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Abstract

Quantum mechanics is undoubtedly a weird field of science, which violates
many deep conceptual tenets of classical physics, requiring reconsideration of
the concepts on which classical physics is based. For instance, it permits per-
sistent correlations between classically separated systems, that are termed as
entanglement. To circumvent these problems and explain entanglement, hid-
den variables theories—based on undiscovered parameters—have been devised.
However, John S. Bell and others invented inequalities that can distinguish be-
tween the predictions of local hidden variable (LHV) theories and quantum
mechanics. The CHSH-inequality (formulated by J. Clauser, M. Horne, A.
Shimony and R. A. Holt), is one of the most famous among these inequalities.
In the present work, we found that this inequality actually contains an even
simpler logical structure, which can itself be described by an inequality and
will be violated by quantum mechanics. We found 3 simpler inequalities and
were able to violate them experimentally.

Furthermore, the CHSH inequality can be used to devise games that can
outperform classical strategies. We explore CHSH-games for biased and un-
biased cases and present their experimental realizations. We also found a re-
markable application of CHSH-games in real life, namely in the card game
of duplicate Bridge. In this thesis, we have described this application along
with its experimental realization. Moreover, non-local games with quantum
inputs can be used to certify entanglement in a measurement device indepen-
dent manner. We implemented this method and detected entanglement in a set
of two-photon Werner states. Our results are in good agreement with theory.

A peculiar form of entanglement that is not distillable through local oper-
ations and classical communication (LOCC) is known as bound entanglement
(BE). In the present work, we produced and studied BE in four-partite Smolin
states and present an experimental violation of a Bell inequality by such states.
Moreover we produced a three-qubit BE state, which is also the first experi-
mental realization of a tripartite BE state. We also present its activation, where
we experimentally demonstrate super additivity of quantum information re-
sources.
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Sammanfattning

Kvantmekanik &r tveklost en konstig gren av naturvetenskapen och bryter mot
manga grundldggande antaganden inom klassisk fysik. Den krdver omprov-
ning av de koncept som den klassiska fysiken bygger pa. Exempelvis tillats
korrelationer mellan system som klassisk betraktas som atskillda, detta kal-
las snirjelse. For att kringga dessa problem och forklara snérjelse har gomda-
variabel-teorier konstruerats, dessa bygger pa okénda parametrar. John S. Bell
och andra fysiker fann olikheter som kan urskilja mellan forutsagelser fran lo-
kala gomda variabel (local hidden variable, LHV) teorier and kvantmekanik.
CHSH-olikheten, funnen av J. Clauser, M. Horne, A. Shimony och R.A. Holt,
dr en av de mest kdnda. Under arbetet som presenteras i denna avhandling har
vi funnit att CHSH-olikheten har en dnnu enklare logisk struktur, som i sig kan
beskrivas med en olikhet och som bryts av kvantmekaniken. Vi har funnit tre
stycken enklare olikheter och brutit dem experimentellt.

Vidare kan CHSH-olikheten anvindas for att konstruera spel dér utfallet
blir bittredm kvantmekaniska tillstdnd tillats. Vi har undersokt bade viktade
och oviktade CHSH-spel. Vi har dven funnit en anmérkningsvérd verklighets-
anknuten tillimpning av ett CHSH-spel, ndamligen i kortspelet kontraktsbridge.
Denna tillimpning, tillsammans med dess experimentella realisering, presen-
teras i avhandlingen. Icke-lokala spel kan dven anvéindas for att garantera snér-
jelse pa ett apparatoberoende sitt. Vi har implementerat en sddan metod och
verifierat snirjelse i en miangd tva-foton Werner states. Vara resultat dverens-
staimmer vil med teoretiska berdkningar.

En speciell form av snérjelse som inte &r destillerbar genom lokala opera-
tioner och klassisk kommunikation (local operations an classical communica-
tion, LOCC) kallas bunden snirjelse (bound entanglement, BE). Vi har skapat
och undersokt BE i fyr-foton Smolin-tillstdndet och presenterar experimentell
brytning av en Bell-olikhet. Vidare har vi for forsta gangen skapat ett tre-foton
BE-tillstand och presenterar dess aktivering. Hir demostrerar vi experimentellt
super additivitet av kvantresurser.
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1. Introduction

Quantum mechanics is one of the most fascinating fields in modern physics,
and the heart of its fascination comes from counterintuitive and non-classical
concepts. Concepts like wave-particle duality, absence of exact predictability,
and inseparability of the universe at a larger scale, makes it an astounding
subject [1]. Although it contains such bizarre ideas, quantum mechanics has
provided the basic framework for the most precise theories in human history.

One of the most inexplicable ideas that quantum mechanics introduces is
the inseparability of the universe, that is different parts of the universe are con-
nected in a way that no matter how far they are apart, they will still influence
each other. It is hard to say precisely what "influence" means here, and some
of my colleagues would wince at my use of the word. But I will show in
this thesis that there is something here which allows us to achieve classically
impossible tasks. In fact, the founders of quantum mechanics were unaware
of this implication of the theory, until the leading opponent, Albert Einstein
with his colleagues— Boris Podolsky and Nathan Rosen—proposed a thought
experiment to defeat quantum mechanics. In this thought experiment, using
the principle of locality, they were able to argue that quantum mechanics is
incomplete [2]. This thought experiment, using initials of the authors, is now
known as the EPR paradox.

Since then, the EPR paradox has raised many debates and divided the sci-
entific community into two groups, one who believed (and still believes) that
quantum mechanics is indeed incomplete and therefore, we need a more down-
to-earth theory, called Hidden variables theory. On the other hand, a second
group believes, due to the enormous success of the theory, that the EPR ar-
gument must contain some flaws or incorrect assumptions which are not true
for quantum mechanics. The most famous of these debates was between Ein-
stein and Niels Bohr [3]. The other notable person was Erwin Schrodinger,
who named the correlations between EPR pairs as entanglement [4; 5]. Nev-
ertheless, the problem was not settled until it came to John S. Bell others who
found that there are ways to distinguish between the predictions of local hid-
den variable (LHV) theories and quantum mechanics and formulated testable
inequalities based on these differences [6—8]. These inequalities are such that,
classical mechanics is bound to them but quantum mechanics violates them.
These inequalities are in general called Bell inequalities. Among these, an in-
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equality derived by J. Clauser, M. Horne, A. Shimony and R. A. Holt, named
for their initials the CHSH inequality is the most famous.

Currently the situation is that numerous experiments have violated these
inequalities in favor of quantum mechanics [9-16]. There are many interpre-
tations of quantum mechanics that suggest different possibilities, however, we
are almost certain that quantum mechanics violates local realism and allows
correlation between well separated parts of a system. These kinds of quantum
correlations between separated systems are referred to as entanglement. Thus,
it is easy to see that in the form of entanglement quantum mechanics offers
resources that are not present in classical systems and hence its uses in infor-
mation sciences can break the limitations of conventional information transfer,
cryptography and computation.

With this introduction it is easy to explain what we are after in this thesis.
This work consist of the experiments that I carried out during my PhD, two
of these have already formed part of my licentiate thesis. These experiments
can be categorized into two parts. The first part is related to Bell inequalities
and so called “non-local games" based on it, whereas the second part is about
experimental preparation and activation of Bound entanglement.

Bell inequalities are important, since these can indicate when a system
possesses non-classical properties and hence can be used to achieve classically
impossible tasks. Recently, it is shown that the application of graph theory
to Bell inequalities can bring new insights [17]. Using these techniques we
present in paper I that the CHSH inequality contains another even simpler
logical structure that can itself be represented by an inequality. We show that
there are two more inequalities similar to this inequality and we also present
the experimental violation of these inequalities.

In the paper II included with this thesis we will see how Bell inequalities
or more specifically the CHSH inequality can be viewed as non-local games.
Games in which two parties, say Alice and Bob receive some binary number x
and y from a referee and to win they have to reply with numbers a and b such
that a b = x Ay. Two types of this game can be defined according to the sta-
tistical distribution of received binary number x and y; if these are uniformly
distributed we call the game unbiased CHSH-game, and in the other case it
is called a biased CHSH-game. We will explore CHSH-game for both unbi-
ased and biased cases and see how quantum mechanics can help us to increase
probability of winning in these games [18]. For unbiased case we will see that
we do not always have a quantum advantage. Also, in this work we present a
remarkable application of CHSH-game, to the famous card game of contract
bridge. This, according to our knowledge, is the first real life application of
CHSH-game or quantum communication complexity protocol.

Paper III is another application of non-local games where using quantum
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inputs instead of classical ones used in CHSH-games, one can certify entan-
glement in a measurement device independent way. This method was recently
discovered in [19], and further elaborated in [20]. In our paper we present
an experimental realization of this method, and detect entanglement in a two-
qubit Werner state. Our results are in good agreement with the theory.

The other papers are about bound entanglement and its activation. In paper
IV, we produced four-partite bound entangled states, known as Smolin states,
using a noisy lossless quantum channel. Here, we started with a product of Bell
states, which undergoes some changes while transmitting through this error
channel which caused phase and bit flips. This error channel could transform
the input free entangled states from bound entangled states to separable states.
We investigated these states experimentally and were able to produce bound
entangled states that violated CHSH inequality.

In paper V and paper VI, we experimentally prepared a high fidelity
mixed three qubit polarization bound entangled state. This is the first exper-
imental realization of a three-qubit bound entangled state. In Paper VI, we
present activation scheme for this state with the help of a free entangled pair.
This is the cleanest activation experiment ever done. Remarkably, our exper-
iment also demonstrates the super additivity of quantum information sources,
where by source we mean entanglement resource. Our experiment shows that
considering two bound entangled states together can give you some free entan-
glement. It is like "something-out-of-nothing" or adding two zeros and getting
something more than zero.

1.1 Outline

The aim of this thesis is to give experimental and theoretical background of
the work described in the included papers. To do this, I have divided the thesis
into two parts. In part one, we will cover common theoretical and experimen-
tal background, and in the second part all the experiments are briefly described
with their specific background. More details can be found in the papers at-
tached to this thesis.

Part one is consisting of chapter 2 and 3. In chapter 2, I shall discuss the
theoretical concepts needed to understand the later chapters, whereas chapter
3, gives the common experimental background. Chapter 4, 5 and 6 are based
on paper I, II and III, and chapter 7 describes the experiments about bound
entanglement and its activation presented in paper IV, V and VL.
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2. Preliminary Concepts

This chapter serves as a brief theoretical background to the later work and
hence, introduces relevant terms and concepts. We first define pure and mixed
states, density operator and then introduce the concept of qubit—the simplest
non-trivial quantum system—and its state space. Then main topics like EPR
paradox, Bell inequalities and entanglement will be presented. The chapter
will be concluded with a brief introduction to the contextuality of quantum
mechanics.

2.1 Pure and Mixed States

The State of a physical system is one of the basic notions of physics and refers
to those aspects of a system with which we differentiate it from other similar
systems. For instance we humans, are all made of similar kind of particles,
however no two persons are exactly the same i.e. a system consisting of ele-
mentary particles can be configured to give various personalities or states. In
classical dynamics, often the state of a system can conveniently be represented
by a single point in the phase space. However in quantum mechanics things
are a bit different. One reason for this is the fact that quantum mechanics is
a probabilistic theory and these probabilities, in predicting the outcome of a
process, are usually not because of our lack of knowledge— as it is the case in
classical statistical mechanics—rather it is due to a fundamental feature of the
theory that cannot be avoided even in principle'. Nevertheless, there are situ-
ations when quantum mechanics allows maximal knowledge of the state of a
system. This is usually true just after a suitably chosen measurement. For ex-
ample, immediately after a spin measurement along z-direction we know with
certainty the state of the spin of the system along this direction. In such cases
the states are known as Pure state.

In quantum mechanics pure states are postulated to be unit vectors in a
complex vector space called Hilbert space®. That is, not every vector in Hilbert

'In this thesis, we only stick to the standard or Copenhagen interpretation and more or
less all the description will be given according to this point of view.

“More precisely Hilbert Space is a complex vector space such that an inner product
is defined for all pairs of its vectors and also the norm induced by this inner product
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space represents a unique physical state, rather each direction or complex ray
corresponds to a single unique physical state. This implies that a vector of
Hilbert space can be multiplied by a complex number without altering the state
it represents. Mathematically this fact can be expressed as,

W) ~cly) =A ey @.1)

where |y) is a vector in Hilbert space, ¢ € C and A, ¢ € R. Usually, the factor
‘A’ in the above equation is utilized to normalize the state vectors.

One should note here that this description was meant to describe the situa-
tions when there is no lack of knowledge about the state of a system. However,
in almost all practical situations we usually have statistical systems or ensem-
bles and we only know the probability with which a given system or member
could be in a number of possible pure states. Such states of a system are called
mixed states. Note that, in these cases the probabilities—if they have appropri-
ate meaning, as we will see in the next section—come into the picture because
of our ignorance or lack of knowledge and hence these states cannot be de-
scribed by vectors in Hilbert space, but a description of the state based on
density operator can be given.

2.2 The Density Operator

Consider an ensemble (or system consisting) of pure states, in which the prob-
ability of finding a member in a given state |y;) is p;, then the Density operator
p of the ensemble can be written as

k
p =Y pilwi)(wil. 2.2)
i=1

Here, three things should be noted. First, |y;) represent pure states and are
vectors in the associated Hilbert space. Secondly, as p; represent probabilities,
these are real numbers such that

Zp,- =1 and pi > 0. 2.3)

Thirdly, the decomposition given by the above equation is not unique, meaning
that we can mix different pure states to get the same density matrix. This fact
brings in some philosophical issues as one can imagine two or more observers
considering the same system as a mixture of different pure states. In such case
one can even ask if the probabilities, of the system to be found in a certain

makes it a complete metric space [21].
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pure states for one observer, will have some meaning for the other observer
who considers the system as a mixture of some other pure states. Since these
probabilities will not even be defined for the second observer. We will not be
considering such issues here in this thesis.

Also, note that in Eq. (2.2), the vectors |y;) need not to be orthonormal, in
such case the number of terms in Eq. (2.2), i.e. k can exceed the dimensionality
of the relevant Hilbert space[22].

For a pure state |y), the density operator reduces to

p=w)(y| (2.4)

since, for a pure state we have maximal knowledge of the system and hence all
pi will be zero except the one that corresponds to the relevant state. In this case
the density operator is also called the Projection operator, since it can project
a given state on to the 1-D subspace of |y). Also, for pure states, p> = p
and Tr (p?) = 1, where Tr() represents summation over diagonal element of a
matrix. Note that for mixed states 7r (p?) < 1 and p cannot be written in the
form given in Eq. (2.4). Therefore, the density operator also provides a way to
distinguish between pure and mixed states.

In short, the density operator is represented by a positive semi-definite!
Hermitian matrix? with unit trace. Note that the eigenvalues of a density op-
erator represent the probabilities of corresponding pure states and unit-trace
guarantees that these probabilities will sum to 1.

2.3 Qubit: The Simplest Quantum System

Quantum-bit or qu-bit is the quantum analogue of classical bit, one of the basic
concepts in classical information theory. The word Bit is derived from binary
digit and can be defined as the amount of information gained when learning the
state of a two dimensional (2-D) classical system. There are only two possible
states of a 2-D classical system; therefore a bit can only take two possible
values. These values are usually represented by 0 and 1.

Following the same line we can define a Qubit as the amount of informa-
tion gained when learning the state of a 2-D quantum system. Interestingly
this is very different compared to the classical case. Recall that in quantum
mechanics states of a system are represented by vectors in Hilbert space and
since it is a vector space therefore the sum of any two such vectors could also

'Meaning that eigenvalues can only be positive or zero.
2A complex square matrix A is called Hermitian matrix when it is equal to its conjugate
transpose, i.e. A = A",
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represent a legitimate yet different physical state. This is the famous super-
position principle and suggests that a 2-D quantum system can be configured
in infinitely many different physical states. Now, if we assume that the two
dimensions in Hilbert space are represented by two orthonormal state vector
|0) and |1) then we can write a general qubit |Q) as,

Q) = a[0) +B[1) (2.5)

where o, B € C. These basis states are often referred to as computational basis.
Furthermore, whenever a projective measurement is done along the state vector
|0) (or |1)) then, for the state in Eq. (2.5) the probability of getting an answer
as |0) (or |1)) will be |a|? (or | B|?). As the probabilities should add up to 1, so
we have following restriction on o and f3,

o+ [BIP=1 (2.6)

It will not be out of context to mention here that the power of quantum me-
chanics actually comes from this superposition principle. To see this, imagine
a unitary operation U carried out on a qubit as defined in Eq. (2.5), since it
is a linear combination of our basis vector |0) and |1), therefore the result of
this operation will be simultaneously calculated for both states. On the other
hand, the classical bit requires individual operations on both possible input
states. This suggests that a quantum computer will essentially have parallel
processing capabilities and is the main motivation for its invention.

