
Chapter 5

The Determinant

5.1 Definition of the Determinant

Given a n×n matrix A, we would like to define its determinant. We already
have a definition for the 2× 2 matrix. We define the determinant of a n×n

matrix recursively.

For a n × n matrix A, define Aij to be the matrix that is obtained by
striking out the ith row and j-th column. This is (n − 1) × (n − 1) matrix
is called the ij minor of A. We define the determinant by:

detA = a11detA11 − a12detA13 + · · ·+ (−1)n+1a1ndetA1n (5.1.1)

For a 1× 1 matrix, that is to say, a number, we define:

det(a) = a. (5.1.2)

Since the minors Aij are (n− 1)× (n− 1) matrices, the n× n determinant
A is determined in terms of matrices of smaller matrices. For example, the
determinant of the 2× 2 matrix may be written as:

det

(
a b

c d

)
= adetd− bdetc = ad− bc. (5.1.3)

The determinant of the 3× 3 matrix is as follows:

det



a b c

d e f

g h i


 = adet

(
e f

h i

)
− bdet

(
d f

g i

)
+ cdet

(
d e

g h

)

= a(ei− fh)− b(di− fg) + c(dh− eg).

(5.1.4)
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The above definition of the determinant is clear, but is difficult to un-
derstand.

Recall that our intuition of the determinant was that it was the signed
area of a parallelogram spanned by the two column vectors. The three-
dimensional determinant should thus be the volume of a parallelepiped
spanned by its three column vectors, and indeed it is. Given a matrix
3 × 3 matrix A whose column vectors are a,b and c (in this order), the
determinant of A is in fact equal to:

detA = a · (b× c) (5.1.5)

where · is the dot product and × is the cross product of vectors. The
determinant of an n×n matrix should thus be defined as the n-dimensional
volume of the parallelepiped spanned by the n column vectors of the matrix.
To show that this is indeed the case, we show that the determinant satisfies
a number of properties that an n-dimensional volume should satisfy.

Proposition 9.

det(I) = 1, (5.1.6)

where I is the identity matrix.

In the 2 and 3 dimensional cases, this says that the unit square and unit
cube have volume 1. The above is thus a generalization of this property to
n dimension.

Proof of Proposition 9. This can be proved by induction on the size of the
matrix n. Let In be the n × n identity matrix. When n = 1, using (5.1.1),
we have:

det(I1) = det(1) = 1. (5.1.7)

Suppose (5.1.6) is true for the (n − 1) × (n − 1) identity matrix. We must
show that (5.1.6) is true for the n × n identity matrix. Using (5.1.1), we
have:

det(In) = 1× det(In−1), (5.1.8)

since only the first term in (5.1.1) is not zero. By our induction hypothesis
(that is to say, detIn−1 = 1), we have det(In) = 1.

Let a matrix A be a n × n matrix with column vectors v1, · · · ,vn. We
will write

det(A) = det(v1, · · · ,vn). (5.1.9)
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Proposition 10. If we multiply one of the columns of a matrix by a scalar
c, the determinant is multiplied by the same scalar. That is to say,

det(· · · , cvi, · · · ) = cdet(· · · ,vi, · · · ). (5.1.10)

Geometrically, this says that the volume of the n-dimensional paral-
lelepiped should be multiplied by c if one of its sides is lengthened by a
factor of c.

Proof of Proposition 10. We prove this by induction on the size of the ma-
trix n. The case n = 1 is clear. Suppose this is true for n − 1. We want
to prove this is true for n. Let A = (v1, · · · ,vn) where vi are the column
vectors. Let B = (v1, · · · , cvi, · · · ,vn). Using (5.1.1), we have

det(B) = b11det(B11)−· · ·+(−1)k+1b1kdet(B1k)+· · ·+(−1)n+1b1ndet(B1n),
(5.1.11)

where bij is the ij element of B and Bij is the ij minor of B. Likewise, let
aij be the ij element of B and let Aij be the ij minor of A. When k 6= i,
we have:

b1k = a1k, det(B1k) = cdet(A1k). (5.1.12)

The second equality comes from the induction hypothesis. When k = i, we
have:

b1i = ca1i, det(B1k) = det(A1k) (5.1.13)

since B1k = A1k. Thus,

b1kdet(B1k) = ca1kdet(A1k) (5.1.14)

for all k. This proves det(B) = cdet(A).

