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DR. DIRAC

Lecture No. 1

THE HAMILTONIAN METHOD

I’'m very happy to be here at Yeshiva and to have this
chance to talk to you about some mathematical methods
that I have been working on for a number of years. 1
would like first to describe in a few words the general
object of these methods.

In atomic theory we have tu deal with various ficlds.
There are some fields which are very familiar, like
the electromagnetic and the gravitational fields; but in
recent times we have a number of other fields also to
concern ourselves with, because according to the general

ideas of De Broglie and Schrodinger every particle is
associated with waves and these waves may be considered
as a field. So we have in atomic physics the general
problem of setting up a theory of various fields in inter-
action with each other. We need a theory conforming to
the principles of quantum mechanics, but it is quite a

difficult matter to get such a theory.

One can get a much simpler theory if one goes over
to the corresponding classical mechanics, which is the
form which quantum mechanics takes when one makes
Planck’s constant % tend to zero. It is very much easier
to visualize what one is doing in terms of classical

[1]




LECTURES ON QUANTUM MECHANICS

mechanics. It will be mainly about classical mechanics
that I shall be talking in these lectures.

Now you may think that that is really not good enough,
because classical mechanics is not good enough to
describe Nature. Nature is described by quantum
mechanics. Why should one, therefore, bother so much
about classical mechanics? Well, the quantum field
theories are, as I said, quite difficult and so far, people
have been able to build up quantum field theories only
for fairly simple kinds of fields with simple interactions
between them. It is quite possible that these simple fields
with the simple interactions between them are not
adequate for a description of Nature. The successes
which we get with quantum field theories are rather
limited. One is continually running into difficulties and
one would like to broaden one’s basis and have some
possibility of bringing more general fields into account.
For example, one would like to take into account the
possibility that Maxwell’s equations are not accurately
valid. When one goes to distances very close to the
charges that are producing the fields, one may have to
modify Maxwell’s field theory so as to make it into a non-
linear electrodynamics. This is only one example of the
kind of generalization which it is profitable to consider
in our present state of ignorance of the basic ideas, the
basic forces and the basic character of the fields of
atomic theory.

In order to be able to start on this problem of dealing
with more general fields, we must go over the classical
theory. Now, if we can put the classical theory into the
Hamiltonian form, then we can always apply certain
standard rules so as to get a first approximation to a
quantum theory. My talks will be mainly concerned with

[2]
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this problem of putting a general classical theory into the
Hamiltonian form. When one has done that, one is well
launched onto the path of getting an accurate quantum
theory. One has, in any case, a first approximation.

Of course, this work is to be considered as a prelimin-
ary piece of work. The final conclusion of this piece of
work must be to set up an accurate quantum theory, and
that involves quite serious difficulties, difficulties of a
fundamental character which people have been worrying
over for quite a number of years. Some people are so
much impressed by the difficulties of passing over from
Hamiltonian classical mechanics to quantum mechanics
that they think that maybe the whole method of working
from Hamiltonian classical theory is a bad method.
Particularly in the last few years people have been trying
to set up alternative methods for getting quantum field
theories. They have made quite considerable progress on
these lines. They have obtained a number of conditions
which have to be satisfied. Still I feel that these alterna-
tive methods, although they go quite a long way towards
accounting for experimental results, will not lead to a
final solution to the problem. I feel that there will always
be something missing from them which we can only get
by working from a Hamiltonian, or maybe from some
generalization of the concept of a Hamiltonian. So I take
the point of view that the Hamiltonian is really very
important for quantum theory.

In fact, without using Hamiltonian methods one cannot
solve some of the simplest problems in quantum theory,
for example the problem of getting the Balmer formula
for hydrogen, which was the very beginning of quantum
mechanics. A Hamiltonian comes in therefore in very
elementary ways and it seems to me that it is really quite

[3]
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cosential to work from a Hamiltonian; so I want to talk
to you about how far one can develop Hamiltonian
methods.

I'would like to begin in an elementary way and I take
A~ my starting point an action principle. That is to say, 1
assume that there is an action integral which depends on
the motion, such that, when one varies the motion, and
puts down the conditions for the action integral to be
stutionary, one gets the equations of motion. The method
of starting from an action principle has the one great
advantage, that one can easily make the theory conform
to the principle of relativity. We need our atomic theory
to conform to relativity because in general we are dealing
with particles moving with high velocities.

If we want to bring in the gravitational field, then we
have to make our theory conform to the general principle
of relativity, which means working with a space-time
which is not flat. Now the gravitational field is not very
important in atomic physics, because gravitational forces
are extremely weak compared with the other kinds of
forces which are present in atomic processes, and for
practical purposes one can neglect the gravitational field.
People have in recent years worked to some extent on
bringing the gravitational field into the quantum theory,
but I think that the main object of this work was the hope
that bringing in the gravitational field might help to
solve some of the difficulties. As far as one can see at
present, that hope is not realized, and bringing in the
gravitational field seems to add to the difficulties rather
than remove them. So that there is not very much point
at present in bringing gravitational fields into atomic
theory. However, the methods which I am going to
describe are powerful mathematical methods which

[4]
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would be available whether one brings in the gravita-
tional field or not.
We start off with an action integral which I denote by

I = fz; dt. (1-1)

It is expressed as a time integral, the integrand L being
the Lagrangian. So with an action principle we have a
Lagrangian. We have to consider how to pass from that
Lagrangian to a Hamiltonian. When we have got the
Hamiltonian, we have made the first step toward getting
a quantum theory.

You might wonder whether one could not take the
Hamiltonian as the starting point and short-circuit this
work of beginning with an action integral, getting a
Lagrangian from it and passing from the Lagrangian to
the Hamiltonian. The objection to trying to make this
short-circuit is that it is not at all easy to formulate the
conditions for a theory to be relativistic in terms of the
Hamiltonian. In terms of the action integral, it is very
easy to formulate the conditions for the theory to be
relativistic: one simply has to require that the action
integral shall be invariant. One can easily construct
innumerable examples of action integrals which are
invariant. They will automatically lead to equations of
motion agreeing with relativity, and any developments
from this action integral will therefore also be in agree-
ment with relativity.

When we have the Hamiltonian, we can apply a
standard method which gives us a first approximation to
a quantum theory, and if we are lucky we might be able
to go on and get an accurate quantum theory. You might

[5]
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again wonder whether one could not short-circuit that
work to some extent. Could one not perhaps pass directly
from the Lagrangian to the quantum theory, and short-
circuit altogether the Hamiltonian ? Well, for some simple
examples one can do that. For some of the simple fields
which are used in physics the Lagrangian is quadratic
in the velocities, and is like the Lagrangian which one
has in the non-relativistic dynamics of particles. For these
examples for which the Lagrangian is quadratic in the
velocities, people have devised some methods for passing
directly from the Lagrangian to the quantum theory.
Still, this limitation of the Lagrangian’s being quadratic
in the velocities is quite a severe one. I want to avoid this
limitation and to work with a Lagrangian which can be
quite a general function of the velocities. To get a
general formalism which will be applicable, for example,
to the non-linear electrodynamics which I mentioned
previously, I don’t think one can in any way short-
circuit the route of starting with an action integral,
getting a Lagrangian, passing from the Langrangian to
the Hamiltonian, and then passing from the Hamiltonian
to the quantum theory. That is the route which I want to
discuss in this course of lectures.

In order to express things in a simple way to begin
with, T would like to start with a dynamical theory
involving only a finite number of degrees of freedom,
such as you are familiar with in particle dynamics. It
is then merely a formal matter to pass from this
finite number of degrees of freedom to the infinite num-
ber of degrees of freedom which we need for a field
theory.

Starting with a finite number of degrees of freedom,
we have dynamical coordinates which I denote by gq.

[6]
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The general oneis ¢,, # = 1,---, N, N being the num-
ber of degrees of freedom. Then we have the velocities
dg,/dt = ¢,. The Lagrangian is a function L = L(g, ¢)
of the coordinates and the velocities.

You may be a little disturbed at this stage by the
importance that the time variable plays in the formalism.
We have a time variable ¢ occurring already as soon as
we introduce the Lagrangian. It occurs again in the
velocities, and all the work of passing from Lagrangian
to Hamiltonian involves one particular time variable.
Irom the relativistic point of view we are thus singling
out one particular observer and making our whole
formalism refer to the time for this observer. That, of
course, is not really very pleasant to a relativist, who
would like to treat all observers on the same footing.
However, it is a feature of the present formalism which
I do not see how one can avoid if one wants to keep to the
generality of allowing the Lagrangian to be any function
of the coordinates and velocities. We can be sure that the
contents of the theory are relativistic, even though the
form of the equations is not manifestly relativistic on
account of the appearance of one particular time in a
dominant place in the theory.

Let us now develop this Lagrangian dynamics and
pass over to Hamiltonian dynamics, following as closely
as we can the ideas which one learns about as soon as one
deals with dynamics from the point of view of working
with general coordinates. We have the Lagrangian
equations of motion which follow from the variation of
the action integral:

d (oL oL
2 57) = a (1-2)

(7]
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To go over to the Hamiltonian formalism, we introduce
the momentum variables p,, which are defined by

oL
Pr= 5o (1-3)
Now in the usual dynamical theory, one makes the
assumption that the momenta are independent functions
of the velocities, but that assumption is too restrictive for
the applications which we are going to make. We want
to allow for the possibility of these momenta not being
independent functions of the velocities. In that case,
there exist certain relations connecting the momentum
variables, of the type ¢(q, p) = 0.
There may be several independent relations of this
type, and if there are, we distinguish them one from
another by a suffix m = 1,.-., M, so we have

¢l P) = 0. (1-4)

The ¢’s and the p’s are the dynamical variables of the
Hamiltonian theory. They are connected by the relations
(1-4), which are called the primary constraints of the
Hamiltonian formalism. This terminology is due to
Bergmann, and I think it is a good one.

Let us now consider the quantity p,¢, ~ L. (When-
ever there is a repeated suffix I assume a summation
over all values of that suffix.) Let us make variations in
the variables g and ¢, in the coordinates and the velocities.
These variations will cause variations to occur in the
momentum variables p. As a result of these variations,

S(PnQn - L)

. . oL oL\ ..
BPnQn + Pu SQn - (a) BQn - (5?) 3(1,.

= Opndn — (%) 84y, (1-5)
[8]

s, o

THE HAMILTONIAN METHOD

by (1-3). Now you see that the variation of this quantity
iy — L involves only the variation of the ¢’s and that of
the p’s. It does not involve the variation of the velocities.
‘I'hat means that p,¢,L — can be expressed in terms of
the ¢’s and the p’s, independent of the velocities. Ex-
pressed in this way, it is called the Hamiltonian H.

However, the Hamiltonian defined in this way is not
uniquely determined, because we may add to it any
linear combination of the ¢’s, which are zero. Thus, we
could go over to another Hamiltonian

H* = H + cm¢m> (1"6)

where the quantities c,, are coefficients which can be any
function of the ¢’s and the p’s. H* is then just as good as
I; our theory cannot distinguish between H and H*.
'I'he Hamiltonian is not uniquely determined.

We have seen in (1-5) that

oL
8H = Gn Spn - ('é'a;) 6gn'

''his equation holds for any variation of the ¢’s and the
’s subject to the condition that the constraints (1-4) are
preserved. The ¢’s and the p’s cannot be varied inde-
pendently because they are restricted by (1-4), but for
any variation of the ¢’s and the p’s which preserves these
conditions, we have this equation holding. From the
general method of the calculus of variations applied to a
variational equation with constraints of this kind, we

deduce
oH Od.m

™= o,
oL oH b,
T T T

[9]
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_oH _ 9%,
aqn Uy -a-q—n: (1—8)

with the help of (1-2) and (1-3)

: -3), where the
unkn(?wn coeﬂic_lents. We have here the Hami?zm?czz
equations of motion, describing how the variables g and

p vary in time, but th 1 i
. ) ese equations involv
coeflicients u,,. © unknown

or Pn =

I't Is convenient to introduce a certain formalism
which enables one to write these equations briefl
namel}f the Poisson bracket formalism. It consists of tlzr’
following: If we have two functions of the ¢’s and the p’se

b

say f(g, p) and g(q, p), th ]
2y g, deﬁnei(%yp) ey have a Poisson bracket [f, g]

Y oy
U8l = 5 %, ~ o970, (1-9)

The Poisson brackets have certain properties which

follow from their definiti i i
symmetric in f and g: o namely [g] is anti-

L8l = -lgf1; (1-10)

it is linear in either member:

[fr + f2 8] = [f1 8] + [fo g]s ete.;  (1-11)

and we have the product law,

[fif2 8] = £ilfa 8] + [fus glfo- (1-12)

Fmall.y, there is.the relationship, known as the Yacobi
Identity, connecting three quantities:

[/ L& 2] + [g. B, f1] + [A [/ 6] = 0. (1-13)
With the help of the Poisson bracket, one can rewrite

[10]
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the equations of motion. For any function g of the ¢’s
and the p's, we have

. og ., 9% .

8= aqn gn + apn.pn‘ (1-14)
If we substitute for g, and p, their values given by (1-7)
and (1-8), we find that (1-14) is just

g = [g) H] + um[g’ ‘/’m] (1'15)

'I'he equations of motion are thus all written concisely in
the Poisson bracket formalism.

We can write them in a still more concise formalism
if we extend the notion of Poisson bracket somewhat.
As I have defined Poisson brackets, they have a meaning
only for quantities f and g which can be expressed in
terms of the ¢’s and the p’s. Something more general,
such as a general velocity variable which is not expressible
in terms of the ¢’s and p’s, does not have a Poisson
bracket with another quantity. Let us extend the meaning
of Poisson brackets and suppose that they exist for any
two quantities and that they satisfy the laws (1-10),
(1-11), (1-12), and (1-13), but are otherwise undeter-
mined when the quantities are not functions of the ¢’s
and p’s.

