
case iterating the Euclidean algorithm eventually leads to c0 = 1. This
stage must have arisen from a pair f1 and c1 satisfying 1 = f1 − mc1

for some integer m . But f1 and c1 are given by explicit integral linear
combinations of the pair at the preceding stage, f2 and c2, which in
turn are explicit integral linear combinations of f3 and c3, etc. So one
can work backwards through the iterations to construct integers j and
k with 1 = j f + kc . Since k cannot be a multiple of f , we can express
k as l f + d with 1 ≤ d < f and with l an integer (negative, if k is
negative); d is then the inverse of c modulo f .

J.3 The probability of common factors

The probability of two random numbers having no common factors is
greater than 1

2 , for the probability is 3
4 that they are not both divisible

by 2, 8
9 that they are not both divisible by 3, 24

25 that they are not both
divisible by 5, etc. The probability that they share no prime factors

195

196 APPENDIX J

at all is∏
primes

(1 − 1/p2) = 1
/ ∏

primes

(
1 + 1/p2 + 1/p4 + . . .

)
= 1/

(
1 + 1/22 + 1/32 + 1/42 + 1/52 + 1/62 + · · ·)

= 6/π 2 = 0.6079 . . . (J.1)

If the numbers are confined to a finite range this argument gives only
an estimate of the probability, but it is quite a good estimate if the range
is large.

Appendix K

Period finding and continued
fractions

We illustrate here the mathematics of the final (post-quantum-
computational) stage of Shor’s period-finding procedure. The final
measurement produces (with high probability) an integer y that is
within 1

2 of an integral multiple of 2n/r , where n is the number of
Qbits in the input register, satisfying 2n > N2 > r 2. Deducing the
period r of the function f from such an integer y makes use of the
theorem that if x is an estimate for the fraction j/r that differs from it
by less than 1/2r 2, then j/r will appear as one of the partial sums in
the continued-fraction expansion of x.1 In the case of Shor’s period-
finding algorithm x = y/2n . If j and r happen to have no factors in
common, r is given by the denominator of the partial sum with the
largest denominator less than N. Otherwise the continued-fraction ex-
pansion of x gives r0: r divided by whatever factor it has in common
with the random integer j . If several small multiples of r0 fail to be a
period of f , one repeats the whole procedure, getting a different sub-
multiple r1 of r . There is a good chance that r will be the least common
multiple of r0 and r1, or a not terribly large multiple of it. If not, one
repeats the whole procedure a few more times until one succeeds in
finding a period of f . We illustrate this with two examples.

Example 1. (Successful the first time.) Suppose we know that the
period r is less than 27 = 128 and that y = 11 490 is within 1

2 of an
integral multiple of 214/r . What is r ?

Example 2. (Two attempts required.) Suppose we know that the in-
teger r is less than 27 and that 11 343 and 13 653 are both within 1

2 of
integral multiples of 214/r . What is r ?

In either example the fraction j/r for some (random) integer j will
necessarily be one of the partial sums (defined below) of the continued-
fraction expansion of y/214, where y is one of the cited five-digit inte-
gers. The partial sum with the largest denominator less than 128 is the
one we are looking for. Once we have found the answer we can easily
check that it is correct.

1 Theorem 184, page 153, G. H. Hardy and E. M. Wright, An Introduction to
the Theory of Numbers, 4th edition, Oxford University Press (1965).

197

198 APPENDIX K

The continued-fraction expansion of a real number x between 0 and
1 is

x = 1

a0 + 1

a1 + 1

a2 + · · ·

(K.1)

with positive integers a0, a1, a2, . . . Evidently a0 is the integral part of
1/x. Let x1 be the fractional part of 1/x. Then it follows from (K.1)
that

x1 = 1

a1 + 1

a2 + 1

a3 + · · ·

(K.2)

so a1 is the integral part of 1/x1. Letting x2 be the fractional part of
1/x1, one can continue this iterative procedure to extract a2 as the
integral part of 1/x2, and so on.

By the partial sums of the continued fraction (K.1), one means

1
a0

,
1

a0 + 1

a1

,
1

a0 + 1

a1 + 1

a2

, etc. (K.3)

One can deal with both examples using an (unprogrammed) pocket
calculator. One starts with 1/x = 214/y in the display and subtracts
the integral part a0, noting it down. One then inverts what remains,
to get 1/x1, and repeats the process until one has accumulated a long
enough list of a j .

Analysis of example 1. We know that r < 128 and that x =
11 490/214 is within 1

2 2−14 of j/r for integers j and r . Playing with a
calculator tells us that

11 490/214 = 0.701 293 945 3 . . . = 1

1 + 1

2 + 1

2 + 1

1 + 1

7 + 1

35 + · · ·
(K.4)

If we drop what comes after the 35 and start forming partial sums
we quickly get to a denominator bigger than 128. If we also drop 1

35 ,

APPENDIX K 199

we find that

11 490/214 ≈ 1

1 + 1

2 + 1

2 + 1

1 + 1

7

(K.5)

which works out2 to 54
77 . Since 77 is the only multiple of 77 less than

128, r = 77. And indeed,

214 × 54
77 = 11 490.079 . . .,

which is within 1
2 of 11 490.