Proposition 11. If the i-th column of a matrix is a sum of two vectors vi

and wi, then its determinant is equal to the the sum of two determinants of
matrices whose i-th column has been replaced by vi and wi.

det(· · · ,vi +wi, · · · ) = det(· · · ,vi, · · · ) + det(· · · ,wi, · · · ). (5.1.15)

This should also be seen as a generalization of what we know about the
area of parallelograms and the volume of parallelepipeds. (Try to understand
this statement from a geometric point of view!)

MATH 2574H 63 Yoichiro Mori



Proof of Proposition 11. We prove this statement by induction on the ma-
trix size n. For n = 1, the statement is clear from (5.1.2). Suppose the
above is true for n − 1. Let A = (· · · ,vi, · · · ), B = (· · · ,wi, · · · ) and
C = A+ B = (· · · ,vi +wi, · · · ). We let aij be the ij component of A and
Aij be the ij minor of A. By (5.1.1), we have:

det(C) = c11 det(C11)−· · ·+(−1)k+1(c1k) det(C1k)+· · ·+(−1)n+1c1n det(C1n).
(5.1.16)

For k 6= i, we have:

c1k = a1k = b1k, det(C1k) = det(A1k) + det(B1k). (5.1.17)

The second equality follows from the induction hypothesis. For k = i, we
have

c1i = a1i + b1i, detC1i = det(A1i) = det(B1i). (5.1.18)

The second equality follows since C1i = A1i = B1i. Thus, we have:

c1kdet(C1k) = a1kdet(A1k) + b1kdet(B1k) (5.1.19)

for any k. This shows that det(C) = det(A) + det(B).

Proposition 12. If two columns of a matrix are the same, then its deter-
minant is 0:

det(· · · ,v, · · · ,v, · · · ) = 0. (5.1.20)

Geometrically, this says that if the two column vectors of a matrix are
equal, then the volume of the (n-dimensional) parallelogram/prallelepiped
spanned by these n-vectors must be 0. Before we prove this result, we prove
the following fact, assuming Proposition 12.

Proposition 13. If two columns of the matrix are interchanged, the deter-
minant acquires a minus sign:

det(· · · ,vi, · · · ,vj , · · · ) = det(· · · ,vj , · · · ,vi, · · · ). (5.1.21)

Proof. Given Propositon 12, we have:

det(· · · ,vi + vj , · · · ,vi + vj , · · · ) = 0. (5.1.22)

Now, by Proposition 11, we have:

det(· · · ,vi + vj , · · · ,vi + vj , · · · )

=det(· · · ,vi, · · · ,vi, · · · ) + det(· · · ,vi, · · · ,vj , · · · )

+ det(· · · ,vj , · · · ,vi, · · · ) + det(· · · ,vj , · · · ,vj , · · · ).

(5.1.23)
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The first and last term after the equality must be 0 by Proposition 12.
Therefore, we have:

det(· · · ,vi, · · · ,vj , · · · ) + det(· · · ,vj , · · · ,vi, · · · ) = 0. (5.1.24)

Proof of Proposition 12. We prove this by induction on the size of the ma-
trix. For n = 2, this is cleary true (note that this statement only makes
sense only for n ≥ 2!). Suppose the statement is true for n − 1. We may
assume that Proposition 13 is true for (n− 1)× (n− 1) matrices (the reader
should think about why this is OK). Suppose the i-th and j-th columns of
the matrix A (i < j) is equal to the vector v. With our usual notation for
components and minors, we have:

det(A) = a11 det(A11)−· · ·+(−1)k+1(a1k) det(A1k)+· · ·+(−1)n+1a1n det(A1n).
(5.1.25)

If k 6= i and k 6= j, we have detA1k = 0 by the induction hypothesis. We
thus have:

det(A) = (−1)i+1a1i det(A1i) + (−1)j+1a1j det(A1j). (5.1.26)

