

Site Training

BTU Training Program For Celestica

2001/3/28 9:00am---5:00pm

BTU System Overview

Including:

*Oven Overall Description
*System Structure and Function
*Main Options Instruction
*Facilities Requirement
*Moving, Installation and Adjustment of Oven

BTU System Operation Procedure

Safety Precaution BTU Control Software "WINCON" Study Recipe Edit Preparation Before Operation Starting Up Oven Performing Emergency Stop Clearing ALERT and ALARM Shutting Down the Oven

Trainee Test

Wincon Test (Edit a New Recipe, Edit the Profile)

BTU Training Program For Celestica

2001/3/29 9:00am---5:00pm

- System study
- *Heating System
- *Cooling System
- *Flux Management
- *Drive System
- *Auto Center Support System

Afternnon

- 1) System study
- * Closed Loop Blower Speed Control System
- * O2 Sampling System
- * N2 System
- * Alarm System
- 2)Preventive maintenance
- 3)Trainee Practice
- *Conveyor speed calibration
- * Rail Position Width Calibration
- 4) Test
 - * Paper Test

SMT 380/220V 3 PHASE, 4-Wire,50/60Hz

P150 Oven Data

Power 380/220VAC 3 Phase 4 wires 1 Ground 50/60 HZ

Max. Load Data - Line Current

Line VAC L1 L2 L3 Neutral Total KVA 380/220 189A 179A 159A 189A 122 Average Heater Load at 30KVA

Approx. Shipping WeightFurnace7400LBSFurnace w/Pallet7850LBS

Max. Operating Temperature

325 C

P150 Oven

Utility Connections

	Utility	Size	Pressure	Nominal Flow
A	N2	0.5NPT	55-80PSI	30SCFM
В	Air	0.5NPT	55-80PSI	18SCFM
С	H2O Drain	n 0.5NPT	Open	
D	H2O Inlet	0.5NPT	30-85PS!	3-12GPM
E	ENT Vent	D5.0"	0.1-0.05IWC	2100-150SCFM
F	EXIT Ven	t D5.0"	0.1-0.05IWC	2150-200SCFM

P150

•Flux Condenser

VIP-98-I Series Furnace

Exhaust Duct Damper Locations

5115104

Lip Vent Assy

<u>Lip Vent Hoods</u>

5113478 Entrance side 5113463

Exit side

10

STOP BUTTON (Yellow and Black)

EMERGENCY OFF OR EMERGENCY STOP BUTTON (Red and White)

MECHANICAL OR PINCH POINT HAZARD (Yellow and Black)

TEMPERATURE HAZARD (Yellow and Black)

<u>Safety Labels</u>

ELECRICAL HAZARD (Red and Black)

CRUSH HAZARD (Red and Black)

CRUSH HAZARD (Yellow and Black)

VAPOR HAZARD (Red and Black)

(Yellow and Black)

This equipment contains Refractory Ceramic Fibers (RCF) that have been identified by the International Agency for Research on Cancer (IARC) as a possible human carcinogen (Group 2B). Exposure to RCF may be hazardous to your health. **Under normal operating conditions, exposure should not occur.** If maintenance is to be performed on this equipment, or if exposure to RCF otherwise occurs, then precautions should be taken for the handling of RCF. The necessary precautions and emergency procedures are described in the MSDS sheets included in the technical manual supplied with this equipment. Further information on RCF may also be obtained from: The Carborundum Company - Fibers Division. HOTLINE NUMBER (716) 278-2183.

<u>Emergency Stop Buttons</u> <u>(EMO's)</u>

The heater power will be turned off, which will cause the zone temperature to slowly drop. This furnace configuration also turns off, the conveyor and rail systems, blower system, hood controls, flux system, gas controls, cooling system, recirculating water system and case cooling.

Drawing 5182368 - Schematic Diagram - Instrument Control

Shows: Uninterruptible Power Supply which supplies the following circuits

Conveyor - C000

Instruments (PC) - E000

Lid Lift - (H000)

Note: The UPS Circuits provides power for approximately 15 minutes and is mounted internally. Time is reduced when the Hood Lift are operated.