Then we may write (1-15) as

g = [g7H + umd’m]' (1-16)

Here you see the coefficients u occurring in one of the
members of a Poisson bracket. The coeflicients u, are
not functions of the ¢’s and the p’s, so that we cannot
use the definition (1-9) for determining the Poisson
bracket in (1-16). However, we can proceed to work out

[11]
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this Poisson bracket usin
: g the laws (1-10), (1-11), (1-12
and (1-13). Using the summation law (l-lg) we)hgwe: )

le, H + Unbn] = [g, H] + [s, UnPm] (1-17)
and using the product law (1-12),

[g) um¢m] = [g’ um]d’m + um[g’ ¢m] (1"18)

The last bracket in (1-18) is well-defined, for g and ¢
are both functions of the ¢’s and the p’s.) The Poissorn;
bracket' [g, un) is not defined, but it is multiplied b
sgmethmg that vanishes, #,.. So the first term on thy
right of (1-18) vanishes. The result is that )

[.g’ H + um¢m] = [gs H] + um[g’ 9Sm]’ (1'19)

making (1.-16) agree with (1-15).

‘ There. 1s something that we have to be careful about
In working with the Poisson bracket formalism: We
have the constraints (1-4), but must not use 0£1e of
these constraints before working out a Poisson bracket
If we did, we would get a wrong result. So we take it as .
rule that Poisson brackets must all be worked out befor?:
we make use of the constraint equations. To remind us of
this rule in the formalism, I write the constraints (1-4)

as equations with a different equality sign x from the
usual. Thus they are written

én =X 0. (1-20)

I call such equations weak equations, to distinguish them
from the usual or strong equations, |

One can ma.ke use of (1-20) only after one has worked
out .all the P(?Lsson brackets which one is interested in

Subject to this rule, the Poisson bracket (1-19) is quitf;

[12]
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definite, and we have the possibility of writing our
cquations of motion (1-16) in a very concise form:

¢ = g Hy) (1-21)
with a Hamiltonian I call the total Hamiltonian,
Hy = H + uydn. (1-22)

Now let us examine the consequences of these
cquations of motion. In the first place, there will be
some consistency conditions. We have the quantities ¢
which have to be zero throughout all time. We can apply
the equation of motion (1-21) or (1-15) taking g to be one
of the ¢’s. We know that ¢ must be zero for consistency,
and so we get some consistency conditions. Let us see
what they are like. Putting g = ¢, and § = 0 in (1-15),
we have:

[qsm) H] + um'[qsmv (ﬁm/] ~ 0. (1'23)

We have here a number of consistency conditions, one
for each value of m. We must examine these conditions
to see what they lead to. It is possible for them to lead
directly to an inconsistency. They might lead to the
inconsistency 1 = 0. If that happens, it would mean
that our original Lagrangian is such that the Lagrangian
equations of motion are inconsistent. One can easily
construct an example with just one degree of freedom.
If we take I = ¢ then the Lagrangian equation of motion
(1-2) gives immediately 1 = 0. So you see, we cannot
take the Lagrangian to be completely arbitrary. We must
impose on it the condition that the Lagrangian equations
of motion do not involve an inconsistency. With this
restriction the equations (1-23) can be divided into three

kinds.
[13]
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One kind of equation reduces to 0 = 0, i.e. it is
identically satisfied, with the help of the primary con-
straints.

Another kind of equation reduces to an equation
independent of the #’s, thus involving only the ¢’s and
the p’s. Such an equation must be independent of the

primary constraints, otherwise it is of the first kind.
Thus it is of the form

x(¢, p) = 0. (1-24)

Finally, an equation in (1-23) may not reduce in either
of these ways; it then imposes a condition on the ’s.

The first kind we do not have to bother about any
more. Each equation of the second kind means that we
have another constraint on the Hamiltonian variables.
Constraints which turn up in this way are called sec-
ondary constraints. They differ from the primary con-
straints in that the primary constraints are consequences
merely of the equations (1-3) that define the momentum
variables, while for the secondary constraints, one has to
make use of the Lagrangian equations of motion as well.

If we have a secondary constraint turning up in our
theory, then we get yet another consistency condition,
because we can work out y according to the equation of

motion (1-15) and we require that y ~ 0. So we get
another equation

D6 H] + tnly, $n] = 0. (1-25)

This equation has to be treated on the same footing as
(1-23). One must again see which of the three kinds it is.
If it is of the second kind, then we have to push the
process one stage further because we have a further

[14]
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~ccondary constraint. We carry on like that until we have
xhausted all the consistency conditions, and the final
\esult will be that we are left with a number of secondary
constraints of the type (1-24) together with a number of
onditions on the coefficients u of the type (1-23).

'I'he secondary constraints will for many purposes be
ticated on the same footing as the primary constraints.
It is convenient to use the notation for them:

4.0, k=M+1,..,M+K, (1-26)

where K is the total number of secondary constraints.
I'hey ought to be written as weak equations in the same
way as primary constraints, as they are also equations
which one must not make use of before one works out
Poisson brackets. So all the constraints together may be
written as

¢jz0’ j=

Let us now go over to the remaining equations of the
third kind. We have to see what conditions they impose
on the coefficients u. These equations are

[¢:i’ H] + um[¢f’ 'ibm] ~ 0

where m is summed from 1 to M and j takes on any of t':he
values from 1 to ¥. We have these equations involving
conditions on the coefficients %, insofar as they do not
reduce merely to the constraint equations. .
Let us look at these equations from the following
point of view. Let us suppose that the #’s are unknowns
and that we have in (1-28) a number of non.-homogen.eous
linear equations in these unknowns u, with coeflicients
which are functions of the ¢’s and the p’s. Let us look

[15]
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for a solution of these equations, which gives us the
’s as functions of the ¢’s and the p’s, say

Uy = m(% P) (1'29)

There must exist a solution of this type, because if there
were none it would mean that the Lagrangian equations
of motion are inconsistent, and we are excluding that
case.

The solution is not unique. If we have one solution,
we may add to it any solution V,(g, p) of the homogene-
ous equations associated with (1-28):

Vm[(;bja ¢m] =0, (1'30)

and that will give us another solution of the inhomogene-
ous equations (1-28). We want the most general solution
of (1-28) and that means that we must consider all the
independent solutions of (1-30), which we may denote by
Vin(@: P), @ = 1,..., A. The general solution of (1-28)
is then

Uy = Up + 0,V (1-31)

in terms of coefficients v, which can be arbitrary.
Let us substitute these expressions for u into the total

Hamiltonian of the theory (1-22). That will give us the
total Hamiltonian

Hy = H + Uydp + 95Vt (1-32)
We can write this as
Hp = H + v,¢,, (1-33)
where H =H + U,é, (1-33y
and e = VonPm. (1-34)
[16]
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In terms of this total Hamiltonian (1-33) we still have the
cquations of motion (1-21).

As a result of carrying out this analysis, we have
«atisfied all the consistency requirements of the theory
and we still have arbitrary coefficients v. The number of
the coefficients v will usually be less than the number of
cocficients #. The u’s are not arbitrary but have to
satisfy consistency conditions, while the ¢’s are arbitrary
cocfficients. We may take the o’s to be arbitrary functions
of the time and we have still satisfied all the requirements
of our dynamical theory.

This provides a difference of the generalized Hamil-
tonian formalism from what one is familiar with in
clementary dynamics. We have arbitrary functions of the
time occurring in the general solution of the equations
of motion with given initial conditions. These arbitrary
functions of the time must mean that we are using a
mathematical framework containing arbitrary features,
for example, a coordinate system which we can choose
in some arbitrary way, or the gauge in electrodynamics.
As a result of this arbitrariness in the mathematical
framework, the dynamical variables at future times are
not completely determined by the initial dynamical
variables, and this shows itself up through arbitrary
functions appearing in the general solution.

We require some terminology which will enable one to
appreciate the relationships between the quantities which
occur in the formalism. I find the following terminology
useful. I define any dynamical variable, R, a function of
the ¢’s and the p’s, to be first-class if it has zero Poisson
brackets with all the ¢’s:

Ré1x0, j=1,...,F (1-35)
[17]
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It is sufficient if these conditions hold weakly. Otherwise
R is second-class. 1f R is first-class, then [R, ¢,] has to be
strongly equal to some linear function of the ¢’s, as
anything that is weakly zero in the present theory is
strongly equal to some linear function of the ¢’s. The ¢’s
are, by definition, the only independent quantities which
are weakly zero. So we have the strong equations

[R, ¢]] = "jj"f’j'-

Before going on, I would like to prove a

Theorem: the Poisson bracket of two first-class
quantities is also first-class. Proof. Let R, S be first-class:
then in addition to (1-36), we have

[S, 8] = s;55- (1-36)
Let us form [[R, S], ¢,]. We can work out this Poisson
bracket using Jacobi’s identity (1-13)
[[Rv S, ‘56]] = [[R? ¢J’]v S] - [[S’ ‘75]']’ R]
= [ryyb5, S1 = 81545, R]
= 7;7($s, S1 + [ Slby — 8316y, R]

— [5;5 Rl¢,
~ 0

(1-36)

by (1-36), (1-36), the product law (1-12), and (1-20).
The whole thing vanishes weakly. We have proved
therefore that [R, S] is first-class.

We have altogether four different kinds of constraints.
We can divide constraints into first-class and second-
class, which is quite independent of the division into
primary and secondary.

I would like you to notice that H' given by (1-33)" and
[18]
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the ¢, given by (1-34) are first-class. Forming the
'msson bracket of ¢, with ¢; we get, by (1-34),
I \uldm #;] plus terms that vanish weakly. Since the
I, are defined to satisfy (1-30), ¢, is first-class.
‘umilarly (1-28) with U, for u, shows that H’ is first-
(lass. Thus (1-33) gives the total Hamiltonian in terms
ol a first-class Hamiltonian H’ together with some first-
lass ¢'s.

Any linear combination of the ¢’s is of course another
onstraint, and if we take a linear combination of the
primary constraints we get another primary constraint.
Yo cach ¢, is a primary constraint; and it is first-class.
So the final situation is that we have the total Hamil-
tonian expressed as the sum of a first-class Hamiltonian
plus a linear combination of the primary, first-class
« onstraints.

'T'he number of independent arbitrary functions of the
time occurring in the general solution of the equations of
motion is equal to the number of values which the suffix
« takes on. That is equal to the number of independent
primary first-class constraints, because all the independ-
ent primary first-class constraints are included in the
sum (1-33).

That gives you then the general situation. We have
deduced it by just starting from the Lagrangian equa-
tions of motion, passing to the Hamiltonian and working
out consistency conditions.

From the practical point of view one can tell from the
ygeneral transformation properties of the action integral
what arbitrary functions of the time will occur in the
general solution of the equations of motion. To each of
these functions of the time there must correspond some
primary first-class constraint. So we can tell which

[19]
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primary first-class constraints we are going to have
without going through all the detailed calculation of
working out Poisson brackets; in practical applications
of this theory we can obviously save a lot of work by
using that method.

I would like to go on a bit more and develop one
further point of the theory. Let us try to get a physical
understanding of the situation where we start with
given initial variables and get a solution of the equations
of motion containing arbitrary functions. The initial
variables which we need are the ¢’s and the p’s. We
don’t need to be given initial values for the coefficients .
These initial conditions describe what physicists would
call the initial physical state of the system. The physical
state is determined only by the ¢’s and the p’s and not by
the coefhcients ¢.

Now the initial state must determine the state at later
times. But the ¢’s and the p’s at later times are not
uniquely determined by the initial state because we have
the arbitrary functions v coming in. That means that the
state does not uniquely determine a set of ¢’s and p’s,
even though a set of ¢’s and p’s uniquely determines a
state. There must be several choices of ¢’s and p’s which
correspond to the same state. So we have the problem
of looking for all the sets of ¢’s and p’s that correspond to
one particular physical state.

All those values for the ¢’s and p’s at a certain time
which can evolve from one initial state must correspond
to the same physical state at that time. Let us take partic-
ular initial values for the ¢’s and the p’s at time ¢t = 0,
and consider what the ¢’s and the p’s are after a short
time interval 8z, For a general dynamical variable g, with
initial value gy, its value at time 8¢ is

[2¢]
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g(dt) = go + £ 8t
=go + [g Hy) Ot
= go + 8t{[g, H'] + v.[g ¢.]}. (1-37)

'I'he coefficients v are completely arbitrary and at our
disposal. Suppose we take different values, o', for these
cocfficients, That would give a different g(8t), the
difference being

4g(8t) = 3K(vg — va)[&> bal- (1-38)

We may write this as
dg(8t) = ealg, s (1-39)
where gq = OH(v, — V) (1-40)

1s a small arbitrary number, small because of the coeffi-
cient 8t and arbitrary because the ¢’s and the v”s are
arbitrary. We can change all our Hamiltonian variables
i accordance with the rule (1-39) and the new Hamil-
tonian variables will describe the same state. This
change in the Hamiltonian variables consists in applying
an infinitesimal contact transformation with a generating
function £,¢,. We come to the conclusion that the ¢,’s,
which appeared in the theory in the first place as the
primary first-class constraints, have this meaning: as
penerating functions of infinitesimal contact transformations,
they lead to changes in the ¢’s and the p’s that do not
affect the physical state.