Since the i-th and j-th columns of A are the same, a1i = a1j . We must
consider the relation between minor A1i and A1j . If j = i+ 1, A1i and A1j

are the same matrix. Therefore, detA1i = detA1j . If j = i + 2, then A1i

can be obtained from A1j by interchanging the i-th column and i + 1-th
column. Thereofre, detA1i = − detA1j by Proposition 13 (which is true
for (n − 1) × (n − 1) matrices by our induction hypothesis). If j = i + 3,
A1i can be obtained from A1j by interchanging the i+ 2-th colunn and the
i+ 1-th column, and then, the i+ 1-th column and the i-th column. Thus,
detA1i = (−1)2 detA1j = detA1j In general, we need i− j − 1 interchanges
of columns to obtain A1i from A1j . Therefore,

detA1i = (−1)i−j−1 detA1j . (5.1.27)

Thus, (5.1.26) evaluates to

det(A) = (−1)i+1+i−j−1a1j det(A1j) + (−1)j+1a1j det(A1j) = 0. (5.1.28)

We may now prove the following important fact.
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Proposition 14. Suppose the column vectors of the n × n matrix A are
linearly dependent. Then, detA = 0.

The above proposition should be natural. If the column vectors are
linarly dependent, they lie on a subspace with dimension smaller than n.
This means that the the n-dimensional parallelepiped spanned by the n

vectors should be 0

Proof of Proposition 14. Let A = (v1, · · · ,vn). Since the column vectors
are linearly dependent, we have:

c1v1 + · · ·+ cnvn = 0 (5.1.29)

where not all ck are equal to 0. Assume that c1 6= 0 (the proof when some
other ck 6= 0 is similar). We have:

v1 = −
c2

c1
v2 − · · · −

cn

c1
vn. (5.1.30)

Using Proposition 10 and Proposition 11, we have:

det(v1, · · · ,vn) =
n∑

k=1

−
ck

c1
det(vk, · · · ,vk, · · · ). (5.1.31)

By Proposition 12, all terms in the above sum are 0.

A beautiful fact about determinants is that the properties we just proved
of the determinant, can in fact be used to give an alternative definition of the
determinant. Consider a function δ that assignes to each n×n matrices A a
scalar δ(A). Let A = (v1, · · · ,vn), and we shall write δ(A) = δ(v1, · · · ,vn).
Now suppose that δ satisfies the following properties:

δ(I) = 1 (5.1.32)

δ(· · · , cvi, · · · ) = cδ(· · · ,vi, · · · ) (5.1.33)

δ(· · · ,vi +wi, · · · ) = δ(· · · ,vi, · · · ) + δ(· · · ,wi, · · · ) (5.1.34)

δ(· · · ,v, · · · ,v, · · · ) = 0 (5.1.35)

Note also that, if δ satisfies the above properties, it must also satisfy the
property of Proposition 13 (why is that?):

δ(· · · ,vi, · · · ,vj , · · · ) = −δ(· · · ,vj , · · · ,vi, · · · ). (5.1.36)

We have seen in Propositions 9, 10, 11 and 12 that the determinant satisfies
these properties. It turns out that the determinant is the only function that
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satisfies these properties. Recall that these properties are natural proper-
ties that we might expect of the volume function of a n-dimensional paral-
lelepiped. The determinant is thus a natural generalization of the concept of
parallelogram area/parallelepiped volume to n-dimensions. We shall prove
a theorem that is slightly more general than this.

Theorem 11. Suppose δ is a function that assigns to each n× n matrix a
scalar value. If δ satisfies (5.1.33)-(5.1.35) and

δ(I) = k (5.1.37)

where k is a scalar constant and I is the identity matrix. Then the function
δ must be k times the determinant.

As we shall see later, this is a powerful theorem since it says that we
have only to check a couple of properties to show that a given function is a
determinant.

Proof of Theorem 11. We prove this by induction on the matrix size n.
When n = 2, we have:

δ

(
a b

c d

)
=δ

(
a b

0 d

)
+ δ

(
0 b

c d

)

=δ

(
a b

0 0

)
+ δ

(
a 0
0 d

)
+ δ

(
0 b

c 0

)
+ δ

(
0 0
c d

)

=abδ

(
1 1
0 0

)
+ adδ

(
1 0
0 1

)
+ bcδ

(
0 1
1 0

)
+ cdδ

(
0 0
1 1

)

=adδ

(
1 0
0 1

)
− bcδ

(
1 0
0 1

)
= k(ad − bc).

(5.1.38)

In the first and second equality we used (5.1.34). In the third equality,
we used (5.1.33). In the fourth equality, we used (5.1.35) and (5.1.36). In
the last equality, we used (5.1.37). Therefore, δ is necessary k times the
determinant.