Analysis of example 2. We know that the integer r is less than 128
and that x = 11 343/214 and x ′ = 13 653/214 are both within 1

2 2−14 of
integral multiples of 1/r . The calculator tells us that

11 343/214 = 1

1 + 1

2 + 1

3 + 1

1 + 1

419 + · · ·

(K.6)

Since 419 is bigger than 128 we can drop the 1
419 to get

1

1 + 1

2 1
4

(K.7)

which gives 9
13 , and indeed

214 × 9
13 = 11 342.769 . . ., (K.8)

which is within 1
2 of 11 343. The number r is thus a multiple of 13

less than 128, of which there are nine. Had we the function f at hand
(which we do in the case of interest) we could try all nine to determine
the period, but to illustrate what one can do when there are too many
possibilities to try them all, we take advantage of the second piece

2 A more systematic way to get this is to use the famous but not transparently
obvious recursion relation for the numerators p and denominators q of the
partial sums: pn = an pn−1 + pn−2, and qn = an qn−1 + qn−2, with
q0 = a0, q1 = 1 + a0a1 and p0 = 1, p1 = a1. One easily applies these to the
sequence a0, a1, a2, . . . = 1, 2, 2, 1, 1, 7, 35, . . ., stopping when one gets to a
denominator larger than 100.

200 APPENDIX K

of information, which could have been produced by running Shor’s
algorithm a second time.

We also have

13 653/214 = 1

1 + 1

4 + 1

1 + 1

1364 + · · ·

(K.9)

Since 1364 is bigger than 128 we can drop the 1
1364 to get

1

1 + 1

5

(K.10)

which gives 5
6 , and indeed

214 × 5
6 = 13 653.333 . . ., (K.11)

which is within 1
2 of 13 653. So r is also a multiple of 6 less than 100.

Since 6 and 13 have no common factors the least multiple of both is
6 × 13 = 78. Since there is no multiple of 78 less than 100 other than
78 itself, r = 78.

Appendix L

Better estimates of success in
period finding

In Section 3.7 it is shown that with a probability of at least 0.4, a single
application of Shor’s period-finding procedure produces an integer y
that is within 1

2 of an integral multiple of 2n/r , where r is the period
sought. Since 2n > N2 > r 2, y/2n is within 1/(2r 2) of j/r for some
integer j , and therefore, by the theorem cited in Appendix K, j/r and
hence a divisor of r (r divided by any factors it may have in common
with j) can be found from the continued-fraction expansion of y/2n .

What is crucial for learning a divisor of r is that the estimate for
j/r emerging from Shor’s procedure be within 1/2r 2 of a multiple of
1/r . Now when N is the product of two odd primes p and q , as it is in
the case of RSA encryption, then the required period r is not only less
than N, but also less than 1

2 N. This is because 1
2 (q − 1) is an integer,

so it follows from Fermat’s little theorem,

b p−1 ≡ 1 (mod p), (L.1)

that

b (p−1)(q −1)/2 ≡ 1 (mod p). (L.2)

For the same reason it follows from

bq −1 ≡ 1 (mod q) (L.3)

that

b (p−1)(q −1)/2 ≡ 1 (mod q). (L.4)

But since p and q are prime, the fact that b (p−1)(q −1)/2 − 1 is divisible
by both p and q means that it must be divisible by the product pq , and
therefore

b (p−1)(q −1)/2 ≡ 1 (mod pq). (L.5)

So if

br ≡ 1 (mod pq) (L.6)

and r exceeded 1
2 N, then we would also have

br −(p−1)(q −1)/2 = 0 (mod pq), (L.7)

201

202 APPENDIX L

and since r − 1
2 (p − 1)(q − 1) > r − 1

2 N > 0, (L.5) would give a pos-
itive power of b smaller than r that was congruent to 1 modulo pq , so
r could not be the period (which is the least such power).

It follows that even if y is not the closest integer to an integral
multiple of 2n/r , if it is within 2 of such an integral multiple, then

|y/2n − j/r | < 2/N2 < 1/2r 2. (L.8)

So for each j/r the algorithm will succeed in providing a divisor of r
not only if the measured y is the closest integer to 2n j/r , but also if it
is the second, third, or fourth closest. Gerjuoy has estimated that this
increases the probability of a successful run to about 0.9.1

Bourdon and Williams have refined this to 0.95 for large N and r .2

They also show that if one modifies the hardware, adding a few more
Qbits to the input register so that n > 2n0 + q , then for rather small
q the probability of finding a divisor of r from the output of a single
run of the quantum computation can be made quite close to 1.

1 Edward Gerjuoy, “Shor’s factoring algorithm and modern cryptography. An
illustration of the capabilities inherent in quantum computers,” American
Journal of Physics 73, 521–540 (2005),
http://arxiv.org/abs/quant-ph/0411184.

2 P. S. Bourdon and H. T. Williams, “Sharp probability estimates for Shor’s
order-finding algorithm,”
http://arxiv.org/abs/quant-ph/0607148.

Appendix M

Factoring and period finding

We establish here the only hard part of the connection between factoring
and period finding: that the probability is at least 1

2 that if a is a random
member of G pq for prime p and q , then the order r of a in G pq satisfies
both

r even (M.1)

and

ar/2 �≡ −1 (mod pq). (M.2)

(In Section 3.10 it is shown that given such an a and its order r , the
problem of factoring N = pq is easily solved.)

Note first that the order r of a in G pq is the least common multiple
of the orders r p and rq of a in G p and in Gq . That r must be some
multiple of both r p and rq is immediate, since ar ≡ 1 (mod pq) implies
that ar ≡ 1 (mod p) and ar ≡ 1 (mod q). Furthermore, any common
multiple r ′ of r p and rq satisfies ar ′ ≡ 1 (mod pq), because if ar ′ =
1 + m p and ar ′ = 1 + nq , then m p = nq . But since the primes p
and q have no common factors this requires m = kq and n = kp ,
and hence ar ′ = 1 + kpq ≡ 1 (mod pq). Since r is the least integer
with ar ≡ 1 (mod pq), r must be the least common multiple of r p

and rq .
Consequently condition (M.1) can fail only if r p and rq are both

odd. Condition (M.2) can fail only if r p and rq are both odd multiples
of the same power of 2. For if r p contains a higher power of 2 than
rq , then since r is a common multiple of r p and rq , it will remain a
multiple of rq if a single factor of 2 is removed from it, and therefore
ar/2 ≡ 1 (mod q). But this is inconsistent with a failure of condition
(M.2), which would imply that ar/2 ≡ −1 (mod q).