OPTION 7C

Color	Condition	Description	
RED	ALARM	Indicates that the furnace is in an ALARM STATE.	
YELLOW	ALERT	Indicates that the furnace is in an ALERT STATE.	
GREEN	READY	Indicates that the furnace has reached operating temperatures and is in the Ready state, as directed by your process recipe. (When recipe changes take place, this indicator light will temporarily go out.)	
Blue (Optional)	N ² On	Indicates that the FCU has energized F600-CR to turn on nitrogen	

WINCON Software

Operating Software

₭ Windows TM Platform

- GEM Available
- Extensive Security
 Features
- Extensive data
 Collection Capability
- Flexible Time and
 Sequence
 Scheduling

The model P150 furnace contains the following safety features:

- 1. Emergency Stop Buttons
- 2. Over Temperature Protection
- 3. Conveyor Protection
- 4. Lockable Power Disconnect Switch
- 5. System Interlocks and Alarms

<u>Topic 3</u> System Documentation & <u>Drawings</u>

Upon successfully complete of this topic you will be able to:

- 1 Demonstrate the ability to use the System Owner's Manual to determine but not limited to the following:
 - a Identification of system specifications.
 - b Performance of preventative maintenance.
 - c Removal and replacement of system components.

- 2 Demonstrate the ability to use the system drawings to determine, but not limited to the following:
 - a. Layout of the system, assemblies, wiring, and plumbing.
 - b. Reference connections to other diagrams.
 - c. Source voltage information.
 - d. Component identification.
 - e. Component specification.
- 3 Demonstrate an ability to use the electrical systems drawing to isolate and diagnose problems.

<u>System Owner's Manual</u>

- Section 1
 Section 2
 Section 3
 Section 4
 Section 5
 Section 6
 Section 7
- Before You Begin
 - System Overview
 - System Operations
 - System Troubleshooting
- System Maintenance
- on 6 Spare Parts
- ection 7 System Drawings
- Section 8 Appendices
- Appendix ASystem Specifications
- Appendix BGlossary of Terms
- Appendix CReference Manuals
- Index

<u>System Drawings</u>

 \boxtimes Installation Drawing

☑ Installation Data Drawing

Beater Current Data Drawing

≥W/D FCU 3615 Controller Drawing

- Electrical Components Layout Drawing
- Server Content Content
- ➢ Operator Panel Layout Drawing
- ≥ Calibration Procedure for Drive Controllers

➢ Plumbing Schematics

<u>Installation</u> <u>Drawing</u>

Installation Data

Drawing

PURCHASER TO SUPPLY CIRCUIT BREAKER OR FUSED										
24	DISCONNECT SWITCH FOR:									
	37 KIL	OVOLT-AM	PERES 50	/60 HZ	-0					
FURNACE CASE MUST BE GROUNDED PER LOCAL CODES										
	MA	XIMUM L	OAD DA	TA						
	LINE	CURRE	NT-AM	PERES						
L I NE VOL TAGES	u	L2	L3	NEUTRAL	TOTAL KV-A					
200	69	70	73		26					
208	72	73	76		28					
220	76	11	81		31					
230	80	81	84		34					
240	83	84	88		37					
AVERAGE HEATER LOAD (33%) I3KW										
TYPICAL OPERATING POWER 18 KVA										
OVER	OVERHEAT THERMOSWITCH IN ZONES: 1/5 TOP & BOTTOM.									

PURCHASER TO SUPPLY CIRCUIT BREAKER OR FUSED DISCONNECT SWITCH FOR: 480 VOLTS 50 AMPERES 3 PHASE 3 WIRES 37 KILOVOLT-AMPERES 50/60 HZ FURNACE CASE MUST BE GROUNDED PER LOCAL CODES										
	MA	XIMUM L	.OAD DA	TA						
	LINE	CURRE	N T - A M	PERES						
UT NE VOLTAGES	LI	٢2	L3	NEUTRAL	TOTAL KV-A					
440	38	39	40		31					
460	40	40	42		39					
480	42	42	44		37					
	AVER	AGE HEAT	ER LOAD	I 3KW						
	TYPICAL	OPERATI	NG POWER	18 KVA						
OVERHEAT THERMOSWITCH IN ZONES: 1/5 TOP & BOTTOM.										
RECIRCULATING COOLER, WAS ORDERED.										