Let us assume the statement has been proved for n − 1. We would like
to prove the statement for n. Let A = (v1, · · · ,vn) and let:

vk =




a1k
a2k
...

ank


 , e =




1
0
...
0


 , wk =




0
a2k
...

ank


 =

(
0
uk

)
. (5.1.39)
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The vectors uk are n − 1 dimensional vectors whose components are equal
to the bottom n− 1 components of vk Using v1 = a11e+w1, we have:

δ(v1, · · · ,vn) = δ(a11e,v2, · · · ,vn) + δ(w1,v2, · · · ,vn)

= a11δ(e,v2, · · · ,vn) + δ(w1,v2, · · · ,vn)
(5.1.40)

where we used (5.1.34) in the first equality and (5.1.33) in the second equal-
ity. Now, note that

δ(e,v2, · · · ,vn) = a12δ(e, e, · · · ,vn) + δ(e,w2,v3, · · · ,vn)

= δ(e,w2,v3, · · · ,vn),
(5.1.41)

where we used (5.1.34) and (5.1.33) in the first equality and (5.1.35) in the
second equality. Applying the same procedure to each column, we have:

δ(e,v2, · · · ,vn) = δ(e,w2, · · · ,wn) (5.1.42)

Now, define the function δ̃ assigning (n− 1)× (n− 1) matrices to scalars.

δ̃(u2, · · · ,un) = δ(e,w2, · · · ,wn). (5.1.43)

From the fact that δ satisfies properties (5.1.33)-(5.1.35) and (5.1.37) for
n × n matrices, it is easily seen that δ̃ satisfies properties (5.1.33)-(5.1.35)
and (5.1.37) for (n− 1)× (n− 1) matrices. By our induction hypothesis, we
see that

δ̃(u2, · · · ,un) = k det(u2, · · · ,un). (5.1.44)

We thus see that (5.1.40) can be written as:

δ(v1, · · · ,vn) = ka11 det(A11) + δ(w1,v2, · · · ,vn) (5.1.45)

We may now perform the same procedure on the second term of the above
to see that:

δ(w1,v2, · · · ,vn) = a12δ(w1, e,v3 · · · ,vn) + δ(w1,w2,v3, · · · ,vn)

= −a12δ(e,w1,v3 · · · ,vn) + δ(w1,w2,v3, · · · ,vn)

(5.1.46)

where we used (5.1.36) in the second equality. In the same way as before,
we see that

δ(e,w1,v3 · · · ,vn) = k det(u1,u3, · · · ,un). (5.1.47)

Thus,

δ(v1, · · · ,vn) = ka11 det(A11)− ka12 det(A12) + δ(w1,w2,v3, · · · ,vn)
(5.1.48)
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Continuing in this way for all columns, we obtain:

δ(v1, · · · ,vn) =k
(
a11 det(A11)− · · ·+ (−1)n+1a1n det(A1n)

)

+ δ(w1, · · · ,wn).
(5.1.49)

Now, note that the first component of vectors w1, · · · ,wn is 0. Thus, the
vectors w1, · · · ,wn all live in a (n− 1)-dimensional subspace of Rn, and are
linearly dependent. For linearly dependent vectors, δ evaluates to 0, by the
proof of Proposition 14 (the reader should check this). This completes the
proof.

5.2 Properties of the Determinant

One of the most important properties of the determinant is the product rule.

Theorem 12. Given two n× n matrices A and B, the determinant of AB
is the product of the determinants of A and B:

det(AB) = det(A)det(B). (5.2.1)

Proof. Let B = (v1, · · · ,vn). We have:

det(AB) = det(Av1, · · · , Avn). (5.2.2)

Let

δ(B) = δ(v1, · · · ,vn) = det(Av1, · · · , Avn) = det(AB). (5.2.3)

The function δ satisfies the conditions of Theorem 11 where the constant k
equal to

k = δ(I) = det(AI) = det(A). (5.2.4)

Therefore, an application of Theorem 11 yields:

det(AB) = det(A) det(B). (5.2.5)

An immediate consequence of this is the following.