2.4 Bloch Sphere: The State Space of a Qubit

We have seen that any type of state, pure or mixed, can be easily represented by
a density matrix and hence it is an appropriate tool to explore the state space of

10){0]

A

A

IS

Figure 2.1: The Bloch Ball: All points on the surface of the sphere represent
density matrices of pure states, whereas interior represent mixed states.
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a quantum system. A qubit is a 2-D quantum system and therefore its density
operator can be represented by a 2 x 2 Hermitian matrix with unit trace as

1 .
" >+z x—1y
=( 2" 2.7

p ( X411y % — ) @.7)
where x,y and z are real numbers. But a density matrix should also be semi-
definite. This requirement can be fulfilled easily if we demand that the product
of eigenvalues should be greater than 0. It can be checked that this condition
will lead to the following inequality

2
4y 4 < <;> 2.8)
This is interior of a sphere with unit diameter. Therefore the state space of a
qubit is a ball with diameter equal to 1 unit. This ball is called Bloch Ball.
All points on the surface of this ball represent pure states whereas the interior
represents mixed states.

On the Bloch ball different states of a qubit can be easily visualized. To
see this, note that due to the phase freedom we can parameterize Eq. (2.5) as,

|Q) = cos <g) |0) 4 ¢ sin (g) 1) (2.9

where 0 < 0 < 7w and 0 < ¢ < 27m. Now, if one identifies a state with this
0, ¢ and ¥ = % as spherical coordinate (,0,¢) of a point on a sphere then
the corresponding point on the Bloch ball will represent the density matrix of
that particular state. This point can be clarified further if one decompose the
density matrix in terms of Pauli matrices and identity matrix. To see this, note

that the set of Pauli matrices given as,

. (01 -~ (0 —i ~ (1 0
Gx—<10> Gy_<l. O> GZ—<O 1) (2.10)

and 1, (2 x 2 identity matrix), form a complete set of basis in the sense that
any 2 X 2 matrix can be written as linear combination of these four matrices.
Using this fact one can write a density matrix as,

1 -
p= E(Ilzqtr.c) (2.11)
where
X sin 0 cos ¢ 6y
F=2|y | =| sinOsing |, o=| 6 (2.12)

Z cos 0 G;
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Here 7 is known as a Bloch vector with |F| < 1, and equality hold for pure states
only.

From the above equation one can see clearly that the 8 and ¢ in Eq. (2.9)
define the state on the Bloch ball through the Bloch vector. The reader should
note that the orthogonal states on the Bloch sphere are directly opposite to each
other e.g. when 6 = 0°(180°) in Eq. (2.12) then the point on the Bloch sphere
represents the density matrix of the state |0) (|1)), which is the eigenstate of
6, matrix associated to the directions along the z-axis. Similarly 6, and 6,
matrices are associated to the directions along x and y axes respectively and
corresponding points where these axes cut the Bloch Ball represent density
matrices of their eigenstates. It is also interesting to note that center or the
origin of this space actually represents the completely mixed state %]lz.

2.5 Multi-Qubit Systems

In most experimental cases and also in this thesis we will encounter systems
consisting of more than one qubit. States of such quantum systems are de-
scribed by vectors in product Hilbert spaces. These spaces are tensor product
of individual qubit spaces, e.g. the tensor product of two qubit |Q); and |Q),
residing in the Hilbert spaces J! and H? will be H = H' @ H2. If the basis
vector of individual spaces are given as

0); = < (1) > 1), = ( (1) ) (2.13)

where i = 1,2 for qubit |Q); and |Q),, then the basis vector of the composite
systems will be,

1 0

0 1

100) =[0)1@[0)2= [ O =[0h @)= |
0 0

(2.14)

0 0

. 0 . 0
[10)= 1)1 ®[0)2= [ | H=helh=|
0 1

Using these basis vectors one can represent a general 2-qubit pure state as,

|Q12>:C()‘OO>+C1|01>+C2‘10>+C3|11> (2.15)
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where ¢; € C such that Z?:o |ci|?> = 1. Also, the equivalent operator U, repre-
senting the action of local single qubit operators A and B, will be a Kronecker
product of the two matrices A and B as,

awB ay B (2.16)

0—A0B— < app B ap1 B >
Note that the dimensionality of the product Hilbert space, in this case, is 4. In
general dimension of a composite qubit system consisting of N qubits will be
2V i.e. the dimension of product spaces grows exponentially. Likewise, a pure

states consisting of N qubits can be written as,

|QN> = C0|00...000> +Cl|00...001> + +CN,1|11...111>
N—1
=Y cilip)
i=0

where i(;) represent i written as a base 2 number and again we have the restric-
tion ¢; € C such that ¥ ' |c;|> = 1. Also note that the superposition principle
will still be applicable in such product spaces e.g. one could have a physical
state represented by the superposition of [00) and |11). Actually such states
are more interesting and lead to counter intuitive correlation between the indi-
vidual qubits as we will see in the next sections.

2.17)

2.6 Entangled States

In quantum mechanics, we can distinguish between two kind of states, entan-
gled states and separable states. An entangled state describes a system which
comprises different parts that have quantum correlation among them. Here by
quantum correlations we mean correlations that cannot be explained or simu-
lated by classical correlations [23]. Interestingly, these correlations exist even
if these parts are billions of light years apart. In general entangled states are
defined as those states which are not separable, whereas separable states are
those states that can be written as a convex sum of product states [24; 25].
Mathematically for separable states

pP=YriPi®p®..0p, (2.18)

where Y ; p; = 1 with p; > 0 and subscript 1 to n refer to different individ-
ual parts of the system. Moreover, when n = 2, in the above expression i.e.
for bipartite case entanglement and separability have straight forward mean-
ing. However in multi-partite case, a state can be entangled even if only
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two of its subsystems (or parts) are entangled and all other parts are sepa-
rable. Conversely one can have m-partite separability in an entangled state
when 1 < m < n. Therefore, we can distinguish two special cases here, when
m = 1 entanglement is sometimes referred to as genuine n-partite entangle-
ment. Whereas, in the case of m = n we get separable states. Note that this is
the only case when a state is not entangled. This fact also demonstrates that
entanglement with all of its bizarreness is a more common thing than separable
states.

As mentioned earlier, correlations offered in entangled states could some-
times be counter intuitive and paradoxical. In the following sections we shall
look at the famous EPR paradox where Einstein and coworkers noticed this
weirdness.

2.7 EPR Paradox

It has already been mentioned that quantum mechanics is a probabilistic theory
and that these probabilities are the fundamental feature of the theory. More-
over, according to standard or Copenhagen interpretation of quantum mechan-
ics non-commutating observables' cannot possess simultaneous definite mea-
surement’s results. The most common example of such non-commutating ob-
servables is position and momentum. According to quantum mechanics, it is
impossible to have the exact knowledge of both simultaneously. Meaning that
if one tries to find, say “exact position" of a particle by some measuring device
then, according to quantum mechanics the very act of this measurement makes
the momentum completely unpredictable. Similarly, position becomes com-
pletely uncertain if one measures the exact momentum of the particle. This as-
pect of quantum theory steered Einstein, Podolsky and Rosen (EPR), in 1935,
to propose that either,

1. The quantum-mechanical description of reality given by the wave func-
tion is incomplete.

Or

2. When the operators corresponding to two physical quantities do not
commute the two quantities cannot have simultaneous reality.

Then, with a puzzling thought experiment they abandoned the later possibility
and proposed that quantum mechanics is not a complete theory in the sense
that there are observables or elements of realities which cannot be described
by quantum mechanics in certain situations [2].

'Here by observables we mean physically measurable quantities.
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EPR’s conclusion is easier to follow if one considers the version of this
thought experiment proposed by David Bohm [1], rather than EPR original
example. Before presenting this thought experiment, we should look at the
meaning of a complete theory in this context. According to EPR the necessary
condition for a theory to be complete is that “every element of physical real-
ity must have a counterpart in the physical theory". Moreover, they proposed
sufficient condition for recognizing the element of physical reality as “If, with-
out in any way disturbing a system, we can predict with certainty (i.e., with
probability equal to unity) the value of a physical quantity, then there exists an
element of physical reality corresponding to this physical quantity".

Now, equipped with these definitions of completeness and reality, we can
consider the EPR-Bohm thought experiment. Imagine a system of two atoms
(or any 2-D quantum systems i.e. qubits) each having spin %, meaning that any
spin measurement, along a given direction will lead to a measurement’s result
of %h denoted as “spin up" or —%h denoted as “spin down" in that particular
direction. Suppose further that the two qubits or atoms are prepared in a state
of 0 total spin. An example of such state could be the singlet state given as,

| 1
IV)_\ﬁ

where |0) and |1) represent spin up and spin down respectively. According to
quantum mechanics, this state is such that if spin of the first qubit is measured
as up in some direction then the second qubit is predicted to be in a state of spin
down in the same direction with probability equal to 1. Now, imagine that after
preparation in this state, atoms or qubits fly in opposite direction and their dis-
tance is increasing with time, but they do not encounter any interactions which
involve their spin. When the atoms are sufficiently apart one can measure the
z-component of the spin for the first atom (i.e. Sgl) = %62(1)). Suppose that this
measurement reveals the result as “spin up" then we can immediately conclude
that the second atom will be in a state of “‘spin down", since the total spin of the
two atoms should be 0. This conclusion can be drawn even if the two atoms are
space-like separated before the measurement, in which case one cannot expect
any interaction between the atoms. Now, as we can predict the spin of second
atom without in any way disturbing it, therefore the z-component of spin for
the second atom i.e. S§2), is an element of reality according to EPR criterion.
But one can also choose to measure the x-component of spin for the first atom

(Jo1)—[10) ) 2.19)

1.e. S)(Cl), in this case if we follow the same lines of reasoning we can conclude
that the x-component of the spin for the second atom i.e. S)(Cz), is also an ele-
ment of reality according to EPR criterion. Since the state given by Eq. (2.19)
is rotationally invariant therefore, the same reasoning will lead us to conclude

that the spin components in all directions are element of reality for the sec-
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ond atom and if one does the measurement on the second atom then the same
will be true for the first atom. However, according to quantum mechanics, z
and x components of spin for a particle are non-commutating observables as
[Sz,Sy] # 0. Since, this thought experiment suggested that both x and z com-
ponents of spin are element of physical reality so, argument (2) above cannot
be true. This forced EPR to suggest that argument (1) is true i.e. quantum
mechanics is not a complete physical theory and a deeper theory could exist
that will eventually replace quantum mechanics.

The ERP paradox led to inconclusive discussion and debates among the
founding fathers of quantum mechanics and Einstein. The most famous among
these were the debates between Einstein and Bohr [3]. However, a remarkable
progress in this direction was made when John Stewart Bell, proposed an in-
equality whose experimental violation could favor quantum mechanics. This
is our next topic.

2.8 Bell Inequality

If one notices carefully, the thought experiment given in the last section is
based on the assumptions known as locality and realism. Therefore, before the
derivation of Bell inequality we shall look at the formal definitions of these
concepts.

Locality According to the principle of locality, “A physical process occur-
ring at one place cannot have any influence on other processes occurring at
locations outside its light cone". This principle is based on special relativity
which does not allow any type of information transfer greater than the speed
of light.

Realism The concept of realism can be stated as, “physical objects and their
properties pre-exist without the influence of an observer". Therefore, it means
that physical quantities have pre-defined values which are independent of the
measurement process. In this case, one can also identify pre-existing properties
of the objects as element of reality in EPR arguments.

Now, to derive the Bell inequality we shall approximately follow, Bell’s
1971 argument [26] given in [27]. Consider a source which emits a system
consisting of two-component that we call particles for simplicity. Here, we are
only concerned with properties of the particles that form a 2-D quantum system
and therefore, the possible outcomes of some measurement are represented as
+1. Suppose after emission each of these particle comes into the possession
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of two parties that we name as Alice and Bob. Moreover, consider that their
measurement devices can perform measurements with different settings. These
settings could be different directions for spin measurements in case of spin
system but we can keep the discussion general. We denote these settings as A;
and B; for first and second particle respectively.

Now, suppose that quantum mechanics is not complete and there exist
some other variables, which may determine the properties of the particle under
consideration. These variables are usually called hidden variables, since these
are unknown to us now but could be discovered in the future. We represent
all such variables collectively with a parameter A. These variables could be
characteristic features of the source generating the two particles and may also
belong to a probability space A, (i.e. A € A) from which it is sampled through
some probability distribution P(A ), during each emission. Therefore,

/ P(A)dA =1 (2.20)
A

where P(A) > 0. Then, the outcomes of both Alice and Bob measurement,
will be a consequence of their settings and the sampled parameter A, which
will also be responsible for any kind of correlation between the outcomes.

Suppose further that the two particles fly apart and arrive at the two dif-
ferent laboratories, where Alice and Bob are ready to measurement with their
devices as described above. We denote Alice measurement outcome by
a(Ap,A) = %1, since it can depend on the controllable parameter (measure-
ment’s setting) A, and hidden variables given by A. Similarly, Bob outcome
is denoted by b(By,A) = £1. Note that, here we have utilized the locality
assumption, because, we assumed that Alice’s outcome a(Ag,A) is dependent
only on her own setting A but not on Bob’s setting By, which should be true
according to the principle of locality if Alice and Bob are space-like separated
while choosing their settings. The same is true for Bob also. It should also be
noted here that we are assuming a deterministic hidden variable model, since
parameters a(Ao,A) and b(By, ) are not probabilities. Now, the correlation
between the measurements of Alice and Bob can be represented by a correla-
tion function of the form

E(Ao,By) = /Aa(Ao,)L) b(Bo, ) P(A) dA 2.21)

Suppose that Alice and Bob both perform measurement with two settings de-
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noted as Ay and A; for Alice and By and B; for Bob. Then

E(Ao,Bo) — E(Ao, B) Z/A[a(Ao,l) b(Bo,A) —a(Ao,A) b(B1,A)] P(A) dA

:/Aa(AO,JL) b(Bo,A)[1+a(A1,A) b(By,A)] P(A) dA
—/Aa(AO,QL) b(Bi,A)[1xa(A1,A) b(By,A)] P(A) dA

A careful reader might notice here that we have quietly used the assumption
of realism by considering that the parameters A do not depend on the setting
one choose i.e. say, Alice can choose between setting Ag or A; without affect-
ing A'. Also note that since, a(Ao,A) = +1 and b(Bo,A) = £1, Therefore,
|a(Ao,A)| =1 and |b(By,A)| = 1. But for our derivation we will use even
weaker restriction given as,

la(Ao, ) <1 [b(Bo, )| < 1 (2.22)

and, of course, the outcomes of the setting represented by A; and B are also
assumed to have similar restrictions. Now using these restriction and the trian-
gle inequality? we can write

IE (Ao, Bo) — E(Ao,B1)| < ’/Aa(Ao,x) b(Bo, A) [1 £a(A1, 1) b(By,A)] P(A) d/m'
+ ’/Aa(Ao,x) b(By, A) [1 £ a(A, A) b(Bo, )] P(A) dl'
g/Auia(Al,x) b(B1,1)] P(A) dA
+/A[1ia(A17k) b(Bo,A)] P(1) dA
—2+ [E(A1,B1) +E(A1,Bo)]

Note that here we have used the fact that

[1+a(A;,A) b(B1,A)] >0
and [l1+a(A,4) b(Bo,A)] >0
meaning that these are positive numbers for which |x| = x,V x € R™ is true.
Now since for any choice of the sign, the right most side of the inequality is
greater or equal to the left side, so we can write it as

|E(Ao,Bo) — E(Ao,B1)| + |E(A1,B1) + E(A1,Bo)| <2 (2.23)

'We also assume that they have free will to choose the settings they want and there is
nothing which force them to choose certain setting during a run
2The form of triangle inequality used is |x + (—y)| < |x|+| —y| Vx€R.
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Figure 2.2: A simplest possibility for the four setting that Alice and Bob can
choose to violate Bell inequality

Now, once again with the application of triangle inequality we arrive to the
final result,

|E(Ao,Bo) — E(Ao,B1) +E(A1,B1) + E(A1,Bo)| <2 (2.24)
This can also be written in the standard form as
—2 < E(Ao,Bo) —E(Ao,B1)+E(A1,B1) +E(A],By) <2 (2.25)

To see if quantum mechanics violates this inequality, consider the state
given in Eq. (2.19) and define Alice and Bob settings Ap and By as directions
in the Bloch sphere given by 64, = 4,.6 and 6p, = F',.0C respectively. It can
be shown that

E(Ao,By) = (w|6a, @ 63, | W) = —cos (6a,p,) (2.26)

This will be easy to follow, if one notices that the state given in Eq. (2.19), is
rotationally invariant and therefore one can rotate his reference frame such that
74, becomes the z-direction. Now, to calculate all the parameters in expression
(2.24), consider the four setting Ag, A|, Bo and B; define as in Fig. 2.2. In this
case expression (2.24) becomes

|—cos 6 +cos 30 — cos 6 —cos 0| < 2. (2.27)

The reader can check that for 8 = 45° we will get 24/2, much higher than
what can be obtained by a local realist hidden variables theory. Note that this
is the maximum violation that quantum mechanics can offer and it is known
as Tsirelson bound [28]. Since the invention of Bell inequalities, numerous
experiment have violated it, some can be found here [9-11; 13—15].