So a necessary condition for failure to factor N = pq is that r p and
rq are either both odd, or both odd multiples of the same power of 2.
The first condition is absorbed into the second if we agree that the
powers of 2 include 20 = 1. Our effort to factor N can fail only if we
have picked a random a for which r p and rq are both odd multiples of
the same power of 2.

To calculate an upper bound for the probability of failure pf, note
first that the modulo-p and modulo-q orders, r p and rq , of a are the

203

204 APPENDIX M

same as the mod-p and mod-q orders of the numbers a p and aq in G p

and Gq , where

a ≡ a p (mod p), a ≡ aq (mod q). (M.3)

Furthermore, every number a in G pq is associated through (M.3) with
a unique pair from G p and Gq . For if a p = b p and aq = bq then a − b
is a multiple of both p and q , and therefore, since p and q are distinct
primes, a − b is a multiple of pq itself, so a ≡ b (mod pq).

Since the (p − 1)(q − 1) different members of G pq are thus in one-
to-one correspondence with the number of distinct pairs, one from the
p − 1 members of G p and one from the q − 1 members of Gq , the
modulo-p and modulo-q orders r p and rq of a random integer a in
G pq will have exactly the same statistical distribution as the orders r p

and rq of randomly and independently selected integers in G p and Gq .
So to show that the probability of failure is at most 1

2 , we must show
that the probability is at most 1

2 that the orders r p and rq of such a
randomly and independently selected pair are both odd multiples of
the same power of 2.

We do this by showing that for any prime p , no more than half
of the numbers in G p can have orders r p that are odd multiples of
any given power of 2. (Given this, if Pp (j) and Pq (j) are the prob-
abilities that random elements of G p and Gq have orders that are
odd multiples of 2 j , then the probability of failure pf is less than∑

j≥0 Pp (j)Pq (j) ≤ 1
2

∑
j≥0 Pq (j) = 1

2 .) This follows from the fact
that if the order p − 1 of G p is an odd multiple of 2k for some k ≥ 0,
then exactly half the elements of G p have orders that are odd multi-
ples of 2k. This in turn follows from the theorem that if p is a prime,
then G p has at least one primitive element b of order p − 1, whose
successive powers therefore generate the entire group. Given this the-
orem – which is proved at the end of this appendix – we complete the
argument by showing that the orders of the odd powers of any such
primitive b are odd multiples of 2k, but the orders of the even powers are
not.

If r0 is the order of b j with j odd, then

1 ≡ (b j)r0 ≡ b jr0 (mod p), (M.4)

so j r0 must be a multiple of p − 1, the order of b . Since j is odd r0

must contain at least as many powers of 2 as does p − 1. But since
the order r0 of any element must divide the order p − 1 of the group,
r0 cannot contain more powers of 2 than p − 1 does. So r0 is an odd
multiple of 2k. On the other hand if j is even, then b j satisfies

(b j)(p−1)/2 = (
b p−1) j/2 ≡ 1 (mod p), (M.5)

APPENDIX M 205

so the order r0 of b j divides (p − 1)/2. Therefore p − 1 contains at
least one more power of 2 than does r0.

This concludes the proof that the probability is at least 1
2 that a

random choice of a in G pq will satisfy both of the conditions (M.1)
and (M.2) that lead, with the aid of an efficient period-finding routine,
to an easy factorization of N = pq , as described in Section 3.10.

What remains is to prove that when p is prime, G p contains at
least one number of order p − 1. The relevant property of the mul-
tiplicative group of integers {1, 2, 3, . . ., p − 1} modulo a prime is
that together with 0 these integers also constitute a group under ad-
dition. This provides all the structure necessary to ensure that a poly-
nomial of degree d has at most d roots.1 We can exploit this fact as
follows.

Write the order s = p − 1 of G p in terms of its prime factors qi :

s = p − 1 = q n1
1 · · · q nm

m . (M.6)

For each qi , the equation xs /qi − 1 = 0 has at most s /qi solutions, and
since s /qi < s , the number of elements in G p , there must be elements
ai in G p satisfying

as /qi
i �≡ 1 (mod p). (M.7)

Given such an ai , define

bi = as /(q ni
i)

i . (M.8)

We next show that the order of bi is q ni
i . This is because

b (q ni
i)

i ≡ as
i ≡ 1 (mod p), (M.9)

so the order of bi must divide q ni
i and therefore be a power of qi , since

qi is prime. But if that order were any power of qi less than ni , then we

would have as /q k
i

i ≡ 1 (mod p) with k ≥ 1, which contradicts (M.7).
Because each bi has order q ni

i , the product b1b2 · · · bm has order
q n1

1 q n2
2 · · · q nm

m = p − 1. This follows from the fact that if two numbers
in G p have orders that are coprime, then the order of their product is

1 This is easily proved by induction on the degree of the equation, using the
fact that every nonzero integer modulo p has a multiplicative inverse modulo
p . It is obviously true for degree 1. Suppose that it is true for degree m − 1
and a polynomial P(x) of degree m satisfies P(a) = 0. Then P(x) = 0
implies P(x) − P(a) = 0. Since P(x) − P(a) has the form

∑
j c j (x j − a j),

the factor x − a can be extracted from each term, leading to the form
(x − a)Q (x), where Q (x) is a polynomial of degree m − 1. So if x �= a then
P(x) = 0 requires Q (x) = 0, and this has at most m − 1 distinct solutions
by virtue of the inductive assumption.

206 APPENDIX M

the product of their orders.2 Therefore since q n1
1 and q n2

2 are coprime,
b1b2 has order q n1

1 q n2
2 . But since q n1

1 q n2
2 and q n3

3 are coprime, it follows
that b1b2b3 has order q n1

1 q n2
2 q n3

3 . Continuing in this way, we conclude
that b1b2 · · · bm has order q n1

1 q n2
2 · · · q nm

m = s = p − 1.

