$A=\frac{4}{2} X_{1}+\frac{3}{2} X_{2}+\frac{5}{2} H_{3}$
Minimize drive way lengths (the altitudes of the sub triangles)
$F\left(H_{1}, H_{2}, H_{3}\right)=H_{1}+H_{2}+H_{3}=X_{1}+X_{2}+H_{3}$
rearrange first equation and substitute into second

$$
\begin{aligned}
& F\left(H_{1}, H_{2}, H_{3}\right)=X_{1}+X_{2}+H_{3}=X_{1}+X_{2}+\frac{24}{10}-\frac{8}{10} X_{1}-\frac{6}{10} X_{2} \\
& \quad F\left(H_{1}, H_{2}, H_{3}\right)=\frac{24}{10}-\frac{2}{10} X_{1}-\frac{4}{10} X_{2}
\end{aligned}
$$

So the minimum driveway distance for a non equalateral right triangle would be to place the house on the vertex opposite the hypotenuse

