Quantum Entanglement Lecture 8 2006-11-12

Density matrix: a more general way to make probability statements about a system

classical definition of entropy, probabilities

entanglement and unentangled probabilities

how states change with time

H is called the Hamiltonian, it is Hermitian, and an observable, the energy of the system.
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entropy is the measure of entanglement?

iH
— |yp) governs how every quantum state evolves in time
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Density matrix: a more general way to make probability statements about a system.
(1)Density matrix is the quantum analogy of the probability distribution: F =X Fi * Pi

(2)TrPp=1 the trace of the density matrix (probabilities) adds up to one;
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(3) The eignevalues of the Density Matrix can be though of as the probabilities of the different states;

(4) Density matrix is a Hermitian matrix (probabilities, the diagonal elements, are real);
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L & label the eigenvalues as A

each eigenvalue corresponds to an eigen state vector;
f
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*  n mutually orthogonal basis vector of sub space
each eigenvalue corresponds to the probability that the system was prepared in the direction of that
particular basis.

(5) minimum knowledge — all eigenvalues equal; maximum knowledge — only one eigenvalue >0
s L2 <Y
|'\\) <\y the probability matrix is the projection onto that basis state.

09:30 with any pure state the dot product with that vector is the vector. any other vector the result is

V<Y < v

10:47 The average value (expectation) of the observable M is the trace*density matrix*M

T

M Zmis 77y pM = Y(i|pMli)

13:39 example. for any M, in basis ) (trace is the same in all basis) — summed over all indicies (basis)
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14 :04 the expression I |i><i| is the unit matrix | which can be cancelled out, leaving

<P
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the average of M is the expectation value of M (if a pure state)

16:19 General case, where there are mixed eigenvalues. you need to sum probabilities p against all
indices in M:

C<AP M1

if  am working in the basis in which p is diagonal (i.e. probabilities on the diagonal) then | know what the
matrix element <I|p|j>is. In order for their to be a value | must equal j (because p, the probability, is
diagonal) so this is the sum over the eigenvalues Aj

N ﬁu TA
I} ZAj (jIM]j) when p, the density matrix, has probabilities on the

diagonal

17:46 <j|M|j> is the expectation value of M in the | state, Aj is the probability. so the above
expression is the average of M in the jth state weighed with the probability of the jth state.
the eigenvalues A can be though of as the probabilities — but only in the case where p is diagonal.

19:56 classical definition of entropy

P S=2tyy

(minus because Pi < 1 which means logPi is negative)
--- if only one Pi (=1) the entropy=0; complete knowledge of the system;
---if all Pi equal, entropy is maximum, complete ignorance.

22:00 entanglement
Say we have a system |a b> where a goes from 1 to N, and b goes from 1 to m. the total number of

states for this system is N * m;

24:15 then the system is described as the sum, over a and b, of some function W (the wave function)
of a and b) — a nd b are discrete values (now, for our purposes) multiplied by the state vectora b

Z /qg(a‘ b)law>
Ak 2 W(a,b) |a b> (summed over a and b)

to normalize the sum ¥ W*W , overa and b, must add to one.

25:30 experiment which only involves sub-system a,



which means when M acts on a subsystem |a b>, M will act on the a coordinate but leave the b
coordinate alone.

27:49 to determine the expectation of M on the combined system we need to construct a bra vector
(introducing primed variables)

against M and the ket; sum over a’ b’ to find bra vector; sum over a b to find the ket vector

29:00 M does nothing to b, so b’ and b must be the same.

aside:
for state vectors, not density matrices expectation for a state vector is: say we have a wave
function W(a)|a> (simple system) and now we want to calculate the expectation of an
observable M.

