
  

My Arduino can beat up your hotel room lock

- Cody Brocious



  

Intro

● This talk is all about the Onity HT lock system 
for hotels
– Over 4 million locks are installed in hotels

– On the market since 1993

– Every one is vulnerable



  

If you've stayed at a hotel, you've 
probably seen this lock

Intro



  

Design

● Primary components:
– Encoder – Makes keycards, loads data into the 

Portable Programmer

– Portable Programmer (PP) – Loads data into the 
lock, opens locks

– Lock – In this talk, we'll be focused on standard 
guest room door locks



  

Design

● Sitecodes are 32-bit unique values that 
identify a property (hotel)
– All equipment in the hotel knows it

– Used primarily as an encryption key

– Hidden, even from property owners



  

Portable Programmer

● The portable programmer does the following
– Initialize – Load data into lock for the first time

– Update – Update the time and data in the lock

– Test – Shows diagnostic data about the lock

– Read openings – Reads the audit report from the 
lock

– Open – Opens the lock



  

Lock communications

● The PP uses a DC barrel-type connector
– It attaches to the bottom of the front face of the 

lock

– The port is accessible without removing any 
hardware

● Communication happens over a one-wire 
protocol with the other being a shared ground



  

Lock communications

● The master (PP) drives the communication
– Sends pulses at regular intervals while 

communicating

– If one side wants to transmit a bit, it's done by 
pulling the line low between those pulses

● That indicates a 1 bit



  

Lock communications

● This is a case of the lock sending data to the master
– A zero and one, specifically

– Red pulses are from the master, the black pulse is from the 
lock



  

Hardware

● To communicate with the lock physically, you'll 
need the following
– An Arduino or other microcontroller

– A 5.6k pull-up resistor from the 3.3v line to your 
data line

– The DC barrel plug to physically mate with the lock

● This, depending on the board you get, can be 
$20 or less from Radioshack



  

But what can we do?

● There are a few key commands in the protocol
– Reading memory

● Given an address, the lock will send back 16 bytes of 
memory from that point

– Opening the lock
● Given the sitecode for the property, the lock will open



  

But what can we do?

● But it'd be crazy to just let anyone do this
– If you can read the memory, the keys to the castle 

are there

● How do we deal with authentication?



  

Authentication

. . .



  

Authentication

● Reading memory requires no authentication
– Send it an address, it sends you memory

– That's it



  

Memory

● Knowing how to read memory is irrelevant if 
you don't know what to read
– But every guest room lock has their data at the 

same addresses
● Exterior entry doors are different, but you can detect the 

type and act based on that



  

Memory

● The most obvious piece of data is the sitecode
– Given that, you can decrypt or encrypt your own 

cards

– Or you can go the direct route, and just use it with 
the open command on the lock



  

Open command

● All you need is the sitecode
– We got that from memory

● Complete time for reading the memory and opening 
the lock is about 200 milliseconds
– This can be longer if you need to try different addresses, 

due to supporting multiple door types

● Creates an entry in the audit report that shows the PP 
having been used to open the lock
– But it doesn't alter any data on the lock or inhibit normal 

functioning



  

Memory

● But there's more:
– Guest code

● Make your own guest card for the door

– Master codes
● Make copies of any master card programmed into the 

lock
● This won't necessarily get you into every lock at the 

property
– Not all masters are assigned to all doors



  

Programming cards

● Also in memory is the programming card code
● Truly magical cards

– One code is loaded into every lock at the property

– Used for cases where the encoder is out of service
● A programming card is put into the lock
● Then a 'spare' card is put into the lock

– That spare card is now the actual guest card
● Hotels keep dozens of these on file in case of front desk system 

issues

– We can read this code from memory and make a skeleton 
key



  

Card cryptography

● As mentioned previously, the sitecode is the crypto 
key for cards
– As a reminder, this is only 32-bit

– A naïve implementation of the crypto algorithm gives you 2 
million card encrypts or decrypts per second trivially

– That means that trying every sitecode on a key would take 
about 35 minutes on a normal desktop using one core

● If you wanted to do it in a minute, it would cost less than a dollar 
on Amazon EC2



  

Card cryptography

● Brute force is obviously viable
● The crypto algorithm is proprietary

– It works in a linear fashion from beginning to end

– Each step is a rotate and an XOR

– Key material is poorly distributed

● If you know plaintext in the card, it's trivial to 
determine the sitecode used to encrypt it



  

Card cryptography

● Let's look at the card format
– 16-bit ident value

● Identifier for the door combined with the card copy field

– 8-bit flags byte

– 16-bit expiration date

– 8-bit authorizations byte

– 24-bit zeros

– 24-bit code key value



  

Card plaintext

● Ident values may be predictable
– We do know the card copy field that takes up a few of the 

lower bits of the ident field

– And when the doors are added to the encoder, they're 
added in a specific order and spaced out logically

● Very possible that this could be guessed, though validating it is 
next to impossible without outside info

● We can't know the code key value
– 24-bit space, effectively randomly distributed

● But we know the expiration date and the zero bytes



  

Card plaintext

● If you get two cards when you check into a 
hotel
– The ident value will be separated by one

● If you get a card for a room, then get a new 
card for it (e.g. lost the old one)
– The code key value will be incremented by one



  

Card plaintext

● All of this gives us enough plaintext to determine the 
sitecode
– Read in a couple cards with known properties

– Bruteforce the sitecode and decrypt the cards
● Check to see that those properties are upheld in the plaintext

● Given the properties of the crypto, full brute force 
should not be necessary
– Should be able to figure out which bits of the sitecode 

are correct and which are not



  

Audit reports considered harmful

● Given all the vulnerabilities present in this 
system, the audit report is unquestionably 
untrustworthy
– And this is all assuming that it isn't also possible to 

write to memory, in addition to reading



  

Demonstration

Opening a lock with an Arduino



  

Release

● The paper is being released in a beta form
– It will be available and updated at http://daeken.com/

– Full details on the opening device, as well as protocol 
specifications, crypto code, etc are included

– There's 3 years of work to release
● This talk only shows a tiny section of it
● The paper includes a lot already and will get bigger and 

bigger as time goes on



  

Mitigation

● At the moment there's no mitigation, but there 
are possibilities
– Direct memory access

● Redesign lock to provide safe interface for programming
● Update portable programmer to be compatible

– Cryptography
● Switch to a larger key and industry standard algorithm 

like AES
● Update encoders and locks



  

Mitigation

● Biggest impediment to mitigation is that the locks are not upgradeable
– At the very least, the circuit boards in over 4 million locks would have to be 

replaced

● The PP is not much better off, but the EPROM can be changed
● Given the substantial changes that would be required, it would be 

impossible to replace the locks without replacing all of the equipment 
at the front desk as well
– And all of the locks at a property would have to be replaced at the same time

– This all adds up to a very substantial cost



  

Future work

● There's a lot of work still to be done
– Cryptography

● A cryptographer would likely be able to make significant progress towards 
simplifying and breaking the crypto algorithm beyond what was presented here

– Protocol
● It is believed that the PP initializes/updates the lock via direct memory writes, 

but this is not reversed

– Memory
● The complete memory maps of all of the locks are not available

– CT locks
● The Onity CT (commercial) locks may be vulnerable to the same sort of issues 

detailed here, but this has not been tested



  

Recap

● Arbitrary memory access
– Gives us the sitecode

● Open the lock instantly
● Or create cards to open the other locks at the property

– Including the programming card skeleton keys

● Completely unauthenticated
● Cryptography is broken

– Tiny keyspace
– Proprietary algorithm leaks data



  

Questions?
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