However, that is not the end of the story. We can go on
further in the same direction. Suppose we apply two of
these contact transformations in succession. Apply first
a contact transformation with generating function

[21]
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£,$, and then apply a second contact transformation
with generating function y,.¢,., where the gamma’s are
some new small coefficients. We get finally

g’ = go + sa[g’ ¢a] + 'Va’[g + 8a[g) ‘i[’a]: 96(1’]' (1'41)

(I retain the second order terms involving products
&y, but I neglect the second order terms involving &% or
involving o2 This is legitimate and sufficient. I do that
because I do not want to write down more than I really
need for getting the desired result.) If we apply the two
transformations in succession in the reverse order, w

get finally

g =g + valg da] + ea[g + volg barls ‘{)a]' (1-42)

Now let us subtract these two. The difference is

dg = eiya{[le, bl bor] — [[& ¢ ba]}  (1-43)
By Jacobi’s identity (1-13) this reduces to

dg = 8a7a’[g’ [0 ‘i{’a’]]‘ (1-44)

This 4g must also correspond to a change in the ¢’s and
the p’s which does not involve any change in the physical
state, because it is made up by processes which in-
dividually don’t involve any change in the physical
state. Thus we see that we can use

[d’a, ¢a’] (1'45)

as a generating function of an infinitesimal contact
transformation and it will still cause no change in the
physical state.

[22]
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Now the ¢, are first-class: their Poisson brackets are
weakly zero, and therefore strongly equal to some linear
function of the ¢’s. This linear function of the ¢’s must
he first-class because of the theorem I proved a little
while back, that the Poisson bracket of two first-class
quantities is first-class. So we see that the transformations
which we get this way, corresponding to no change in the
physical state, are transformations for which the genera-
tng function is a first-class constraint. The only way
these transformations are more general than the ones we
had before is that the generating functions which we had
hefore are restricted to be first-class primary constraints.
'I'hose that we get now could be first-class secondary
constraints. The result of this calculation is to show that
we might have a first-class secondary constraint as a
penerating function of an infinitesimal contact trans-
tormation which leads to a change in the ¢’s and the p’s
without changing the state.

For the sake of completeness, there is a little bit of
turther work one ought to do which shows that a Poisson
bracket [H', ¢,] of the first-class Hamiltonian H’ with
a first-class ¢ is again a linear function of first-class
constraints. This can also be shown to be a possible
generator  for infinitesimal contact transformations
which do not change the state.

The final result is that those transformations of the
dynamical variables which do not change physical states
are infinitesimal contact transformations in which the
generating function is a primary first-class constraint or
possibly a secondary first-class constraint. A good many
of the secondary first-class constraints do turn up by the
process (1-45) or as [H', ¢,]. I think it may be that all the
first-class secondary constraints should be included

[23]
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among the transformations which don’t change the
physical state, but I haven’t been able to prove it. Also, I
haven’t found any example for which there exist first-class
secondary constraints which do generate a change in the
physical state.

[24]
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Lecture No. 2

THE PROBLEM OF QUANTIZATION

\We were led to the idea that there are certain changes in
the p’s and ¢’s that do not correspond to a change of
«tate, and which have as generators first-class secondary
constraints. That suggests that one should generalize the
cquations of motion in order to allow as variation of a
{vnamical variable g with the time not only any variation
javen by (1-21), but also any variation which does not
correspond to a change of state. So we should consider a
more general equation of motion

§ = [& Hil (2-1)

with an extended Hamiltonian Hj, consisting of the
previous Hamiltonian, Hjp, plus all those generators
which do not change the state, with arbitrary coefficients:

HE = HT + 'v:l/¢a/. (2"2)

'T'hose generators ¢,., which are not included already in
/1, will be the first-class secondary constraints. The
presence of these further terms in the Hamiltonian will
pgive further changes in g, but these further changes in g
do not correspond to any change of state and so they
should certainly be included, even though we did not

[25]
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arrive at these further changes of g by direct work from
the Lagrangian.

That, then, is the general Hamiltonian theory. The
theory as I have developed it applies to a finite number of
degrees of freedom but we can easily extend it to the
case of an infinite number of degrees of freedom. Our
suffix denoting the degree of freedomisn =1,..., N;
we may easily make NV infinite. We may further general-
ize it by allowing the number of degrees of freedom to be
continuously infinite. That is to say, we may have as our
¢’s and p’s variables ¢,, p, where x is a suffix which can
take on all values in a continuous range. If we work with
this continuous x, then we have to change all our sums
over 7 in the previous work into integrals. The previous
work can all be taken over directly with this change.

There is just one equation which we will have to think

of a bit differently, the equation which defines the
momentum variables,

dL
e 1-3
If n takes on a continuous range of values, we have to
understand by this partial differentiation a process of
partial functional differentiation that can be made

precise in this way: We vary the velocities by 8¢, in the
Lagrangian and then put

SL = f P2 84.. (2-3)

The coefficient of 84, occurring in the integrand in 8L is
defined to be p,.

After giving this general abstract theory, I think it
would be a help if I gave a simple example as illustration.

[26]
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I will take as an example just the electromagnetic field of
Maxwell, which is defined in terms of potentials 4,.
I'he dynamical coordinates now consist of the potentials
tor all points of space at a certain time. That is to say, the
Jdynamical coordinates consist of 4,,, where the suffix x
tands for the three coordinates x!, x2, x° of a point in
threce-dimensional space at a certain time x° (not the
four x’s which one is used to in relativity). We shall have
then as the dynamical velocities the time derivatives of
the dynamical coordinates, and I shall denote these by a
.uffix 0 preceded by a comma. .

Any suffix with a comma before it denotes differentia-
ton according to the general scheme

¢, =%

& (2-4)

We are dealing with special relativity so that we can
raise and lower these suffixes according to the rules of
special relativity: we have a change in sign if we raise or
lower a suffix 1, 2, or 3 but no change of sign when we
taise or lower the suffix 0.

We have as our Lagrangian for the Maxwell electro-
dynamics, if we work in Heaviside units,

L=-3 J F, F* d%. (2-5)

ilere d3x means dx! dx® dx°, the integration is over
three-dimensional space, and F,, means the field

quantities defined in terms of the potentials by
Fuv = Av.u - Au.v° (2'6)

''his L is the Lagrangian because its time integral is the
action integral of the Maxwell field.

[27]
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Let us now take this Lagrangian and apply the rules of
our formalism for passing to the Hamiltonian. We first
of all have to introduce the momenta. We do that by
varying the velocities in the Lagrangian. If we vary the
velocities, we have

8L

—% f F* 8F,, d®

I

f F40 84, , d°. (2-7)
Now the momenta B* are defined by
5L = f Br 84,, d® (2-8)

and these momenta will satisfy the basic Poisson bracket
relations

[4,, Bl =g, 83x - &'); unv=0,123. (2-9)

In this formula 4 is taken at a point x in three-dimen-
sional space and B is taken at a point &’ in the three-
dimensional space. g} is just the Kronecker delta func-

tion. 8%(x — «x') is the three-dimensional delta function
of x — x'.

We compare the two expressions (2-7) and (2-8) for
6L and that gives us

B* = F¥0, (2-10)
Now F*Y is anti-symmetrical
F = —F, (2-11)
So if we put pu = 0, in (2-10) we get zero. Thus BY is
[28]
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cqual to zero. This is a primary constraint. I writeitas a
weak equation:

BY % 0. (2-12)

'I'he other three momenta B'(r = 1, 2, 3) are just equal
to the components of the electric field.

I should remind you that (2-12) is not just one primary
constraint: there is a whole threefold infinity of primary
constraints because there is the suffix ¥ which stands for
some point in three-dimensional space; and each value
for x will give us a different primary constraint.

Let us now introduce the Hamiltonian. We define
that in the usual way by

H = j BiA,, &% — L
_ J(F’OA,'O + LF"F,, + 3F7F,) d%
- J'@FNF,S — LFOF, 4 FrA,)) d%
- f (AFSF, + 3B'B" — A,B1) d%. (2-13)

I've done a partial integration of the last term in (2-13)
to get it in this form. Now here we have an expression for
the Hamiltonian which does not involve any velocities.
It involves only dynamical coordinates and momenta. It
is true that F,, involves partial differentiations of the
potentials, but it involves partial differentiations only
with respect to x', x2, °. That does not bring in any
velocities. These partial derivatives are functions of the
dynamical coordinates.

We can now work out the consistency conditions by

[29]
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using the primary constraints (2-12). Since they have to
remain satisfied at all times, [B% H] has to be zero.
‘This leads to the equation

B~ 0. (2-14)
This is again a constraint because there are no velocities
occurring in it. This is a secondary constraint, which
appears in the Maxwell theory in this way. If we proceed

further to examine the consistency relations, we must
work out

[B,, H] = 0. (2-15)
We find that this reduces to 0 = 0. It does not give us
anything new, but is automatically satisfied. We have
therefore obtained all the constraints in our problem.
(2-12) gives the primary constraints. (2-14) gives the
secondary constraints.

We now have to look to see whether they are first-class
or second-class, and we easily see that they are all first-
class. The B, are momenta variables. They all have zero
Poisson brackets with each other. B, and B, also have
zero Poisson brackets with each other. And B, and BT,
also have zero Poisson brackets with each other. All these
quantities are therefore first-class constraints. There are
no second-class constraints occurring in the Maxwell
electrodynamics.

The expression (2-13) for H is first-class, so this H can

be taken as the H' of (1-33). Let us now see what the
total Hamiltonian is:

HT = J\(%F"‘SFTS + %BTBT) d3x - J‘AOBTT dax
+ f 0, B0 d%. (2-16)
[30]
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This v, is an arbitrary coefficient for each point in t.hree-
dimensional space. We have just added on the primary
first-class constraints with arbitrary coefficients, which is
what we must do according to the rules to get the total
Hamiltonian.

In terms of the total Hamiltonian we have the equation
of motion in the standard form

g = [& Hyl (1-21)

'The g which we have here may be any field quantity at
some point x in three-dimensional space, or may also be
a function of field quantities at different points in three-
dimensional space. It could, for example, be an integral
over three-dimensional space. This g can be perfectly
generally any function of the ¢’s and the p’s throughout
three-dimensional space.
It is permissible to take g = A, and then we get

Aoy = o, (2-17)

hecause A, has zero Poisson brackets with everythin'g
cxcept the B, occurring in the last term of (2—16.). This
gives us a meaning for the arbitrary coeﬁiaent. Vg
occurring in the total Hamiltonian. It is the time deriva-
tive of A,,. .

Now to get the most general motion which is physically
permissible, we ought to pass over to the extended
Hamiltonian. To do this we add on the ﬁrst-cla:?s
secondary constraints with arbitrary coefficients u,. This
pives the extended Hamiltonian:

H, = Hy + f u, B, dx. (2-18)

Bringing in this extra term into the Hamiltonian allows

[31]
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a more general motion. It gives more variation of the g’s
and the p’s, of the nature of a gauge transformation.
When this additional variation of the ¢’s and the p’s is
brought in, it leads to a further set of ¢’s and p’s
which must correspond to the same state.

That is the result of working out, according to our
rules, the Hamiltonian form of the Maxwell theory.
When we've got to this stage, we see that there is a
certain simplification which is possible. This simplifica-
tion comes about because the variables Ay, By are not of
any physical significance. Let us see what the equations
of motion tell us about 4, and By. By = 0 all the time.
That is not of interest. 4, is something whose time
derivative is quite arbitrary. That again is something
which is not of interest. The variables 4, and B, are
therefore not of interest at all. We can drop them out from
the theory and that will lead to a simplified Hamiltonian
formalism where we have fewer degrees of freedom, but
still retain all the degrees of freedom which are physically
of interest.

In order to carry out this discard of the variables 4,
and By, we drop out the term v, B° from the Hamiltonian.
This term merely has the effect of allowing 4, to vary
arbitrarily. The term —~A,B’, in H; can be combined
with the u,B7, in the extended Hamiltonian, The
coefficient u, is an arbitrary coefficient in any case.
When we combine these two terms, we just have this u,
replaced by u; = u, — A4, which is equally arbitrary. So
that we get a new Hamiltonian

H = [(F*F, + 1B.B) & + [ 3, a0
(2-19)
[32]
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This Hamiltonian is sufficient to give the equations of
motion for all the variables which are of physical %n{erest.
The variables 4,, By no longer appear in it. This is the
Hamiltonian for the Maxwell theory in its simplest form.

Now the usual Hamiltonian which people work with in
quantum electrodynamics is not quite the same z‘ts.that.
The usual one is based on a theory which was orlgmallty
set up by Fermi. Fermi’s theory involves putting this
restriction on the potentials:

44 =0, (2-20)

It is quite permissible to bring in this restricti(?n on the
gauge. The Hamiltonian theory which I have' given here
does not involve this restriction, so that it al-lows a
completely general gauge. It’s thus a somewhat dlﬂrer.ent
formalism from the Fermi formalism. It’s a formalism
which displays the full transforming power of the
Maxwell theory, which we get when we have comp]etely
general changes of gauge. This Maxwell theo‘ry gives us
an illustration of the general ideas of primary and
sccondary constraints.

[ would like now to go back to general theory' and. to
consider the problem of quantizing the' sz\mlltoman
theory. To discuss this question of quantization, let us
hrst take the case when there are no second-class
constraints, when all the constraints are first-class. W,c
make our dynamical coordinates and momenta, the. q’s
and p’s, into operators satisfying commutation relations
which correspond to the Poisson bracket relations of the
«lassical theory. That is quite straightforward. Then we
et up a Schrédinger equation

a % 2-21

[33]
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¢ is the wave function on which the ¢’s and the P’s
operate. H' is the first-class Hamiltonian of our theory.

We further imppse certain supplementary conditions
on the wave function, namely:

b = 0. (2-22)

Each' 9f our constraints thus leads to a supplementar
condition on the wave function. (The constraintsy
remember, are now all first-class.) ’
The first thing we have to do now is to see whether
these equations for i are consistent with one another. Let
us take two of the supplementary conditions and see
whether they are consistent. Let us take (2-22) and

s = 0. (2-22)
If we multiply (2-22) by ¢,., we get
$rdip = 0. (2-23)
If we multiply (2-22)' by ¢,, we get
$sbyh = 0. (2-23)
If we now subtract these two equations, we get:
[¢5 6514 = 0. (2-24)

This further condition on i} is necessary for consistency.
Now we don’t want to have any fresh conditions on ¢
We want all the conditions on ¢ to be included amon .
(2-22). That means to say, we want to have (2-24) §
consequence of (2-22) which means we require

(85 6] = €15050;. (2-25)
[34]
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If (2-25) does hold, then (2-24) is a consequence of (2-22)
and is not a new condition on the wave function.