Theorem 13. A matrix A is invertible if and only if its determinant is not
0.
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Proof. Suppose a given matrix A is invertible. Then, we have:

A−1A = I. (5.2.6)

By the product rule, we have:

det(A−1) det(A) = det(I) = 1. (5.2.7)

Thus, det(A) 6= 0. If A is not invertible, the column vectors of A are linearly
dependent. From Proposition 14, we know that det(A) = 0.

Another important property to be aware of is the following.

Proposition 15. The determinants of A and its transpose AT are the same.

Proof. If det(A) = 0, then the column vectors of A are linearly dependent.
This is equivalent to the row vectors of A being linearly dependent (see
Theorem 9). Thus, det(AT) = 0. If det(A) 6= 0, then A is invertible
by Theorem 13. Therefore, A can be written as a product of matrices of
elementary row operations (see (3.2.10)):

A = E1E2 · · ·EN . (5.2.8)

Now,
AT = ET

N · · ·ET
1 . (5.2.9)

For matrices E of elementary row operations (check this!),

det(E) = det(ET). (5.2.10)

Using this and the product rule for the determinant, we see that

det(A) = det(AT). (5.2.11)

Now, we discuss the behavior of the determinant under elementary row
and column operations. Elementary column operations are the same as
elementary row operations, just that they are applied to columns.

Proposition 16. The determinant behaves in the following way under ele-
mentary row and column operations.

1. Multiply the i-th row (column) by a scalar c and add this to the j-th row
(column), i 6= j. This does not change the value of the determinant.
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2. Exchange row (column) i with row (column) j, i 6= j. The determinant
changes sign (is multiplied by −1).

3. Multiply the i-th row (column) by a scalar c. The determinant is mul-
tiplied by c.

Proof. We only show that this is true for columns. Indeed, given Proposition
15, we need only prove this for column operations, since performing column
operations on a matrix is equivalent to performing row operations on its
transpose. The second and last item is just Proposition 13 and Proposition
10 respectively. The first item can be seen as follows. Let the n× n matrix
A consist of column vectors v1, · · · ,vn. We see that

det(· · · ,vi, · · · ,vj + cvi, · · · )

= det(· · · ,vi, · · · ,vj , · · · ) + cdet(· · · ,vi, · · · ,vi, · · · )

= det(· · · ,vi, · · · ,vj , · · · )

(5.2.12)

We used Propositions 10 and 11 in the first equality, and Proposition 12 in
the last equality.

It turns out that the determinant can be expanded not only in the first
row, but any row or column.

Proposition 17. Given a matrix A, let aij be the components of A and Aij

be the ij minor of A. Then,

det(A) = (−1)i+1ai1 det(Ai1) + · · ·+ (−1)i+nain det(Ain), (5.2.13)

det(A) = (−1)i+1a1i det(A1i) + · · ·+ (−1)i+n det(Ani), (5.2.14)

for any i, 1 ≤ i ≤ n.

An easy way to keep track of the sign is to have in mind the matrix of
signs: 



+ − + · · ·

− + − · · ·

+ − + · · ·
...

...
...

. . .


 (5.2.15)

Proof of Proposition 17. If we can prove (5.2.13), (5.2.14) follows since op-
erations and columns and rows are interchangeable, given Proposition 15.
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We prove (5.2.13). When i = 1, this is just (5.1.1). If i 6= 1, we may inter-
change rows i and i − 1, then rows i − 1 and i − 2 and so on until rows 2
and 1 are exchanged. Let the resulting matrix be Ã. Then,

det(A) = (−1)i−1 det(Ã). (5.2.16)

The first row of Ã is given by (ai1, · · · , ain) and Ã1k = Aik for all k. Now
using (5.1.1), the determinant of Ã is:

det(Ã) = ai1 det(Ai1)− · · ·+ (−1)n+1ain det(Ain). (5.2.17)

Combining the above with (5.2.16), we obtain (5.2.13).

The following result is often quite useful.

Proposition 18. Suppose the n × n matrix A is written in the following
block matrix form:

A =

(
P Q

Om−n,n R

)
(5.2.18)

where P is a m × m matrix and Om−n,n is the (m − n) × m zero matrix.
Then,

det(A) = det(P ) det(R). (5.2.19)

The same is true when Q is replaced by the zero matrix and Om−n,n is
replaced by an arbitrary matrix.