2 Let u , v, and w be the orders of c , d , and cd . Since c u ≡ 1 (mod p) and
(cd)w ≡ 1 (mod p), it follows that d wu ≡ 1 (mod p). So the order v of d
divides wu , and since v and u have no common factors, v divides w. In the
same way one concludes that u divides w. Therefore, since v and u are
coprime, w must be a multiple of uv. Furthermore,
(cd)uv ≡ c uvd vu ≡ 1 (mod p), so uv must be a multiple of w. Therefore
w = uv.

Appendix N

Shor’s 9-Qbit error-correcting code

Shor demonstrated that quantum error correction was possible using
the two orthogonal 9-Qbit codeword states

|0〉 = 2−3/2(|000〉 + |111〉)(|000〉 + |111〉)(|000〉 + |111〉),
(N.1)|1〉 = 2−3/2(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉).

These can be viewed as an extension of the simple 3-Qbit codewords we
examined in Section 5.2, making it possible to deal with 1-Qbit phase
errors, as well as bit-flip errors. An encoding circuit for the 9-Qbit
code – with an obvious resemblance to Figure 5.1 for the 3-Qbit code –
is shown in Figure N.1.

The form (5.18) of a general 1-Qbit corruption simplifies slightly
when the state |�〉 is a superposition of the codeword states (N.1), for
it follows from (N.1) that

Z0|�〉 = Z1|�〉 = Z2|�〉,
Z3|�〉 = Z4|�〉 = Z5|�〉, (N.2)

Z6|�〉 = Z7|�〉 = Z8|�〉.
As a result, the general form of a 1-Qbit corruption of |�〉 contains
only 22 independent terms (rather than 28 = (3 × 9) + 1):

|e〉|�〉 →
(

|d 〉+|c〉Z0 + |c ′〉Z3+|c ′′〉Z6+
9∑

i=1

(|ai 〉Xi +|bi 〉Yi
))

|�〉.
(N.3)

We diagnose the error syndrome with eight commuting Hermitian
operators that square to unity:

Z0Z1, Z1Z2, Z3Z4, Z4Z5, Z6Z7, Z7Z8,
(N.4)

X0X1X2X3X4X5, X3X4X5X6X7X8.

All six Z-operators trivially commute with each other as do the two
X-operators, and any of the six Z-operators commutes with any of the
two X-operators because in every case the number of anticommutations
between a Zi and an Xj is either zero or two.

One easily confirms from (N.1) that |0〉, |1〉, and hence any super-
position |�〉 of the two, are invariant under all eight operators in (N.4).
Each one of the 22 corrupted terms in (N.3) is also an eigenstate of

207

208 APPENDIX N

0

0

0

0

0

0

0

0

y

Ψ

H

H

HFig N.1 A circuit that
transforms the 1-Qbit state
|ψ〉 = α|0〉 + β|1〉 into its
9-Qbit encoded form
|�〉 = α|0〉 + β|1〉, where
|0〉 and |1〉 are given in
(N.1.) Note the relation to
the simpler 3-Qbit
encoding circuit in Figure
5.1.

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

X

X

X

X

X

X

Z

Z

X

X

X

X

X

X

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Fig N.2 A circuit to
measure the “error
syndrome” for Shor’s
9-Qbit code. The nine
Qbits are the nine lower
wires. The circuit is of the
type illustrated in Figure
5.7, but with eight ancillary
Qbits (the eight upper
wires) associated with the
measurement of the eight
commuting operators in
(N.4), Z0Z1, Z1Z2,

Z3Z4, Z4Z5,Z6Z7, Z7Z8,

X0X1X2X3X4X5, and
X3X4X5X6X7X8.
Measurement of the eight
ancillas projects the state of
the nine lower Qbits into
the appropriate
simultaneous eigenstate of
those eight operators.

the eight operators in (N.4) with eigenvalues 1 or −1, because each of
the eight operators either commutes (resulting in the eigenvalue 1) or
anticommutes (resulting in the eigenvalue −1) with each of the Xi , Yi ,
and Zi . And each of the 22 terms in (N.3) gives rise to a distinct pattern
of negative eigenvalues for the eight operators.

APPENDIX N 209

(a) The three errors Z0, Z3, and Z6 are distinguished from the Xi and
Yi by the fact that they commute with every one of the six Z-operators
in (N.4). These three Zi can be distinguished from each other because
Z0 anticommutes with one of the two X-operators, Z6 anticommutes
with the other, and Z3 anticommutes with both.

(b) All nine errors Xi are distinguished both from the Zi and from
the Yi by the fact that they commute with both X-operators. They can
be distinguished from each other because X0, X2, X3, X5, X6, and X8

each anticommutes with a single one of the six Z-operators in (N.4)
(respectively Z0Z1, Z1Z2, Z3Z4, Z4Z5, Z6Z7, and Z7Z8) while X1, X4,
and X7 each anticommutes with two distinct Z-operators (respectively
Z0Z1 and Z1Z2, Z3Z4 and Z4Z5, and Z6Z7 and Z7Z8).

(c) Finally, the nine errors Yi have the same pattern of commuta-
tions with the Z-operators in (N.4) as the corresponding Xi operators,
permitting them to be distinguished from each other in the same way.
They can be distinguished from the Xi operators by their failure to
commute with at least one of the two X-operators in (N.4).

So, as with the other codes we have examined, the simultaneous
measurement of the eight commuting operators in (N.4) projects the
corrupted state onto a single one of the terms in (N.3), and the set of
eigenvalues reveals which term it is. One then applies the appropri-
ate inverse unitary transformation to restore the uncorrupted state.
A circuit that diagnoses the 9-Qbit error syndrome is shown in
Figure N.2.