The proof that quantum mechanics is in conflict with local hidden vari-
ables assumption is known as Bell theorem and this particular form of the Bell
inequality is called as CHSH-J. Clauser, M. Horne, A. Shimony and R. A.
Holt—inequality [6].
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2.8.1 Bell States

The state given in Eq. (2.19), is special in the sense that it maximally violates
the Bell inequality shown in (2.25). Since we are dealing here with two qubit
states and the relevant Hilbert space is 4-dimensional therefore one can eas-
ily find four states which not only violate (2.25) maximally but also form an
orthonormal basis, these states are called Bell states and are as,

¥) = (100 ® 15— [1)4®[0)5) = L(l01) — [10))
W) = L (004 ®[1)5+|1)a®[0)5) = J5(101) +]10))

(2.28)
@) = L (10)4®10)5+[1)a®1)5) = 5(100) +[11))

[@7) = 55 (1004 ®0)5 — [1)a@[1)5) = J5(|00) —[11))

where subscript A and B explicitly shows that these states are consisting of
different parts. These states form an orthonormal basis for the state space of
two qubits and have the property that the measurement of one qubit determines
the value of the other qubit with probability equal to 1. Bell states are widely
used in quantum information and communication protocols. We also used such
states in all of our experiments. The next chapter will describe how one can
produce and measure such states.

It should also be noticed that there are other entangled states which can
violate Bell inequality though not maximally. Remarkably, some states do
violate Bell inequality in a much clearer fashion, as discovered by L. Hardy
[29] and presented in a very simple way in [30-32]. In the following we will
describe it briefly.

2.8.2 Hardy’s Proof of Non-locality

Suppose, like before, Alice can choose between two settings Ag and A; to
measure her dichotomic observables that can give outcomes 4-1. For simplicity
we can denote these measurement settings and outcomes as 1 and 2, and 0 and
1 respectively. This scenario can be imagined as Alice has two boxes and she
can choose to open one or the other, corresponding to which observable she
want to measure, then getting outcome 0 or 1 could correspond to finding a
box empty or full. Bob can also be considered to have similar boxes with
setting Bp — 3 and By — 4. Then P(0, 1], j) can represents the probability of
getting ith box empty and jth box full.
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Now, suppose that the boxes are prepared such that,

P(1,1]1,4) =0
P(1,12,3) =0 (2.29)
P(0,0[2,4) =0

Then it is easy to see that assigning predetermined values' to the boxes implies
that

P(1,1/1,3) =0. (2.30)

However, quantum mechanics can offer states such that Eq. (2.29) is true but
not Eq. (2.30). For instance,

|¢) =N (]00) — apo|aa)) (2.31)
where N is a normalization constant and,

@) =0 10)+B1) .

with inverse relations as,

|0) =aila) + Bilb)

’ ' 2.33)
1) =B la) — oc'|b) (

note that here * represent complex conjugation and (a|b) = 0. Now one can
calculate probabilities in (2.29) as,

P(L1[1,4)=0 = [(1,6]¢)]>=0
P(1,112,3)=0 = |(b,1]9)>=0 (2.34)
P(0,02,4)=0 = [(a,al¢)]>=0

However, calculating P(1,1[1,3) = |(1,1|¢)|* gives | — NosagBaBs|?, which
should not be possible in local hidden variables model.

Another important state that we produced and used in our experiment is
GHZ—-Greenberger, Horne, Zeilinger—state [33]. Interestingly this state pro-
vides a direct-non-statistical contradiction—between EPR argument and quan-
tum mechanics as we will see in the next section.

Note that local Hidden variable in space-like separated case should correspond to pre-
determined values since once qubits are space-like separated they cannot influence
each other and hence hidden variables are fixed.
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2.9 GHZ State: Bell Theorem without Inequalities

Any state of the type

|GHZ) = \2 (10)#N 4+ 1)=N) (2.35)

or its local rotations is known as GHZ state. Note that, N > 3 in the above
equation. Evidently, it is a superposition of two completely distinct states, and
hence sometimes also called Schrodinger’s cat state [4]. To see how it leads
to the contradiction with EPR argument we follow the lines given in [33], with
an equivalent GHZ state given as,

1
HZ) = —= ([0011)+[1100) ). 2.
|GHZ) ﬁ(IOO ) +[1100) ) (2.36)

A correlation function for this state, when measuring the individual qubits in
the direction 7i, 7,73 and 74, (see appendix A), is given as,

EGHZ(ﬁl,ﬁz,ﬁ3,ﬁ4) =cos 0y cos 0, cos 63 cos 6,

—sin 0y sin 0, sin 03 sin 04 cos (o1 + ¢ — O3 — P4)
(2.37)

If we restrict the measurement directions (7;), in the x-y plane i.e 6 = T then
this becomes

ECHZ(fi) fin, i3, h4) = —cos (@1 4 @2 — @3 — ¢4) (2.38)
Now consider the cases

When Pit+or— 03— s =0 = E (1,2, h3,4) = —1 (2.39)
When O1+¢r— 3 — s =n = E"7 (i), ip, i3, 74) = +1 (2.40)

Now assuming that the outcomes of the measurements not only depends on the
settings but also on the hidden variables A, as we did in the derivation of Bell
inequality and calling them as A, B,C and D respectively corresponding to the
parties possessing these qubit, we get

If Pr+02—¢3—94=0
then AL, 1) B(A, ) C(A,03) D(A, ) = —1 (2.41)
andIf Q1+ —¢3—qu=m
then A(A,¢1) B(A,92) C(A,¢3) D(A,94) = +1 (2.42)
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There are numbers of possibility for the condition in Eq. (2.41), like

A(A,0) B(A,0) C(A,0) D(A,0) = —1 (2.43)
A(%,9) B(4,0) C(A,¢) D(A,0) = —1 (2.44)
A(%,9) B(4,0) C(2,0) D(A,¢) = —1 (2.45)
A(4,29) B(4,0) C(A,¢) D(A,¢) = —1 (2.46)

Now, multiplying first three of these equation and noticing that A(A,¢) =
+1 = |A(A,9)> = 1 and same for B,C and D, and comparing the result
with Eq. (2.46) we get

A(A,2¢) =A(A,0) = constant for all ¢. (2.47)

This innocent looking equation has big implications, for instance measuring
this qubit in any direction, including 0 and 7 will give the same outcome! To
further investigate the contradiction notice that the condition of Eq. (2.42) also
implies that

A(A,¢+m) B(A,0) C(A,¢) D(A,0) = +1 (2.48)

comparing it with Eq. (2.44) gives,
AX, 9 +7m)=—-A(A,9) (2.49)

which seems logical in physical respect but contradict with Eq. (2.47). This
contradiction implies that local hidden variables (LHV) models cannot explain
the strong correlation, shown in Eq. (2.39) and (2.40), that a GHZ state offers,
assuming that all the four qubits are space-like separated and the parties can
choose their measurements freely (i.e. assuming realism and free will). These
states of affairs clearly demonstrate the non-locality of quantum mechanics
and nature.

In the above analysis, B(0) was never altered and therefore indicate that
the GHZ argument can still be valid for 3 qubit GHZ state though cannot be
run for a 2 qubit states! as, Bell himself has proposed a LHV model that can
reproduced all the correlation observed when both qubit of a singlet state (like
in Eq. (2.19)) are measured in Ay = 71y or 1] = —7 basis [33].

In the end of this chapter we will look at another peculiar aspect of quan-
tum mechanics that is known as contextuality. Interestingly, this weird aspect
of quantum mechanics can be observed even without entanglement as Niels
Bohr anticipated.

!Greenberger, Horne, Zeilinger (GHZ) were actually able to form a GHZ like argument
for two qubits that were made entangled through entanglement swapping, therefore the
experiment actually begins with four qubits [34].
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2.10 Contextuality and Quantum Mechanics

In the last sections we saw that quantum mechanics exhibit non-local correla-
tions between well separated subsystems. Interested reader can find an easy to
take explanation of these thought experiments in [35; 36]. Here, in this section
we are going to see another kind of weirdness of qunatum mechanics. If one
assumes that quantum mechanics gives the correct description of the world
then our world is contextual also. Meaning that, measurements in different or-
der can lead to different outcomes. To define it more precisely, imagine three
observables A, B and C such that A commutes with both B and C, but B and
C do not commute. In this case a contextual theory will predict that measur-
ing A together with B can lead to different outcome compared to measuring
A together with C, or in other words, the outcome of observable A depends
on the context in which it is measured. Explaining such behavior using the
standard interpretation of quantum mechanics is simple, one can argue that, as
the two operators (B and C) do not commute, so measuring A with B collapses
the wave function in a different way compared to the collapse caused by the
measurement of A with C.

In this thesis we are not concerned with the concept of contextuality, there-
fore I shall not go in details here. We just briefly describe how it arises in
quantum mechanics, for this we follow the simple Hardy like proof given in
[30] and experimentally realized in [37].

Consider five boxes that we call as box 1,2,3,4 and 5. Either of these
could be empty or full that we represents as 0 or 1 respectively. Now imagine
that these boxes are prepared such that

P(0,1]1,2)+ P(0,1]2,3) = 1 (2.50)
P(0,1/3,4)+ P(0,1]4,5) = 1 @2.51)

where P(0, 1|, j) represents the probability of getting ith box empty and jth
box full. Note that according to Eq. (2.50) when box 2 is full then P(0,1]2,3) =
0 and we must have P(0,1]1,2) = 1 to satisfy the Eq. (2.50), i.e. box 1 must be
empty, therefore both boxes cannot be full togetheri.e. P(1,1|1,2) =0. On the
other hand when box 2 is empty then we must have Box 3 full or equivalently
both boxes should not be empty together i.e. P(0,0/2,3) = 0. Similarly, Eq.
(2.51) implies that box 3 and 4 cannot be both full together and box 4 and 5
cannot be empty together i.e.P(1,1|3,4) = 0 and P(0,0(4,5) = 0.

Now assuming that the boxes states (full or empty) is predetermined or
fixed before opening it, will lead to conclude that

P(0,1/5,1) =0 (2.52)
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However, this can be violated if one prepares a three level quantum system or
a qutrit in the state given as,

1
|W>=$ (o) +11)+12)) (2.53)

and represent the projectors of the following vectors as the dichotomic observ-
ables corresponding to measuring if a box is full or empty.

M) = (10)-ID+12))

v2) == ([0} +11))

vs) = ) 220
va) =)

) = (1)+12)

Note that each of the vectors given in the above list is orthogonal to its adjacent
vectors, and hence their projectors are compatible. To see that the state given in
Eq. (2.53) obeys the preparation conditions given in Eq. (2.50), (2.51), notice
that these vectors are constructed in a way that the projector or observable
represented by |viy1)(Vi1| has eigenvectors |vi1) and |v;) with eigenvalues
1, and O respectively, since |v;.1) and |v;) are orthogonal. Therefore,

PO, 1i,i+1) = [(vir1|w)[? (2.55)

where i+ 1 =1, when i = 5. This way we actually introduce a context to each
of our measurements, for instance, the state (full or empty) of the Box 2 can be
measured together with the state of box 1 or box 3 corresponding to the choice
of the operator |v2) (V2| or |v3)(Vvs| respectively.

Now, it is easy to see that our state Eq. (2.53), fulfills the preparation
conditions Eq. (2.50), (2.51), however

P(0,1]5,1) = ](vl\y/)F:é (2.56)
This is in clear contradiction to Eq. (2.52) and shows that we cannot preas-
sign values to outcomes (realism), or measuring one observable in the context
of different observables is not equivalent (contextuality). Another important
point is that the violation of Bell inequalities could also be considered as the
violation of non-contextuality inequalities, since in order to violate a Bell in-
equality Alice needs to perform her measurement in two different contexts,
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namely which one of the two possible observables Bob decided to measure i.e.
correlations of the types E(Ag,By) or E(Ag,B;). Due to this contextuality is
considered as a more general property of nature, whereas Bell inequality vio-
lation is just a specific example of it. Moreover, in a way Bell tests are much
cleaner, at least experimentally, since locality can be arranged and seems to
ensure context-independence that has been a problem in many experiments
trying to verify contextuality of quantum mechanics. Nevertheless, violation
of a Bell inequality implies non-locality provided that we don’t want to give up
realism, due to this reason in almost all interpretations of quantum mechanics
one has to sacrifice one of these (realism or locality) in order to keep the other.

The proof presented here is a particular violation of famous contextuality
inequality know as KCBS inequality due to its inventors Alexander A. Kly-
achko, M. Ali Can, Sinem Binicioglu , and Alexander S. Shumovsky, given
as,

P(0,1]1,2) 4 P(0,1[2,3) + P(0,1]3,4) + P(0,1]4,5)
NCHV QM (2.57)
+P(0,15,1) < 2<+V5~2.236.

here NCHV and QM represent upper bound for non-contextual hidden vari-
ables theories and quantum mechanics respectively.




3. Experimental Background

All the experiments presented in this thesis are realized using photonic qubits
and optical setups. To facilitate understanding of these experiments, a brief
introduction to the experimental background will be given in this chapter.

In the previous chapter, a 2-D quantum system or a qubit is introduced
without referring to any physical system for its realization. Here, we present a
polarization implementation of the qubit together with its manipulation tech-
niques using optical components. Then the main work horse, a setup producing
polarization entangled photon’s pairs will be explained. In the end we will also
describe how such a two-photon source can be used to build a setup producing
four-photon GHZ entanglement states.

3.1 Qubits: A Polarization Implementation

Any 2-dimensional quantum system—or part of a high dimensional system
when it is effectively decoupled from the rest—can be used to realize a qubit
e.g. nuclear spin, trapped ion, quantum dot, electron spin etc. In our experi-
ments we used photon’s polarization to implement a qubit. One might suspect
that being a spin-1 particle it could have three possible states corresponding
to the eigenvalues —1, 0 and +1. However, due to the consequences of gauge
freedom only transverse polarized photons can exist as free observable parti-
cles. Thus, one can effectively treat polarization of every single photon as a
2-level quantum system, which is a fruitful realization of a qubit.

This implementation offers a number of advantages, for instance, polarized
photons can be easily generated, measured, prepared to exhibit quantum super-
position and manipulated using wave-plates. Moreover photons are chargeless
particles that do not interact with each other or with the environment easily.
This makes them robust against decoherence and ideal for communication pur-
poses.

Now being a qubit, all possible states or state space of a photon’s polariza-
tion will be the Bloch sphere described in the previous chapter. In this case, the
eigenvectors of 6, operator are also known as horizontal and vertical polariza-
tions that we represent by the state vectors |H) and |V) respectively. These two
vectors define our default or computational basis. Table 3.1 gives the eigen-

25
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Table 3.1: Pauli matrices with their eigenvectors and eigenvalues.

Observable  Eigenvalues Eigenvectors
6, +1 |H)
-1 V)
O: +1 [+) =5 (IH) +V))
-1 =)= S (H)—=|V))
8, 1 L) = L(|H) +i V)
-1 R) = J5(|H) —i|V))

vector and eigenvalues of all three mutually unbiased bases that correspond to
the three orthogonal axes on the Bloch ball.

The reader should note here that with the definition of |L) we have chosen
the following convention, if the electric field vector rotating counter clockwise
in time while looking towards the source then the light is called left circularly
polarized" and given by the equation shown in the above table. This conven-
tion also defines the sense of positive rotation for our wave-plates or all other
such components.

3.2 Manipulation of Polarization Qubit

This section gives a brief description of the main optical components that we
used to alter the polarization state of photons in our experiments. The simplest
among these is a polarizer.

3.2.1 Polarizers

An ideal polarizer is an optical component that lets through only a specific
polarization. Therefore, it can change mixed states to pure states. In our ex-
periments we used absorptive linear polarizers. These are the polarizers that
absorb all other polarizations while passing through only a particular linear
polarization. In the lab we used the convention that when a polarizer is at 0’ it
only lets through vertical polarization and hence its action can be represented

li.e. polarization will be given by left or right hand rule while thumb is point towards
the source. This is called “from the point of view of receiver" convention and is
opposite to what is usually used in particle physics.
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by
Pol(OzO):<8 ?) (3.1)

A linear polarizer can be used to prepare photons in any pure state on the z-x
plane of the Bloch sphere by properly selecting its orientation that we denote
by an angle 6. In this case its matrix representation can be obtained by rotating
our lab frame to a frame in which the polarizer is at 0" where its action is given
by Eq. (3.1), and then rotate back to the lab frame. Mathematically this will
give

Pol(0) =R(—6) Pol(6) R(0). (3.2)

Where R(6) represents passive rotation in counter clockwise direction i.e.