PURCHASER TO SUPPLY CIRCUIT BREAKER OR FUSED
DISCONNECT SWITCH FOR:
415 VOLTS 63 AMPERES 3 PHASE 4 WIRES
36 KILOVOLT-AMPERES 50/60 HZ
FURNACE CASE MUST BE GROUNDED PER LOCAL CODES

L I MÉ VOL TAGES	LI	L2	L3	NEUTRAL	TOTAL KV-A
380/220	47	42	46	41	31
400/230	49	44	48	49	34
415/240	51	45	50	51	37
	AVERAGE	HEATER	LOAD (3	3X) ∣3KW	
	TYPICAL	OPERATI	NG POWE	R IS KVA	

SEE SHEET 2 FOR ELECTRICAL DATA IF OPTIONAL FLUX MANAGEMENT SYSTEM, AND/O

	APPROX. SHI	PPING WEIGHT
	FURNACE	FURNACE W/ PALLET
SINGLE COOLER	2,900 LBS	3,100 LBS
DOUBLE COOLER	3,400 LBS	3,360 LBS
	FURNACI WILL VARY V	E WEIGHT NITH OPTIONS

- NOTES: 1. SEE PURCHASE ORDER TO DETERMINE WHICH OPTIONS ARE PRESENT 2. THESE DIMENSIONS BASED ON 33.0C" HEARTH LINE. 3. GAS SUPPLY MUST BE CLEAN, URRY, AND FREE OF OIL. 4. CONNECT ACTIVE EXHAUST DIMENCIAL TO VENT 4. CONNECT ACTIVE EXHAUST DIMENCIAL ALL CONTAINS GAS FLOWS ARE GASED ON A 3-1 ENTRAINMENT BATIO. 5. EXHAUST GAS FLOWS ARE CASED ON A 3-1 ENTRAINMENT BATIO. CONTAINMENTS ARE REMOVED. EXTRAINMENT MATIO SINT ME CAST. CONTAINMENTS ARE REMOVED. EXTRAINMENT MATIOS MAY BECESSARY. D 6. CUSTOMER NO SUPPLY EXTAINST DAMPER TO CONTAGL FLOW. 9. BILL RECOMMENDS THE USE OF FLUENT FLOW ON CUSTOMER'S EXHAUST 8. REFER TO PORE THEOT TO FOR REQUIRED VOLTAGE. 9. MINIMUM INSIDE DIAMETER OF .S'NPT SUPPLY PIPE MUST BE 10. CONTUNER AND OPTIONAL LIGHT POLE ARE SHOWN IN STAMDARD 10. CONTUNER AND OPTIONAL LIGHT POLE ARE SHOWN IN STAMDARD 11. DOOR IS REMOVABLE BY LIFTING OFF HINGES, FULL OPENING IS NOT REO'D. 12. REFERE MUST BE ABLE TO SLICE BACK AND FORTH WITHOUT INTERFERING W/MOOD.

