Quantum Entanglement Lecture 8 2006-11-12
Density matrix: a more general way to make probability statements about a system classical definition of entropy, probabilities entanglement and unentangled probabilities
how states change with time
H is called the Hamiltonian, it is Hermitian, and an observable, the energy of the system.
$\frac{\partial|\psi\rangle}{\partial t}=\frac{-i H}{\hbar}|\psi\rangle$ governs how every quantum state evolves in time
entropy is the measure of entanglement?

Prof. Leonard Susskind; videos on Stanford on iTunes U

Susskind's Blog: Physics for Everyone
©Brian Carpenter, 2009 - Please acknowledge when copying
Density matrix: a more general way to make probability statements about a system.
(1)Density matrix is the quantum analogy of the probability distribution: $\mathrm{F}=\Sigma \mathrm{Fi}$ * Pi
(2) $\operatorname{Tr} P=1 \quad$ the trace of the density matrix (probabilities) adds up to one;

(3) The eignevalues of the Density Matrix can be though of as the probabilities of the different states;
(4) Density matrix is a Hermitian matrix (probabilities, the diagonal elements, are real);

each eigenvalue corresponds to an eigen state vector;

n mutually orthogonal basis vector of sub space each eigenvalue corresponds to the probability that the system was prepared in the direction of that particular basis.
(5) minimum knowledge - all eigenvalues equal; maximum knowledge - only one eigenvalue >0

09:30 with any pure state the dot product with that vector is the vector. any other vector the result is zero.

10:47 The average value (expectation) of the observable M is the trace*density matrix* M

13:39 example. for any M, in basis ψ (trace is the same in all basis) - summed over all indicies (basis)

14:04 the expression $\Sigma|i><i|$ is the unit matrix I which can be cancelled out, leaving $\langle\psi(M) \psi\rangle$ the average of M is the expectation value of M (if a pure state)

16:19 General case, where there are mixed eigenvalues. you need to sum probabilities ρ against all indices in M :

if I am working in the basis in which ρ is diagonal (i.e. probabilities on the diagonal) then I know what the matrix element <l| $\rho \mid j>$ is. In order for their to be a value I must equal j (because ρ, the probability, is diagonal) so this is the sum over the eigenvalues λj
 diagonal

17:46 $<j|\mathrm{M}| j>$ is the expectation value of M in the $j^{\text {th }}$ state, λj is the probability. so the above expression is the average of M in the $\mathrm{j}^{\text {th }}$ state weighed with the probability of the $\mathrm{j}^{\text {th }}$ state.
the eigenvalues λ can be though of as the probabilities - but only in the case where ρ is diagonal.

19:56 classical definition of entropy

(minus because $\mathrm{Pi} \leq 1$ which means logPi is negative)
--- if only one $\mathrm{Pi}(=1)$ the entropy=0; complete knowledge of the system;
---if all Pi equal, entropy is maximum, complete ignorance.

22:00 entanglement

Say we have a system |a b> where a goes from 1 to N, and b goes from 1 to m. the total number of states for this system is $N^{*} m$;

24:15 then the system is described as the sum, over a and b, of some function Ψ (the wave function) of a and b) - a nd b are discrete values (now, for our purposes) multiplied by the state vector $a b$

$\Sigma \Psi(a, b) \mid a b>$
(summed over a and b)
to normalize the sum $\Sigma \Psi^{*} \Psi$, overa and b, must add to one.

```
M= is observable for a
```

which means when M acts on a subsystem |ab>, M will act on the a coordinate but leave the b coordinate alone.

27:49 to determine the expectation of M on the combined system we need to construct a bra vector (introducing primed variables)

against M and the et; sum over $a^{\prime} b^{\prime}$ to find bra vector; sum over $a b$ to find the get vector

29:00 M does nothing to b, so b^{\prime} and b must be the same.
aside:
for state vectors, not density matrices expectation for a state vector is: say we have a wave function $\Psi(a) \mid a>$ (simple system) and now we want to calculate the expectation of an observable M.

This is the value $\left\langle\mathrm{s}^{\prime}\right| \mathrm{M}|\mathrm{a}\rangle$, where, in this case: (you have 2 sums to do)
31:00 $b^{\prime} b$ being the same means b is a diagonal and M is only a matrix of $a^{\prime} a$

ignore that the sum goes over a ' a; and just do the sum over b

rearranging values that depend on b;

we call the expression $\Psi(a b) \Psi^{*}\left(a^{\prime} b\right) \rho_{a a^{\prime}}$
34:50 this function is the trace of M times P

36:00 checking the above identity

insert a complete set of states a $|a><a|$, a DYAD

$<\mathrm{a}^{\prime}|\mathrm{M}| \mathrm{a}>$ is just Ma 'a (M containing only $\mathrm{a}^{\prime} \mathrm{a}$ $<a|P| a^{\prime}>$ is just P a a' (P containing only $a a^{\prime}$

37:00 when you have a pure state of $\mid a b>$ but you focus only on the a subsystem the system is described by a density matrix.
you obtain the density matrix by taking the full wave function and summing over b

sum over $b: \quad \sum_{b} \psi(a b) \psi^{*}\left(a^{\prime} b\right)$
37:46 when you have a combined composite system |a b>, say Shrodinger's cat and a gun; then the cat and the gun is described by an entangled system but the cat alone is described by a density matrix.
in general, that density matrix will be of mixed phase. There is a specific case which it will describe a as a pure state.