Appendix O

Circuit-diagrammatic treatment of
the 7-Qbit code

As a further exercise in the use of circuit diagrams, we rederive the
properties of the 7-Qbit error-correcting code, using the method de-
veloped in Chapter 5 to establish that the circuit in Figure 5.11 gives
the 5-Qbit codewords.

We start with the observation that the seven mutually commuting
operators Mi , Ni (i = 0, 1, 2) in (5.42), and Z in (5.49), each with
eigenvalues ±1, have a set of 27 nondegenerate eigenvectors that form
an orthonormal basis for the entire seven-dimensional codeword space.
In particular the two codeword states |0〉 and |1〉 are the unique eigen-
states of all the Mi and Ni with eigenvalues 1, and of Z with eigenvalues
1 and −1, respectively.

It follows from this that if a circuit produces a state |�〉 that is
invariant under all the Mi and Ni then |�〉 must be a superposition of
the codeword states |0〉 and |1〉, and if |�〉 is additionally an eigenstate
of Z then, to within factors e iϕ of modulus 1, |�〉 must be |0〉 or |1〉
depending on whether the eigenvalue is 1 or −1.

Figure O.1 shows that the state |�〉 produced by the circuit in
Figure 5.10 is indeed invariant under M0 = X0X4X5X6. This figure
demonstrates that when M0 is brought to the left through all the gates
in the circuit it acts directly as Z0 on the input state on the left, which
is invariant under Z0. The caption explains why essentially the same
argument applies to the other Mi : when brought all the way to the
left, M1 reduces to Z1 acting on the input state, and M2 reduces to Z2.
Figure O.2 similarly establishes the invariance of |�〉 under the three
Ni .

Figure O.3 establishes that the effect of Z = Z0Z1Z2Z3Z4Z5Z6 act-
ing on the right is the same as that of Z3Z4Z5Z6 acting on the left.
But since Z6, Z5, and Z4 all act on the 1-Qbit states |0〉 this leaves
only Z3 which converts |ψ〉 to Z|ψ〉, which multiplies by (−1)x when
|ψ〉 = |x〉. This shows that, as required, Z|�〉 = (−1)x |�〉 when
|ψ〉 = |x〉.

Figure O.4 establishes that the effect of X = X0X1X2X3X4X5X6 act-
ing on the right is the same as that of Z0Z1Z2X3 acting on the left. But
since Z0, Z1, and Z2 all act on the 1-Qbit states |0〉 this leaves only
X3 which interchanges |1〉 and |0〉 when |ψ〉 = |x〉. This shows that

210

APPENDIX O 211

0

0

0

0

0

0

y

0

1

2

3

4

5

6

(a)(b)

H

H

H

X

X

X

X

XZ

Fig O.1 Demonstration that the state |�〉 constructed by the circuit
in Figure 5.10 is invariant under M0 = X0X4X5X6. We exploit the fact
that bringing an X, acting on the control Qbit of a cNOT, from one
side of the cNOT to the other introduces an additional X acting on the
target Qbit (and the fact that an X acting on the target Qbit commutes
with the cNOT). Bringing the X acting on Qbit 0 to the left of the
three cNOT gates, represented by the controlled triple-NOT on the
right, introduces X operators on all three target Qbits, which combine
with the three X already acting on those Qbits to produce unit
operators. So all four X gates on the right reduce to X0, as indicated in
inset (a). That X0 can be moved further to the left through H0, if it is
changed into Z0, as shown in inset (b). So M0 acting on the extreme
right is equivalent to Z0 acting on the extreme left. Since Z0 leaves the
1-Qbit state |0〉 invariant, |�〉 is invariant under M0. A similar
argument applies to M1 = X1X3X5X6: the Xi all commute with the
first controlled triple-NOT on the right, and then produce a single X1

when moved through the middle controlled triple-NOT, resulting in
Z1 when moved the rest of the way to the left. Similarly,
M2 = X2X3X4X6 produces Z2 when moved all the way to the left.

212 APPENDIX O

0

0

0

0

0

0

y

0

1

2

3

4

5

6

(a)(b)

H

H

H

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Fig O.2 Demonstration that the state |�〉 constructed by the circuit
in Figure 5.10 is invariant under N0 = Z0Z4Z5Z6. We exploit the fact
that bringing a Z, acting on the target Qbit of a cNOT, from one side
of the cNOT to the other introduces an additional Z acting on the
control Qbit (and the fact that a Z acting on the control Qbit
commutes with the cNOT). So bringing Z4, Z5, and Z6 to the left of
all three cNOT gates represented by the controlled triple-NOT on the
right introduces three Z operators on the control Qbit 0, which
combine with the Z0 already acting to produce the unit operator,
reducing the collection of four Z gates on the left to the three Z acting
on Qbits 4, 5, and 6, as indicated in (a). Those Z can be moved all the
way to the left, always producing a pair of Z gates on the control Qbits
of the multiple cNOT gates they move through, until they act directly
on the input state as Z4Z5Z6, which leaves it invariant. A similar
argument shows that N1 = Z1Z3Z5Z6 acting on the extreme right is
the same as Z5Z6 acting on the extreme left, and that N2 = Z2Z3Z4Z6

on the right is the same as Z4Z6 on the left.

APPENDIX O 213

0

0

0

0

0

0

y

0

1

2

3

4

5

6

(a)(b)(c)(d)(e)

H

H

H

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Fig O.3 Demonstration that Z = Z0Z1Z2Z3Z4Z5Z6 acting on the
right of the circuit in Figure 5.10 is the same as Z3Z4Z5Z6 acting on
the left. Since Z4, Z5, and Z6 all act as the identity on the 1-Qbit states
|0〉 this leaves only Z3 which converts |ψ〉 to Z|ψ〉. This results in a
factor of (−1)x when |ψ〉 = |x〉, showing that Z|�〉 = (−1)x |�〉 when
|ψ〉 = |x〉.