Now we know that the ¢’s are all first-class in the
classical theory, and that means that the Poisson bracket
of any two of the ¢’s is a linear combination of the ¢’s in
the classical theory. When we go over to the quantum
theory, we must have a similar equation holding for the
commutator, but it does not necessarily follow that the
coefficients ¢ are all on the left. We need to have these
coefficients all on the left, because the ¢’s will in general
be functions of the coordinates and momenta and will
not commute with the ¢’s in the quantum theory, and
(2-24) will be a consequence of (2-22) only provided the
c’s are all on the left.

When we set up the quantities ¢ in the quantum
theory, there may be some arbitrariness coming in. The
corresponding classical expressions may involve quanti-
ties which don’t commute in the quantum theory and
then we have to decide on the order in which to put the
factors in the quantum theory. We have to try to arrange
the order of these factors so that we have (2-25) holding
with all the coefficients on the left. If we can do that, then
we have the supplementary conditions all consistent
with each other. If we cannot do it, then we are out of
luck and we cannot make an accurate quantum theory.
In any case we have a first approximation to the quantum
theory, because our equations would be all right if we
look at them only to the order of accuracy of Planck’s
constant # and neglect quantities of order #2.

[ have just discussed the requirements for the supple-
mentary conditions to be consistent with one another.
‘I'here is a similar discussion needed in order to check
that the supplementary conditions shall be consistent
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with the Schrédinger equation. If we start with a Y
satisfying the supplementary conditions (2-24) and let
that ¢ vary with the time in accordance with the Schré-
dinger equation, then after a lapse of a short interval of
time will our ¢ still satisfy the supplementary conditions?

We can work out the requirement for that to be the case
and we get

[$y H} = 0, (2-26)
which means that [$,, H] must be some linear function of
the ¢’s:

(4, H] = by by (2-27)

if we are not to get a new supplementary condition.
Again we have an equation which we know is all right in
the classical theory. ¢, and H are both first-class, so
their Poisson bracket vanishes weakly. The Poisson
bracket is thus strongly equal to some linear function of
the #’s in the classical theory. Again we have to try to
arrange things so that in the corresponding quantum
equation we have all our coefficients on the left. That is
niecessary to getan accurate quantum theory, and we need
a bit of luck, in general, in order to be able to bring it
about.

Let us now consider how to quantize a Hamiltonian
theory in which there are second-class constraints. Let
us think of this question first in terms
example. We might take as the sim
second-class constraints

of a simple
plest example of two

¢ %0 and p, x 0. (2-28)

If we have these two constraints appearing in the
theory, then their Poisson bracket is not zero, so they

[36]
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are second-class. What can we do with thex:ﬂ when v;ezgs(;
over to the quantum theory? We cannot impose (a; )
as supplementary conditions on t.he wave functmnt v
did with the first-class constraints. ~If we'try1 ) ;z '
g = 0, pip = 0, then we should immediately ge @
contradiction because we should have (¢;p; — plql)z/fn-l—e
iy = 0. So that won’t do. We must adopt so

i lan. .

(htﬁ(r):ltir? this simple case it’s pretty obvious w.hat thi
plan must be. The variables ¢; and p, are not oj mte;:esf
if they are both restricted to be zero.T So th.e egfecard
freedom 1 is not of any importance.'V& e can just dls ard
the degree of freedom 1 and woFk with the othg e%g e
of freedom. That means a different de_ﬁmtlonﬁ ?t -2
Poisson bracket. We should have to work with a definiti
of a Poisson bracket in the classical theory

==z — 57 summed overn = 2,... N.
| (2-29)

T'his would be sufficient because it \&:ould dea'lr:lth al(l3
the variables which are of phygcal 1nterest.rl . el:.s ‘XO
could just take ¢, and p; as identically zero. eri 2o
contradiction involved there, :fmd we can pass %ve(ri orees
(uantum theory, setting ]3 up in terms only of the deg
F mn=2,...,

) lf;efl?i(; simple case it is fairly obvious what we hi\:: ;(())
do to build up a quantum theory. Let us tfrvy n |
peneralize it. Suppose we have' P =0, ¢4 ® ]Z(hq,,rp,’s,
r=2,..., N, so fis any function of all thedo e qof
and p’s. We could drop out the number 1 e%:eiian
frcedom if we substitute f(g,, p,) for g1 in the Hami ;) an
and in all the other constraints. Again we can forg

[37]
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about the number 1 degree of freedom and simply work
with the other degrees of freedom and pass over to a
quantum theory in these other degrees of freedom.
Again we should have to work with the (2-29) kind of
Poisson bracket, referring only to the other degrees of
freedom.

That is the idea which one uses for quantizing a theory
which involves second-class constraints. The existence
of second-class constraints means that there are some
degrees of freedom which are not physically important.
We have to pick out these degrees of freedom and set up
new Poisson brackets referring only to the other degrees
of freedom which are of physical importance. Then in
terms of those new Poisson brackets we can pass over to
the quantum theory. 1 would like to discuss a general
procedure for carrying that out.

For the present, we are going back to the classical
theory. We have a number of constraints ¢, = 0, some
of them first-class, some second-class. We can replace
these constraints by independent linear combinations of
them, which will do just as well as the original constraints,
We try to arrange to take the linear combinations in such
a way as to have as many constraints as possible brought
into the first class. There may then be some left in the
second class which we just cannot bring into the first
class by taking linear combinations of them. Those
which are left in the second class I will call x,,
s=1,...,8 S is the number of second-class con-
straints which are such that no linear combination of
them is first-class.

We take these surviving second-class constraints and
we form all their Poisson brackets with each other and
arrange these Poisson brackets as a determinant 4:

[38]
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0  [xuxa) [Dxoxa) - [xuxsl
4 = [Xz: X1] 0 [Xz, xsl [X2)'XS]

[xssx1]  [xssxel  [xss xal
I would like now to prove a

Theorem: The determinant 4 does not vz%msh, ;ot
cven weakly. Proof: Assume that the determinant o;sf
vanish. I'm going to show that we get a contradiction. S
the determinant vanishes, then it is of some rank T < 5.
Now let us set up the determinant 4:

X1 0 I x2l o Dxw xal
A = X2 [Xz’ Xl] 0 [Xz» XT]
x;n Ixrs1 X211 Dxrsn xe) ~ Dxren xrl

I has T + 1 rows and columns. T + 1 .might equfath
or might be less than S. If we expapd A in termsfo ht e
clements of its first column, we will get each of t esc;
clements multiplied into one of the sub-determ'mants o
1. Now I don’t want all of these sub-determ1.nz}11n'c;x tg
vanish. It might so happen that they c!o all vamfs . drlo
i that case, I would choose the x’s w}.nch are referre
among the rows and columns of 4 in a d1f.feren§1wa}’fé
‘I'here must always be some way of ch‘oosmg the xu
which occur in 4 so that the sub-determinants don’t a
vanish, because 4 is of rank 7. So we choose the X's 111n
auch a way that the coefficients of the elements in the
not all zero. .
hn:hgx?vl l;rizlvrilllasr}(iow that 4 has zero Poisson brackets w1il}1l
any of the ¢’s. If we form the Poisson br.acket of 4>.w1 »
« determinant, we get the result by forming the Poisso
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bracket of ¢ with the first column of the determinant

:ﬁ;l}intgh on the result of forming the Poisson bracket of é
e second column of the determinant, and so on

Thus

[95’ Xl] 0
[‘!’) A] = [96: Xz] [Xz’ X1l

b xrea]  Dires xi]

X1 0
+ | X2 . [‘?S» [x2 Xl]]

XT+1 [Sl’a [XlT+ 1 X1]]

X1 0 [</>, X1 X21] XN
+ | X2 - [x2> X4] 0

Xr+1  [Xr+1 X1 [¢’ [);T*-l) Xz]]

This looks rather complicated, but one can easil

that every one of these determinants vanishes. In thyﬁSee
place, the first determinant on the right vani‘sheS' '(; i
first class, then the first column vanishes; if ¢ is .s::c(},> 13
clas_s, tl.len ¢ is one of the y’s and we have) a determilf ;
which is a part of the determinant 4 with T + 1r e
and columns. But 4 is assumed to be of rank 7, so f}’;’\’i
any part of it with 7"+ 1 rows and columns v’anish s
Now, the second determinant on the right vanis}f )
w.ealfly because the first column vanishes we kleS
Slmlla.rly all the other determinants vanish weakl aTk:r ‘
result is that the whole right-hand side vanishes vzéaklye

[40]
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‘I'hus 4 is a quantity whose Poisson bracket with every
one of the ¢’s vanishes weakly.

Also, we can expand the determinant A in terms of
the elements of the first column, and get A as a linear
combination of the x’s. So we have the result that a
certain linear combination of the y’s has zero Poisson
brackets with all the ¢’s. That means that this linear
combination of the y’s is first class. That contradicts our
assumption that we have put as many x’s as possible into
the first class. ‘That proves the theorem.

Incidentally, we see that the number of surviving x’s,
which cannot be brought into the first class, must be
cven, because the determinant 4 is antisymmetrical.
Any antisymmetrical determinant with an odd number
of rows and columns vanishes. This one doesn’t vanish
and therefore must have an even number of rows and
columns.

Because this determinant, 4, doesn’t vanish, we can
bring in the reciprocal ¢y of the matrix whose determin-
ant is 4. We define the matrix ¢, by

css’[Xs'» Xs”] = 833"‘ (2—30)

We now define new Poisson brackets in accordance
with this formalism: any two quantities &, 1 have a new
Poisson bracket defined by

& n* = 67 - 13 XslCss [Xs's 7). (2-31)

It is easy to check that new Poisson brackets defined
in this way satisfy the laws which Poisson brackets
usually satisfy: [§, n]* 1s antisymmetrical between ¢ and
y, is linear in ¢, is linear in 7, satisfies the product law
(€160 1)* = E[Em)* + [£1, m]*£g and obeys the Jacobi
identity [[£ 71% () + ([, Q*€]* + [z, a*n]* =0

[41]
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.I dO{l’t know of any neat way
1dent1.ty for the new Poisson bracket
§ubst1tutes according to the deﬁnitione s;l
in a complicated way, one does find thaz:z a

method I have given i .

matics, 2, 147 ( 1g9 50;1' in the Canadian Journal

byl\?:vl‘vg]mann, Physical Review, 98, 531 (1955)

brachets etFl'ls see what we can do with these new Poisson
- First of all, T would like you to notice that the

equations of motion a ;
re as valid for :
brackets as for the original ones the new Poisson

[g) HT}* = [g» HT] - [ga Xs]css’[Xs’, HT]
~ [-g’ HT]
because the terms [y,

H .
of Hy, being first-class, r] all vanish weakly on account

Thus we can write
. § R [g Hpl*
ow if we take any function ¢ whatever of the ¢’s and

X ’

[§; Xs"]* = ['5; Xs”] - [5’ Xs]css’[Xs’7 Xs”]
E)f., Xs'] — (¢ Xs]Oss by (2'30)

Il

Thu
T st;ies scan Ip;ut the y’s equal to 0 before working out
on brackets. This means that the equation

Xs =0
| (2-32)
may be considered as a strong equation.

[42]

of proving the Jacobi
If one just
works it out

It
cancel out and that the left-hand side equalil ezet:gm;

;hllr::Vthc’:re l;)ught to be some neat way of proving it, b
en't been able to find it. The straight%or\’va;l(;

of Mathe-
The problem has been dealt witeh

THE PROBLEM OF QUANTIZATION

We modify our classical theory in this way, bringing
in these new Poisson brackets, and this prepares the
ground for passing to the quantum theory. We pass
over to the quantum theory by taking the commutation
relations to correspond to the new Poisson bracket rela-
tions and taking the strong equations (2-32) to be
cquations between operators in the quantum theory. The
remaining weak equations, which are all first class,
become again supplementary conditions on the wave
functions. The situation is then reduced to the previous
case where there were only first-class #’s. We have
again, therefore, a method of quantizing our general
classical Hamiltonian theory. Of course, we again need a
bit of luck in order to arrange that the coefficients are
all on the left in the consistency conditions.

That gives the general method of quantization, You
notice that when we have passed over to the quantum
theory, the distinction between primary constraints and
secondary constraints ceases to be of any importance.
The distinction between primary and secondary con-
straints is not a very fundamental one. It depends very
much on the original Lagrangian which we start off with.
Once we have gone over to the Hamiltonian formalism,
we can really forget about the distinction between
primary and secondary constraints. The distinction
between first-class and second-class constraints is very
important. We must put as many as possible into the
first class and bring in new Poisson brackets which
cnable us to treat the surviving second-class constraints
as strong.

[43]
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QUANTIZATION ON CURVED SURFACES

\ . .
O’\lfl fr: stir'ted.oﬂ: with a classical action principle. We took
give:i S1on Lmtegral to be Lorentz-invariant. This action
a Lagrangian. We then
: passed from the L
ian to the Hamiltonian heoey
, and then to the quantum
g . theor
lsat);l i{)llowu}g throug}} certain rules. The result is thaty
ac; ing \.mth a classical field theory, described by ar;
Nolv(:,nyl())rmaplﬁ’ wg end up with a quantum field theory
u might think that that finish :
How 3 . ishes our work, but
W}t::h:- (())ne important problem still to be consid’ered'
ur quantum field theory obtai i i .
\ our ¢ ained in this
is a relativistic theor on,
y. For the purposes of di i
we may confine ourselves t i i "We have
o special relativity, W
then to consider wh oy b
'hether our quantum is i
- ) theor
agiNeement with special relativity. e
i eozzarteq from an action principle and we required
that ¢ action should be Lorentz-invariant. That is
relat'u?nt' to ensure that our classical theory shall be
rela :I\ign.c. Tl}e equations of motion that follow from a
s invariant action principle m ivisti
. . ust be relativist
equations. It is true that wh Cof
ation: en we put these equations of
motion into the Hamiltonian form, we are qdisturbing
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the four-dimensional symmetry. We are expressing our
cquations in the form

¢ = [g Hil. (1-21)

‘I'he dot here means dg/dt and refers to one absolute
lime, so that the classical equations of motion in the
tlamiltonian form are not manifestly relativistic, but we
know that they must be relativistic in content because
they follow from relativistic assumptions.