(3.3)

R(G):< cosf sinf )

—sin® cos@

Now, using Egs. (3.1) and (3.3) in Eq. (3.2), one can calculate easily that the
action of a polarizer at an angle 6 from vertical, in the lab frame will be

(3.4)

Pol(6) = < sin“ 0 sin@ cos @ )

—sin6 cos@ cos2 6

Polarizers can be made of thin films of some crystal like Tourmaline, Her-
apathite etc., or with elongated metallic nano-particles embedded on glass sub-
strates. In the latter case, they can have high extinction ratio and wide working
wavelength range. The polarizers used in experiments are of this type.

3.2.2 Wave-Plates

Wave-plates or phase retarders are the most important components for ma-
nipulating photon’s polarization. These are the optical devices with which—
by choosing their appropriate orientations perpendicular to the transmitting
beam—one can transform a polarization state to another one. In the simplest
case, when a wave-plate oriented at an angle 8 = 0" , it produces a phase shift
(¢) between horizontal and vertical polarizations and therefore its action on
the input state can be represented by the matrix

W(6=0,¢)= ( (1) e?¢ ) (3.5)

There are two main types depending on whether ¢ = 7 or ¢ = &, which are
known as Quarter wave-plates (QWP) and Half wave-plate (HWP) respec-
tively. Note that with a suitable combination of these wave-plates one can
realize any single qubit quantum gate [38].
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The wave-plates used in the experiments are made of a birefringent ma-
terial known as Quartz. Remember that the refractive index of a birefringent
material depends on the polarization and propagation direction of the light in
the material. Besides its immense availability and optical properties, quartz has
two good characteristics which make it the first choice for constructing wave-
plates. Firstly, it is a uniaxial crystal, meaning that there is a special direction
in the crystal such that light propagating in this direction with any polariza-
tion experiences only one refractive index. This particular direction is called
optical axis. There is only one such direction therefore the material is called
uniaxial. On the other hand, if light propagates in a direction perpendicular to
the optical axis it encounters two different refractive indices according to the
polarization (horizontal or vertical), and the second good thing about quartz is
that there is not a big difference between these refractive indices, which means
a longer length of the material will be required to create a desire phase shift,
this makes the quartz crystals a more practical choice.

Therefore, to construct a wave-plate, one can cut a quarts slice in a way that
light propagate perpendicular to the optical axis when transmitting through
it, as shown in the Fig. 3.1. In this case phase shift ¢ introduced between
horizontal and vertical polarization will be

o= ZEgt. (3.6)

A
where ¢ is the thickness of the crystal that light traverse and An represents
birefringence or difference between the two refractive indices i.e. An=n,—n,.
For quartz, n, > n, = An > 0, therefore quartz is a positive uniaxial crystal
and in this case optical axis is actually slow axis. This also means that ¢ > 0

Figure 3.1: Fast and slow axis of a quartz wave-plate marked as n, and n, re-
spectively. The small arrow explains the sense of positive rotation in the lab
frame.
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and hence we can call our wave-plates as phase retarders, since the time-term
has negative sign in the wave equation.

In the lab we use the convention that 8 = 0° or no rotation corresponds to
slow axis vertical and a wave-plates action in this case is given by Eq. (3.5).
Matrix representation for arbitrary orientation angle 6, can be obtained by
rotating lab frame to the frame where wave-plate is at 0°, get the phase shift as
in Eq. (3.5) and then rotate back to the lab frame again, as we did in case of
polarizer. One can check that this will lead to

cos’ @ +e9sin@  sin@ cosO(1—e?)
W(6.9)= < sin@ cosO(1 —e?)  sin*6+e?cos?O > S
Therefore, matrix representations of HWP and QWP will be
_ [ cos(20)  sin(20)
W(6,7) = HWP(9) = ( sin(20) —cos(20) (3-8)

T, ~ (141i) ( 1—icos(20) —isin(20)
W(G’E) = QWP(6) = 2 ( —isin(20) 1+i cos(20) ) (3.9)

Note that HWP(6) is not only unitary but Hermitian also, this makes it self-
inverse.

Some useful configurations of these wave-plates with which we can rotate
a given input state along x, y and z-axis on the Bloch sphere are as follows.

e Rotation along x-axis,

T

QWP(%) HWP(6) QWP(3))
_( cos(28)  —isin(20)
N < —isin(20)  cos(26) ) (3.10)

e Rotation along y-axis,

HWP(0) HWP(6)

_( cos(26) sin(26)
N ( —sin(20) cos(26) > (3.11)
e Rotation along z-axis,
QWP(Z) HWP(6) QWP()

1 0
= ( 0 ei(40+m) > 3.12)
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Figure 3.2: Beam splitter (BS).

Where unimportant overall phases have been neglected. Also, note that these
configurations are practically simpler but not unique. Moreover, HWP(g),
HWP(7) and HWP(0) can be used to realized Hadamard, Pauli-X(bit flip) and
Pauli-Z gates respectively, whereas one way to realize Pauli-Y gate is QWP(7)
HWP(—7) QWP(0).

3.2.3 Beam Splitters

Beam splitter (BS) is an optical device that can split an input light field into
two or more output fields. Conversely, it can also be used to blend two or
more fields to get a single or multiple outputs and therefore, it is an essential
component for interferometry.

BSs are available in different types and shapes depending on their working
principle and application’s demands. The most common types are beam split-
ter plates and cubes. In our experiments we used cubic BSs, which are made
of two right angled prisms glued together. One of these prism’s hypotenuse
surface has dielectric coating which determines the splitting ratio. Also, in
some cases this prism should preferentially be used as input and therefore has
a small dot to distinguish it from the other.

To write the transformation matrix of a lossless BS, consider two inputs
and two outputs fields on the ports of a BS as shown in the Fig. 3.2. Here, we
represent amplitude of individual field modes by boson annihilation operators
di, do, and ds, dy for inputs and outputs respectively [39; 40]. In general a
lossless BS transforms these inputs to the outputs as

a Ao Aol as
n — A 3.13
(612) <A10 A11><a4> ©-13)
Where A;; are elements of the matrix A bearing this transformation. Note that,
operators corresponding to individual field modes should satisfy commutation
relation [&i,dj] = §;j. A standard way to fulfill this requirement is to assume

that the transformation is unitary since commutators are preserved by unitary
transformations. Therefore, with this condition matrix A is unitary and can be
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parameterized as

. 91 0 i94ino
b "% cos €' sin
A=e ( —e 5in@ e P cosO > ' (3-14)

Here, ¢/ is global phase and can be neglected without loss of generality.
Hence, a lossless BS transforms two input modes polarized in the same di-
rection to the output modes according to

i9c0s0  ¢®sing 5
1 €' cos e'% sin as
< 5 ) - ( —e 26in® e cosh ) < A ) G.15)

Moreover, T = cos?> 6, and r = 1 — T = sin? @ can respectively be recognized
as transmissivity and reflectivity of the BS. Therefore, for a 50-50 BS we will

have
aj 1 e e as

In our experiment we used 50-50 BSs which transform inputs with a given
polarization—say, horizontal-to the outputs according to the above expression.
Modes of the field amplitudes with orthogonal polarization will also transform
in a similar manner, however with different phases in general. That is, with two
orthogonal polarizations incident on a BS, there will be four kinds of phases
involved. One of these can be taken as a reference and then other three can
be compensated by phase-plates, which are usually QWP or HWP at 0° and
tilted—not rotated—along vertical direction.

In case of a symmetric lossless 50-50 BS (i.e. ¢; =0 and ¢, = 7 ) we can
write this transformation as

ai 1 1 as
G e

3.2.4 Polarizing Beam Splitters

D> D

Polarizing beam splitter (PBS) is a similar sort of optical component like a BS
described in the last section, however, a PBS splits or blends input fields in a
way which depends on their polarizations.

PBSs used in our experiments are cubic PBSs with two inputs and two
outputs ports and completely polarizing. That is, in ideal case, they per-
fectly transmit horizontally polarized light while reflecting vertical polariza-
tion. Therefore, if desired, they can also be used like a polarizer. Moreover,
this way they can map polarization to path, since horizontal and vertical polar-
ization takes different paths after passing through a PBS. In this respect, a PBS
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Figure 3.3: Polarization Beam-splitter cube.

can be used to perform 6, measurement also, since its output ports correspond
to eigenvectors |H) and |V).

One can use transformation given in Exp. (3.15) to write PBS’s trans-
formation explicitly, where for horizontal polarization we have 6 = 0 and for
vertical polarization 6 = 7.

A i(Pl A

( “1n > - ( e 0 > ( T3 ) (3.18)
dax g 0 e asH
ary 0 el asy

()~ (2 ()

Note that like a BS we have an extra phase in this case also—while using both
of the input ports with arbitrary polarization—which can easily be compensated
by a phase plate at one of the outputs. However, in most of the cases this is not
required.

3.2.5 Optical Fibers

In all of our experiments whenever possible, we transmit photons from one
place to the other via propagating them through the air, since it is not birefrin-
gent and losses are negligible. However, this is not always possible; in such
cases optical fibers are used.

Optical fibers are thin tubes that are not necessarily hollow from inside and
usually made of silica. There are two distinguishable regions in a fiber, known
as core and cladding. The core is the central region of a fiber and has slightly
higher refractive index than the cladding that surrounds the core. Due to this
refractive index difference total internal reflection is possible and therefore
once light inserted into the fiber core it can remain there and may reach to the
other end easily.

In these experiments we used two types of fibers; single mode fibers and
multi-mode fibers. As the name implies, single mode fibers have small core
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size which only allow the propagation of the first mode and therefore are per-
fect for mode selection. Also, because of their small core size, coupling light
into these fibers is much harder. We used these fibers for mode selection and
to transport photons before polarization measurement. Since silica can be-
comes slightly birefringent under stress and bends, therefore one has to be
careful with these fibers, they should not move or stressed during operation.
Nevertheless, when photons propagate through these fibers, their polarization
is altered and has to be compensated. This is usually accomplished through
manual polarization controllers.

In our experiments we used three pads homemade polarization controllers.
Each of these pads has one-turn, two-turns and one-turn loop of the fiber such
that they can act like QWP, HWP and QWP respectively and therefore, should
be able to undo any polarization rotation. However, it is quite hard by only
using polarization controller. Nonetheless, it becomes easy if one uses a phase
plate together with it.

On the other hand, we used multi-mode fibers when we need to transport
photons but we don’t care about its polarization e.g. when bringing them to the
detectors. Multi-modes fiber have comparably bigger cores and offer several
modes. Multi-mode fiber used in these experiments had core size of about 50
micrometers.

3.2.6 Single Photon Detectors

For the detection of single photons we used silicon-based avalanche photo-
diodes (APD). These detectors were operated in Geiger mode, a mode where
they can continuously detect photons, meaning that no trigger pulses are needed.
In this mode, APDs are reverse biased well above the breakdown voltage and
to avoid high current flow a special quenching circuit is used. Whenever a pho-
ton is absorbed in the sensitive region it produces an electron-hole pair which
due to high electric field creates many more electro-hole pairs on their way.
This leads to abruptly high avalanche current that can be easily detected. This
detection reduces the biased voltage that in turn removes the electron-holes
pairs or quenches the circuit. Then the bias can be increased again to make the
APD ready for the next detection.

Sometimes thermal excitations can lead to the generation of a single electron-
hole pair which through avalanche mechanism abruptly triggers the device on
and hence results in a false detection, this type of detections often refers as
dark counts.

The detectors that we used for the experiments had detection efficiencies
of about 55%. Dead time of around 50 nsec and TTL output signal with 20
nsec width.
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Figure 3.4: A Polarization Analyzer, used to measure photons polarization in
different bases.

3.2.7 Polarization Analysis

As mentioned earlier one of the advantages of implementing qubit with the
photon’s polarization is that it can be simply measured by polarization ana-
lyzer, an optical device consists of wave-plates and/or polarizers. In our ex-
periments we used a PBS together with wave-plates to analyze photon’s polar-
ization. By only using a PBS one can perform 6, measurement. To measure
the states in other bases we used the fact that a combination of HWP and a
QWP can rotate |H) to any other pure qubit state [38], or conversely any pure
qubit state can be rotated to |H) using these plates. Therefore, the configura-
tion of the HWP, QWP and PBS-as shown in Fig. 3.4—can be used to analyze
polarization state of a photon in any bases. Different settings of HWP and
QWP leading to the projection of a given state onto the eigenvectors of Pauli
matrices are given in table 3.2.

Table 3.2: Settings of HWP and QWP, with a configuration shown in Fig. 3.4,
that can map output ports of a PBS to the projectors formed by the eigenvectors
of Pauli matrices.

HWP QWP PBS Output

Projections @ @ Port
|H)(H | 0° 0° H
[VY(V| 0° 0° 14
+) (+| 225 0 H
|—)(—| 22.5° 0° 14
|L)(L| 0° —45° H
|R)(R| 0° —45° 1%




3.3.  Polarization Entangled Photons Source 35

When a photon traverses through the analyzer—a combination of HWP,
QWP and PBS—then its state is projected onto a state given by the specific
setting of these wave-plates and therefore after the PBS the polarization state
of a photon is not important. The purpose of the fiber coupler mark as FC in
the figure is just to bring these photons to the single photon detectors (SPDs),
and thus it can be done via multi-mode fibers.

3.3 Polarization Entangled Photons Source

In each of the experiments described here, we used one or more sources that
produce polarization entangled photons pairs. These pairs are first generated
through a non-linear process called spontaneous parametric down conversion
(SPDC), and then entangled with an optical setup that will be described in this
section. The main advantage of using SPDC process is that it always produces
photons in pair, which are correlated and can easily be entangled. The first
stage of building such a polarization entangled photons source is preparation
of the pump laser.

3.3.1 Preparation of the Pump Laser

Sources used in all the experiments create polarization entangled photon pairs
centered at 780nm. To generate such pairs we started with a tunable mode-
locked Ti:Sapphire laser, producing around 140 femto-second long pulses with
a repetition rate of 80MHz. The laser was set at 780nm and yield ~8nm spec-
tral width. The output was horizontally polarized with an available average
power of ~4W. The laser’s beam quality was very good giving M? factor very
close to be 1.

) [ ,

L, BIBO L.

DM

Figure 3.5: Preparation of pump laser for SPDC at 390nm, through SHG via
BIBO crystal. L; and L, are lenses, whereas BM and DM are broadband and
dichroic mirrors respectively.
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This laser beam is then focused with a 100mm focal length lens onto a
Imm thick non-linear crystal “Bismuth triborate" (BiB3Og)—that usually called
BIBO—for second harmonic generation(SHG) or frequency doubling. This
process yields vertically polarized ultraviolet (UV) pulses with around 1.5W
average power, leading to the conversion efficiency of 37.5%. The spectral
width was about 1.1nm centered at 390nm. Moreover, due to the walk-off in
BIBO crystal beam quality was reduced and gave M> = 1.70 and M? = 1.25
along horizontal and vertical directions respectively i.e. this process rendered
the beam shape elliptical. This beam was then collimated again using 100mm
focal length lens as depicted in Fig. 3.5.

These collimated UV pulses contained some residual 780nm pump which
is really crucial to eliminate since it can mixed up with the down-converted
light and reduce the entanglement visibility. To remove this noise a series of
dichroic mirrors is used. These mirrors are made to reflect a band of frequen-
cies around 390nm with high efficiency, while keeping the transmission very
high for 780nm. Also, they are non-absorbing with good surface quality; this
assures long lasting operation without burning even with high intensity UV
light. As a result one can attenuate undesired frequencies >100dB easily with
few mirrors. Nevertheless, a non-collinear SPDC configuration is used, as de-
scribed in the next section, which further decreases the chance of getting a
pump photon in the down-conversion path.

3.3.2 Spontaneous Parametric Down-conversion (SPDC)

A very efficient and common technique presently used to generate entangled
photons is spontaneous parametric down conversion (SPDC), where one ex-
ploits non-linear response of the dielectric polarization of the optical material
under influence of strong light field. Since, with sufficiently high light inten-
sity dielectric polarization is not any more proportional to electric field of the
incident light, instead it is given by the relation

3 3 3
1 2 3
P=aY xVEi+e Y X0EE+e Y XinEEE... (320

Jj=1 Jik=1 jk, =1

Here P is dielectric polarization density (i.e. average dipole moment per unit
volume), & is vacuum permittivity, and y is optical susceptibility tensor. When
the interacting material have a large second order non-linearity (%)), there is
a probability—proportional to y (?)—that a pump photon may split into two pho-
tons with lower energy, usually called signal and idler. Note that the conver-
sion is spontaneous, and material role is passive—i.e. no energy is exchanged—
hence the name “‘spontaneous parametric down-conversion". Thus, momentum
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Figure 3.6: Type I spontaneous parametric down conversion in BBO.

and energy of the photons should be conserved by their own, implying that
k_;?:]?c"i‘lgz ) wp:wv+wi- (321)

Where the subscripts p, s and i refer to pump, signal and idler respectively.
These are often called phase matching conditions. Note that, due to these
conditions down-converted photon have strong correlations and hence can be
entangled in a number ways e.g. polarization, time, path, angular momentum
etc.