	MAXIMUM OPERATING TEMPERATURE- 300° CELSIUS NOMINAL OPERATING TEMPERATURE- 150 TO 275° CELSIUS											
	UTILITY CONNECTIONS											
	UTILITY	 SIZE 	PRESSURE	NOMINAL FLOW	COMMENTS							
٨	ELEC. PWR	H/A	8/A	N/A								
в	N2 W/O AIR AMPS W/ AIR AMPS	• .SMPT	55-80 PS16 70-80 PS16	20 SCFM 30 SCFM	USE THESE VALUES IF AIR ANPLIFIER OPTION WAS NOT PURCHASE USE THESE VALUES IF AIR ANPLIFIER OPTION WAS PURCHASE							
c	AIR (OPTIONAL) W/O AIR AMPS W/ AIR AMPS	• .SNPT	55-80 PSIG 70-80 PSIG	10 SCFM 30 SCFM	AIR REQUIRED ONLY IF OPTIONAL DUAL INLET WAS PURCHASED USE THESE VALUES IF AIR ANPLIFIER OPTION WAS NOT PURCHASE USE THESE VALUES IF AIR ANPLIFIER OPTION WAS PURCHASED							
D	H20 DRAIN	.SNPT	OPEN DRAIN		NOT REQUIRED IF OPTIONAL RECIRCULATING COOLER WAS PURCHASED							
٤	H ₂ O INLET	.SNPT	30-85 PSIG	3-12 SPM	NOT REQUIRED IF OPTIONAL RECIRCULATING CODLER WAS PURCHASED							
Ŧ	LIP VENT EXHAUST	\$ 5.0"	.105 IWC	75 SCFM	SEE NOTES 4, 5, 6 & 7							
6	LIP VENT EXHAUST	\$ 5.0"	.105 (WC	125 SCFW	SEE MOTES 4, 5, 6 & 7							
н	RC COOLER FAN EXHAUST	Ø10.0"		1000 SCFW/FAN	SEE WOTE 12.							

-SEE NOTE 9

				APPLIED VOLTAGES													
				200			208			220			230			240	
ZONE	ZONE	HEATER	AMPS	TOTAL	TOTAL	AMPS	TOTAL	TOTAL	AMPS	TOTAL	TOTAL	AMPS	TOTAL	TOTAL	AMPS	TOTAL	TOTAL
	LENGTH	POSITION		AMPS	KW		AMPS	КW		AMPS	KW		AMPS	KW		AMPS	KW
-1/4	14"	T	9.3 A	18.6 A	3.7 KW	9.7 A	19.4 A	4.0 KW	10.3 A	20.6 A	4.5 KW	10.8 A	21.6 A	4.9 KW	11.2 A	22.4 A	-5.4 KW
		В	9.3 A			9.7 A			10.3 A			10.8 A			11.2 A		
5	14"	Ť	18.5 A	37.0 A	7.4 KW	19.2 A	38.4 A	8.0 KW	20.3 A	- 40.6 A	9.0 KW	21.3 A	42.6 A	9.8 KW	22.2 A	44.4 A	10.7 KW
		В	18.5 A			19.2 A			20.3 A			21.3 A			22.2 A		

			APPLIED VOLTAGES								
			440			460			480		
ZÔNE	ZONE	HEATER	AMPS	TOTAL	TOTAL	AMPS	TOTAL	TOTAL	AMPS	TOTAL	TOTAL
1	LENGTH	POSITION		AMPS	KW		AMPS	KW		AMPS	KW
1/4	14"	Т	5.2 A	10.4 A	4.5 KW	5.4 A	10.8 A	4.9 KW	5.6 A	11.2 A	5.4 KW
		В	5.2 A			5.4 A			5.6 A		
5	14"	т	10.2 A	20.4 A	9.0 KW	10.6 A	21.2 A	9.8 KW	11.1 A	22.2 A	10.7 KW
		В	10.2 A			10.6 A			11.1 A		

NOTES for HEATER DATA SHEET TABLES

1. SELECT THE APPROPRIATE VOLTAGE COLUMN FOR HEATER AMPS AND KW RATINGS. 2. FOR 3 PHASE 4 WIRE SYSTEMS REFER TO THE PHASE VOLTAGE. FOR EXAMPLE; AT 380/220V USE THE 220V COLUMN AT 400/230V USE THE 230V COLUMN AT 415/240V USE THE 240V COLUMN

3. THE CALCULATIONS ARE BASED ON NOMINAL RESISTANCE AND VOLTAGE. THE TOLERANCE FOR THE HEATER RESISTANCE IS + - 5% AND FOR VOLTAGE + - 10%

KEY

T = TOP B = BOTTOM L = LEFT R = RIGHT S = SIDE C = CENTER

<u>Electrical Component</u> <u>L / O Drawing</u>

Line Numbering

Line Numbering

Electrical drawings have line numbers drawn along the left side. Each line number contains both a letter and a number.