However, when we pass over to the quantum theory
we are making new assumptions. The expression for Hr
which we have in the classical theory does not uniquely
determine the quantum Hamiltonian. We have to decide
questions about the order in which to put non-commut-
ing factors in the quantum theory. We have something
at our disposal in choosing this order, and so we are
making new assumptions. These new assumptions may
disturb the relativistic invariance of the theory, so that
the quantum field theory obtained by this method is not
necessarily in agreement with relativity. We now have to
face the problem of seeing how we can ensure that our
quantum theory shall be a relativistic theory.

For that purpose we have to go back to first principles.
It is no longer sufficient to consider just one time variable
referring to one particular observer; we have to consider
different observers moving relatively to one another. We
must set up a quantum theory which applies equally to
any of these observers, that is, to any time axis. To geta
theory involving all the different time axes, we should
first get the corresponding classical theory and then pass
from this classical theory to the quantum theory by
the standard rules.

I would like to go back to the beginning of our

[45]
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%-Ivsln:tl:otmjn de:/ielo;;ment and consider a special case
rted our development by taki i .
which is a function of dynamical cooreLates it s
: : ynamical coordinat i
t : . es and veloci-
}1{? rz‘,ltg, introducing the momenta, then introducing the
homx onian. Let us take the special case when L is
ogeneous of the first degree in the ¢’s. Th

Euler’s Theorem tells us that > .

, oL
qna_qan = L. (3_1)

Tlllat jus‘t tells us that p,¢, — L = 0. Thus we get i
thx\s}v special case a Hamiltonian that is zero =
e . . :
e necessarily gc.et primary constraints in this case
phere r?}?st ’certamly be one primary constraint
because e jis are homogeneous functions of degreé
e velocities. The p’s are th i
‘ _. us functions onl
tNhet;Iatlos ofb the velocities. The number of p'sis equzﬁ ;)of
, the number of degrees of fre
' : edom, and the nu
rat}os of the velocitiesis N — 1. N %unctions ofn.;\l;er 01f
:tlotstf t};e velocities cannot be independent. There
ust be at least one function of ’ ;
the p’s and ¢’ ich i
" ‘ ¢’s which is
S?rufll toTzero, there must be at least one primary con-
alszmt. tl}:ere .rfnay very well be more than one. One can
see that, if we are to have a i .
nat, il ny motion at all with
zero Hamiltonian, we nary
, must have at i
first-class constraint. jesst one primary

We h i
. ave the expression (1-33) for the total Hamilton-

Hy = H' + vy,

o . .
: ﬁmust bea ﬁrst-cflass Hamiltonian, and as 0 is certainl
rst-class quantity we may take H’ = 0. Our tota};
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| lamiltonian is now built up entirely from the primary
first-class constraints with arbitrary coefficients:

HT = ‘Ua(#a’ (3'2)

showing that there must be at least one primary first-
class constraint if we are to have any motion at all.
Our equations of motion now read like this:

g = o8, bal-

We can see that the g’s may all be multiplied by a factor
because, since the coefficients v are arbitrary, we may
multiply them all by 2 factor. If we multiply all the
dg/dt's by a factor, it means that we have a different
time scale. So we have now Hamiltonian equations of
motion in which the time scale is arbitrary. We could
introduce another time variable 7 instead of ¢ and use 7

to give us equations of motion

% 5 wils 4 (3-3)
So we have now a Hamiltonian scheme of equations of
motion in which there is no absolute time variable. Any
variable increasing monotonically with ? could be used as
time and the equations of motion would be of the same
form. Thus the characteristic of a Hamiltonian theory
where the Hamiltonian H' is zero and where every
Hamiltonian is weakly equal to zero, is
absolute time.

We may look at the question also from the point of
If I is the action integral,

view of the action principle.
then

I= J L(g, §) dt = JL (q, %\) dr, (3-4)

[47]
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juse i
becft SOI;V is homogeneous of the first degree in ti
1. i '
fq ; oo Zacan ?xpress the action integral with respc
o me form as with r .
e ! ' espect to ¢. That \
th?j.cj 1 :quatlons qf motion which follow from the zh?" \
pmihé)e must be invariant under the passage fro C;O’
: m
. jhe equations of motion do not refer to anv ab .
- ny absolut:
fe ha i
) \in fa\::i ttllllus a Specfxal form of Hamiltonian theorv
Ut{ing e 1s form 1s not really so special becaus
Stalake M any Hamiltonian, it is always permis -b]e .
‘ : s
to-’a < tﬁ tlmg variable as an extra coordinate : 5
bnﬂfly t;ory into a form in which the Hamiltoni ni
wegly €qual to zero. The ge 1 s this 1o
o ! general rule for doing this i
Shemi(::;rl:g. ;re take ¢ and put it equal to gano’tiés
yr oordinate g,. We set up a new Lagrangian '

L — %L (q dg/dr
dr " dqo/dr

d
= L* L
(qm dT), k=0,1,2,...,N (3-5)

1,#* gvolves one more de
ot el w1 l;ggfe of freedom than the original

fL* dr = fL dt.

th S
Thl,to zactlgn 1s the same whether it refers to L* and
an i
:r :;the an a:aioe f'(c)r any dynamical system we can
xtra coordinate
e ' : : o and then pa
? n‘om Zgrdanflan L*, involving one extra de Iireses t(;
reevities rll; " omogeneous of the first degreegin tl'(l)
velglties. gives us a Hamiltonian which i .
equ:‘ to zero. s wealdy
is speci i i
78 special case of the Hamiltonian formalism where
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vhe Hamiltonian is weakly equal to zero is what we need
fon a relativistic theory, because in 2 relativistic theory
wre don’t want to have one particular time playing a
special role; we want to have the possibility of various
tines = which are all on the same footing. Let us see in
JAetail how we can apply this idea.

We want to consider states at specified times with
reupect to different observers. Now if we set up a space-
nme picture as in Fig. 1, the state at a certain time refers
to the physical conditions on a three-dimensional flat
apace-like surface S, which is orthogonal to the time
axis. The state at different times will refer to physical
onditions on different surfaces S,, Ss ... Now we
want to bring in other time axes referring to different
observers and the state, with respect to the other time
axes, will involve physical conditions on other flat
space-like surfaces like S;. We want to have a Hamilton-
wan theory which will enable us to pass from the state,
S, say, to the state Si. Starting off with given initial
conditions on the surface S; and applying the equations
of motion, we must be able to pass over to the physical
conditions on the surface S7. There must thus be four
freedoms in the motion of a state, one freedom corre-
sponding to the movement of the surface parallel to
itself, then three more freedoms corresponding to 2
general change of direction of this flat surface. That
means that there will be four arbitrary functions occur-
ring in the solution of the equations of motion which we
are trying to get. So we need a Hamiltonian theory with
(at least) four primary first-class constraints.

There may be other primary first-class constraints
if there are other kinds of freedom in the motion,
for example, if we have the possibility of the gauge

[49]
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xO
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S,
7\ xlxzx(}

Figure 1

transformations of electrodynamics. To simplify the
discussion, I will ignore this possibility of other first-
class primary constraints, and consider only the ones
which arise from the requirements of relativity.

We could proceed to set up our theory referring to
these flat space-like surfaces which can move with the
four freedoms, but I would like first to consider a more

[50]
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*

8S

1,243
> x1x2x

FIGURE 2

general theory in which we consider a state to be defined
on an arbitrary curved space-like sprface', such as S
of Fig. 2. This represents a three—dlmensmqal surface
in space-time which has the property of being ev?ry-
where space-like, that is to say, the normal to the surface
must lie within the light-cone. We may set up 2 H.ar.ml-
tonian theory which tells us how the physical conditions

[51]
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vary when we go from one of the curved space-like
surfaces to a neighboring one.

Now, bringing in the curved surfaces means bringing
1 in something which is not necessary from the point of
' view of special relativity. If we wanted to bring in

general relativity and gravitational fields, then it would
be essential to work with these curved surfaces, but for
special relativity, the curved surfaces are not essential.
However, I like to bring them in at this stage, even for
the discussion of a theory in special relativity, because I
find it easier to explain the basic ideas with reference
to these curved surfaces than with reference to the flat
surfaces. The reason is that with these curved surfaces
we can make local deformations of the surface like
3.5 in Fig. 2, and discuss the equations of motion with
respect to these local deformations of the surface.

One way of proceeding now would be to refer our
action integral to a set of curved surfaces, like S, take
the amount of action between two neighboring curved
surfaces, divide it by some parameter 87 expressing the
distance between these two surfaces, take this amount of
action as our Lagrangian, then apply our standard
method of passing from the Lagrangian to the Hamilton-
ian. Our Lagrangian would necessarily be homogeneous
of the first degree in the velocities with respect to the
time parameter = which specifies the passage from one of
these space-like surfaces to a neighboring one, and it
would lead to a Hamiltonian theory for which the
Hamiltonian is weakly equal to zero.

However, I don’t want to go through all the work of
following through in detail what we get from an action
principle. I want to short-circuit that work and discuss
the form of the final Hamiltonian theory which results.

[52]
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We can get quite a lot of information about the form of
this Hamiltonian theory just from our knowledge that
there must be freedom for the space-like surface. to
move arbitrarily so long as it remains always space-like.
This freedom of motion of the space-like sgrfacelz must
correspond to first-class primary constraints in the
Hamiltonian, there being one primary first-class con-
straint for each type of elementary motion of the surface
which can be set up. I shall develop the theory from
that point of view. . .

First of all we have to introduce suitable dynarm.cal
variables. Let us describe a point on the spaCQe-hl;e
surface S by three curvilinear (':o.ordmates. (xt, %%, x)
= («'). In order to fix the position of this space-hkef
surface in space-time, we introduce another set o
coordinates y,4 = 0,1,2,3), which we may take tlo‘be
rectilinear, orthogonal coordinates 1n special relativity.
(I use a capital suffix for referring to the y coordinate
system and a small suffix such as 7 for referring tor the..lac1
coordinate system.) The four functlons Yas of &, wxf
specify the surface S in space time and will also specify
its parameterization, 1.e. the system of coordinates
xt, x2, 8. _ ,

We can use these y, as dynamical coordinates, ¢’s. If
we form

= D,

Yar = 2% (r = 1'2’ 3) (3'6)

this is a function of the ¢’s, the dynamical coordinates.

&y

Ja = L (3-7)

+ being the parameter changing from one surface to the

[531]
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neighboring surface, will be a velocity, a ¢. Thus y, are
the dynamical coordinates needed for describing the
surface and y, are the velocities.

We shall need to introduce momentum variables w,
conjugate to these dynamical coordinates. The momen-
tum variables will be connected with the coordinates by
the Poisson bracket relations

[V Wrar] = gAp83(x — ). (3_8)

We shall need other variables for describing any
physical fields which occur in the problem. If we are
dealing with a scalar field V, then V() for all values of
x', x%, 2% will provide us with further dynamical
coordinates, ¢’s. V, will be functions of the ¢’s. oV /or will
be a velocity. The derivative of 7 in any direction is
expressible of terms of ¢V /ér and V, and so is expressible
in terms of the dynamical coordinates and velocities.
The Lagrangian will involve these V’s differentiated in
general directions and is thus a function of the dynamical
coordinates and velocities. For each 7, we shall need a

conjugate momentum U, satisfying the Poisson bracket
conditions

[V(x), Ux")] = 8%(x — x). (3-9)

That is how one would treat a scalar field. There is a
similar method for vector, tensor, or spinor fields, just
bringing in the necessary additional suffixes. I need not
go into that.

Now let us see what the Hamiltonian will be like.
The Hamiltonian has to be a linear function of primary
first-class constraints of the type (3-2). First of all I
shall put down what the primary first-class constraints
are like. There must be primary first-class constraints

[54]
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which allow for arbitrary deformations of the su.rface.
'I'hey must involve the variables @ which are conjuga.tei
to the y’s, in order to make the y’s vary, and they w%l
involve other field quantities. We can express them in
the form

w, + Ky~ 0, (3-10)

where K, is some function of the Hamiltonian variables,

the ¢’s and p’s, not involving the ws.
Now we can assert that the Hamiltonian 1s just an
arbitrary linear function of all the quantities (3-10):

Hy = J cAw, + K doa. (3-11)

‘This is integrated over the three xs which spe.cify a point
on the surface. The ¢’s are arbitrary functions of the
three x’s and the time. o ' °

The general equation of motion 1s of course g = {g, T}.
We can get a meaning for the coefficient ¢* by taking thlsf
cquation of motion and applying it for g qual to one o
the y variables. For g = y, at some particular point
xt, x2, x° we get

j, = { Ya J o + K2 dax’]
= [entym v + KR (3-12)

Here the * attached to a field quantity ¢', @ or K r d:'—
notes the value of that quantity at '.che point X', X%, .?( "
y, bhas zero Poisson brackets w1.th K. because K ris
independent of the w’s, so we just have to take into

[55]
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account the Poisson bracket of Ya With wp = wp(x')
This gives us the delta function and so

yA = CA' (3"13}

Th.ufb 1the cqefﬁcients ¢4 turn out to be the velocity
variables which tell us how our surface varies with the
par;metex: 7. We can get an arbitrary variation of the
suI"I‘ ace with 7 by choosing these ¢, in an arbitrary way.
X his tells us what the Hamiltonian is like for a field
theory expressed with respect to states on curvilinear
surfaces.