In this thesis we are only concerned with photons entangled in polarization
and with degenerate energies i.e. ®; = @;. There are a number of possible
configurations, types and material for obtaining this through SPDC. We used
a non-linear crystal called Beta-Barium Borate (8 —BaB;0;), also known as
BBO. It is a uniaxial crystal and can fulfill phase matching conditions (Eq.
(3.21)) with required degeneracy in two ways that are known as type I and type
II. In type I an extraordinary polarized pump photon splits into two ordinary
polarized signal and idler, that appear in a conical pattern. A real photograph
taken by a single photon sensitive camera is shown in Fig. 3.6. We are not
much concerned with this type here and hence do not go in details.

Figure 3.7: Type II spontaneous parametric down conversion in non-colinear
configuration.
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Figure 3.8: Different configuration in type II SPDC (a) Non-collinear.
(b) Collinear. (¢) Beam-like.

In type II version, an extraordinary polarized pump photon splits into an or-
dinary and an extraordinary polarized signal and idler, that in this case, emerge
as individual cones as shown in Fig. 3.6. There are actually three different con-
figurations with which one can obtain degenerate correlated photons in type 11
version, these are known as non-collinear, collinear, and beam like. A real
photograph of all three configurations is shown in Fig. 3.8. Sources used in
the experiments are built in the non-collinear configuration shown in Fig. 3.7
or Fig. 3.8(a), which was first implemented in [41].

In type II non-collinear case it is easy to see how the entanglement arises.
Note that, upper and lower rings in Fig. 3.8 (a) have opposite polarizations
that can be made to coincide with horizontal and vertical polarizations in the
lab frame. Now, if one couples only a single mode centered in each of the
crossing, then these photons should reveal opposite polarizations i.e. if the
photon from first crossing is horizontally polarized then the photon coming
from the other crossing, should have vertical polarization. Moreover, this will
be true in any basis. If we also assume here that except polarization, these
photons are indistinguishable in all other degrees of freedom, then as such
these photons are entangled. Mathematically, if we denote amplitude of each
of the field modes by the operators @ and b then the simplified interaction
Hamiltonian can be written as

Ay = &' (a},b}, — alb},) + xe " (auby — ayby) (3.22)

Note that here the pump field is assumed to be intense and hence described
classically by a real valued coupling constant K proportional to the pump in-
tensity and (2, and ¢ is a general phase between the two processes [42; 43].
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iAt/h

Acting with the time evolution operator U = e on the vacuum state leads

to

n

|y) o< Z (tanh )" Z (n—m)g,my)|my,(n—m)y). (3.23)
n=0

Here 7 = k¢ /h, and the numbers (n — m) and m in the first ket with subscripts
H and V represent numbers of photons in mode d@ with corresponding polar-
ization, whereas second ket represent photons in mode b. Here we are only
interested in the case when n = 1, putting this value in the above expression
gives

|l[/> o< (tanh‘c)(]lH,OV>|0H, 1v> — |0H, 1V>|1H70V>) (324)

Now, a normalized state with zero-photon modes suppressed can be made to
give singlet state that can be written in a standard way as,

1
\/E(IHHV) V)IH)) . (3.25)
However, after emission due to the birefringence of the crystal both pho-
tons take slightly different path and speed, according to their polarization to
traverse through the crystal and hence becomes distinguishable. To circumvent
this problem one has to compensate for this spatial and temporal walk-offs as
discuss in the next section.

) =

3.3.3  Walk off compensation

As mentioned earlier, in the used type II configuration pump beam is extraor-
dinary polarized and hence when traversing through the BBO crystal even with
normal incident it deviates from the straight path as show in the Fig.3.9 with
blue line. This deviation is termed as spatial walk-off. At 390nm in the phase
matching direction this walk-off angle is about 77.14mrad. A pump photon
may down-convert at any place along this path. Moreover, signal and idler
beams thus produced will have a different wave-length (780nm) and therefore
will take different paths and speeds according to their polarizations. Ordi-
nary polarized down-converted beam will obey Snell’s law and hence will not
deviate from the straight path in this case—as shown in the Fig.3.9 with red
arrows—though it will lead the pump beam due to lower group index. On the
other hand, down-converted beam with extraordinary polarization will suffer
from spatial walk-off, which is around 72.59mrad in this case, and hence will
follow the pump beam with slight deviation and will be the fastest compare to
both pump or ordinary polarized down-converted beam. This speed difference
will lead to the temporal mismatch in the down-converted beams and is often
referred as temporal walk-off.
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Figure 3.9: Effect of temporal and spatial walk-offs on the down-converted
beams. This picture is approximate and not drawn to scale.

Fig. 3.9 depicts approximate spatial and temporal walk-offs with respect
to the pump, which is shown as blue dot. In this case, the extraordinary beam
is the fastest and therefore represented by a red ellipse elongated 176um in
the forward direction according to at which point in the crystal conversion oc-
curred. For instance, photons created at the beginning of the crystal will be
on the leading edge of the ellipse. Vertical spread of 9um is due to the slight
difference in the spatial walk-off angles of the pump and the extraordinary
polarized down-converted beam. Similarly a red ellipse marked as ‘o’ repre-
sents ordinary polarized beam, which will be elongated 62um forward due to
lower group index compare to the pump beam. Vertical spread of 154um in
this beam, is due to the walk-off in the pump beam corresponding to where
down-conversion occurred.

Note that, to arrive to the state given in Eq. (3.25), we assumed single
modes and hence these down-converted beams should be coupled to single
modes fibers. However, as such these beams do not have good overlap and
therefore cannot be coupled optimally using single mode fibers. Fig. 3.9 also
shows how these beams can be overlapped optimally using a HWP(%) and an
extra BBO crystal with half of the main crystal thickness i.e. we need 1mm
thick BBO in this case. HWP(% ) can switch the polarization ‘o’ to ‘e’ and vice
versa, and when these beams with switched polarizations pass through a Imm
BBO, then only ‘e’ beam suffer spatial and temporal walk-offs compare to the
‘0’ beam (we need not to bother about pump beam at this stage anymore). This
means ‘e’ beam will be pushed forward about 57um and down about 72.5um
leading to optimal overlap as shown in the Fig. 3.9.
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Figure 3.10: Polarization entangled photons source.

3.3.4 Two Photon Polarization Entanglement

Once the compensation is done, one needs to filter the spatial modes using
single mode fibers. Usually it takes a big fraction of the whole time spent
in building such a source, since purity of the state and the factor % in Eq.
(3.25) depend on coupling alignment. To increase the purity usually frequency
filtering is also needed, for this narrow band interference filter (IF) are used.
However, this reduces the count rates significantly.

Fig. 3.10 depicts a polarization entangled photon source with all important
optical components. With such a setup, photons emerging from each of the
crossing can be made to exist in the singlet state given in Eq. (3.25) or in any
of the other Bell states given in Eq. (2.28) easily.

3.4 Two-Photon Interference

Often in multi-photon experiments e.g. teleportation [44; 45], entanglement
swapping [46; 47] etc, one has to remove distinguishability between two given
photons due to their arrival times or alternatively one could require to measure
how indistinguishable the photons are due to their other characteristics. This
is usually done by observing Hong-Ou-Mandel (H-O-M) effect, also known
as Hong-Ou-Mandel interference [48; 49]. This technique can also be used to
measure path lengths differences and the bandwidth or the size of the wave-
packets of the photons used. We utilized this technique to remove distinguisha-
bility between two photons due to their arrival times in our experiments.

To get some physical intuitions for this, consider the situation when two
photons arrive at a symmetric BS simultaneously, as depicted in Fig. 3.11. We
have seen earlier, for a symmetric BS there is equal probability for a photon
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(a) (b) (c) (d)

Figure 3.11: Two photons at the inputs of a symmetric BS. Each sub-figure
represents the possibility corresponding to the case when (a) Both photons trans-
mitted, (b) first transmitted, second reflected,(c) first reflected and second trans-
mitted,(d) both reflected.

to transmit or reflect. Hence, there will be in total four possibilities corre-
sponding to the cases; both photons transmitted, first transmitted while second
reflected, first reflected and second transmitted, and both reflected. Here, one
should note two things about the cases depicted in (a) and (d) of Fig. 3.11.
Firstly, if we have represented photons with the circles of the same color—i.e.
if the photons were indistinguishable—then one cannot distinguish between the
processes (a) and (d). Secondly, there will be a relative phase difference of
7 between the two cases as can be seen from the BS transformation given in
(3.17). Hence, the two probability amplitudes representing each of these cases
will interfere destructively and therefore the photons will not end up into any
of these configurations in an ideal situation.

Mathematically, two photons at the inputs of a BS, Fig. 3.12, can be rep-
resented as

’1? 1>a|,a2 = &J{d;‘oy())al,az- (3.26)

We have seen that a symmetric 50-50 BS transform operators corresponding

A

a2
a1 ) =
-
BS |d4

g "
L/\) D2
Figure 3.12: Setup to observe Hong-Ou-Mandel interference with a 50-50 sym-
metric BS.
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Figure 3.13: Hong-Ou-Mandel interference of two independent photons—
originating from two SPDC processes—with Viy_o_y = 76.9 +0.9%. The other
two photons are used as triggers.

to individual field amplitude according to (3.17), therefore

At A BS 1 /.4 .+ AT AT
Q1d}10.0)0y 00 25 (ah = id} ) (=i} +4}) 0,0}

. 1 A 2 A 2
:(—1)5 (a§ —al ) 10,045 4, (3.27)

—i
:ﬁ (|270>a3,a4 + ‘0’2>a3,a4) .

This calculation reveals that there will be no coincidences between the detec-
tors D and D», due to the cancellation of the terms d;dl — dlfz;. However, if
the photons are distinguishable then they must be described with operators cor-
responding to different field modes, i.e. (@5a] —ajaj) — (d;ldlz — dl_ld;z),
where the new subscripts 1 and 2 refer to the first and the second photon re-
spectively. Hence these terms will not cancel and will lead to the coincidences
between the detectors D and D,.

In our experiments we delay one of the photons to make them distinguish-
able due to their arrival times at the BS. Ideally, when the delay is zero one
should not get any coincidences provided that the photons are indistinguish-
able, whereas maximal coincidences are achieved when delay is larger than
the coherence length of interfering photons. However, we got small amount
of coincidence even for zero delay, as shown in Fig. 3.13, due to experimen-
tal imperfection or slight distinguishability. The degree of distinguishability is
measured with a parameter often referred as visibility of H-O-M dip and de-
fine as Vyg_o_y = C‘"bi;a) [50-52], where Cy and C. refer to the coincidences
at zero and large delays respectively. For the dip shown in Fig. 3.13 we got
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Figure 3.14: Setup to observe Hong-Ou-Mandel interference with a PBS.

Vi_o—m = 76.9£0.9%. Note that these interfering photons are independent
i.e. they are originated from two different down conversions and hence much
more difficult to interfere [53].

Another way to observe H-O-M interference with a PBS is shown in Fig.
3.14. Here, we assume two photons with orthogonal polarizations at the two
input ports of a PBS simultaneously i.e.

1 1) arae = @1 gd3y10,0)a s (3.28)

Now, using Eq. (3.8) and PBS transformation given in (3.18), while neglecting
overall phases we get,

PBS
ay yay, v|0 0)ay.ay — aé H“3v|0>

HWP Lis AT A At
5 (a3,H +C‘3,V) (“3,[1 _as,v) 10)as (3.29)

@22.5°
(’2H>a3 - |2V>a3) .

_ b
V2

Which shows that there will be no coincidences between D and D, due to the
cancellation of the terms (— a;f Ha3 vt a3 Va3 H) like before and will lead to a
similar dip in coincidences—as shown in Fig. 3.13-when one of the photon is

delayed related to the other.

An important characteristic feature of H-O-M interferometers is that it
is much more stable than any interferometer based on second order interfer-
ence e.g. Mach-Zehnder interferometer which has sub-wavelength sensitivity,
whereas H-O-M interference is sensitive to path length changes on the order
of the coherence length of the photons involved.
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Figure 3.15: Bell state analyzer (a) based on a BS, (b) based on a PBS.

3.5 Bell State Measurement

Bell states, introduced in sec. 2.8.1 of chapter 2, not only maximally violates
Bell inequality but also form an orthonormal basis for the state space of two
qubits and are very important in quantum information sciences as these are
the key ingredient in many of its striking applications including teleportation
[44; 45], superdense coding [54], entanglement swapping [46; 47] and numer-
ous other cryptographic protocols. Therefore, ability to measure and prepare
these states is crucial. In section 3.3 we described how one can create such
states using down conversion sources, whereas this section describe how we
can measure if the two input photons are in one of the four possible Bell states.
Note that with linear optics it has been proven that a never failing Bell mea-
surement is impossible [55]. However, there are linear optical setups which
can discriminate between all four Bell states probabilistically [56; 57]. For our
purposes it is enough to look at the optical setups discriminating between only
two of the four states as given in [58; 59].

Consider a BS with two detectors on each of its output modes as shown in
Fig. 3.14 (a). For simplicity we will just analyze what type of coincidence one
will get when the two input photons at the BS are in each of the possible Bell
states. Consider the case when input photons at the BS are in W~ state. Then
we can write it as

- | M A
’lP >a1,az = \ﬁ (aI,Ha;,V _aJlr,Va;H> ‘0’0>01,a2' (3.30)

By using BS transformation (3.17) we get
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That is, W™ state at the input will lead to the coincidences between the detec-
tors Dy, D4 or D,, D3. Similarly, assuming W™ at the input will give

L s A
|lp+>a1,az = ﬁ (al,Ha;,V +a Va2 H) 0, 0>a1702

Bs. 1 (.4 . N
—>E <a;Ha;V aZ Ha4 V) |O O>037a4

Therefore, in this case we will get coincidences between Dj, D, or D3, Djy.
Whereas it is straight forward calculation to see that @+ will not lead to any
kind of coincidences.

Moreover, if we consider the setup shown in Fig. 3.14 (b)- a modified
version of Fig. 3.14(a) proposed in [60]-then one can check easily that input
state @ will give the coincidence between the detectors Dy, Dy or Dy, D3,
whereas @~ at the input will lead to the coincidence between Dj, D3 or D,
Dy i.e. with this setup one can discriminate between ®*. Therefore with
successful projection, any of these setups can be used to distinguish between
only two of the four Bell states.

Note that for both of these setups we assumed that the two photons arrive
at the input of the BS (or the PBS) simultaneously which is necessary con-
dition for these setups to work. To assure this one usually observe H-O-M
interference.

(3.32)

3.6 GHZ-State Preparation

We prepare three or four photons GHZ state—introduced in section 2.9— with
the method given in [61]. To do this one need two down conversion sources
similar to those described in section 3.3. The whole setup is shown in Fig.
3.15. Here, circles marked as A and B are the two sources producing entangled
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states given as,
1
"Pl) - \ﬁ
Where i = 1,2 corresponding to source A or B. When both of the sources
produce a pair of the photons simultaneously we get,

([HH) +€%|VV)). (3.33)

1 . .
[0)12/0)3 4 =5 (|H\Hy) + e \ViVay)) (|Hy Ha) + €[ V3 Vy))

pBs 1 , ;
2 (1H H3) +i &P |\ViVa)) ([HoHy) +i €92 V3V
D) (’ 1 3) ‘ 1 2>) (‘ 2 4> ’ 3 4)) (3‘34)

1 .
:E (’H1H2H3H4> —+1 e‘¢2|H1H3V3V4)
+i €0 |ViVaHy Hy) — 02 ViV V3 V).

Note that the terms with |H;H3V3Vy) or |V VaHyHy) will not lead to the coin-
cidence between all of the four modes marked as 1,2,3 and 4 i.e. no 4-photon
click among them. Therefore, if one requires having one photon in each of the
four modes—that can be accomplished by post selecting only the events when
we get a click in each of the four paths—will lead to the state that one can write
with proper normalization as

1 ‘

— (|Hi HaH3 Ha) — & )|V V4)). (3.35)
V2

This can give GHZ state easily, since the phases ¢; and ¢, can be adjusted to
give +1. Note that this method of only observing coincidences, sometimes
called conditional detection or observation in coincidence basis [53].

Figure 3.16: Setup to obtain a four-photon GHZ state, post selected by coinci-
dence between each of the four modes marked as 1, 2, 3 and 4. Also, a three-
photon GHZ state can be obtained in modes 1,2 and 3 when the fourth photon at
Ty or T, is used as trigger.
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Moreover, placing a HWP @ 22.5° in one of the modes, e.g. in mode 4,
will lead to

1 ‘
- (|HiHoHs Ha) — €01 90|V V3Vy))

awp_ 1 i
S CIH) <|H1H2H3> e <¢1+¢2>|V1V2V3>) (3.36)

— Vi) <|H1H2H3> oi(0r02) |V1V2V3)>

Therefore, using H4 or Vy as a trigger one can get a three photon GHZ state
in modes 2,3 and 4. Note that photons in modes 2" and 3’ need to be indistin-
guishable in order to arrive to these results, which one assured by observing
H-O-M interference.

