The Bipolar Junction Transistor

- Physical Structure of the Bipolar Transistor
- Operation of the NPN Transistor in the Active Mode
- Transit Time and Diffusion Capacitance
- Injection Efficiency and Base Transport Factor
- The Ebers-Moll Model of the BJT
- The PNP Transistor
- **Graphical Representation of the BJT Characteristics**
- **The Early Effect**
- **Appendices:**
- BJT parameters for simulation

Physical Structure of the BJT

Introduction to Microelectronics

Operation of the BJT in the Active Mode

(a) npn transistor with base-emitter junction forward biased, base-collector junction reverse biased.(b) Potential-energy barriers for electrons.

Operation of the BJT in the Active Mode (*)

Illustration of BJT currents, using the BJT cross section (a) and energy-band diagram (b).

(*) S. Dimitrijev, Understanding Semiconductor Devices, Oxford, New York, 2000. 7

Basic Operation: forward-active regime

Transistor Effect : electrons injected from the *Emitter* to the *Base*, extracted by the *Collector*

Basic Operation: forward-active regime

• Carrier profiles in thermal equilibrium:

• Carrier profiles in forward-active regime:

Introduction to Microelectronics

- •The electron flux "stream" is greater than the hole flux stream.
- Electrons are supplied by the emitter contact, injected across the base-emitter SCR and diffuse across the base
- Electric field in the base-collector SCR extracts electrons into the collector.
- Holes are supplied by the base contact and diffuse across the emitter.
- The reverse injected holes recombine at the emitter ohmic contact.

BJT in the Active Mode

Hypotheses:

- One-dimensional device
- Ohmic contacts at E, B, and C
- 3 QN regions and 2 depletion

^c regions

- Low injection level
- High emitter efficiency
- Einstein relationship
- Boltzmann statistics valid in the depletion region
- W_B<<L_n negligible recombination in the base

The electron (collector) current - npn transistor

One-dimensional device + Einstein relationship

$$J_{n} = qn\mu_{n}E + qD_{n}\frac{dn}{dx} \rightarrow \frac{J_{n}}{qn\mu_{n}} - \frac{\phi_{t}}{n}\frac{dn}{dx} = E$$

$$J_{p} = qp\mu_{p}E - qD_{p}\frac{dp}{dx} \rightarrow \frac{J_{p}}{qp\mu_{p}} + \frac{\phi_{t}}{p}\frac{dp}{dx} = E$$

$$(1)$$

In the QN base (1) becomes

Low injection level
$$p \cong N_{aB} >> n$$

High emitter efficiency $J_n >> J_p$

$$\frac{pJ_n}{D_n} \cong q \frac{d(pn)}{dx}$$
(2)

For negligible recombination $J_n \cong \text{constant. Integrating (2) from 0 to } W_B \text{ results in}$ $J_n \int_{0}^{W_B} pdx \cong qD_n \int_{0}^{W_B} d(pn) = qD_n \cdot pn \Big|_{0}^{W_B} = -qD_n n_i^2 \begin{bmatrix} \frac{V_{BE}}{\varphi_i} - e^{\frac{V_{BC}}{\varphi_i}} \end{bmatrix}$ Boltzmann statistics $\begin{bmatrix} w_B \\ \varphi_B \\ \varphi_B \end{bmatrix} = -I_s \begin{bmatrix} e^{\frac{V_{BE}}{\varphi_i}} - e^{\frac{V_{BC}}{\varphi_i}} \end{bmatrix}$ 12

BJT in the Active Mode

Forward Transit Time

Excess minotity charge stored in the neutral base

Operating frequency

$$f \leq \frac{1}{2 \pi \tau_{\rm F}}$$

$$Q = \frac{q n_p(0) A_E W}{2}$$
$$\tau_F = \frac{Q}{I_C} = \frac{W^2}{2D_n}$$

If W = 10⁻⁴ cm (= 1µm),
D_n = 12.5 cm²/s (=µ_n
$$\phi_t$$
)
 $\tau_F = \frac{10^{-8} cm^2}{2x12.5 cm^2/s}$
 $\overline{\tau_F} = 4 \times 10^{-10} s$

15

Diffusion Capacitance (C_D)

16

Emitter efficiency

EB junction of npn transistor is an N+P junction. Electrons from the emitter are injected into the base, but holes from the base are also injected into the emitter. The ratio $\gamma = J_n/J_p$ is designated as emitter efficiency.