Yo (@) a M ¥, p(a)a)

This is the value <s’|M|a>, where, in this case: (you have 2 sums to do)

31:00 b’ b being the same means b is a diagonal and M is only a matrix of a’ a

ignore that the sum goes over a’ a; and just do the sum over b

rearranging values that depend on b;

we call the expression W(a b) Y*(a’b) p,
34:50 this function is the trace of M times P
Yaa' Mg’ aPagr =TT Mp

36:00 checking the above identity



definition of a trace:
insert a complete set of states a |a><a|, a DYAD

<a’|M|a>isjust Ma’a (M containingonly a’ a
<a|P|a’>isjustPaa’ (P containingonlyaa’

37:00 when you have a pure state of |a b> but you focus only on the a subsystem the system is
described by a density matrix.

you obtain the density matrix by taking the full wave function and summing over b
w Q w ] ,
( L) h 8 sumoverb: Y, y(ab)y*(ab)

37:46 when you have a combined composite system |a b>, say Shrodinger’s cat and a gun; then the
cat and the gun is described by an entangled system but the cat alone is described by a density matrix.

in general, that density matrix will be of mixed phase. There is a specific case which it will describe a as a
pure state.

38:50 the trace of a product is not the product of a trace (non-communative)
(Tr MP # MP Tr)

40:20 you may have complete knowledge of the combined system W(a b) — but when you select a sub-
system a; you must describe that sub-system by a density matrix.

---in classical systems, if you have complete knowledge of a system you also have complete knowledge
of the sub-systems.

42:30 is there a condition on W(a b) so that the sub-systems are in pure states?
yes — anytime the wave function factorizes into products:

suppose: U factors into ¢(a) x(b)

expand the density matrix Pa a’

Bl Ry = 5 @x®)¢° @ (B)

seperating ®(a) — as sum does not depend on a;

P(@)¢p*(a) Tp x(B)x" (b)
but ), x(b)x*(b) isjust one; so the density matrix of a product is just the product of wave functions
®(a) ©*(a)
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calculate the expectation value of M with these @ functions:
M= (q,')*(a')lMa'a |p(a)) = (p|M]|¢p) which is exactly the same if the state vector was just ®

Rule:  When a pure system can be expressed by two factors of functions then each system can be
described as a pure state of each function.

--- the density matrix has only one value, all the others are zero. (i.e. zero entropy)

49:00 One way of determining how close you are to a pure state is to calculate the entropy of the
state. If the entropy is low you are close to a pure state.

--- deeply entangled means close to maximum entropy.

(calculate entropy by determing change increment over time)

50:00 Example. Calculate a Density Matrix and the Entropy

ex.1  highly entangled singlet state of 2 electrons:

lud> - [du>

S -ﬁ*“ =

write in terms of a 2 variable wave function

'q)(u U\) -0
nouu Component

=z
'q/(ui\ T
value of u d component
1
4 el
w(d ) 2 value of d u component

’LP(“) = no d d component

calculate the density matrix of the a system; the a system being spin (of particle) #1
ey
a lp ( |
w( b)V(a's

Puu is the a a’ density matrix — start first with spin up (note a’ is *)
we sum over b.

calculation of the P (uu dd ud du) components:
calculate for P{u d}

set a= Yu w*rd + VYu v*d

set b= Yuu P*yu + WYud P*dd

Puu=Wuu W*uu + Wud W*ud
Pdd = Wdu W*du + Wdd W*dd
Pud = Wuu W*du + Wud W*dd



Pdu=Wdu W*uu + Wdd W*ud

Puu=0x0+1/N2x1/N2="%

Pdd=-1/v2x-1/Vv2+ 0x0=-%

Pud=Pdu=0

55:39 Density matrix is:

trace is 1; proportional to the unit matrix.

entropy is log 2 ( 1/2logl/2 +1/2logl/2) =% (-log2) + % (-log2) = -log2 (but entropy has — sign in
definition)

because the diagonal elements are both non-zero, and equal this means the singlet state is a non-pure.

the singlet state is a maximally mixed state, maximum ignorance

57:00 what is the expectation value of spin #1
P =% (x unit matrix)
expectation value (along a o matrix) is trace x P x sigma matrix
which is:
% Tro.n
but trace of any sigma matrix is zero — so — expectation value is zero

59:00 in the singlet state, the spin of any component is equally likely to be along that direction or
opposite to that direction.