- The letter designates a circuit group.
- The number locates a position on the drawing.

Circuit groups may be designated differently from one BTU product to another, depending on the types of circuits included.

This table shows an EXAMPLE of a circuit group set contained in a typical BTU oven or furnace

- A Input Power/ Heaters
- B Instrument Control
- C Drive Control
- D Gas Control
- E Controller
- F Alarms
- G-Z Optional Equipment

The Circuit Groups for your BTU product are listed next.

Reference pointer with line numbers

Reference pointers direct you to the next drawing or to drawings for other circuits. The line number with each pointer indentifies

- The circuit group of the next drawing (D or L in the example).
- The position of the connection on the next drawing (150, 430, 010).

Reference pointer line numbers may also be enclosed in a box as shown in the following example.

You match the drawings on the right has reference pointers. The example on the top left shows it's reference pointer exiting on the bottom of the drawing, as you would normally hold it, but the example on the bottom has it's reference pointer pointing to the right, both are outputs.

The top right drawing section has a reference pointer coming in from the top, this indicates an input and shows where the input is coming from.

<u>Source Voltage</u> Information

Electrical diagrams which have voltages originating from other electrical diagrams are marked with the voltage level, voltage type (AC or DC) and the wire size and insulation type. A description may be included to describe the general origination of the source voltage (I.e. from input power circuits). This general description, if used, is immediately below the voltage level/type information.

Source Voltage & Information

Wire Color Codes

COLOR	CIRCUIT AND CONDUCTORS
Black	Line, load, and control circuits at line voltage
Red	AC control circuits at less than line voltage
White	Grounded circuit conductor (neutral)
Blue	DC control circuits
Gray	Grounded circuit conductor for UPS control circuits
Yellow	nterlock control circuits supplied from and external power source
Green/Yellow	Equipment grounding conductor

Exceptions:

Multi-conductor cables present an exception to the above standard color codes.

Light Blue is used for the Neutral for equipment shipped to Europe (European Community).

Customer specified color codes are used as required.

Device Codes and Types

CODE	TYPE OF DEVICE	CODE	TYPE OF DEVICE
AH	Alarm Horn or Audible Alarm	РВ	Push Button
СВ	Circuit Breaker	PL	Plug
CR	Control Relay	РОТ	Potentiometer
CON	Contactor	PS	Pressure Switch
СТ	Current Transformer	PWRS	Power Supply
DISC	Disconnect Switch	PRX	Proximity Switch
ENCO	Optical Encoder	RES	Resistor
EPB	Emergency Push Button	RECP	Receptacle
FS	Flow Switch	SOL	Solenoid
FU	Fuse	SS	Selector Switch
GND	Ground	SSR	Solid State Relay
HTR	Heater	Т	Transformer
INST	Instrument	TAS	Temperature Actuated Switch
LS	Limit Switch	ТВ	Terminal Block
LT	Pilot Light	т/С	Thermocouple
MTR	Motor	TR	Timing Relay
OL	Overload	UPS	Uninterruptable Power Supply

<u>Paragon</u> Operator Control Panel

START UP THE OVEN

.Turn on the facilities power switch. Turn on the Oven main power switch. Turn on UPS. Waiting 30 seconds. .Turn on the instrument switch. .Turn on PC. .Waiting the Wincon linking. .Open a Recipe. .Run the Recipe. Pushing the Master Start Buttom. .Waiting going to Ready. .Test profile.

SHUTTING DOWN THE OVEN

.Run the Cooldown Recipe. .Waiting 45 minutes. .Run the Shutoff Recipe. .Exit the Wincon. .Exit the Windows. Pushing the Master Stop Buttom Turn off the Instrumment switch. .Turn off the UPS. .Turn off the main power switch. Turn the facilities power switch.