3.7 Quantum Teleportation

One of the most fascinating applications that quantum information provides
is the possibility of teleportation. This was first discovered by Bennett et al.
[44] and experimentally realized in [45; 62]. Before expounding the idea of
quantum teleportation, one should note that photons— or any other elemen-
tary particles—are in principle indistinguishable and the differences in their re-
sponse only arise due to the various states they can acquire in different situa-
tions. Therefore, to teleport a photon from one place to another it is enough to
copy its state onto a photon located at the destination. The procedure to solely
achieve this is referred as quantum teleportation. Moreover, it has also been
discovered that copying a quantum state is not possible. This is often referred
as no-cloning theorem [63; 64], and implies that a successful teleportation can
only be accomplished when teleporting machine does not retain any informa-
tion whatsoever about the state being teleported and therefore the original state
at the input will be destroyed in this process.

To teleport a state from one party that we call Alice to the other party Bob,
they need to have an entangled pair shared between them. Suppose Alice and
Bob each have a photon from an entangled pair prepared in W~ and the state
Alice wants to teleport to Bob is given as

lw)1 = alH)+ B|Vi). (3.37)

The singlet state or ¥~ given in Eq. (2.28), can be written as

|‘Pi>273 = (‘H2V3> — |V2H3>) . (3.38)

R
V2
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Figure 3.17: Principle of quantum teleportation. Alice teleport |y); to Bob with
the help of an entangled pair |¥~); 3 shared between them.

Considering them together gives

_ 1
W1 @[¥ )23 = %(alHﬁ +BV1)) @ (|H2V3) —[V2V3)) (3.39)
Now, using the Bell basis given in Eq. (2.28) one can write

|HHy) =—=(|®T) 12497 )12),
(3.40)

H\V2) =—= (¥ )12+ ¥ )12),

ViFh) =—=(1%")12— ¥ )12)

ViVa) =—=(|® )12 —[®7)12)

Using these we can write Eq. (3.39) as,

S5l Bl

Y1 @[¥ )z =
BlHz) + «|V3))

®(-

126 (BIHs) + V) (34D
@ (~alt) +B|Vi))

¥ 129 (alH) +BIVa))

It is clear from this equation that if Alice performs a Bell state measurement
(BSM) and communicates the result of her measurement to Bob then the pho-
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ton that Bob had—after performing an appropriate local unitary transformation-
will be in the same state as of the photon that Alice wanted to teleport. For in-
stance, when Alice’s measurement project the two photons in the modes 1 and
2 to W, then she needs to tell this result to Bob and only then Bob will know
that his photon is in the desired state without performing any local transforma-
tion. In all other cases he needs to perform some local unitary transformations
to get the desired state as apparent from Eq. (3.41).

Note that this teleportation cannot be achieved without classical informa-
tion transfer as Alice needs to tell her results to Bob. Therefore, this procedure
does not allow information transfer faster than the speed of light and therefore,
will not violate relativity.



4. Bell Inequalities for the
Simplest Exclusivity Graph

The aim of this chapter is to introduce the background needed for the Paper I,
where we discovered three new Bell inequalities based on exclusivity graphs
and presented their experimental violations.

In chapter 2, we have seen that quantum mechanical systems possess non-
local'! and contextual correlations that not only lead to the violation of Bell and
non-contextual inequalities, but also allow us to achieve classically impossible
tasks. However, identifying when such tasks are possible is difficult and still
under research. Recently, it is shown that linking non-contextual inequalities
to graphs could be fruitful [17], as it is discovered in the same paper that the
classical bounds for local hidden variable (LHV) theories and non-contextual
hidden variable (NCHYV) theories can be extracted from the associated graphs
of their respective inequalities, by just calculating the so called independence
numbers of these graphs. Whereas the quantum mechanics is upper bounded
by the Lovazs numbers of these graphs. Moreover, these bounds are tight, i.e.
they are precisely equal to the quantum bound. This fact manifests the deep
connection of these graphs to classical and quantum theories. This is very im-
portant, as one can imagine theories offering stronger correlations than what
quantum mechanics can provide. However, experiments until now only pro-
vide confirmation of quantum theory, which leads to classical mechanics when
approximated in restricted sense (correspondence principle) i.e. in contrast to
all possible theories, apparently only quantum mechanics gives the correct de-
scription of the physical world. Therefore, it is a quite interesting fact that the
graphs constructed by pairwise exclusive outcomes of real experiments pro-
vide upper bound for quantum mechanics.

This feature of exclusivity graphs motivates the application of graph the-
ory in the field of quantum information. Since the derivation of the new
Bell inequalities— that we call pentagon Bell inequalities—is also based on the
graphs, therefore, we will start the chapter with an introduction to the graph
theory and some of its important terms that will be needed to understand the

'In this context, here and in the rest of the thesis by non-local correlation we mean
correlations that cannot be explained by local realistic models.

51
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Paper I. As an example we look at the graph of CHSH inequality. More details
can be found in the attached published article.

4.1 An Introduction to Graph Theory

Graph theory is a wide and rapidly developing field of mathematics and com-
puter science. Therefore here we will only describe concepts and terms which
are required to understand later sections. In the following context, the word
graph means a collection of points and lines which connect some of these
points. The points are called vertices and the lines connecting some or all of
these point are referred to as edges. The degree of a vertex is defined as the
number of edges touching it. Moreover, all vertices of a graph can be collected
in a set called vertex set, and the cardinality—number of members—of this set is
called vertex count of the graph.

There are two main types of graphs called directed and undirected graphs.
The type with which we are dealing here is undirected graphs. In this type of
graphs, a vertex connected with other vertices has symmetric (or same) relation
with them, meaning that the edges of the graph do not have any directional
character.

In different fields vertices of a graph represent different parameters or
quantities. Here, in this thesis we will consider graphs whose vertices rep-
resent events, and an edge will connect two vertices if and only if the two
vertices represent mutually exclusive events. Such a graph will be called an
Exclusivity Graph. In the following, we will introduce some important terms
needed to understand later sections.

An independent vertex set is a subset of the vertex set containing only those
vertices of the graph that are not connected to each other by edges. Note that
one can form many different independent vertex sets for a given graph. The
exact number will depend on the structure of the graph.

Independence number of a graph also known as vertex independent num-
ber, is defined as the cardinality of the largest independent vertex set. We will
denote it by a(G), where G is a given graph. Note that for exclusivity graphs,
independence number gives the upper bound for LHV theories. Computing
independence number is not easy, since it requires finding the largest indepen-
dent vertex set which is a NP-hard problem. This will mean that the effort
needed to calculate this number grows very quickly with the size of the graph.
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Lovasz number was first introduced by Laszl6 Lovész as an upper bound
on the Shannon capacity of a graph [65]. However, in the context of this thesis
it is the Lovasz number itself which is the relevant quantity, as Lovdsz number
of an exclusivity graph gives the upper bound for quantum mechanics in an
experiment that can be faithfully represented by this graph. It is a real number
and is denoted by ¥(G). It can be calculated as follows.

Let B be a matrix with unit trace and range over all n X n symmetric positive
semidefinite matrices such that b;; = 0 when i and j form an edge in G. Then

B(G) = max Tr(BJ) (4.1)

where J is a n x n matrix of ones. Therefore, Tr(BJ) is just the sum of all
entries of B [65]. Another equivalent way of computing it is to assign a set of
real normalized vectors V; to each vertex of the graph such that two vectors are
orthogonal if the corresponding vertices are adjacent. Then the Lovasz number
will be given by

¥(G) = max (Zl !<<p\vi>2> = 4.2)

o)

i\vi><vi|

oo

Here, |@) and |v;) are unit vectors in Euclidean space and the maximum is
taken in any dimensions over all possible |¢) and |v;), subject to orthogonality
constraint. [17; 66]. Also, the interesting dimension turns out to be the lowest
dimension in which the orthogonality constraint can be satisfy. Clearly, this
definition has more quantum mechanical flavor and with this, one begins to
see why the Lovdsz number is interesting in quantum mechanics.

It is an interesting fact that though Lovasz number looks difficult to cal-
culate, it can be efficiently computed using semi-definite programing. On the
other hand, remember that for independence number no such effective algo-
rithm exists. It is quite mysterious, when one considers the computational dif-
ficulty of these numbers together with their connections to classical and quan-
tum upper bounds, as it could suggest that the basic principle behind quantum
world may be simpler than the principle behind classical world.

Fig. 4.1 shows independence and Lovész number for some simple graphs,
which are easy to calculate using the definitions above. Note that for a com-
plete graph—in which all the vertices are connected together— independence and
Lovdsz number are always 1. Also, the simplest graph for which o/(G) < 6(G)
is a pentagon as shown in Fig 4.3. Equipped with these definitions we will now
discuss how to form a exclusivity graph for the CHSH inequality.
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Figure 4.1: Independence and Lovasz number for simple graphs.

4.2 Exclusivity Graph of CHSH inequality

Exclusivity graph represents the relation of the probabilities of different events,
therefore, first we have to write CHSH inequality as a convex sum of probabil-
ities, where by the term convex sum we mean weighted sum such that weights
are not only non-negative but also add up to unity. From chapter 2, we know
that, for positive correlations the CHSH inequality can be written as,

E(AQ,B()) +E<A0,Bl) +E(A1,Bo) —E(Al,Bo) <2
Ly (4.3)
= (AoBo)+ (AoB1) + (A1Bo) — (A1B1) < 2

Where A; and B; represent operators measured using first or the second setting
by Alice and Bob respectively. Note that here in the above equation the minus
sign is with the different term compare to Eq. (2.25), this can be achieved
by just renaming Ag — A; and A; — Ag. The reason for doing this will be
clear later. In our case these operators are 04, and op, and E(A;,B;) is the
expectation value of the combined measurement and can be calculated as,

E(A;,Bi) = (y|oa, @ op,|w) =Tr(p . (04, @08,)). (4.4)

Here, p is the density operator of the state in use. Further, in this thesis we
will represent the probability of getting outcome a for Alice and b for Bob-
while measuring with their first or the second setting that we represent by
x={0,1} and y = {0, 1} for Alice and Bob respectively— as P(a,b|x,y). Note
that, since our operators are dichotomic, therefore, a,b € {+1,—1} and for
simplicity we will just denote them by +1 — 0 and —1 — 1. Then, with these
conventions, P(0, 1|1,0) will denote the probability of obtaining a result of +1
and —1 for Alice and Bob respectively, while Alice chooses her 2nd setting
for measurement and Bob chooses his 1st setting. We will make clear in the
context what we mean by 1st and 2nd settings.

Now, Suppose Alice and Bob together want to violate the CHSH inequal-
ity, then, as shown in the chapter 2, it can be achieved if Alice and Bob both
chooses 2 different appropriate settings in which they measured the operators
Ap, A1, and By, Bi—as given in (4.3)-respectively. To do this they choose one
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of the Bell states, say |[®"), as defined in equation (2.28) which has positive
correlations. Therefore, the expectation value E (Ao, By), when Alice and Bob
chooses 1st of their settings, can be written in terms of probabilities as

=Pladb=0[x—0,y—>0)—Pladb=1|x—0,y—0)
— Pla®b=00,0)—Pla®b=10,0)

where x,y € {0,1} and a,b € {0,1} and & denotes sum modulo 2. Note that
the sum of all four probabilities in the above equation should be 1. Therefore,

E(A¢,By) =2 Pla®b=00,0)—1 4.5)

Similarly, other terms in equation (4.3) can also be represented in probabilities
and the reader can check easily that the equation (4.3), in this case becomes,

1
Y Plasb=xAylx,y) <3 (4.6)
x,y=0

Here, one can recognize the advantage of switching Alice settings. Note that
probabilities represented by P(a,b|x,y), can be inverted to give expectation
value by using

Pla,blx,y) = 7 ([1+ (- DAL+ (~1)'By) @)

This is easy to derive if one notices that (A%) = Tr(p|@,){(@,|), where p is
any states and |@,) is an eigenvector of A, with eigenvalue a and therefore it
can be written as §(1+ (—1)?A,). Now this sum of probabilities can be easily
represented by an exclusivity graph. Note that this sum contains eight terms, so
our graph will be an octagon. To form an exclusive relation between connected
vertices note that two vertices, say (a,b|x,y) and (d',b'|x,y’), of our octagon
can be connected if one of the following conditions is fulfilled

1. x=x" and a # d’, Meaning that Alice’s outcomes are exclusive.
2. y=1y and b # b’, Meaning that Bob’s outcomes are exclusive.

3. (1) and (2) both are true, that is Alice and Bob both’s outcomes are
exclusive.

It can be checked easily that the resultant graph will be the one shown in figure
4.2. Note that in this case each vertex is connected to three other vertices;
hence the degree of each vertex is 3.
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Figure 4.2: Exclusivity graph of CHSH inequality. Note that for this graph
independence number & (G) = 3 and Lovasz number ©(G) = 2+ v/2,

4.3 Simplest Exclusivity Graph With Quantum-Classical
Gap

As mentioned earlier, the vertices in an exclusivity graph represent events
or outcomes of some real experiments. all/some of these vertices are con-
nected by edges using a simple rule that referred as exclusivity principle [66—
68]. Note that the roots of this principle can be traced back to Ernst Specker
[69; 70]. According to this principle, the sum of the probabilities of pairwise
exclusive events—that we represent by two connected vertices on these graph—
cannot exceed 1. Therefore, connected vertices in these graphs can be associ-
ated to the outcomes of a single experiment as they cannot both occur together
i.e. if so connected they are exclusive. Thus, one can consider the vertices on
these graphs as propositions whose truth and falsity can be checked in real ex-
periments. In this sense, the independence number of such a graph must have
the interpretation of being the largest number of these propositions that can
be true at the same time according to classical physics. Whereas, the Lovasz
number as a tight bound for quantum mechanics, can be interpreted as the
highest number of true statements in such experiments predicted by quantum
mechanics. This fact reveals the deep connection of these graphs to physical
theories.

Moreover, there are graphs for which Lovédsz number ¥(G) is greater than
independence number o(G). In the previous section we have seen an exam-
ple of such a graph namely CHSH-graph. These graphs are important since
they bring out the cases when quantum mechanics can outperform classical
physics. We refer these graphs as exclusivity graphs with quantum-classical
gap. It is known since 1979 [17; 65; 71] that the simplest graph for which
o(G) < 6(G), is a pentagon as shown in Fig. 4.3, and it is associated to
KCBS inequality that we described in Sec. 2.10. Due to the close relationship
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Figure 4.3: Exclusivity graph of a pentagon, which has a quantum-classical gap
as a(G) < 0(G).

between contextuality and Bell inequality as described in Sec. 2.10, one can
expect that there should be Bell inequalities connected to pentagons. In Paper
I we investigated this point and found that there are actually three different
Bell inequalities connected to a pentagon exclusivity structure. These are the
simplest Bell inequalities in the sense of their logical structure and the cause of
the violation of other Bell inequalities e.g. CHSH and /33, can be traced back
to the violation of these inequalities. Moreover, they also provide an argument
for the impossibility of Popescu and Rohrlich (PR) non-signaling boxes [72].
In Paper I, we also present experimental violation of these inequalities. More
details can be found in the attached published article.
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5. Non-Local Games

Games involving two or more distant parties—that may or may not be space-like
separated—are called non-local games. Furthermore, in these games, one can
exploit intriguing aspect of quantum mechanics to achieve classically impos-
sible tasks, in such scenarios; one regards these games as quantum non-local
games. In the following context we are only concerned with a special type of
quantum non-local games called CHSH-games and the aim of this chapter is to
provide a brief introduction of the Paper II, where we present an experimental
realization of CHSH-non-local game and also describe a real world applica-
tion of such game based on a card game, Duplicate bridge. More details can
be found in the attached published article.

We shall start the chapter by describing CHSH-games with biased and un-
biased cases. This description will be based on the article [18].

5.1 CHSH Game

A non-local quantum game based of CHSH-inequality is called a CHSH-game.
CHSH inequality can be expressed in different ways to describe a CHSH game,
e.g. we can consider the form shown in expression (4.6), that can be rescaled
and written as,

1 LHV

1

Y lp@@b=xnylxy) <> 5.1)
o4 4

In this form it is written as a sum of probabilities and therefore the CHSH-game
corresponding to it can be formulated as follows. Alice and Bob measuring
dichotomic observables with settings and outcomes denoted as x,y € {0,1}
and a,b € {0, 1} respectively. They can get positive score i.e. +1 if and only
if a®b =xAy, and in all other cases they acquire -1. However, we want
to generalize CHSH game to unbiased CHSH-games which is straightforward
with the form given in expression (4.3). Therefore, we will consider this form
to describe unbiased CHSH-game first.