We'can make a deeper analysis of this Hamiltonian by
res?1v1ng the vectors which occur in it into components
Khlch are normal and tangential to the surface. If we

ave any vector whatever, ¢,, we can obtain from &,y a
normal component !

€L = £,

A .
where I is the unit normal vector, and tangential
components (referred to the x coordinate system)

fr = gAy.I}“

The lare determined by the y4 and are thus functions of
'the (%ynamical coordinates. Any vector can be resolved
in this way into a part normal to the surface and a part
tangential to the surface. We have the scalar product law

Emt = Emy + Y€, (3-14)

where y,; dx" dx® is the metric in the surface referred to

the x-coordinate system. 9" is the reciprocal matrix of
the y,.. (r,5s = 1, 2, 3).
We can use this scalar product law (3-14) to express

[56]
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our total Hamiltonian in terms of the tangential and
normal components of @ and K:

Hy = ij(w.4 + Ky) &

= (s + KD+ 9o, + K)
(3-15)
ilere y = y4l, and 3, = y*y4,.

We shall need the Poisson bracket relationships be-
tween the normal and tangential terms in (3-15). T will
first write down the Poisson bracket relations for the
different components of w. We have of course

[0, 3] = 0, (3-16)

referred to the external coordinates y; but when we
resolve our @'s into normal and tangential components,
they will no longer have zero Poisson brackets with each
other. The Poisson brackets can easily be worked out by
straightforward arguments. I don’t want to go through
the details of that work. I will just mention that the
details can be found in a paper of mine (Canadian
Yournal of Mathematics, 3, 1 (1951)). The results are

[w,, w)] =wd (x — &) + w8 (x — &), (3-17)
[w,, w] = w8 (v — &), (3-18)
[w, w,] = —2w8,(x — &) — w §(x — x7), (3-19)
Now we know that
[w, + K,, w, + K;] * 0 forp,v =75 or 1. (3-20)
[57]




LECTURES ON QUANTUM MECHANICS
We can infer that

[uh'+ K;’ué + Bg]
= (ws + K)8,(x — &) + (w] + K})S,(x — ),

[w, + Ky, w; + K] (3-21,

= (Wi + K1)3,(x — «'),
[, + Ky, w) + K1
—2(w" + KNS (x — &) — (w" + K"),8(x — x').
(3-23)
Thes.e'results could be worked out directly from the
definitions of the normal and tangential components of
the 'w'-s, but they can be inferred more simply by thc
following argument. Since w, + K,, w, + K age all
first class, their Poisson brackets are zcrcl) weakfy. Thus
[w, + K,y w) + K], [W, + Ky, w) + K] and [w.
+ K|, wy + K] must all be weakly equal to zero. We
can now infer what they are equal to strongly. We -have
to put on the right-hand side in each of (3-21,) (3-22 ) and
(3-23) a quantity which is weakly equal to ze;o and \;vhich
1s thqefore built up from w, + K, and w, + K, with
certam. coeflicients. Further, we can seel whatlthese
coeflicients are by working out what terms containing w
there are on the right-hand sides. Terms containing z‘i’v’s
can arise only from taking the Poisson bracket of a w
w1th‘ a w, according to (3-17), (3-18), and (3-19)
tI‘akm'g a Poisson bracket [w, K’] will not lead to anythin '
involving w, because it means taking the Poisson bracke%
of a @ momentum with some functions of dynamical
f:oordmates and momenta other than @’s, and that won’t
involve the w momentum variables. Similarly the Poisson
bracket of 2 K with a K won’t involve any = variables
Thus the only = variables which occur on the right side 01;

[58]

(3-22;

QUANTIZATION ON CURVED SURFACES

(3-21) will be the ones which occur on the right side of
(3-17). We have to put certain further terms in the
pht side of (3-21) in order that the total expression
.hall be weakly equal to zero. It is then quite clear what
we should put here, namely, (w; + K;)3.(x — x') +
(w, + K)8 (x — «"). We do the same with the right
sides of (3-22), (3-23).

The next thing to notice is that the terms w; + K in
the Hamiltonian (3-15) correspond to a motion in which
we change the system of coordinates in the curved
«urface but do not have the surface moving. It corre-
.ponds to each point in the surface moving tangentially
to the surface.

Let us put ¥, = 0, which means that we are taking no
motion of the surface perpendicular to itself but are
merely making a change of the coordinates of the
surface, and then we have equations of motion of the

type

g = j Jyile, w, + K dox. (3-24)

‘I'his must be the equation of motion which tells us how
¢ varies when we change the system of coordinates in the
surface without moving the surface itself. Now this
change in g must be a trivial one, which can be inferred
merely from the geometrical nature of the dynamical
variable g. If g is a scalar, then we know how that changes
when we change the system of coordinates xt, 2, 3. If
it is a component of a vector or a tensor there will be a
rather more complicated change for g, but still we can
work it out; similarly if g is a spinor. In every case, this
change of g is a trivial one. That means that K; can be
determined from geometrical arguments only.
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] IIdWI;u give one or two examples of that. For a scal
e with a conjugate momentum U, there is a ter:

v,U (3-2°

in K,. For a vector field
; , say a three-vector A,, wit:
conjugate B°, there is a term »

A,,B* — (4,8, (3-26

in K,;‘and so on for tensors, with something rather mor
comphc.ated for spinors. The first term in (3-26) is tliL
change in A's coming from the translation associated wit;‘
tche change in the system of coordinates, and the sec:ondK
18 'the change in the 4, arising from the rotation associated
;mtl}ll the c}}ange in the system of coordinates. There is n(c
s:::lar.rotatlon term coming 1n in the case (3-25) of the
We can obtain the total K, by adding the contribution
needed for all the different kinds of fields which
present in the problem. The result is that we can ws rlf
out this tangential component of K just from geometricrl
arguments. One can see in this way that the tan entiZl
component of K is something which is not c%f real
phy_slcal importance, it is just concerned with the math
matlcal technique. The quantity which is of real ph sicZi
importance is the normal component of K inp(g-IS)
'This normal component of K added on to the normai
component of w gives us the first-class constraint which
:: a;;so’;lateq with a motion of the surface normal to
tasli;e'. hat is something which is of dynamical impor-
The problem of getting a Hamiltonian field theor
on these C}lrved surfaces involves finding the expressionz
K to satisfy the required Poisson bracket relations
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(1-21), (3-22), and (3-23). The tangential part of K can
he worked out from geometrical arguments as I discussed,
and when we have worked it out we should find of course
ihat it satisfies the first Poisson bracket relation (3-21).
I'he second Poisson bracket relation (3-22) involves K,
lincarly and this Poisson bracket relation would be
atisfied by any quantity K, which satisfies the condition
of being a scalar density. This Poisson bracket relation
really tells us that if the quantity K, varies suitably under
. change of coordinate system X1, X2, X3, this Poisson
bracket relation will be fulfilled. The difficult relation to
(ulfill is the third one, which is quadratic in K,. So the
problem of setting up 2 Hamiltonian field theory on
curved space-like surfaces is reduced to the problem
of finding a normal component of K which is a scalar
density and which satisfies the Poisson bracket relation-
ship (3-23).

One way of finding such a normal component of K is
to work from a Lorentzinvariant action principle. We
might obtain all the components of K by working from
the action principle. If we did that, the tangential part of
K which we get would not necessarily be the same as that
built up from terms like (3-25) and (3-26), because it
might differ by a contact transformation. But one could
climinate such a contact transformation by rewriting the
action principle, adding to it a perfect differential term.
This doesn’t affect the equations of motion. By such a
change of the action principle, one can arrange that the
tangential part of K given by the action principle agrees
precisely with the value which is obtained by the simple
application of geometrical arguments. We are then able
to find the normal component of K by working with our
general method of passing from the action principle to
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the Hamiltonian. If the action principle is relativistic
then the normal component of K obtained in this wa);
would have to satisfy the condition (3-23).

We can now discuss the passage to the quantum
theory. Quantization involves making the quantities w
and the variables which enter in K into operators. We
have to be careful now how we define the tangential

and the normal components of w, and I choose this way
to define them:

w, = Y4, (3-27)
putting the momentum variable w on the right. (In the
quantum theory, you see, the result is different, depend-
ing on whether we put the @ on the right or the left.)
Similarly,

w, = 1wl

(3-28)
Then these quantities are well defined.

. Now in the quantum theory we have the weak equa-
tions w, + K, ~ 0and w, + K, ~ 0, which provide us
with supplementary conditions on the wave function:

(w, + K.) = 0, (3-29)
(wy + K ) =0, (3-30)

corresponding to (2-22). We require that these supple-
mentary conditions be consistent. According to (2-25)
we must arrange that in the commutation relation;
(3-21), (3-22), and (3-23) the coefficients on the right-
hand sides stand before (on the left of) the constraints.

In_t_he case of (3-21), the tangential components, the
conditions fit if we choose the order of the factors in
K, so that the momentum variables are always on the
right. We have now in (3-21) a number of quantities,
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linear in the momentum variables with the momentum
variables on the right, and the commutator of any two
such quantities will again be linear in the momentum
variables with the momentum variables on the right.
'I'hus we shall always have the momentum variables on
the right and we shall always have our factors occurring
in the order in which we want them to.

Now we have the problem of bringing in K, which
cannot be disposed of so simply. K, will usually involve
the product of non-commuting factors and we have to
arrange the order of those factors so that (3-22) and (3-23)
shall be satisfied with the coefficients occurring on the
left in every term on the right-hand side. The equation
(3-22) is again a fairly simple one to dispose of. If we
simply take K to be a scalar density, that is all that is
needed, because we have w, + K, occurring on the
right-hand side without any coeflicients which don’t
commute with it; the only coefficient is the delta function,
which is a number.

But the relationship (3-23) is the troublesome one.
For the purposes of the quantum theory, I ought to
write out the right-hand side here rather more explicitly:

[w_l_ + KJJ w’l + K_IL] == _zyTs(ws + KS)S.,,(JC - x’)
—(yi(w, + K)adx = &), (3-31)

P’ve written this out with the coefficients y™ occurring on
the left, and that is how we need to have these coefficients
in the quantum theory.

The problem of setting up a quantum field theory on
general curved surfaces involves finding K, so that this
Poisson bracket relationship (3-31) holds with the coefli-
cients 9™ occurring on the left. If we do satisfy (3-31),

[63]




LECTURES ON QUANTUM MECHANICS

then the supplementary conditions (3-30) are consistent
with each other, and we already have (3-29) consistent
with each other and (3-30) consistent with (3-29).

There we have formulated the conditions for our
quantum theory to be relativistic. We need a bit of luck
to be able to satisfy the conditions. We cannot always
satisfy them. There is one general rule which is of
importance, which tells us that when we've got a K,
satisfying these conditions and certain other conditions,
we can easily construct other K’s to satisfy the condi-
tions. Let us suppose that we have a solution in which
K| involves only undifferentiated momentum variables
together with dynamical coordinates which may be
differentiated. There are a number of simple fields for
which K, does satisfy the Poisson bracket relations
(3-22) and (3-23) and does have this simple character.
Then we may add to K, any function of the undifferen-
tiated ¢’s. That is to say, we take a new K,

KI = K, + ¢(9).

Then we see that adding on this ¢ to K can affect the
right-hand side of (3-31) only by bringing in a multiple
of the delta function. We cannot get any differentiations
of the delta function coming in, because the extra terms
come from Poisson brackets of ¢(g) with undifferen-
tiated momentum variables. So that the only effect on
the right-hand side of adding the term 4 to K, can be
adding on a multiple of the delta function. But the
right-hand side has to be antisymmetrical between x
and &', because the left-hand side is obviously antisym-
metrical between x and «’. That prevents us from just
adding a multiple of the delta function to the right-hand
side of (3-31), so that it is not altered at all. Thus if the
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original K satisfies thelPoissc?nf b‘rtacket relation (3-31),
new one will also satisty 1t. ‘
lh(?II}htehrz is a further factor which has to be t.aken mt;
account to complete the proof. ¢ may also involve /
— v/ —detg,,. One finds that [w,, ["] 1m_/olves S(xd~hx )
undifferentiated (one just has to .work Fhls out) and t uts
we can bring I into ¢ without @sturbmg the arguinetr;l e
In fact, we have to bring in.F in order* to preser}x}e11 v
validity of (3-22), which requires t'hat K hy an(_i K, sha
scalar densities. We must thus bring in a suitable power
ake ¢ a scalar density. ' .
" '{jhtl(;l: the¢nlethod which is usually used in pr.a(}:ltlf:c;
for bringing in interaction between ﬁeld}? let l(;gr
disturbing the relativistic character of the theory. o
various simple fields the condm.ons turn out Fo
satisfied. We have the necessary bit of luck, and v;:: can
bring in interaction between fields of the simple ¢ ;racr:
ter described and the conditiogs for the quantum theory
ivistic are preserved.
N '?ierrzlfrl\e some ex;mples for which we don’t have the
necessary luck and we just cannot arrange the factorsﬁx:;
K, to get (3-31) holding with the coefhicients on the
left, and then we do not know how to quantllie the
theory with states on curved surfa.ces. But alctuahyryl ve
are trying to do rather more than is necessary whe e
try to set up our quantum theory .w1th states on cu :
surfaces. For the purposes of getting a theory in ﬁe%gFeet
ment with special relativity, it would be quite rslllh c1e:pu
to have our states defined only on ﬁi.lt surfaces. at wi
involve some conditions on K, which are less .strmgetr)\t
than those which I have formulated here. And it ma}}lr i
that we can satisfy these less stringent conditions “(;lth OL:3
being able to satisfy those which I have formulated here.
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An example for that is provided by the Born-Infeld
electrodynamics, which is a modification of the Maxwell
ele(_:troslynamics based on a different action integral, an
action integral which is in agreement with the Maxivell
one for weak fields, but differs from it for strong fields
Th}s Bprn—Infeld electrodynamics leads to a classical K ‘
Wthh’ involves square roots. It is of such a nature that it
doesn’t seem possible to fulfill the conditions which are
necessary for building up a relativistic quantum theor
on curved surfaces. However, it does seem to be possiblbt;

;o bullfl up a relatiYi§tic quantum theory on flat surfaces,
or which the conditions are less stringent.

