

My Arduino can beat up your hotel room lock

- Cody Brocious

Intro

● This talk is all about the Onity HT lock system
for hotels
– Over 4 million locks are installed in hotels

– On the market since 1993

– Every one is vulnerable

If you've stayed at a hotel, you've
probably seen this lock

Intro

Design

● Primary components:
– Encoder – Makes keycards, loads data into the

Portable Programmer

– Portable Programmer (PP) – Loads data into the
lock, opens locks

– Lock – In this talk, we'll be focused on standard
guest room door locks

Design

● Sitecodes are 32-bit unique values that
identify a property (hotel)
– All equipment in the hotel knows it

– Used primarily as an encryption key

– Hidden, even from property owners

Portable Programmer

● The portable programmer does the following
– Initialize – Load data into lock for the first time

– Update – Update the time and data in the lock

– Test – Shows diagnostic data about the lock

– Read openings – Reads the audit report from the
lock

– Open – Opens the lock

Lock communications

● The PP uses a DC barrel-type connector
– It attaches to the bottom of the front face of the

lock

– The port is accessible without removing any
hardware

● Communication happens over a one-wire
protocol with the other being a shared ground

Lock communications

● The master (PP) drives the communication
– Sends pulses at regular intervals while

communicating

– If one side wants to transmit a bit, it's done by
pulling the line low between those pulses

● That indicates a 1 bit

Lock communications

● This is a case of the lock sending data to the master
– A zero and one, specifically

– Red pulses are from the master, the black pulse is from the
lock

Hardware

● To communicate with the lock physically, you'll
need the following
– An Arduino or other microcontroller

– A 5.6k pull-up resistor from the 3.3v line to your
data line

– The DC barrel plug to physically mate with the lock

● This, depending on the board you get, can be
$20 or less from Radioshack

But what can we do?

● There are a few key commands in the protocol
– Reading memory

● Given an address, the lock will send back 16 bytes of
memory from that point

– Opening the lock
● Given the sitecode for the property, the lock will open

But what can we do?

● But it'd be crazy to just let anyone do this
– If you can read the memory, the keys to the castle

are there

● How do we deal with authentication?

Authentication

. . .

Authentication

● Reading memory requires no authentication
– Send it an address, it sends you memory

– That's it

Memory

● Knowing how to read memory is irrelevant if
you don't know what to read
– But every guest room lock has their data at the

same addresses
● Exterior entry doors are different, but you can detect the

type and act based on that

Memory

● The most obvious piece of data is the sitecode
– Given that, you can decrypt or encrypt your own

cards

– Or you can go the direct route, and just use it with
the open command on the lock

Open command

● All you need is the sitecode
– We got that from memory

● Complete time for reading the memory and opening
the lock is about 200 milliseconds
– This can be longer if you need to try different addresses,

due to supporting multiple door types

● Creates an entry in the audit report that shows the PP
having been used to open the lock
– But it doesn't alter any data on the lock or inhibit normal

functioning

Memory

● But there's more:
– Guest code

● Make your own guest card for the door

– Master codes
● Make copies of any master card programmed into the

lock
● This won't necessarily get you into every lock at the

property
– Not all masters are assigned to all doors

Programming cards

● Also in memory is the programming card code
● Truly magical cards

– One code is loaded into every lock at the property

– Used for cases where the encoder is out of service
● A programming card is put into the lock
● Then a 'spare' card is put into the lock

– That spare card is now the actual guest card
● Hotels keep dozens of these on file in case of front desk system

issues

– We can read this code from memory and make a skeleton
key

Card cryptography

● As mentioned previously, the sitecode is the crypto
key for cards
– As a reminder, this is only 32-bit

– A naïve implementation of the crypto algorithm gives you 2
million card encrypts or decrypts per second trivially

– That means that trying every sitecode on a key would take
about 35 minutes on a normal desktop using one core

● If you wanted to do it in a minute, it would cost less than a dollar
on Amazon EC2

Card cryptography

● Brute force is obviously viable
● The crypto algorithm is proprietary

– It works in a linear fashion from beginning to end

– Each step is a rotate and an XOR

– Key material is poorly distributed

● If you know plaintext in the card, it's trivial to
determine the sitecode used to encrypt it

Card cryptography

● Let's look at the card format
– 16-bit ident value

● Identifier for the door combined with the card copy field

– 8-bit flags byte

– 16-bit expiration date

– 8-bit authorizations byte

– 24-bit zeros

– 24-bit code key value

Card plaintext

● Ident values may be predictable
– We do know the card copy field that takes up a few of the

lower bits of the ident field

– And when the doors are added to the encoder, they're
added in a specific order and spaced out logically

● Very possible that this could be guessed, though validating it is
next to impossible without outside info

● We can't know the code key value
– 24-bit space, effectively randomly distributed

● But we know the expiration date and the zero bytes

Card plaintext

● If you get two cards when you check into a
hotel
– The ident value will be separated by one

● If you get a card for a room, then get a new
card for it (e.g. lost the old one)
– The code key value will be incremented by one

Card plaintext

● All of this gives us enough plaintext to determine the
sitecode
– Read in a couple cards with known properties

– Bruteforce the sitecode and decrypt the cards
● Check to see that those properties are upheld in the plaintext

● Given the properties of the crypto, full brute force
should not be necessary
– Should be able to figure out which bits of the sitecode

are correct and which are not

Audit reports considered harmful

● Given all the vulnerabilities present in this
system, the audit report is unquestionably
untrustworthy
– And this is all assuming that it isn't also possible to

write to memory, in addition to reading

Demonstration

Opening a lock with an Arduino

Release

● The paper is being released in a beta form
– It will be available and updated at http://daeken.com/

– Full details on the opening device, as well as protocol
specifications, crypto code, etc are included

– There's 3 years of work to release
● This talk only shows a tiny section of it
● The paper includes a lot already and will get bigger and

bigger as time goes on

Mitigation

● At the moment there's no mitigation, but there
are possibilities
– Direct memory access

● Redesign lock to provide safe interface for programming
● Update portable programmer to be compatible

– Cryptography
● Switch to a larger key and industry standard algorithm

like AES
● Update encoders and locks

Mitigation

● Biggest impediment to mitigation is that the locks are not upgradeable
– At the very least, the circuit boards in over 4 million locks would have to be

replaced

● The PP is not much better off, but the EPROM can be changed
● Given the substantial changes that would be required, it would be

impossible to replace the locks without replacing all of the equipment
at the front desk as well
– And all of the locks at a property would have to be replaced at the same time

– This all adds up to a very substantial cost

Future work

● There's a lot of work still to be done
– Cryptography

● A cryptographer would likely be able to make significant progress towards
simplifying and breaking the crypto algorithm beyond what was presented here

– Protocol
● It is believed that the PP initializes/updates the lock via direct memory writes,

but this is not reversed

– Memory
● The complete memory maps of all of the locks are not available

– CT locks
● The Onity CT (commercial) locks may be vulnerable to the same sort of issues

detailed here, but this has not been tested

Recap

● Arbitrary memory access
– Gives us the sitecode

● Open the lock instantly
● Or create cards to open the other locks at the property

– Including the programming card skeleton keys

● Completely unauthenticated
● Cryptography is broken

– Tiny keyspace
– Proprietary algorithm leaks data

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