99
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5.1.1 Unbiased CHSH Game

The CHSH-game described above can be regarded as an unbiased CHSH-game
if we impose the condition that the settings given by x and y are equally likely.
This can be explicitly shown if one consider the CHSH inequality written in
the form (4.3) and write the rescaled version of this expression as,

[u—

[(A0Bo) + (AoB1) + (A1Bo) — (A1B1)] < . (5.2)

I

In this form, one can formulates a quantum non-local CHSH game as follows.
Suppose that two players Alice and Bob—which may be space-like separated—
playing a game in which each of them got a particle emitted by a source. Then,
according to the procedure of the game, they have to perform a dichotomic
measurement, giving possible outcomes as +1 and -1, which will correspond
to their scores and the goal of the game is to achieve as high score as possible.
Now, the inequality above, in this case can be regarded as their average score
in this game over many rounds and the factor % can be recognized as the aver-
aging factor for four different types of measurement’s combinations. Note that
this factor is same for all terms meaning that each measurement combination
is equally likely. Now, to get positive score, expectation values can be written
as,

N(ABj=1)—N(AB;=—1)
N(Al‘Bj = 1) —|—N<AiBj = —1)

(AiBj) = (5.3)
where i,j € {0,1} and, N(A;B; = 1) and N(A;B; = —1) represent the total
number of rounds giving score 41 and —1 respectively for corresponding mea-
surements. We will now consider a more general situation of this game.

5.1.2 Biased CHSH Game

Since the factor % in the expression is recognized as averaging factor, there-
fore, when the probabilities of choosing different measurement’s settings are
unequal then we can write CHSH inequality as,

CHSH (p,q) = pq(AoBo) + p(1 —q)(AoB1) + (1 — p)q{A1Bo)
LHV ] (5.4)
—(1=p)(1—¢q){A1B1) < 3

Here, p and g denote probabilities with which Alice and Bob choose their first
measurement settings. If we assume that p,q > %, then, it is easy to see that
the maximum classical value is achieved by a simple strategy, e.g. when all
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the expectation values are +1, we will get the classical maximum as,

CHSHci(p,q) =p+q—pg—(1—p)(1—q)
=1-14+p+q—pg—(1-p)(1-q)
=1-2(-p)(1-q) (5.5)
and the quantum bound can be calculated as describe in the article [18]. I will
just quote the result here which is

CHSHo(p,q) < p\/q2+(1—q)2+q(1—q)a (5.6)

+ [ —p)\/612+(1 —q)*—q(1—q)a

where oo = (y|1 ® (BoB; + B1By)|y) in which B; are Hermitian operators on
Bob’s Hilbert space such that Bi2 = 1 and |y) is an arbitrary pure state. The
maximum of (5.6) occurs when

_ i Sy (@ (1=a) (P = (1-p)?)
*= {2’ q(1—q)(p*+(1—-p)?) } G-D

which implies that we have two regions in (p, q) space.

Region 1: When 1 > p > (2¢)~! > 1/2, the maximum value occurs for
a = 2 and the optimal is

CHSHc(p,q) = CHSHp(p,q) =12 (1—-p)(1—q) (5.8)

Region2: When 1> (2g)~! > p > 1/2, in this case quantum protocols
or strategies can outperform their classical counterparts and quantum bound
will be given by,

CHSH(p.q) SV +(1— g\ [P+ (1-p?  (59)

Now, the experimental settings with which maximum quantum bound can be
achieved are as follow,

_ 0:(q+(1—q) cos B)+o0.(1—q) sin B

AO -
\/(q+(1 —q) cos B)* +(1—q)? sin® B

4, = Glat(-g)cosp)+o(l—g)sinP (5.10)
V(a+(1—q) cos BY +(1—q) sin® B

By =o0ycosB+o,sinf

B = Oy

W) =500+ )
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Figure 5.1: (p,q) space containing region I-where quantum mechanics does not
provide any advantage—and region II-where quantum mechanics does provide
some advantage.

where o; denote Pauli matrices and

1 (P+0-9%) (PP -(1-p)?)
cosp=3 q(1—q) (p>+(1—p)?) G-AD

During all this description, we assumed that p,g > % For all other cases
the situation is quite symmetric and depicted in figure 5.1. Also, if instead of
(5.4) one considers (5.1) for biased case as,

1= pq PAGB=xAy|x=0,y=0)
+ p(1-q) PA®B=xAy|x=0,y=1)
+ (I1—q)pPA®B=xNylx=1y=0)

LHV 3
+ (I=-p)(l-g) PAGB=xAyx=1y=1) < 7, (5.12)
then it is easy to see that the two forms are connected as,
1+CHSH
1= +—(p,q) (5.13)

2

In this work we have successfully achieved experimental realization of this
CHSH-game by choosing different values of p and ¢ and the results are pre-
sented in Paper II.
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Quantum Channel

Figure 5.2: Quantum Bridge Scheme. Alice and Bob (West and East partners in
Bridge game) are given two bits ag and a; and one bit y = b respectively. Alice
receives two bits ag and a; with the respective probabilities po(0) and p;(0) of
them being 0. She chooses her measurement setting to be x = a = ag ® a;. After
reading out her outcome A, Alice prepares the message m = A & ag which she
transmits to Bob. He then computes R by adding the message to his outcome:
R=B®dm.

5.2 Quantum Duplicate Bridge: An Application of CHSH
Game

Under this heading we are not inventing any new game, rather, by the word
“Quantum duplicate bridge'", we are emphasizing the application of quantum
mechanics on the famous card game of duplicate bridge.

Contract bridge is a partnership game and the essence of a successful play
is efficient communication between the partners. Due to the rules of the game,
the form and the amount of the information exchanged between the partners is
severely restricted. Nevertheless, using our technique that we have presented
in Paper II attached with this thesis, the players can increase their winning
probability without violating any rule of the game [73]. In our scheme, the
players need to share an entangled state, which they can do before the begin-
ning of the game. During the game they just need to do local measurements
on their subsystems which is not in any sense against the rules of the World
Bridge Federation [73].

The protocol used here to increase the wining probability is based on 2 — 1
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entanglement assisted random access code [74]. This can be applied to dupli-
cate bridge as there are situations in the game when one partner—that we can
assume as Alice—has two bits of information and the other partner, say Bob,
could be interested in any one of them. However, the communication between
them is restricted due to the rules of the game, therefore Bob cannot freely ask
the information he is interested in. Thus, Alice has to guess which bit he might
be interested in and then she sends this bit. However, the situation can be con-
sidered as it consists of many such rounds and therefore we are interested in a
optimized protocol that Alice could use. In this situation she could use 2 — 1
entanglement assisted random access code which is more advantageous than
any other classical protocol [74]. Fig. 5.2 explains quantum protocol briefly.
More details can be found in the attached paper.



6. Measurement-Device-
Independent Entanglement
Detection

In the last chapters, we have seen how the correlation in entangled states leads
to the violation of Bell inequalities and how these correlations can be used
to perform task more efficiently than can be done using classical resources.
Except these, entanglement has been used in numerous other protocols and
recognized as a fundamental resource in quantum information science. Conse-
quently, detection and quantification of entanglement is of the utmost impor-
tance and thus has been a subject of intensive research in recent years.

In Paper III, we have implemented a measurement-device-independent
way to detect entanglement in a bipartite system. Such an implementation is
quite useful in certifying entanglement in the case when one cannot access the
resource or cannot trust the measurement devices. The aim of this chapter is to
briefly describe the background of Paper III and present its short introduction.
Further details can be found in the attached published article.

6.1 Quantum State Verification and Entanglement
Detection

In almost all experimental situations when one tries to produce a quantum
state, he ends up in preparing a state close to the desired one and often has to
find out how close the state is to the target state. Fortunately there are some
measures available to define a distance between the two states e.g. trace dis-
tance, fidelity, relative entropy etc. Unfortunately, to calculate these measures
we need to know the density operator of the state prepared, which is not always
possible either due to the complexity of the preparation procedure or due to the
miserable generation rates.

Whereas, sometimes one only desires to prepare a state with certain prop-
erties e.g. entanglement or bound entanglement—which is the topic of the next
chapter—etc. In such cases it suffices to just measure or infer the properties one
desires. In this chapter our desired characteristic is entanglement so we will

65
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briefly mention some methods to detect it, more details can be found in [75].
However, we start by defining fidelity of a quantum state.

6.1.1 Fidelity of a Quantum State

Fidelity of a quantum state with respect to a given state is a measure which
quantitatively describes how close the two states are [64; 76]. Suppose the two
states under consideration are represented as p; and p; then fidelity is defined

as!

F(p1,p2) ZTI( \/I)TPZ\/I)T) (6.1)

Note that F(p;,p2) = 1 when p; = p,, and is zero when the two states are
orthogonal. In general, 0 < F(p;,p2) < 1. Also, it is invariant under unitary
transformations i.e.

F(Op,U",0p,0") =F(p1,p2) (6.2)

Moreover, fidelity is symmetric in its arguments. In case when the two states
are commuting or can be diagonalized with the same representations or basis

we will have F(p1,p2) = Y11/ 7%'(1)7%(2)' Here Ai(l) and ki(z) are the eigenval-
ues of the two states p; and p; respectively and n represents their dimension-
ality.

In most of the experiments one of the states—usually the one an experimen-
talist aims to produce—is pure, in such cases one can check easily that Eq. (6.1)
becomes

F(p1,02) = v/ (wlp2lw) = V/Tr (a2 w) (W), (6.3)

where, we assumed p; = |y)(y|. This is a quite useful expression as for in-

stance, it provides a connection between entanglement visibility and fidelity

for the Bell states (2.28) as given in [78], where we define visibility as
N(6i®6i = ]) —N<6i®6i = —1)

Vi=((6i®6)) = ——= — , 6.4
((6:®61)) N(6i®6,=1)+N(6;®6 =-1) ©4)

Here 6; = 7.6 and the term N(6; ® 6; = 1) indicates total number of coinci-
dences obtained when the two photons measured under the setting 6; ® 6; and

'Some articles e.g. [75; 77; 78] and many others especially experimentalist define
fidelity as

F(p1,p2) = <Tf{ \/PTPZ\/PTD2

In order to be consistent with others we have also used this formula for the calculation
of fidelity in our experiments.
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result in eigenvalues whose product is +1. Similarly the second term in the
numerator represents coincidences obtained when the product of the resulted
eigenvalues is —1. With this definition, for any Bell state we will have

1
FZ\/4<1+VX+V),+VZ). (6.5)

6.1.2 Violation of Bell Inequality

We have seen in chapter 2 that the violation of a Bell inequality is an evidence
of non-classical behavior and imply that the system possesses quantum corre-
lations manifesting the entanglement among its constituents. Thus, violating
a Bell inequality can certify presence of entanglement. However, it has been
shown that one can violate Bell inequality and even quantum mechanics (only
apparently) by either exploiting some loopholes or by adopting some hacking
strategies [79; 80]. Hence, for such a certification one has to reply on loophole
free violation of a Bell inequality. Moreover, once achieved such a violation
will guarantee the presence of entanglement, independently of the measure-
ment settings used,! the precision accomplished in implementing them, or the
dimensionality of the system under consideration. Moreover, the fact that, for
a bipartite system all pure entangled states violates a Bell inequality [81; 82],
further increases the usefulness of such certification.

However, there are bipartite mixed entangled states which do not violate
any Bell inequality [24; 83] as their correlation can be explained by a local
model. Werner states [24] provides such examples, and are defined as those
bipartite states which do not change when the two parties transform their sub-
systems using the same unitary operators i.e.

pw = (U U)pw (U0 U") (6.6)

where with py we represent a Werner state. When the sub-systems are 2-
dimensional, a Werner state can be formed by a mixture of the singlet and the
completely mixed state as

1
pw = P )|+ (1-p) (67)

It is straight forward to check that CHSH violation for this state is CHSH =
21/2p and as depicted in Fig 6.1, CHSH inequality cannot certify entanglement
when p < \iﬁ though it can be evident with positive partial transposition (PPT)
method as we will see in the next section.

I As far as, one fulfills the requirement of the Bell inequality under consideration that
is, for instance CHSH inequality is a two-two settings Bell inequality and therefore
will not work for any other number of measurement settings.
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0<p<3i <p<l1
p=0 p=1

1 1
§<PSE

Figure 6.1: Varying p in Eq. (6.7) leadsto (a) 0 < p < % state is separable. (b)
% <p< %, state is entangled and entanglement is detectable by PPT criterion.

S

(c) % < p < 1 state is entangled and entanglement is detectable even with CHSH
violation.

6.1.3 Positive Partial Transpose (PPT) Criterion

Positive partial transpose (PPT), is actually a necessary condition for separa-
bility discovered by Asher Peres [84]. According to this a density matrix rep-
resenting a state pap can be separable only if p}”é is also a legitimate density
operator and therefore have non-negative eigenvalues. The partial transpose
operation on a bipartite state psp can be elaborated as

Tp
Pis= <Z cijua|i) (| & k><l\> =Y eIk (©.8)
ijkl ijkl

Similarly one can also define partial transpose with respect to sub-system A.
Also note that in case of the systems consisting of qubit-qubit or qubit-qutrit
i.e. when the dimension of the composite system is six or less, this condition
is not only necessary for separability but sufficient also. Hence, PPT criterion
completely characterize separability in such systems [25; 85].

Now if one applies this criterion to calculate the necessary condition for a
Werner state given in Eq. (6.7) to be separable, then it is easy to see that the
eigenvalues of the partially transpose density matrix are %(1 -3 p),pTH,pT“,
and pTH. Demanding that the least eigenvalue is non-negative will give
0<p< % and hence the Werner state for such values of p will be separable.
This is depicted in Fig. 6.1.

PPT is a powerful criterion for testing when a state is separable i.e. not
entangled. However it requires the knowledge of the density operator of the
state under consideration and as pointed out earlier this is not always possi-
ble in experimental situations. Another way to detect entanglement, which is
comparably more practical, is witness method.

6.1.4 Witness Method

An observable W is referred to as an entanglement witness (EW) for an en-
tangled state p if Tr(Wp) > 0 for all separable states, whereas Tr(Wp) < 0
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Entangled

Separable

Figure 6.2: An Entanglement Witness, separating an entangled state p from the
set of separable states.

at least for the state p [25; 75]. Thus, a negative expectation value of the ob-
servable W will be considered as evidence of entanglement in p. Note that an
entanglement witness is a directly measurable quantity and therefore detection
of entanglement through measuring the witness is a very feasible experimental
method.

EWs are actually hyperplanes in the space of all states which contains sep-
arable states as a convex set. Moreover, planes defined by EWs can be drawn
from any direction and hence are able to discriminate any entangled states from
the set of separable states, as can be inferred from Fig. 6.1.

For an entangled pure state | ), an EW can be constructed by using the fact
that states in the close vicinity of an entangled state should also be entangled.
Therefore

W=al—[y)(yl (6.9)

In this case the expectation value of the witness W clearly depends on the
Tr(p'|w)(w]), which can be understood as the fidelity (or square of fidelity,
according to the other definition) of p’ with respect to |y)(y|. Here p’ can be
any state around |y)(y|. When this fidelity is higher than some critical value
o= Iggg{ |(w|)|? the state is entangled, where S represents the set of separable

states. For the Werner states given in (6.7), @ = % and hence EW for this state
18

1
W=21-lw){yl. (6.10)

EW has been used in various experiments, for instance, implementation of
this method for 2,3 and 4-photons can be found in [86; 87]. To experimentally
implement this method one first optimally decompose a witness into a mini-
mal number of local projective measurements [88; 89], as otherwise it could
involve more than one qubit operations. Thus, the validity of this technique
depends on the precision involved in implementing these measurements, i.e. it
demands perfect implementation. Therefore, in case of imperfect measurement



70 Chapter 6. Measurement-Device-Independent Entanglement Detection

the referee

Figure 6.3: Scheme for a semi-quantum nonlocal game.

devices it can lead to false entanglement detection [90; 91]. In comparison, vi-
olation of Bell inequality is more robust, though this technique has its own
disadvantages. In Paper III we experimentally implement a method which
can overcome these drawbacks.

6.2 Measurement-Device-Independent Entanglement
Witness

As mentioned before, loophole free violation of a Bell inequality can be used
as a device-independent entanglement detection method. However with this,
one cannot detect all entangled states. An example is, Werner states, as these
states for certain values of p admit a local realistic model. There are some
other methods to overcome these problems, for instance, measuring more than
one copy of the same state simultaneously [92], however it is unclear if such
methods can be used to detect all entangled state.

In [19], Francesco Buscemi has generalized the concept of so-called non-
local games [93] to include quantum inputs from a referee for specifying in
which basis the participating parties should measure their shared entangled
state. He showed that in such games all entangled states can give an advantage
over separable states. The scheme of such a game is presented in Fig. 6.3.
Here, s and ¢ are quantum inputs, whereas a and b are outcomes (eigenvalues)
of the measurements performed by Alice and Bob respectively. In reference
[20], this point is further clarified and used to devise a method to obtain a
measurement-device-independent EW for all entangled states. In Paper III
we experimentally implement such an approach, more details can be found in
the article attached to this thesis.



7. Bound Entanglement:
Generation and Activation

In previous chapters we have seen the importance and applications of entan-
glement in quantum information science. The fact that one cannot produce
entanglement using classical techniques makes it a resource for accomplishing
classically unachievable task. Therefore it plays a key role in the field of quan-
tum cryptography, communication and computation. However, in real experi-
ments entanglement can be easily destroyed due to decoherence induced by the
environment. Such uncontrollable interactions introduce noise and transform,
for instance, maximally entangled states into mixed states. Fortunately, some
distillation protocols and techniques have been discovered. Therefore, these
mixed states can be distilled via local operations and classical communication
(LOCC) to get maximally entangled states, and can be useful again for fur-
ther information processing. However, this distillation is not always possible
leading to a kind of trapped entanglement that we called bound entanglement.