Proof. If det(P ) = 0, then the column vectors of P , and hence A are linearly
dependent. Thus, det(A) = 0, and (5.2.19) holds. If det(P ) 6= 0, P has an
inverse. Therefore, we can write:

A =

(
P Om,n−m

On−m,m In−m

)(
Im P−1Q

On−m,m R

)
(5.2.20)

where Im and In−m are the m×m and (n−m)× (n−m) identity matrices.
Now, notice that:

det

(
P OT

On−m,m In−m

)
= 1·det

(
P Om,n−m−1

On−m−1,m In−m−1

)
= · · · = det(P ),

(5.2.21)
where we have successively expanded the above determinand along the bot-
tom row. In much the same way (this time, successively expanding in terms
of minors in the top row), we have:

det

(
Im P−1Q

On−m,m R

)
= det(R). (5.2.22)
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Using (5.2.20), (5.2.21) and (5.2.22) together with the product rule for the
determinant, we obtain (5.2.19). The remark in the last line of the state-
ment of the Proposition is true because the determinant of a matrix and its
transpose are the same.

5.3 Evaluating Determinants

As you can see, there were many properties of the determinant, and it takes
some practice to get used to all of these properties. Here, we compute some
examples.

Example 12. Let A be an upper triangular matrix:

A =




a1 ∗ · · · ∗

0 a2 · · · ∗
...

...
. . .

...
0 0 · · · an


 (5.3.1)

Then, the determinant of A is:

det(A) = det




a1 ∗ · · · ∗

0 a2 · · · ∗
...

...
. . .

...
0 0 · · · an




= a1 det




a2 ∗ · · · ∗

0 a3 · · · ∗
...

...
. . .

...
0 0 · · · an


 = · · · = a1a2 · · · an.

(5.3.2)

where we used Proposition 18. The determinant of an upper triangular ma-
trix is therefore just the product along the diagonal. The same is true for
lower triangular matrices.

Example 13. Consider the matrix:

A =



x 1 1
1 x 1
1 1 x


 (5.3.3)
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We have:

det(A) = det



x 1 1
1 x 1
1 1 x


 = det



x+ 2 x+ 2 x+ 2
1 x 1
1 1 x




= (x+ 2)



1 1 1
1 x 1
1 1 x


 = (x+ 2)



1 1 1
0 x− 1 0
0 0 x− 1




= (x+ 2)(x − 1)2.

(5.3.4)

(Justify each step!) This says that the determinant of A is equal to 0 if and
only if x = −2 and x = 1. This makes sense. If x = 1 or x = −2, the
column vectors of A are indeed linearly dependent.

Example 14. Let us compute the determinant of the following 4×4 matrix:

det




2 1 0 −1
1 2 1 0
0 −1 2 1
1 0 1 2


 = det




2 0 0 −1
2 2 1 0
2 0 2 1
2 2 1 2




=det




2 0 0 −1
2 2 1 0
0 0 2 2
0 0 0 2


 = det

(
2 0
2 2

)
· det

(
2 2
0 2

)
= 16.

(5.3.5)

Again, you should justify each step of this calculation.

5.4 Exercises

1. Compute the determinants of the following matrices.




2 −1 0
−1 2 −1
0 −1 2


 ,



a 0 0
b c 0
d e f


 ,



a− b− c 2a 2a

2b b− c− a 2b
2c 2c c− b− a







0 a −b

−a 0 c

b −c 0


 ,




0 1 2 0
2 0 0 −3
0 3 0 2
1 0 −3 0


 ,




x −1 0 0
0 x −1 0
0 0 x −1
a b c d




(5.4.1)

MATH 2574H 74 Yoichiro Mori



2. Compute the determinants of the matrices of elementary row reduction
(Matrices (3.2.3), (3.2.5) and (3.2.7)).

3. Compute the determinant of the following n×nmatrix whose diagonal
is x and all other components are 1:

A =




x 1 1 · · · 1
1 x 1 · · · 1
1 1 x · · · 1
...

...
...

. . .
...

1 1 1 · · · x




(5.4.2)

. (Hint: Mimic the calculation of Example 13).

4. Show that if An = O where O is the 0 matrix, then detA = 0.

5. Show that the determinant of AAT and ATA are both non-negative.

6. Given two column vectors a and b in R
n, n ≥ 2, form the n×n matirx

A = abT. What is the determinant of A? (Hint: Examine linear
dependence).
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