[66]
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Lecture No. 4

QUANTIZATION ON FLAT SURFACES

We have been working with states on general space-like
curved surfaces in space-time. I will just summarize the
results that we obtained concerning the conditions for a
quantum field theory, formulated in terms of these
states, to be relativistic. We introduce variables to
describe the surface, consisting of the four coordinates
y4 of each point " = (x, x2, x%) on the surface. The «’s
form a curvilinear system of coordinates on the surface.
Then the y’s are treated as dynamical coordinates and
there are momenta conjugate to them, @ Ax), again
functions of the ’s. And then we get a number of pri-
mary first-class constraints appearing in the Hamiltonian

formalism, of the nature
wy + Ky = 0. (3-10)

The K’s are independent of the @’s, but may be functions
of any of the other Hamiltonian variables. The K’s will
involve the physical fields which are present. We
analyze these constraints by resolving them into com-
ponents tangential to the surface and normal to the
surface. The tangential components are

Wy + Kr =~ Oa (4‘1)
[67]
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and the normal component is

w, + K.L ~ 0. (4_2)

Ou:/\‘hth tfhls analysis, we find that the K, can be worked

ou IJ(;JOSIZ éom geometrical considerations. The K, should

be | tr:ns fzx)[r)glr;tgs sometthg rather trivial, as;ociated
lons in which the coordi

surface are varied, bu docsmt o

t the surface itself ’
T fere va ) . itself doesn’t move.
-class constraints (4-2) ar 1 i

the mot-class c e associated with

: surface normal to itsel

important ones physically. Fand are the

5 (zlgx;ta}l;n Pi)lsionfblrgcket relations (3-21), (3-22), and

3- ave to be fulfilled for consi ’

: Ifillec stency. Some of th
foxsson bragket relations involve merely the K, and 'chee
aze agtomatlcally satisfied when the K, are T::hosen iz

cordance with the geometri i

] cal requirem S
the consistenc iti inear o e
y conditions are linear in K
: : : and they a
aut;)mactllcally satisfied provided we choosie K, to }l]:)er:
scalar density. Then finall ;
r y we have the consi
: ‘ W stenc
dc:él;iltxons which are quadratic in the X, and those arz
\¢ Important ones, the ones which cannot be satisfied
trivial arguments. e by
ﬁe’j‘}ilrels:hlmliort?ntl c;)lnsistency conditions can be satis
> ¢ classical theory if we work f i
. ] : the« rom a Lorentz-
lfglvlsct)rvtrz;rrllt tz;::tlon Srmmple and calculate the K, by
g the standard rules of i
low passing from the acti
principle to the Hamiltonian. Th ca
ciple . The problem of getti
relativistic quantum th bl
| eory then reduces to th
of suitably choosin S
: g the non-commuting f; i
occur in the quantum K i B the araman
‘ 1 in such a way that the quan
it tum
gg:lstetncy co?dmons are fulfilled, which mean;l that the
mutator of two of the quantiti
: 1es (4-2) at tw i
ce or of . 0 points
space x*, x?, x% has to be a linear combination Ef the
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constraints with coefficients occurring on the left. These
quantum consistency conditions will usually be quite
difficult to satisfy. It turns out that one can satisfy them
with certain simple examples, but with more complicated
cxamples it doesn’t seem to be possible to satisfy them.
That leads to the conclusion that one cannot set up
a quantum theory for these more general fields with the
states defined on general curved surfaces.

I might mention that the quantities K have a simple
physical meaning. K, can be interpreted as the momentum
density, K, as the energy density; so the momentum
density, expressed in terms of Hamiltonian variables,
is something which is always easy to work out just from
the geometrical nature of the problem and the energy
density is the important quantity which one has to
choose correctly (satisfying certain commutation rela-
tions) in order to satisfy the requirements of relativity.

If we cannot set up a quantum theory with states on
general curved surfaces, it might still be possible to set
it up with states defined only on flat surfaces.

We can get the corresponding classical theory simply
by imposing conditions which make our previous curved
surface into a flat surface. The conditions will be the
following: The surface is specified by y,(x); in order to

make the surface flat, we require that these functions
shall be in the form

ya(®) = a5 + bar’s (4-3)

where the @’s and b’s are independent of the x’s. This
will result in the surface being flat, and in the system of
coordinates x" being rectilinear. At present we are not
imposing the conditions that the x" coordinate system
shall be orthogonal: I shall bring that in a little later.
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We are thus working with general, oblique, rectilinear
axes x",

We now have our surface fixed by quantities ay, b,,
and these quantities will appear as the dynamical
variables needed to fix the surface. We have far fewer of
them than previously. In fact, we have only 4 + 12 = 16
variables here. We have these 16 dynamical coordinates
to fix the surface instead of the previous y,(x), which
meant 4- c0® dynamical coordinates.

When we restrict the surface in this way, we may look
upon the restriction as bringing a number of constraints
into our Hamiltonian formalism, constraints which
express the 4- 0% y coordinates in terms of 16 coordinates.
‘These constraints will be second-class. Their presence
means a reduction in the number of effective degrees of
freedom for the surface from 4-00% to 16, a very big
reduction!

In a previous lecture I gave the general technique for
dealing with second-class constraints. The reduction in
the number of effective degrees of freedom leads to a
new definition of Poisson brackets. This general tech-
nique is not needed in our present case, where conditions
are sufficiently simple for one to be able to use a more
direct method. In fact, we can work out directly what
effective momentum variables remain in the theory when
we have reduced the number of effective degrees of
freedom for the surface.

With our dynamical coordinates restricted in this way,
we have of course the velocities restricted by the equation

Ya = dy + by, (4-4)

The dot refers to differentiation with respect to some
parameter 7. As 7 varies, this flat surface varies, moving
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T he
parallel to itself and also chang;nlgd 1Es dc;r(;;m;x;.d '{‘his
i four-fold freedom,
surface thus moves with a fou .
motion is expressed by our taking a4, by, to be functions

of the parameter 7.
The total Hamiltonian is now

Hy = J‘yA(w,, + Ky) dx
~ it j (w, + Kj)d + b J w(w, + Kp) d%. (4-5)

(I have taken the quantitigs d",db’i.to(;lftstf: ;h:a :ir:sﬁersa;
s they are independen .
Z;g_fsliy il:)evi)all\iz theyw Yariables only thr?uih thle6 (;(())rrr;
binations fwA d3x and | &"wy d3x. We have here o
binations of the w's, which will bcj, the newl)mox;zll_er;1 i
variables conjugate to the 16 variables a, b whic
now needed to describe the §urface.
We can again express Hyp 1n terms O !
tangential components of these quantities:

f the normal and

T r 3
Hy = @l [ (s + K ds + dtby [ + K)

S 3
+bal, f w(w, + K d% + bubl J (ot + K¥) dox.

(4-6)

dition that the x" coordin-

Let us now bring in the con
ate system is orthogonal. That means

b/lrbg1 = &rs = — Oys (4'7)
Differentiating (4-7) with respect to 7, We get
bt + bubi =0 (4-8)

[71]
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1 -
ihehjlvzozigrilnilsmgtthe A suffixes quite freely because
e system is just the coordinate
. na : : system of
special relativity.) This equation tells us thatyb,, b2 is
TS

$bobl [l + K9 = v + KOs

N
o ;).w you see th?t we don’t have so many linear com-
ations of the @’s occurring in the H; as before. The

ns

P, = le d®x, (4-9)
P = f w, d3x, (4-10)
and also M,, = fx*wl d®x, (4-11)
and M, = f (v, — xw,)d®%.  (4-12)

S{?)Ve can raise and lower the suffixes  quite freely now
b :T}llse they refer to rectilinear orthogonal axes.) These
e momentum variables which ] ,
. are conjugate to th
variables needed to fix e e i
. the surface when th i
restricted to be aflatone r linear e
: eferred
restricted to to rectilinear orthogonal
T
(4~9;1e(4w?6>le set of momentum variables included in
Y » (4 ]&, (4-11), and (4-12) can be written as P, and
Vai“, = —-M,, where. the suffixes u and v take I:)n 4
v c111613, ; value 0 'assocxated with the normal component
nd 1,2, 3 associated with the three ¥’s. u, v are smali
L od
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cuffixes referring to the & coordinate system, to distin-
puish them from the capital suffixes A referring to the

fixed y coordinate system.

So now out momentum variables are reduced to just
{0 in number, and associated with these 10 momentum
variables we have 10 primary first-class constraints,

which we may write

P, +p. %0 (4-13)

M,y + My = 0, (4-14)

where b, = j K, &, (4-15)
by = jK, x, (4-16)

m, = J K, do%, (4-17)

and m, = j(x,Ks _ %K) d%. (4-18)

We have now 10 primary first-class constraints
associated with a motion of the flat surface. In Lecture
(3) 1 said that we would need 4 primary first-class
constraints (3-10) to allow for the general motion of 2
fat surface. We see now that 4 is not really adequate.
The 4 has to be increased to 10, because 4 elementary
motions of the surface normal to itself and changing its
direction would not form a group; in order to have these
elementary motions forming a group, wWe have to extend
the 4 to 10, the extra 6 members of the group including
the translations and rotations of the surface, which
motions affect merely the system of coordinates in the
surface without affecting the surface as a whole. In this

[731]
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way we are brought to a Hamilto
10 primary first-class constraints.

We have now to discuss the
the conditions in terms of Po
which are necessary

nian theory involving

consistency conditions,
isson bracket relations
for all the constraints to be first-
class. Let us first discuss the Poisson bracket relations

between the momentum variables P, M,. We are
given these momentum variables in terms of the w
variables (4-9) to (4-12), and we know the Poisson
bracket relations (3-17), (3-18), and (3-19) between the
w variables, so we can calculate the Poisson bracket
relations between the P and M variables, It is not really
necessary to go through all this work to determine the
Poisson bracket relations between the P and M variables.
It is sufficient to realize that these variables just corre-
spond to the operators of translation and rotation in four-
dimensional flat space-time, and thus their Poisson
bracket relations must just correspond to the commuta-
tion relations between the operators of translation and

rotation. In either way we get the following Poisson
bracket relations:

(P, P,] =0 (4-19)

which expresses that the various translations commute;

[Pw Mpa] = gupPa - guUPp; (4'20)
and [Muv’ Mpo] = _gquvo + gvaua + guanp
- &M, (4—21)

Let us now consider the requirements for the equations
(4-13) and (4-14) to be first-class. The Poisson bracket
of any two of them must be something which vanishes
weakly and must therefore be a linear combination of
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em

[Pu + Pu, Pv + Pv] = 07 (4-22)

= Pa + Pd)
[Pu + Pus Mua + mua] B g::gpﬂ + pp)’ (4—23)

and [Muv + My Mna + mpc] = —gup(Mva + mva)

— gyo(M,, + my,).
+ gVIJ(MLlU + muo) + gua(Mvp + mVD) gVG( wo (4_!124)

i ese relations is that, on thp
The a}rlguglesnigef;) rvgzttlllr;%l ttlo put something which 12
e al to zero in each case, and we know the term
i equht—hzmd sides which involve the momentu}xln
v 'thel rlgP M because these terms come only from t rz
Var'lab esbrz’lckets of momenta with momenta and so a ¢
P'Olsson 4-19), (4-20), and (4-21). (1 have alreadysuzs;,
B e u;nent in the curvilinear case for (3- ),1
theZZamaengr(g&%), so there is no need to go ;)ntot de’It‘;xe
S- ),For example, see how (4-23) comes :_2%\)1 .They
e olving P are just the same as in (r . ¥
come fmv the Poisson bracket of P and M. The rema "
?Ome I;x(z;nare filled in in order to make the tota‘1¥ ezpigrzre
lsrilfnttz;eakly equal to zero.) (4-22), (4-23), and (4-
" requiremaelzgsa fgrfk?gsésiiggi};f;cation, whiclzh we could:
o c'ant}rlr; case of curvilinear coordinat.eg, in thlshway.
o ose that our basic field quantltrles are ¢ c;iseirc;
o ufs SUI;I; to the x coordinate system. T'hey are ezm
o antitic ?c’ specific points x in the surface, and weh c
quantltle; am Eo as to be quite independent of t‘ueby
Choos.'e ttes stem. Then the quantities K, K, vscrll haet
it l'mzie e}llldent of the y coordinate system, an htthe
quel;gsl I’EhZF they will have zero Poisson brackets wit
m
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E::;lables P, M. We then have a zero Poisson bracket
’Ixive'en each. qf the variables p, m and each of the P, J/
his condition follows with the natural choicé of

d}}rlr.lamical variables to describe th
W 7
" ml;i}ﬁzri preseiilt. We cannot do the corresponding
ation when we are workin i
: . g with the curved
e;llxt'fac?s, because the.g.,s variables that fix the metric will
Caniroéntc; tge quantities K, K,. The result is that we
canno ;ect e(rir} up 1n a form which does not refer at all
oordinate system, because th i
' tem, e y coordinates
:3:?;(; cmto the g, variables. However, with the flat
s, we can make this simplj i
‘ ‘ ‘ plification, and th
res ’ o
ults in equations (4-22), (4-23), and (4-24) simplifying

e physical fields

to
[Pui pv] = O; (4"25)
[p y Mo} = - ;
i s Mpg) 8uolo — Luohss (4'26)
[muw Myl = —
ool EupMye + Gy, -+ Sucyvp =~ GyaMy,.
(4-27)

P av 5
0 C::r;(iiil have dxilappeared from these equations, so
ency conditions now involy ] ,
variables, and not the vari h e e
, variables, which are in
al troduced
fﬁr dlescrxbmhg the surface. In fact, these conditions
erely say that the p, m shall isf i
: , satisfy Poisson b
relations correspondin aneiation
g to the operators of translati
and rotation in flat s ' of setting
pace-time. The problem of setti
up a relativistic field theor nding the
rel y now reduces to finding th
quantities p, m to satisf i sione
, y the Poisson bracket i
(4-25), (4-26), and (4-27). relations
< heze quantities, remember, are defined in terms of
1 and K,, the energy density and the momentum
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density. The expression for the momentum density is just
the same as in curvilinear coordinates. It is determined
by geometrical arguments only. Our problem reduces to
finding the energy density K, leading to p’s and m’s
such that the Poisson bracket relations (4-25), 4-26), and
(4-27) are fulfilled.