Solid State Relays

Fuses and Circuit Breakers

Control Relays & Contactors

©Timing Relays

Solid State Relays

Fuses & Circuit Breakers

Fuse Symbol

Circuit Breaker Symbol

 Control Relay Types
 VOLTAGES - 24, 120, & 240 VAC 24 VDC
 # OF Pins - 5 Pin - 1 Control Legs/Contacts 8 Pin - 2 Control Legs/Contacts 11 Pin - 3 Control Legs/Contacts

Contactors - Used for High Voltage and High Current Needs usually at or above 120 VAC, dependent upon system needs. Additional contacts may be added.

<u>Multi-Functional</u> <u>Timing Relays</u>

T030-TR -FLUX Cleaning Cycle ASYMETRICAL Recycler Mode L1 - Flip Flop Default Setting = 3 Hrs ON 4 Min OFF

D190-TR - N2 Idle Indicator Repeat Cycle Timer Mode D - Flip Flop Default Setting = 2 Sec

G440-TR - Water Flow Interlock Mode B - Single Shot Default Setting = 3 Sec

P = Proportional Band (Pro-bands)

🔜 I = Intergral

(Reset)

 \square D = Derivative

(Rate)

<u>PID Algorithm</u>

TIME

Gas Feed Plenum

5113243

Acrobat Document

Zone 7

5113273

Blower Plenum Module

Blower Outlet Scroll

Plenum Module Dynamics

Nitrogen Feed

T/C Troubleshooting

1. Open T/C

- 2. Shorted within the Zone
- 3. Shorted outside the Zone
- 4. Mis-Wired T/C

Thermocouple Position

5113273 Sheet 1

WINCON Temperature Deviation Alarm

Alarm Level 10 ° C
 Alert Level 5 ° C
 Setpoint 180 ° C
 When the FCU senses 190 ° C it will generate a signal that will de-energizes the B450-CON

(Heater Power Contactor).

<u>Paragon-TRS</u> Over-Temperature Protection

TRS = 275 ° C

Paragon = $315 \circ C$

Drawing 5169739

<u>Over-Temperature</u> <u>Protection</u>

- The Overtemperature Module's setpoints are preset at the factory (to 275°C) and should not be changed.
- Each heated zone is monitored by an overtemperature T/C that is independent from the zone control circuitry. If any zone exceeds the preset safe maximum temperature, the overtemp condition causes the module to shut off all heater power (219-CON) and generates an alarm with the PCDIU software. Conveyor is maintained running.

Blower Motor

Blower Power (Standard)

Acrobat Document

Acrobat Document

BTU Closed Loop Blower Speed Control

Herein Contraction Strategy Contraction Strategy

- % Insures Repeatable
 Process Control
- Closed Loop Control of Convection via Static Pressure with a programmable range of 0.5"-1.2" IWC

Recipe storage of all parameters

Static Pressure Affects Peak Temperature

Static Pressure 1.5 IWC

Static Pressure 1.1 IWC

Static Pressure 0.8 IWC

BTU

Static Pressure < 0.8 IWC

N2 Consumption

<u>Plenum Gas Feed</u> <u>Flowmeters</u>

Entrance Curtain Top & Bottom	2 Flowmeters	75/75 LPM
Zone 1/2/3 Top	1 Flowmeter	70 LPM
Zone 1/2/3 Bottom	1 Flowmeter	70 LPM
Zone 4/5/6 Top	1 Flowmeter	40 LPM
Zone 4/5/6 Bottom	1 Flowmeter	40 LPM
Zone 8 Top & Bottom	1 Flowmeter	60 LPM
Zone 9/10 Top	1 Flowmeter	40 LPM
Zone 9/10 Bottom	1 Flowmeter	40 LPM
Cooler Jets	1 Flowmeter	0 LPM
Exit Curtain Top & Bottom	2 Flowmeters	10/10 LPM

Paragon/VIPN Regulator Settings

Inlet N2 Pressure: 60 PSIG (4.14 Bar) Dynamic Idle Pressure: 35 PSIG (2.41 Bar) Fast Purge Pressure: 20 PSIG (1.38 Bar)

Fast purge flows at 1600 SCFM for 30 min. And consumes 800 Cubic Feet of Nitrogen