Emitter efficiency

If the recombination current is negligible, we have

Base transport factor - α_T

$$\alpha_T = \frac{I_{nC}}{I_{nE}} = \frac{1}{\cosh\left(W_B / L_n\right)} \cong 1 - \frac{W_B^2}{2L_n^2}$$

Example:
$$\frac{W_B}{L_n} = \frac{0.2\mu m}{20\mu m} \rightarrow \alpha_T \cong 1 - \frac{W_B^2}{2L_n^2} = 1 - \frac{1}{20000}$$

$$\boldsymbol{I}_{B} = \boldsymbol{I}_{B1} + \boldsymbol{I}_{B2} + \boldsymbol{I}_{B3} \cong \frac{\boldsymbol{I}_{C}}{\gamma} + (1 - \alpha_{T})\boldsymbol{I}_{C} + \boldsymbol{I}_{B3}$$

The Base Current

 I_{B1} : holes injected from the base region into the emitter region

 I_{B2} : some electrons that diffuse across the base do not reach the collector, but on the way they recombine with holes. The missing holes must be replaced from the external circuit.

 I_{B3} : recombination current in the EB junction (important at low current levels)

Usually $I_{B2} << I_{B1} \rightarrow I_B \cong I_{B1+}I_{B3}$

$$I_E = I_B + I_C$$

 $I_C = \alpha_F I_E \qquad \beta_F = \frac{\alpha_F}{1 - \alpha_F}$

 $I_C = \beta_F I_B$

Introduction to Microelectronics

20

Base and collector resistances

The (Ebers-Moll) Transport Model of the NPN Transistor

- (a) Idealized npn transistor structure for a general bias condition
- (b) Circuit symbol for the npn transistor

Forward Transport Current

NPN transistor with $V_{BE} > 0$ and $V_{BC} = 0$.

$$i_{\rm C} = i_{\rm F} = I_{\rm S} \left[\exp \left(\frac{v_{\rm BE}}{\phi_t} \right) - 1 \right]$$

$$\dot{i}_{B} = \frac{\dot{i}_{F}}{\beta_{F}} = \frac{I_{S}}{\beta_{F}} \left[exp \left(\underbrace{v_{BE}}{\phi_{t}} \right) - 1 \right]$$

$$20 \le \beta_F \le 500$$
 (typically)

 β_F : forward common-emitter current gain

$$\mathbf{i}_{\mathrm{E}} = \mathbf{i}_{\mathrm{C}} + \mathbf{i}_{\mathrm{B}} = \frac{\beta_{\mathrm{F}} + 1}{\beta_{\mathrm{F}}} \mathbf{i}_{\mathrm{C}} = \frac{\mathbf{i}_{\mathrm{C}}}{\alpha_{\mathrm{F}}}$$

 α_F : forward common-base current gain

Reverse Transport Current

$$i_{E} = -i_{R} = -I_{S} \left[exp \left(\sqrt[V_{BC}]{\phi_{t}} \right) - 1 \right]$$

$i = \frac{i_R}{R}$	$=\frac{-I_s}{e^x}$	v_{BC}
^{1}B β_{R}	$\beta_{\rm R}$	$\Pr\left(\begin{array}{c} \phi_t \end{array} \right) 1$

$$0.02 \le \beta_R \le 20$$

$$i_{\rm C} = \frac{i_{\rm E}}{\alpha_{\rm R}} = \frac{\beta_{\rm R} + 1}{\beta_{\rm R}} i_{\rm E}$$