If we work from a Lorentz-invariant action integral
and deduce K, from it by standard Hamiltonian methods,
K, will automatically satisfy these requirements in the
classical theory. The problem of getting a relativistic
quantum theory then reduces the problem of suitably
choosing the order of factors which occur in K, soasto
satisfy the equations (4-25), (4-26), and (4-27) also in the
quantum theory, where the Poisson bracket becomes a
commutator and the p, m involve non-commuting
quantities.

Let us look at (4-25), (4-26), and (4-27) and substitute
for p and m their values in terms of K’s. Then you see
that some of these conditions will be independent of K.
These are automatically satisfied when we choose K,
properly, in accordance with the geometrical require-

ments. Some of the conditions are linear in K. These
will be satisfied by taking K to be any three-dimensional
scalar density in the space of the x’s. So that there is no
problem in satisfying the conditions which are linear in
K. The awkward ones to satisfy are the ones which are
quadratic in K,. They are the following:

[ [wkoas [Kpax| = [Kaw @29

(This equation comes from (4-26) where we put p = L,
p=rando = 1.)
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[ fx,KJ_ d®x, Jx;Ki d3x’] = — f(x,Ks — %K) d%x
(4-29)
(from (4-27) where we take v = | and o = ). So the
problem of getting a relativistic quantum field theory
now reduces to the problem of finding an energy density
K, which satisfies the conditions (4-28) and (4-29) when

we take into account non-commutation of the factors.
We can analyze these conditions a little more when we
take into account that the Poisson bracket connecting K,
at one point and K at another point will be a sum of

terms involving delta functions and derivatives of delta
functions:

[Ky, K{]1=ad + 258, + ¢85 +.... (4-30)

(This delta is the three-dimensional delta function in-
volving the three coordinates x and the three coordinates
x' of the first and second points.) Here a = a(x),
b = b(x), ¢ = ¢(x),... One could have the coefficients
involving also x', but then one could replace them by
coefficients involving x only at the expense of making
some changes in the earlier coefficients in the series.
There is no fundamental dissymmetry between x and &,
only a dissymmetry in regard to the way the equation is
written.

(4-30) is the general relationship connecting the
energy density at two points. Now for many examples,
including all the more usual fields, derivatives of the
delta function higher than the second do not occur. Let
us examine this case further.

Assume derivatives higher that the second do not
occur. That means that the series (4-30) stops at the
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i i ite a bit of
third term. In this special case we can get quite 2
information about the coefficients a, b, ¢ by mak{ng use
of the condition that the Poisson l?racket (4-30)’ is anti-
symmetrical between the two points x and «’. Inter-
changing x and & in (4-30), we get
K1, K\]= a'd — 2b;8,, + Cysd.rs
= a's — 2(b,8), + (€1s0).rs
(since 0b(x")[0x" = 0, etc.)
= ad — Z(brs).r + (Crss),rs 2. 35
= - 2b,, + Crs,rs)B + (- 2b, + 2€45,+)0.r
“ ' todys  (431)
i i he expression
The expression (4-31) must equal minus the
(4-30) ipdentically. In order that the coefficients of 0
shall agree we must have

¢y = 0. (4-32)

i Finally, in
This then makes the coefficients of 3, agree.
order that the coefficients of & shall agree, we must have

a = b (4-33)
This gives us the equation
[Kl’ K-’L] = Zbra.r + br.rs' (4"34‘)

Let us now substitute in (4-28) and (4-29). They become:
J K, d% = f J 2(2b3 s + by ) dox &
= j‘xrbs sd%x
- jb, s, (4-35)

(Note that x, s = ox,|0x° = — 8ys)
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—x“%&—%KJﬁx=J]Wq%@f+%@d%d%’
= f(— 2x.bg + x,x5b; ) d3x

=fpm@+%md% (4-36)

This is what our consistency conditions reduce to, and
we see that they are satisfied by taking b, = K,. This is

not quite the most general solution; more generally we
could have

b, =K, + 6, (4-37)

for any quantity 6, satisfying the condition that

me—&gﬁx:Q (4-38)

Thus 6 can have any symmetrical part and its anti-
symmetrical part must be a divergence.

That gives the general requirement for a field theory
to be relativistic. We have to find the energy density K,
satisfying the Poisson bracket relation (4-34) where b, is
connected with the momentum density by (4-37). If we
work out the energy density from a Lorentz-invariant
action then this condition will certainly be satisfied in
the classical theory. It might not be satisfied in the
quantum theory because the order of the factors might
be wrong. It is only when one can choose the order of the
factors in the energy density so as to make (4-34), (4-37)
hold accurately that we have a relativistic quantum
theory. The conditions which we have here for a quantum
theory to be relativistic are less stringent than the ones
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which we obtained when we had states defined on
general curved surfaces.

I would like to illustrate that by taking the example of
Born-Infeld electrodynamics. This is an electrodynamics
which is in agreement with Maxwell electrodynamics for
weak fields but differs from it for strong fields. (We now
refer the electromagnetic field quantities to some
absolute unit defined in terms of the charge of the
electron and classical radius of the electron, so that we
can talk of strong fields and weak fields.) The general
equations of the Born-Infeld electrodynamics follow
from the action principle:

I=Jv1&&@;1fgﬁ%. (4-39)

We may use curvilinear coordinates at this stage.
g gives the metric referred to these curvilinear co-
ordinates and F,, gives the electromagnetic field referred
to the absolute unit.

We can pass from this action integral to a Hamiltonian
by using the general procedure. The result is to give
us 2 Hamiltonian in which we have, in addition to the
variables needed to describe the surface, the dynamical
coordinates A4,, 7 = 1,2,3. A, turns out to be an unim-
portant variable just like in the Maxwell field. The
conjugate momenta D" to the A, are the components of
the electric induction, and satisfy the Poisson bracket
relations

[4,, D*] = gd(x — &). (4-40)

It turns out that in the Hamiltonian we only have 4

occurring through its curl, namely through the field
quantities:
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B = %erstht — g‘rsif‘4"l .
- . .
& =1 when (rst) = (1, 2, 3) and is anti-symmetrical

between the suffixes. The commutation relation between
Band D is

(4-41)

[B', D*] = &8 (% — «'). (4-42)
The momentum density now has the value
K, = F,Ds. (4-43)

This is just the same as in the Maxwell theory. It is in

agreement with the general principle that the momentum

density depends only on geometrical arguments, i.e. on

the geometrical character of the fields we are using, and

the action principle doesn’t matter. ’
The energy density now has the value

K, = {I'? — 5 (D'D* + B'B%) — y"°F,F, D'D"}}2
(4-44)

He;re Yrs 18 the metric in the three-dimensional surface
an

—I'? = dety,, (4-45)
If we work with curved surfaces we require K, to
satisfy tl‘ue Poisson bracket relation (3-31). In the classical
theory it must do so because it is deduced from a
Loren.tz—mvariant action integral. But we cannot get it
to satisfy the required commutation relationship in the
quantum theory. The expression for K, has a square root
occurring in it, which makes it very awkward to work
with. It seems to be quite hopeless to try to get the
Commgtation relations correctly fulfilled with the
coefficients y™ occurring on the left. So it does not seem
to be possible to get a Born-Infeld quantum electro-
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dynamics with the state defined on general curved
surfaces.

Let us, however, go over to flat surfaces. For that
purpose, we need to work out the Poisson bracket
relationship (4-34). Now we know that conditions are
all right in the classical theory. Classically we must
therefore have the Poisson bracket relationship:

K., K] = 2K,8, + K, 8. (4-46)

We can see without going into detailed calculations that
this must hold also in the quantum theory, because K, is
built up entirely from the quantities D* and Bt. When we
work things out in the quantum theory, we shall have the
D’s and the B’s occurring in a certain order, but the
D’s and B’s all commute with each other when we take
them at the same point. We see that from (4-42). If we
put the x’ = x we get

[Br, D] = &8,(0) = 0 (4-47)

(the derivative of the delta function with the argument 0
is to be taken as zero). Thus we are not bothered by the
non-commutation of the D’s and the B’s that occur in
K,. We must therefore get the classical expression, so
that the consistency conditions are fulfilled.

So for the Born-Infeld electrodynamics, the con-
sistency conditions for the quantum theory on flat
surfaces are fulfilled, while they are not fulfilled on
curved surfaces. Physically that means that we can
set up the basic equations for a quantum theory of the
Born-Infeld electrodynamics agreeing with special
relativity, but we should have difficulties if we wanted to
have this quantum theory agreeing with general relativity.

That completes the discussion of the consistency
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requirements for the quantum theory to be relativistic.
However, even if we have satisfied these consistency
requirements, we have not yet disposed of all the diffi-
culties. There are some quite formidable difficulties
§till lying ahead of us. If we were dealing with a system
involving only a finite number of degrees of freedom,
then we should have disposed of all of the difficulties,
and it would be a straightforward matter to solve the
differential equations on . But with field theory, we
have an infinite number of degrees of freedom, and this
infinity may lead to trouble. It usually does lead to
trouble.

We have to solve equations in which the unknown,
the wave function ¢, involves an infinite number of
variables. The usual method that people have for solving
this kind of equation is to use perturbation methods in
which the wave function is expanded in powers of some
small parameter, and one tries to get a solution step by
step. But one usually runs into the difficulty that after a
certain stage the equations lead to divergent integrals.

People have done a great deal of work on this problem.
They have found methods for handling these divergent
integrals which seem to be tolerable to physicists
even though they cannot be justified mathematically, and
they have built up the renormalization technique,
which allows one to disregard the infinities in the case of
certain kinds of field theory.

. So, even when we have formally satisfied the con-
sistency requirements, we still have the difficulty that
we may not know how to get solutions of the wave
equation satisfying the required supplementary con-
ditions. If we can get such solutions, there remains the
further problem of introducing scalar products for these
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solutions, which means considering these solutions as
the vectors in a Hilbert space. It is necessary to introduce
these scalar products before we can get a physical
interpretation for our wave function in terms of the
standard rules for the physical interpretation of quantum
mechanics. It is necessary that we should have scalar
products for the wave functions which satisfy the
supplementary conditions, but we do not need to worry
about scalar products for general wave functions which
do not satisfy the supplementary conditions. There may
be no way of defining scalar products for these general
wave functions, but that would not matter at all. The
physical interpretation for quantum mechanics requires
that scalar products exist only for wave functions
satisfying all the supplementary conditions.

You see that there are quite formidable difficulties in
getting the Hamiltonian theory to work, in connection
with quantum mechanics. So far as concerns classical
mechanics, the method seems to be fairly complete and
we know exactly what the situation is; but for quantum
mechanics we have only really started on the problem.
There are the difficulties of finding solutions even when
the supplementary conditions are formally consistent,
and possibly also the difficulty of introducing scalar
products of the solutions.

The difficulties are quite serious, and they have led
some physicists to challenge the whole Hamiltonian
method. A good many physicists are now working on the
problem of trying to set up a quantum field theory
independently of any Hamiltonian. Their general
method is to introduce quantities which are of physical
importance, then to bring in accepted general principles
in order to impose conditions on these quantities; and
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their hope is that ultimately they will get enough con-
ditions imposed on these quantities of physical impor-
tance to be able to calculate them. They are still very
far from achieving that end, and my own belief is that it
will not be possible to dispense entirely with the
Hamiltonian method. The Hamiltonian method domin-
ates mechanics from the classical point of view. It may be
that our method of passing from classical mechanics to
quantum mechanics is not yet correct. I still think that in
any future quantum theory there will have to be some-
thing corresponding to Hamiltonian theory, even if it is
not in the same form as at present.

I have given the treatment of the Hamiltonian method
as far as it has yet been developed. It is quite a general and
powerful method which can be adapted to a variety of
problems. It can be adapted to problems where singu-
larities (point or surface) occur in the field. The general
idea governing this development of the Hamiltonian
theory is to find an action I which involves certain
parameters ¢, such that when we vary the ¢’s, 81 is linear
in the 8¢’s. It is indispensable that we should have §I
linear in the 8¢’s in order that we may apply the treatment
described in these lectures.

The way to bring about linearity when we have
singularities is to work in terms of curvilinear coordinates,
and not to vary any equations which determine the
position of a singular point or a singular surface. For
example, if we are dealing with a singular surface
specified by an equation f(x) = 0, then we must have a
variation principle in which f(x) is not varied. If we
allow f(x) to vary, if we treat f itself as providing some of
the ¢’s, then we do not have 81 linear in the 8¢’s. But we
can keep f(x) fixed with respect to some curvilinear
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coordinate system x and we can vary the surfa'ci b);
varying the curvilinear coordinate system Wll:. (;luI
varying the function f. Then the general fnethod whic 1
have discussed here works very erll.m the classm}?
theory. When we go over to qua.ntlzanon we have the
difficulties arising which I have discussed.
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