214 APPENDIX O

0

0

0

0

0

0

y

0

1

2

3

4

5

6

(a)(b)(c)(d)(e)

H

H

H

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X X X X

X X X X

X

Z

Z

Z

Fig O.4 Demonstration that X = X0X1X2X3X4X5X6 acting to the
right of the circuit in Figure 5.10 is the same as X3Z2Z1Z0 acting to
the left. Since Z2, Z1, and Z0 all act as the identity on the 1-Qbit states
|0〉 this leaves only X3 which converts |ψ〉 to X|ψ〉. When |ψ〉 = |x〉
this interchanges |0〉 and |1〉, and therefore X interchanges the
corresponding states produced by the circuit.

APPENDIX O 215

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

=

H

H

H

H

H

H

Fig O.5 Demonstration
that the state produced by
the circuit in Figure 5.10
when |ψ〉 = |0〉 has an
inner product with the
state |0〉7 that is 1/23/2,
thereby establishing that
the state is precisely |1〉
without any additional
phase factor. We sandwich
the circuit of Figure 5.10
between |0〉7 and 7〈0|,
following the procedure
developed in Figure 5.19.
Since all the cNOT gates
have |0〉 for their control
bits, they all act as the
identity. The diagram
simplifies to the form on
the right, consisting of four
inner products 〈0|0〉 = 1
and three matrix elements
〈0|H|0〉 = 1/

√
2. So the

inner product is indeed
1/23/2.

X interchanges the corresponding states produced by the circuit. It
also establishes that if |�〉 differs by a phase factor e iϕ from |0〉 when
|ψ〉 = |0〉, then it will differ by the same phase factor from |1〉 when
|ψ〉 = |1〉.

It remains to show that when |ψ〉 = |0〉 in Figure 5.10, the resulting
state is given by |0〉 without any nontrivial phase factor e iϕ . Since |0〉7

appears in the expansion of |0〉with the amplitude 1/23/2, we must show
that when the input to the circuit in Figure 5.10 is |0〉7 the inner product
of the output with |0〉7 is 1/23/2, without any accompanying nontrivial
e iϕ . This is established in a circuit-theoretic manner in Figure O.5, as
explained in the caption.

Appendix P

On bit commitment

Alice prepares n Qbits in a computational basis state |x〉, applies a
certain n-Qbit unitary transformation U to the Qbits, and then gives
them to Bob. If Bob knows that all 2n values of x are equally likely,
what can he learn from the Qbits about Alice’s choice of U?

The answer is that he can learn nothing whatever about U. The most
general thing he can do to acquire information is to adjoin m ancillary
Qbits to the n Alice gave him (m could be zero), subject them all to
a quantum computation that brings about an (n + m)-Qbit unitary
transformation W, and then measure all n + m Qbits. The state prior
to the measurement will be

|�x〉 = W
((

U|x〉) ⊗ |�〉
)
, (P.1)

where |�〉 is the initial state of the m ancillas and all 2n values of x from
0 to 2n − 1 are equally likely. The probability of Bob getting z when he
measures all n + m Qbits is

p(z) = (1/2n)
∑

x

〈z|�x〉〈�x |z〉 = (1/2n)〈z|
∑

x

(
|�x〉〈�x |

)
|z〉.

(P.2)

We have

|�x〉〈�x | = W
((

U|x〉〈x|U†) ⊗ (|�〉〈�|))
W†, (P.3)

and since ∑
x

|x〉〈x| = 1, (P.4)

we then have∑
x

|�x〉〈�x | = W
((

UU†)⊗(|�〉〈�|))
W† = W

(
1⊗(|�〉〈�|))

W†.

(P.5)

We see from (P.2) and (P.5) that U has dropped out of the prob-
ability p(z), so the outcome of Bob’s final measurement provides no
information whatever about Alice’s unitary transformation.

In the application to bit commitment in Section 6.3, Alice’s unitary
transformation U is either the n-Qbit identity or the tensor product

216

APPENDIX P 217

of n 1-Qbit Hadamards, H⊗n , and the random n-Qbit state |x〉 arises
from the tensor product of n 1-Qbit states, each of which is randomly
|0〉 or |1〉.

One might wonder whether Bob could do better by measuring some
subset of all the Qbits at an intermediate stage of the computation,
and then applying further unitary transformations to the unmeasured
Qbits conditional upon the outcome of that measurement. But this,
by an inversion of the Griffiths–Niu argument in Section 3.6, would
be equivalent to first applying an appropriate multi-Qbit controlled
unitary gate, and only then measuring the control Qbits. That gate can
be absorbed in W and the subsequent measurement of its control Qbits
deferred to the end of the computation. So this possibility is covered
by the case already considered.

Index

abstract bit, 3
action at a distance, 154–158, 175–180
additional subroutine Qbits, 36, 46–50; in

Deutch’s problem, 49
adjoint transformation, 162; of product,

75, 162; self adjoint, 163
amplitude, 18
analog computation, 84–86
angular momentum, 15, 16, 191
ancilla (ancillary Qbit); in bit commitment,

216; in Deutsch’s problem, 184; in error
correction, 102–109, 114–116, 120–121,
208; in Grover algorithm, 94–96; in
teleportation, 151

anticommutation, of error-syndrome
operators, 107, 117, 119–126, 207–209;
of Pauli matrices, 16; of X and Z,
13

associative law and Dirac notation, 111,
165

atoms, 1–2, 31–32, 99–100, 174
automation of error correction, 106

bar, 21, 48–50,153
basis, 6–7; of algebra, 16; Bell, 136–137,

147, 150; classical, 18; computational,
18, 36; operator, 166, 168

BB84, 139
Bell basis, see basis
Bell’s theorem, 136, 154
Bernstein-Vazirani problem, 50–54
bit commitment, 143–146,