The Transport Model of the NPN Transistor

Transport model equivalent circuit for the npn transistor

Circuits for determining the common-emitter output characteristics

Commom-emitter output characteristics for the BJT

Introduction to Microelectronics

$$I_{\rm C} = I_{\rm S} \left[\exp \left(\frac{V_{\rm BE}}{\phi_t} \right) - 1 \right]$$

 I_{C}

BJT transfer characteristic in the forward-active region

$$\frac{\Delta V_{BE}}{\Delta T}\Big|_{I_{C}} \approx -2 \text{ mV/°C} \longrightarrow \text{Dependent of } I_{C}$$

Introduction to Microelectronics

V_{BE}(

+

The Early Effect

The Early Voltage

References

- EEL 7061 Introductory Electronics http://www.lci.ufsc.br/electronics/index7061.htm
- I. Getreu, Modeling the Bipolar Transistor, IG Associates, Portland ,2009.
- P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, <u>Analysis and Design of Analog</u> <u>Integrated Circuits</u>, Fourth Edition, John Wiley & Sons, New York, 2001.
- Richard Jaeger, "Microelectronic Circuit Design," McGraw-Hill, 1997.
- A. Sedra and K. Smith, "Microelectronic Circuits," 5th edn., Oxford, 2004
- Charles Sodini, "6.012 Microelectronic Devices and Circuits," OpenCourseWarehttp://ocw.mit.edu
- Sze & Ng, "Physics of semiconductor devices", 3rd edn., Wiley
- Pierret, "Semiconductor device fundamentals," Addison-Wesley

	Parameter	Typical Value, 5-Ω-cm, 17-µm epi 44-V Device 5100 µm ² Emitter Area	Typical Value, 1-Ω-cm, 10-µm epi 20-V Device 5100 µm ² Emitter Area
	β_F	50	30
	β_R	4	2
	V_A	50 V	30 V
	η	5×10^{-4}	9×10^{-4}
	I_S	10^{-14} A	10^{-14} A
	Ico	$2 \times 10^{-10} A$	$2 \times 10^{-10} \text{ A}$
	BVCEO	60 V	30 V
	BV _{CBO}	90 V	50 V
	BV_{EBO}	7 V or 90 V	7 V or 50 V
	$ au_F$	20 ns	14 ns
	τ_R	2000 ns	1000 ns
	β_0	50	30
	r_b	150 Ω	50 Ω
	r_c	50 Ω	50 Ω
	r _{ex}	2 Ω	2 Ω
Base-emitter	(C_{ie0})	0.5 pF	1 pF
junction	1 400	0.55 V	0.58 V
	n_e	0.5	0.5
Base-collector	$\int C_{\mu 0}$	2 pF	3 pF
junction	{ Voc	0.52 V	0.58 V
	n_c	0.5	0.5

Parameter	Vertical <i>npn</i> Transistor with 2 μm ² Emitter Area	Lateral <i>pnp</i> Transistor with 2 µm ² Emitter Area
β_F	120	50
β_R	2	3
V_A	35 V	30 V
Is	$6 \times 10^{-18} A$	$6 \times 10^{-18} A$
Ico	1 pA	1 pA
BV_{CEO}	8 V	14 V
BV_{CBO}	18 V	18 V
BV_{EBO}	6 V	18 V
TF	10 ps	650 ps
TR	5 ns	5 ns
r _b	400 Ω	200 Ω
r _c	100 Ω	20 Ω
r _{ex}	40 Ω	10 Ω
C_{je0}	5 fF	14 fF
ψ_{0e}	0.8 V	0.7 V
n_e	0.4	0.5
$C_{\mu 0}$	5 fF	15 fF
ψ_{0c}	0.6 V	0.6 V
n_c	0.33	0.33
$C_{cs0} (C_{bs0})$	20 fF	40 fF
ψ_{0s}	0.6 V	0.6 V
n_s	0.33	0.4