60:00 lets define a wave function as:

a normalized state with all entries equal to %
recalculating:

Puu=Wuu W*uu + WYud W*ud =YxV+¥x¥h=%
Pdd = Wdu W*du + Wdd W*dd =YxV+Vx¥h=%
Pud = Wuu W*du + Wud W*dd =YxV+Vx¥=%

Pdu=Wdu W*uu + Wdd W*ud =YxV+Vhx¥h="%



the density matrixis: p =

N[N
N[—R N

62:00 the trace is still equal to one, but the eigenvectors are different:
theorems:

1. the product of the eigenvalues is equal to the determinant;

2. the sum of the eigenvalues is equal to the trace

(in this case determinant = 0) so the eigenvalues are 10
corresponds to the product state of 2 unentangled electrons aligned along the x-axis ??? (why)

03 x P —the trace is zero; so the expectation value of 03 is 0; same is true for 62
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103 x P; Tr=0 same result for 62

65:00 expectation value for ol is 1; trace is equal to 1
entropy is zero, because it has one eigenvalue of 1, the other zero
a pair of spins which are both lying along the x-axis non-entangled

o1 x P; Tr=1

66:00 if you slightly change the wave function, say Wud = Wdu = .4 you would find a small degree of
entanglement, the entropy would have a small value. Entropy and entanglement go together (called
entanglement entropy)

68:00 in general entropy does not add, in particular entanglement entropy.
a system may have an entropy of zero — but the sub-systems each may have entropy.

70:00 how states change with time

a discrete system goes from state to state, but not necessarily continuous.
i.e. the dimension of the vector space is finite, not continuous

classical — note 2 different states do not evolve to the same state.
but you can have a possibility of a continuous space.
The space {d u} can be measured as spin up or spin down but there can be a continuous number of
states in between.



73:00

assumption:  the logical relationships between states doesn’t change with time;

(1)if 2 states are equal they will stay that way;

(2)if 2 states are orthogonal they will evolove into orthogonal states (if 2 states are measurably different
they will remain measurably different)

in classical systems this is called conservation of phase state volume;
in quantum mechanics refers to unit parity.

77:00 Second principle of time evolution
what it means is the inner product between two states (magnitude) stays the same with time.

78:00 first principle of time evolution.

governed by a linear operator.
take a space |W 0> (at time zero). after a while it evolves to a new state, |W t>
| W t> is always equal to U (some linear operator) times |W 0>

U evolves linearly governed by an time oprator
note U(0)=1; |W t>=U(0) |W 0>

Principle 1: there exists a linear operator U(t) which describes the system evolution. (sort of an observed,
empirical theory)
Principle 2: if there are any 2 systems that evolve in time — the dot product remains the same

dot product at time t equals dot product at time 0
assumption (repeated): The logical relations between states are invariant in time.

82:00 determine what happens to operator U (a matrix) in time; take the bra

which makes the last relation as U' U being the unit operator. U is a unitary operator.

the time evolution of a system is governed by unitary operators that depend on time



85:00 lets take a very small interval of time €, and define: U(e)=1—-1€H

minus sign arbitrary, asis i

87:00 determine the conditions on H

multiplying out, remember U'U = 1

ignoring € squared term (very small)
or H' = H, the H is Hermitian.

89:55 His called the Hamiltonian, it is Hermitian, and an observable, the energy of the system.

The eigenvalues of the matrx H are the energy levels of the system.

93:00 hamiltonian
aly)  —iH
a  h

98:00 entropy is the measure of entanglement?
entropy is dimensionless.

in classical thermodynamics:

small change in the system

rearranging € , the small unit of time

|Yp) governs how every quantum state evolves in time.



the difference in energy = time x difference in entropy;

time has units of energy;

formula for KE contains Boltzman constant — which is only necessary to convert time from units of
enegry to units of time.

100:00
say we have an eigenvector W ; H hamiltonian, E (energy) is an eigenvector

equation for W evolving with time;

substituting with 0 |W>/dt=-i H|W>/h

if you start with a start with an eigenvector of the hamiltonian then it evolves with time just like
multiplying with a phase.

the value (- I E/A ), when modifying time in the above, is called the angular frequency w --- E = hA