216–217
bit-flip error, 100–107, 112
Bohmian, 177n
Born rule, 23–28; generalized, 28–30, 56,

70, 78, 115, 181–182
bra vector, 22, 161–162, 166

C, see controlled-NOT
Cbit 3–17; compared with Qbit, 34–35
Cheshire cat, 39
chorus, rhapsodic, 38

circuit diagram, 21–23; for
Bernstein-Vazirani problem, 53; for
controlled-U gate, 60; for dense coding,
148; for five-Qbit code, 129; for
measurement gates, 25–26; for multiply
controlled operations, 94–97; for
nine-Qbit code, 208; for quantum
Fourier transform, 76–80; for
seven-Qbit code, 127; for teleportation,
152; for Toffoli gate, 61

classical basis, 18, see also basis
classical computer, 1; reversible 28, 36–37,

58
cloning, see no-cloning theorem
cNOT, see controlled Not
c-number, 3
codepad, one-time, 138–140
coding, dense, 146–149
collapse of state, 26
complexity, computational, 2
computational basis, 18, see also basis
computational process U f , 36–37,

46–50
computer, classical, 1
computer, quantum, 1–3
confusion, possibilities for, 3, 11,

22, 25
constructing codewords, five-Qbit,

119–120, 128–135; nine-Qbit, 208;
seven-Qbit, 123–124, 127–128

constructing states, 32–34
continued fractions, 82, 197–198
control Cbit, 9–10, 14
controlled NOT, 9–10; diagrams for, 50,

120; making a gate, 189–192; multiply
controlled, 58–61, 94–97

controlled phase gates, 76–80
controlled-U, 59–62
controlled-Z, 14, 46, 189–192; multiply

controlled, 94–97
control Qbit, 42, 50, 60, 77–78, 96, 108, 130
cooling Qbits, 32
correlations, 105, 158

cryptography, quantum, 138–143; RSA,
63–64, 66–69

cum grano salis, 82

dagger (†), 162
decoherence, 1, 111
degenerate, 164
dense coding, 146–149
density matrix, 18
Deutsch’s problem, 41–46, 49,

183–186
diagram, circuit, see circuit diagram
digital computation, 31, 85
Dirac notation, 3, 5–6, 111, 159–167;

disapproved of by mathematicians, 160
dot product of integers, 50
dual space, 161–163

eavesdropper, 67–68, 138–142
eigenstate, see eigenvector
eigenvalue, 163
eigenvector, 163
element of reality, 156–157
encryption, see cryptography
entanglement, 18–19; of Bell basis,

136–137; and bit commitment, 145–146;
and dense coding, 146–149; with
environment, 111; of input and output
registers, 55; manufacturing, 33; and
quantum cryptography, 142–143; and
spooky action at a distance, 175–180;
with subroutine Qbits, 43, 46–49; and
teleportation, 149–154

EPR (Einstein-Podolsky-Rosen)
argument, 157

ERASE, 8
error correction, 2, 99–135, 207–215; and

teleportation, 151, see also error
generation, error syndrome, five-Qbit
code, nine-Qbit code, seven-Qbit code

error generation (physics of), 109–113
error syndrome, 102, 117, 119–120, 121,

123, 128, 207–209

INDEX 219

Euclidean algorithm, 67–68, 83, 87,
195

exchange interaction, 190
exchange operator, 9, 15
exclusive OR, 10; bitwise, 37

factoring, 63–64; atypicality of fifteen, 82;
and period finding, 86–87, 203–206; and
RSA encryption, 64–68, see also period
finding

factors, probability of common, 195–196
fault tolerance, 127
Fermat’s little theorem, 65–66, 201
five-Qbit error correcting code, 109,

117–120, 128–135
flip, 9, see also bit-flip error
Fourier transform, quantum, 71–86; use in

searching, 98; phase errors, 84–86
fractions, continued, see continued

fractions
functional, linear, 161–162, see also bra

vector

gates, 1-Qbit, 20–21; 2-Qbit, 20;
measurement, 23–32; n-Qbit, 21

generalized Born rule, see Born rule
GHZ (Greenberger Horne Zeilinger)

puzzle, 154–158
Griffiths Niu trick, 76–80, 217
group theory, 64–68, 193–194, 203–206
Grover iteration, 89–94
Grover search algorithm, 88–98

H, see Hadamard transformation
Hadamard transformation, 13–14; effect

on cNOT, 14, 54; in error correction,
114–116; n-fold, 51, 72; in quantum
Fourier transform, 72–80; in seven-Qbit
code, 125–126; and superposition of all
inputs, 37–38

happen, what didn’t, 158
Hardy state, 175–180
Hermitian matrix, 15n
Hermitian operator, 163–164

inner product, 159–161, 166; bitwise
modulo-two, 50; in circuit diagrams,
134; of tensor product, 40

input register, 36
interactions, 1, 58, 99–100, 109, 111, 138,

189–190
interchanging target and control Qbits, 14
inverses in modular arithmetic, 65–69, 195
irreversible operations, 8, 24, 36

ket vector, 22, 161–162, 166

Lagrange’s theorem, 193
linear operator, 161; adjoint, 162; functions

of, 165; norm-preserving,19; outer
product of two vectors, 165; reversal of
order in circuit diagrams, 22; tensor
product of, 164; unitary, 19–20.

linear transformation, see linear operator

macroscopic, 1
magic, 8, 36, 38
many worlds, see rhapsodic chorus
mathematicians, disapproval of Dirac

notation, 160
matrix, density, 18, 110, 138–140
matrix element, 162; of adjoint operator,