In paper IV, V and VI, we are dealing with this kind of entanglement. In
these papers we prepared and investigated three and four-partite bound entan-
gled states. In paper VI we also experimentally realized activation scheme
for a bound entangled state and show that these states are indeed useful re-
sources. This chapter gives the necessary background for these papers, results
and details of the experiments can be found in the attached papers.

7.1 LOCC Operations

In the field of quantum information and communication sometimes we impose
restrictions due to some natural or artificial origin to investigate how fruitful
quantum resources can be. For instance, in chapter 5, we saw that the commu-
nication between two partners could be more effective by sharing an entangled
pair beforehand, when during one way communication a partner is restricted
to send only a single classical bit. Here, only one-way communication was al-
lowed with severe limitations. Similarly, other form of restriction classes have
been considered and investigated.

One such restriction class is called local operations (LO), in which two
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parties—that we named as Alice and Bob—who shared some state psp are only
allowed to perform local operations i.e. no communication (classical or quan-
tum) between them is allowed [25; 94]. Mathematically such an operation can
be represented as

Aro(pas) = Y (A @ B;)pas(A] @ BY) (7.1)
i,j

Here, Z,-AZA,- = 1y and also ZiBjBi = 1. Naturally, one could extend this
to include classical communication; such restriction class is known as local
operations and classical communication (LOCC). Note that here by local oper-
ation we mean any kind of quantum operations including measurements, with
the only restriction that they be performed locally on each subsystem. More-
over, the results of these measurements and other information can be shared,
however no quantum information transfer is allowed. Note that, via classical
communication one cannot share entanglement, therefore with LOCC entan-
glement remains a resource.

One can distinguish LOCC from the separable operation class (SO) [95]
defined as

Asep(Pas) = Y (A;® B;)pap(A] ® B]) (7.2)

1

Although it is hard to see, (SO) class is more general than (LO) or (LOCC)
class as LO C LOCC C SO. It can be a bit clear if one notices that special
choice of indexing in the above equation implies correlation between Alice and
Bob’s measurements which comes from classical communication. However,
Eq. (7.2) includes operations that are not present in LOCC, details for this can
be found in [96; 97].

7.2 Distillation and Bound Entanglement

In many quantum information applications including teleportation, superdense
coding, entanglement swapping etc. one needs pure maximally entangled Bell
states. However, real experiments in most of the cases lead to mixed entangled
states due to the noise induced by the environment or imperfections of the
experiment itself. Thus, at the output we have to deal with mixed entangled
states rather than pure maximally entangled states. Therefore, it is important to
know, how to get pure or more concentrated entangled states from some mixed
states, as the former are clearly more advantageous. Solely achieving this goal
is called distillation of entanglement [25; 75].

In this context, one considers that there are arbitrary but finite number of
copies available of the state that needs to be distilled. Moreover, these copies
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Pfree  — Nfo=== @C pTA >0
F\&h pTE >0
\\@ pTE Z 0

® =

Drpc(pfree) >0

Figure 7.1: The red (green) circles symbolize that PPT with respect to the sub-
systems they mark is satisfied (violated). Only between the pairs with two green
circles (marked by green dashed lines) pure entanglement can be distilled.

are distributed between two parties that we call Alice and Bob, as usual, and
they are allowed to perform any LOCC operations on these copies such that
in the end they share a maximally entangled state or a state close to it. This
problem for pure and mixed entangled states was first considered by Bennett
et al. in [98; 99]. In [99], it was shown that the two distant parties, Alice and
Bob, sharing n copies of a noisy mixed bipartite entangled state p, can perform
LOCC operations to acquire in turn some number k of copies (where k < n )
of a state close to a maximally entangled state, containing more concentrated
entanglement. The procedure with which this task is achieved, using LOCC, is
referred to as entanglement purification or entanglement distillation protocol.

Observe that it is proved in [100] that all two-qubit entangled states are
distillable. However, for higher dimensional systems this is not always true
i.e. there are entangled states which are not distillable by LOCC. These states
are known as bound entangled (BE) states. This is because to prepare these
states one needs entanglement, however, once driven into bound entanglement
regime it is not possible to distill maximally entangled states from them any-
more. Therefore, one can discriminate between two forms of entanglement
here, free and bound, which are defined according to their distillability.

The positive partial transpose (PPT) criterion of separability, discussed in
section 6.1.3, is closely connected to distillation. One cannot distill entangle-
ment from separable states by LOCC, as the set of separable states is closed
under these operations. Therefore separable states are PPT and non-distillable.
It is also shown in [101; 102] that violation of PPT criterion is a necessary
condition for distillation. Fig. 7.1, provides an example, where the PPT crite-
rion is used to show that there exists free entanglement in the state. Moreover,
creation of BE states are examples of irreversible processes in quantum sys-
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tems, as these states can be created from pure free entangled states via LOCC
operations. Nevertheless, once this free entanglement is brought into a bound
entangled regime then it cannot be reversed. Interestingly, sometimes bound
entanglement can be activated via some activation protocol, in the sense that at
the end we left with some free entanglement. We present such an experiment
in Paper VI

7.3 Smolin States

In the experiment, which demonstrates the first experimental realization of
bound entangled states, Smolin states were produced [103; 104], where they
also presented its unlocking, a process which leads to distillable free entangle-
ment. Smolin states are mixed Bell states given as

1 4
10 = 2V 1) o D)) (.3

s
i=1

where |W)7_, = {|¥7),|W*),|®T),|®)}. It is easy to check that this state

can also be written as

| . . N
pABCD e (674 +674+ 6574 +65) (7.4)

When one of the qubits in this state is rotated locally with &y, 6; and 6, we get

[ . . .
ABCD _ 2 (g4 _ g4 1 694 654

psz _T6 X y z
1

ABCD AL A®4 A4 | A4

pA :E(c;% — 67— 674+ 677) (7.5)
1

ABCD A4 | A4 A4 A4

o :R(GJ? +67 -6 —-677)

Note that these are obtained by just local rotations of a BE state and therefore
are all bound entangled also. Moreover, these four states are also mutually
orthogonal, since Tr (Ps,-Ps_,-) = % i.e. one can imagine these four states as
orthogonal vectors in a 4-dimensional space. In this case the tetrahedron de-
picted in Fig. (1) of the paper VI attached, can be visualized as a 3-dimensional
plane containing all these four states. Moreover, the center of this tetrahedron
will be a completely mixed state.

To see how these states are bound entangled, note that the mixture of max-
imally entangled Bell states given in Eq. (7.6) is by construction bi-separable,
however if the two parties, say A and B meet and perform a Bell measurement
with their qubits then they can determine the maximally entangled Bell state
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shared by the other two parties, C and D. i.e. this process will leave the other
two qubits entangled. Conversely, the parties C and D could meet to perform
Bell measurement; this will leave the states shared between A and B entangled.
Therefore, clearly Smolin states contain entanglement. Moreover, these states
are completely symmetric in terms of the labeling of the parties, this is easy to
see from the equivalent form given in Eq. (7.5). Therefore, the above argument
can be applied to any of the two parties. However, as mentioned earlier, these
states are bi-separable also across every possible cut e.g. AB|CD, AC|BD and
AD|BC. This implies that these states are separable between every pair of the
pairs, therefore no entanglement can be distilled across these cuts and hence
as long as the parties are distant, and only LOCC operations are allowed, these
states are BE [105]. Note however that when any two of the four parties meet
they can unlock entanglement hidden in these states.

7.4 Experimental bound entanglement through a Pauli
channel

In Paper VI, we experimentally investigated the case when a product of Bell
states transmits through a lossless quantum channel, which induces bit-flips
and/or phase-flips errors. For this we first generated a product of singlet state
given as

PP = W) (Fpl @ [Wep) (Pepl (7.6)

Then, via the action of a lossless quantum channel (correlated LO operations
i.e. LOCC operations) we were able to transform this state to a mixture of
all maximally entangled Bell states. Also, by adding noise in a controllable
fashion we drove this mixture to BE regime and were able to produced states
shown in Eq. (7.4) and (7.5). We experimentally investigated the set of states
span by these four orthogonal states. Also, by controlling the amount of noise
we were able to produce BE states that violates a Bell inequality. Moreover, we
experimentally investigated the boundary regime between free entanglement,
bound entanglement and separable states. More details can be found in the
attached published article.

7.5 Three-Qubit Bound Entanglement Generation

In Paper V, we experimentally generated a high fidelity mixed three qubit po-
larization bound entangled state. This is also the first experimental realization
of a three-qubit BE state. The state that we generated was

2P

1
Phornd = 3 \Wonz)(Youz| + 37 (7.7)
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®s
C::) PBound
c(®

D(pBound) =0
= Dp.c(PBound) =0

Figure 7.2: Three-qubit bound entangled state pA5¢ . The red (green) circles

symbolize that PPT with respect to the subsystems they mark is satisfied (vio-
lated).

where |Wsrz) is a GHZ state given as
1

V2

and the projection P projects onto {|010),|011),]100),[101)} i.e.

Wenz) = —=(|000) +[111)) (7.8)

P =1010)(010| + [100)(100| + —= (|011)(011| +|101)(101]).  (7.9)

1

V2

Characteristics of this state are illustrated in Fig. 7.2. Using quantum
state tomography [106], we have fully reconstructed its density matrix and
demonstrated all its entanglement properties. The experimental details can
be found in the attached manuscript. Note that this is the first experimental
realization of a bound entangled state that can be used for generation of multi-
partite bound information [107]. Most importantly bound entanglement in this
state can be activated as we have shown in Paper V1.

7.6 Three-Qubit Bound Entanglement Activation

In Paper VI, we present activation scheme for the state in Eq. (7.7), using a
free entangled pair, that we can represent as

PAEC = ([P (P lvp @ [|Q)(Qfc (7.10)

free

ABC

Both of the resources i.e. p;; -, and pA/BlC/ are depicted in Fig. 7.3 together.

free
The special bound entangled 3-qubit state pg‘(ﬁi 4 18 depicted symbolically on
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(a) PBound (b) Pfree

’ B’
SONGPBOLMINC O,

Vacuum @ ’
C @ (no photon) c
D(PBound) =0 Dpr.cr (Pf'ree) =0
= DB:C(pBound) =0

Figure 7.3: The two resources (states) that are used in the activation protocol.

the left hand side. Since in each pair of qubits there is always at least one of
them guaranteeing PPT property, therefore with the original 3-qubit state there
is no chance to distill any pure entanglement out of the state. Thus distillable
entanglement vanishes, D (Ppouna) = 0. In particular no singlet can be distilled
between B and C which we write as Dp.c(Ppouna) = 0. However there is still
some entanglement in the state since the PPT test is violated with respect to
the subsystem C. Thus the state is entangled and, since it is non-distillable,
therefore it is bound entangled. The second, free entangled state Py, corre-
sponds to two-qubit singlet and the virtual (vacuum) part. Clearly there is no
chance to distill entanglement between B’ and C’ from pse.. Thus there is
no possibility of distillation of free entanglement between B and C from an
arbitrary number of copies of any of the state Ppung OF Pfree. In that sense any
of the two states alone is weak since some important quantum entanglement
ingredient is completely absent in any of them.

In Paper VI we present activation of pj5¢  [108]. Importantly, the very
unique feature of quantum mechanics revealed by our experiment is its "something-
out-of-nothing" character; an ingredient completely absent in any of the two
resources suddenly emerges after putting the two resources together. This phe-
nomenon lies at the very heart of the quantum information. More details can
be found in the attached manuscript of paper VI.
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8. Conclusion

This thesis consists of six papers. In the following we will present the conclu-
sion of each part separately.

In paper I we identified three bipartite inequalities based on the pentagon
exclusivity graph, which is the simplest exclusivity graph for which there exist
a quantum-classical gap. We also experimentally violated all three inequali-
ties and obtained results in good agreement with quantum mechanics. We also
show that one of our inequalities is algebraically equivalent to CHSH inequal-
ity, whereas other inequalities can be identified as building blocks of CHSH
and 33y, inequalities. Therefore the quantum violation of CHSH and /337>
inequalities can be traced back to the violation of pentagon inequalities. Fur-
thermore, by linking CHSH inequality to a pentagon inequality, we are able to
provide a simple argument for the impossibility of Popescu and Rohrlich (PR)
nonlocal boxes.

In paper II we present experimental realization of biased and unbiased
CHSH games. We also found a remarkable application of these games, in a
famous card game of duplicate bridge. In the paper we described this applica-
tion along with its successful experimental realization. Note that this is the first
demonstration of a quantum communication complexity protocol usable in a
real-life scenario. We also show in the paper that our quantum bridge game
corresponds to a biased non-local CHSH game, and it is equivalent to a 2 — 1
entanglement assisted quantum random access code. Therefore, our experi-
ment is also a realization of a 2 — 1 entanglement assisted random access code.
Interestingly our application of quantum communication complexity protocol
on duplicate bridge game will have influence on its future and/or on the rules
of this game. As it is up to the World Bridge Federation to decide whether
to allow quantum resources and encoding strategies in Bridge championships,
making this technique the first commonplace application of quantum commu-
nication complexity, or to forbid quantum strategies and thus, constituting the
very first everyday regulation of quantum resources.

In paper III, we have presented an implementation of a recently dis-
covered method with which one can certify entanglement in a measurement-
device-independent way [19; 20]. This certification is based on the witness
method and therefore could be easily applied for many entangled states. Us-
ing this method we detect entanglement in a set of two-photon Werner states.
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Our results are in good agreement with the theory. Our experiment can be
viewed as a demonstration of Buscemi game with quantum input which leads
to a trust-free entanglement detection. Methods and techniques used here can
open the door for other applications i.e. the measurement-device-independent
determination of properties of quantum systems, realization of quantum com-
munication and cryptographic protocols etc.

In paper IV we experimentally investigated a lossless quantum channel,
inducing phase-flip and bit-flip errors. We analyze, what happens when a prod-
uct of Bell’s state passes through this noisy channel. This way we were able
to produce four-partite bound entangled states, known as Smolin states. We
also show that such a channel can generate a set of bond entangled states that
can violate CHSH-inequality. Moreover, we experimentally investigated the
boundary regime between free entanglement, bound entanglement and separa-
ble states.

In paper V, for the first time we prepared a high fidelity mixed three qubit
polarization bound entangled state. Using quantum state tomography we have
fully reconstructed its density matrix and demonstrated all its entanglement
properties. In Paper VI, we present activation scheme for this state using a
free entangled pair. Importantly, the very unique feature of quantum mechan-
ics revealed by our experiment is its "something-out-of-nothing" character; an
ingredient completely absent in any of the two resources suddenly emerges
after putting the two resources together. This phenomenon lies at the very
heart of the quantum information. We strongly believe that the results reported
here will help in the development of novel quantum information and com-
munication protocols and in deeper understanding of foundations of quantum
mechanics.



A. Correlation function for GHZ
state

We define measurement settings for each qubit on the corresponding Bloch
spheres with o,,, = 7;.6, where i = 1,2,3,4 and

sin §; cos ¢;
;= sin6; sing; |, (A.1)
cos6;
therefore o
A a cos;, e PisinG;
On; =1i-0 = < e%sin®, —cos; > ' (A-2)
As, |GHZ) is given as,
1
GHZ) = — (|0011) +{1100) ). A3
|GHZ) 7 (10011) 4-[1100) ) (A3)

Then correlation function will becomes
ECHZ (7 iy, 713, 74) =(GHZ|(Cp, @ Gy @ Oy @ Oy, )|GHZ)
1
:5(001 1|(0p, ® Oy, ® Opy @ G, )|0011)

+(0011|(6y, ® Oy @ Oy @ 0, )|1100) (A4

+ (1100|(0,, ® Oy, ® Oy; ® G, )|0011)
+ (1100]( 0y, ® Gy, ® Oy ® Oy, )[1100).

Note that

cosB; e ¥ising 1
<O‘Gni|0> - ( 10 ) < ifi sinf; —cos6; ) ( 0 ) (A.5)

=cos6;
cos@; e ¥ising; 0
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82 Appendix A. Correlation function for GHZ state

cos@; e %sing; 1
(llonl0)=(0 1) < ¢?sin®;, —cos6; ) ( 0 ) (A7)

= ¢ sin 6;

cos@; e ising; 0
<1‘Gm|1>_( 0 1 ) ( e%sin®;  —cos; > ( 1 > (A.8)

= —cos6;

Using these relations and the fact that cosx = %, we get

EGHZ(ﬁl,ﬁz,ﬁ3,ﬁ4) =cos 0y cos 0, cos 03 cos 0,
—sin 0y sin 6, sin 03 sin 04 cos (¢ + @2 — @3 — P4)

This is the desired relation [33].
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