Single Cooler

Side View

Acrobat Document
Internal Cooler Wiring

Cooler Assembly

Acrobat Document

Exit end View

Acrobat Document

<u>BSM Potentiometers</u>

Reference Drawing # 5187019

Belt	Type,	Material	302	Stainless	Steel	Flat	Flex
Belt	Type,	Width		••••••		••••	22"
Belt	Speed,	Nominal	•••••		••••	30	IPM
Belt	Speed,	Range	• • • • • • •	•••••	1	0-60	IPM

🞗 Belt type material	302 Stainless Steel Flat Flex
----------------------	-------------------------------

Optional Edge Conveyor......#35 Roller Chain in an Extrusion

Í	Edge Conveyor Width Adjustment	2" to 18"
Í	Support Pin Length	0.187 ″
Ĵ	Pin to Pin Distance	0.375″
Î	Support Pin Height Clearance1.2" abov	ve top of pin

0.8" below top of pin

BTU Edge Conveyor Features

<u>OPTION 1 & 2</u>

Edge Conveyor Features

<u>OPTION 1 & 2</u>

<u>OPTION 1 & 2</u>

Proximity Switch sees 15 Pulses per revolution

C080 thru C100

<u>Conveyor Protection</u>

OPTION 3

<u>Edge Rail</u> <u>Controls & Components</u>

5114343 Components 5182451 Schematic Diagram

Retractable Center Support

 ¥ Versatile
 ¥ Robust Dual Extrusion Design
 ¥ Computer Controlled Horizontal and Vertical Adjustment

Flux Laden Gas is Extracted from the Bottom Reflow Zone Routed Through Condensing System

Heat Exchangers and Filters

PReturned To Cooling Section

Flux Mgt. Features

Self-Cleaning Cycle #"On-the-Fly" Maintenance **Condenser** Maintenance Alarm **#**Flow Fail Alarm **#**Easy Access Drip Tray **#**Corrosion Resistant Coatings **#**Pressure Relief Valve

Flux Box Diagram

Flux Management Packaging

Stainless Steel Hoses

Hose Clamping Arrangement

Stainless Steel Vacuum Hoses

Replaces the Silicone Hose Arrangement

Performance

Dependent on Paste Composition

- **#**Effectively removes *as much as 90%* of Rosin/Resin Flux Residues (Typical if maintained properly)
- Changing Polyester Filters Weekly Improves the Removal of Solvents

Can be Serviced without Taking the Oven out of Production

<u>System Interlocks</u>

- ₭ HIC Heater Interlock Contactor△ Main Water Flow(Not on TRS)
 - △ Package Drop (not on TRS)
 - 🗠 Cooler Over Temp
 - Conveyor On/Off (not on TRS)
 - Zone Over Temp
- LIC Lid Interlock Contactor Lid Open
 - Elu Open
 - Exhaust Failure (Not on TRS)
 - Conveyor Failure
- Nitrogen InterlockNitrogen Pressure Switch

- Water Flow InterlockRecirc. Cooler Flow Switch
- # Flux Management isn't available on TRS
- Flux Water Flow InterlockRecirc. Flux Cooler Flow Switch
- Flux Panel InterlockFlux Panel Interlock
- ₭ Flux Interlock (T190-CR)△ Flux Over Temp

<u>System Alarms</u> <u>(External)</u>

- Emergency Stop
- Lid Open
- 🔀 Exhaust Fail Zone
- 8 Over Temperature
- ₭ Conveyor Motion
- 8 Shutdown Event
 - ☑ Flux On/Off
 - 🔼 LIC

- ₭ Check Flux Blower
- ₭ Flux Over Temperature
- ₭ Flux Water Flow
- How Water Level Flux
- # Flux Panel Open Event
- How Water Level Cooler
- ₭ Low N2 Pressure
- Cooler Over Temperature
- ₭ Main Water Flow

Furnace Controls

→ WINCON / 3615 FCU Controller

System Software

OPERATOR Controls

BTU WINCON / 3615 FCU Controller

Minimum recommended computer requirements:

□ IBM compatible with MS-DOS and WINDOWS

■8MB main memory and battery backup clock

□ 120MB hard drive and one 3-1/2" high density floppy drive

☐ One parallel printer port, and two RS-232 serial ports

□ 14" VGA color graphics monitor

E Keyboard (mouse or trackball optional)

5057631 RS232-3615

Link (RS-232) Communications

25 Pin D-sub connector (Com Port on PC)			
)	$\bigcirc_2 \bigcirc_3$, ,
-	FOJ	Pin	Personal Computer
	FOU	Pin 1	Personal Computer Chassis Ground (only Terminated at one end of cable)
	FOU N/A C9-18	Pin 1 2	Personal Computer Chassis Ground (only Terminated at one end of cable) Transmit Data

9 Pin D-sub connector (Com Port on PC)

0,0

2 Receive Data

37

Pin Personal Computer

Transmit Data

Singnal Ground

FCU

C9-15

C9-18 C9-7

WINCON Software

Operating Software

₭ Windows TM Platform

- ₭ GEM Available
- Extensive Security
 Features
- Extensive data
 Collection Capability
- Flexible Time and
 Sequence
 Scheduling

Furnace Control Unit (FCU) Board

FCU description:

The Furnace Control Unit (FCU) is an independent Z80 based Microprocessor controller board. The board will operate with only a 15 volt DC power supply. No other external connections and apparatus are need for it to operate. The FCU is normally connected to a IBM compatible PC, to simplify programming and for storage of information. A PC with WINCON® software operating an a RS-232 (COM) port interface with the FCU.

The FCU is equipped with 31 analog inputs and 36 analog output, they are generally used as closed looped controlled I/Os. These ports are used to control heated zones, static pressure in a close loop configurations. The analog inputs can be used without outputs to monitor activities like O2 or dew point. The analog outputs can also used independent of inputs. Equipment with cooling fan control operate this way, to allow the FCU to control fan RPM.

We utilize 16 digital output to control external options like Gas flow. Sixteen digital inputs, monitor external events and alarm condition such as Low Pressure switches.

There is Lithium battery pack on every FCU board to maintain data time and configurations for a ten year period. This allows the FCU board to maintain information on how long it has been on or off and all calibration values.

<u>FCU 3615 Controller</u> <u>W/D Drawing</u>

<u>#1 - E050-INST & # 2 E080-INST</u>

<u>FCU 3615 Controller</u> <u>W/D Drawing</u>

Link Failures and **Electrical Faults**

Link Failures and Software Faults

- 1. Exit WINCON® Software
- 2. Go to the C:\windows\temp directory and delete all the files there
- 3. Run Scandisk on thorough
- 4. Run Defrag twice, if it needs it or not
- 5. Exit Windows 95 (Shutdown)
- 6. Turn off the Furnace
- 7. Unplug the RS-232 ports
- 8. Turn on the Furnace and PC
- 9. When WINCON® says Link fail, plug in the RS-232 connectors
- 10. Do a set System
- 11. If the Link isn't established then try another PC or spare FCU, before completely replacing the FCU board

WINCON® Troubleshooting with a good Link

PC Preventative maintenance

- 1. Exit WINCON® Software
- 2. Go to the C:\windows\temp directory and delete all the files there
- 3. Run Scandisk on thorough
- 4. Run Defrag twice, if it needs it or not
- 5. Exit Windows 95 (Shutdown)
- 6. Turn off the Furnace for 10 seconds
- 7. Turn on the Furnace and PC
- 8. When WINCON® says Link fail, plug in the RS-232 connectors
- 9. Do a "Set System"
- 10. Go to the Embedded controller and "Save to Controller" all the Calibration values for each FCU

Identifying the FCU Board

Yearly PM Procedures

<u>LABS</u>

Perform Calibrations

- K Calibrated FCU board's Analog inputs
- K Calibrate FCU boards Cold Junction(s)
- K Calibrate Over Temperature module (except VIP)
- Calibrate Cooling Fan Speed controllers

Inspect Mechanical Ware Items

- Inspect and Replace glide plates on Rail Hangers
- Inspect and Replace Sprockets
- 尽 Shorten Belts