163; transposed, 163
matrix, Pauli, 15–16, 168–172
measurement, 8, 23–26, 28–30, 181–182;

in Bell basis, 147; of control Qbit,
77–78; of operators that square to unity,
115; and state preparation, 30–32

measurement gate, 23–32
mixed state, 18
modulo-two addition (⊕), 10; bitwise, 31;

bitwise inner product, 50
modulo N arithmetic, 64, 193–194
multiply controlled operations, 58–61,

94–97

n, see number operator
nine-Qbit error-correcting code, 207–209
no-cloning theorem, 39–40, 70, 103, 150
nonlocality, quantum, see quantum

nonlocality
normalization, 17, 24, 159
NOT (X), 8–9; square root of, 59–60
notation, Dirac, see Dirac notation
number operator (n), 11–12, 173
number theory, 64–68, 82–83, 86–87,

88–89, 195–196, 197–198, 201–202,
203–206

one-time codepad, 138–140
operator, see linear operator
operator basis, 166
order, of a group, 65, 193; of a member of a

group, 65, 193–194; of a subgroup, 193
outer product, 165
output register, 36

parallelism, quantum, 37–39, 69, 84
Pauli matrices 15–16, 168–172

period finding, 55, 63–64; and continued
fractions, 197–198; estimates of success,
201–202; and factoring, 86–87, 203–206;
and phase errors, 84–86; with quantum
computer, 68–71, 83–84; and quantum
Fourier transform, 71–83; and RSA
encryption, 64–69; in searching, 98

permutations, as reversible operations on
Cbits, 9, 19; extended from Cbits to
Qbits, 19–20; in quantum Fourier
transform, 75, 77, 80

phase errors, in error correction, 100, 112,
207; in quantum Fourier transform,
84–86

phase factor, 164
philosophy, 40, 145
photon, 100, 110, 137–140, 143–144,

149
physicists, irritating practice of, 9; remarks

addressed primarily to, 13n, 15n, 23n,
71n, 80n, 189–192

polar decomposition theorem, 34
polarization, 110, 138–140
POVM, 24n
preparation of state, 30–32
product, inner, see inner product
product, outer, 165
product, tensor, see tensor product
product, vector, 16
programming styles, 84
probability, of measurement outcomes,

24–30, see also Born rule; in number
theory, 67n, 87, 195–196, 203–206; in
quantum computation, 54–55, 57,
80–83, 88; of success in Simon’s
problem, 187–188

projection operators, 165; and Born rule,
28

pure state, 18n

Qbit, 3–4; compared with Cbit, 34–35;
extracting information from, 23–27;
operations on, 19–21; spelling of, 4;
states of, 17–19

q-number, 3
quantum computer, 1–3
quantum cryptography, see cryptography
quantum Fourier transform, see Fourier

transform
quantum mechanics, why easily learned by

computer scientists, xii–xiii
quantum nonlocality, 177, see also spooky

action at a distance
quantum parallelism, 37–39, 69, 84

220 INDEX

quantum weirdness, xiii, 39, 154–158,
175–180

quaternions, 16
qubit, 4, see also Qbit
qunumber, ungainliness of, 4
Qutip, absurdity of, 4

reality, element of, 156
reduction of state, 26
register, input, 36
register, output, 36
relational information, 40–41, 56–57; in

error correction, 103–109
reversed convention in circuit diagrams,

21–22
reversible, classical computation, 28,

36–37, 58; operations on Cbits, 8–11;
operations on Qbits, 19–20; why
quantum computer must be, 46–50

rhapsodic chorus, 38
rotations, in Grover algorithm, 92–94; and

Pauli matrices, 16, 168–174, 179–180
RSA encryption, 63–64, 66–69

salis, cum grano, 82
Schmidt decomposition theorem, 34
searching, 88–98; for one of four items, 98;

for several marked items, 96–98
self-adjoint, 163, see also Hermitian.
seven-Qbit error correcting code, 121–128,

210–215
Shor algorithm, see period finding
Simon’s problem, 54–58, 63, 187–188
singlet state, 190–191

SO(3), 172
spin, 16, 110, 174, 189–192
spooky action at a distance, 154–158,

175–180
state, of Cbits, 3–8; general 1-Qbit,

173–174; of Qbits, 17–19; of Qbits and
Cbits, compared, 35

state construction, 32–33
state preparation, 30–32
SU(2), 172
subgroup, 193
subroutines, 36, 46–50
superposition, 17–18; action of quantum

Fourier transform on, 71; of all possible
inputs, 37–38; naive misunderstanding
of, 26–28

swap, 9–10, 12–13; constructed with Pauli
matrices, 15–17

syndrome, error, see error syndrome

target Cbit, 9–10
target Qbit, 14; of controlled-U gate, 59; of

Toffoli gate, 58
teleportation, 149–154; of entanglement,

153–154
tensor product of states, 6–8, 18, 164; of

operators, 10–11, 164
theorem, Bell’s, 136, 154; continued

fractions, 82, 197–199; Fermat’s little,
65, 201; Lagrange’s, 193; no-cloning,
39–40; on primitive generators, 204;
Schmidt (polar) decomposition, 34n

three-Qbit error-correcting code,
100–109

Toffoli gate, 58–62; in error correction, 95;
in Grover algorithm, 94–96

trace, 170
transformation, linear, 161
transpose, 163
triplet state, 190–191

U f , 36–37; in the presence of subroutine
Qbits, 46–50

UFT , 71–76
uncertainty principle, 40
unitary transformation, 19–21, 161–164;

general 1-Qbit, 168–172

vector, bra, 22, 161–162, 166
vector, ket, 22, 161–162, 166
vector product, 16
vector space, 159–167
von Neumann measurement, 23n

Walsh-Hadamard transformation, see
Hadamard transformation

weirdness, quantum, xiii, 39, 154–158,
175–180

wire, 21
worlds, many, see rhapsodic chorus

X, see NOT
XOR, 10, 50, 138–139

Y, 15, 112

Z, 13
Z , 72