38:50 the trace of a product is not the product of a trace (non-communative)
(Tr MP $\neq \mathrm{MP} \operatorname{Tr}$)
40:20 you may have complete knowledge of the combined system $\Psi(a b)$ - but when you select a subsystem a; you must describe that sub-system by a density matrix.
---in classical systems, if you have complete knowledge of a system you also have complete knowledge of the sub-systems.

42:30 is there a condition on $\Psi(a b)$ so that the sub-systems are in pure states?
yes - anytime the wave function factorizes into products:

expand the density matrix Pa a'

seperating $\Phi(a)$ - as sum does not depend on a;

$$
\oint(a) Q(q) \sum_{b}^{\sum} X(b) X(b) \quad \phi(a) \phi^{*}\left(a^{\prime}\right) \sum_{b} \chi(b) \chi^{*}(b)
$$

but $\sum_{b} \chi(b) \chi^{*}(b)$ is just one; so the density matrix of a product is just the product of wave functions $\Phi(\mathrm{a}) \Phi^{*}(\mathrm{a})$

calculate the expectation value of M with these Φ functions:

$$
\bar{M}=\left\langle\phi^{*}\left(a^{\prime}\right)\right| M_{a^{\prime} a}|\phi(a)\rangle=\langle\phi| M|\phi\rangle \text { which is exactly the same if the state vector was just } \Phi
$$

Rule: When a pure system can be expressed by two factors of functions then each system can be described as a pure state of each function.
--- the density matrix has only one value, all the others are zero. (i.e. zero entropy)
49:00 One way of determining how close you are to a pure state is to calculate the entropy of the state. If the entropy is low you are close to a pure state.
--- deeply entangled means close to maximum entropy.
(calculate entropy by determing change increment over time)
50:00 Example. Calculate a Density Matrix and the Entropy
ex. 1 highly entangled singlet state of 2 electrons:

write in terms of a 2 variable wave function
$\vartheta\left(\begin{array}{ll}u & u)=0 \quad \text { no u u component }\end{array}\right.$
$\psi(u d)=\frac{1}{\sqrt{2}}$ value of u d component
$\psi(d u)=-\frac{1}{\sqrt{2}}$ value of $\mathrm{d} u$ component
$\psi(d d)=0$ no d d component
calculate the density matrix of the a system; the a system being spin (of particle) \#1

Puu is the a a' density matrix - start first with spin up (note a' is *)
we sum over b.

```
calculation of the P (uu dd ud du) components:
calculate for P{u d}
set a = \Psiu \Psi*d + \Psiu \Psi*d
set b = \Psiuu \Psi*uu + \Psiud \Psi*dd
Puu = \psiuu }\mp@subsup{\Psi}{}{*}\mathrm{ uu + *ud **ud
Pdd = \Psidu }\mp@subsup{\Psi}{}{*}du + \Psidd **dd
Pud = \psiuu }\mp@subsup{\Psi}{}{*}\mathrm{ du + *ud }\mp@subsup{\psi}{}{*}\mathrm{ dd
```

```
Pdu = \Psidu }\mp@subsup{\Psi}{}{*}uu + \Psidd I U*ud
```


Pdd $=-1 / \sqrt{ } 2 \times-1 / \sqrt{ } 2+0 \times 0=-1 / 2$

$$
P u d=P d u=0
$$

55:39 Density matrix is:
trace is 1 ; proportional to the unit matrix.
entropy is $\log 2(1 / 2 \log 1 / 2+1 / 2 \log 1 / 2)=1 / 2(-\log 2)+1 / 2(-\log 2)=-\log 2($ but entropy has $-\operatorname{sign}$ in definition)
because the diagonal elements are both non-zero, and equal this means the singlet state is a non-pure.

the singlet state is a maximally mixed state, maximum ignorance

57:00 what is the expectation value of spin \#1
$P=1 / 2$ (x unit matrix)
expectation value (along a σ matrix) is trace $\times P \times$ sigma matrix
which is:
$1 / 2 \operatorname{Tr} \sigma . n$
but trace of any sigma matrix is zero - so - expectation value is zero

59:00 in the singlet state, the spin of any component is equally likely to be along that direction or opposite to that direction.

60:00 lets define a wave function as:

a normalized state with all entries equal to $1 / 2$
recalculating:
Puu $=\psi_{\text {uu }} \Psi^{*}$ uu $+\psi_{\text {ud }} \Psi^{*}$ ud $\quad=1 / 2 \times 1 / 2+1 / 2 \times 1 / 2=1 / 2$
$P d d=\Psi d u \quad \Psi^{*} d u+\Psi d d \quad \Psi^{*} d d \quad=1 / 2 \times 1 / 2+1 / 2 \times 1 / 2=1 / 2$
Pud $=\Psi u u \Psi^{*} d u+\Psi u d \Psi^{*} d d \quad=1 / 2 \times 1 / 2+1 / 2 \times 1 / 2=1 / 2$
$P d u=\Psi d u \Psi^{*} u u+\Psi d d \Psi^{*} u d \quad=1 / 2 \times 1 / 2+1 / 2 \times 1 / 2=1 / 2$
the density matrix is: $\rho=\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]$
62:00 the trace is still equal to one, but the eigenvectors are different:
theorems:

1. the product of the eigenvalues is equal to the determinant;
2. the sum of the eigenvalues is equal to the trace
(in this case determinant $=0$) so the eigenvalues are 10 corresponds to the product state of 2 unentangled electrons aligned along the x-axis ??? (why)
$\sigma 3 \times \mathrm{P}$ - the trace is zero; so the expectation value of $\sigma 3$ is 0 ; same is true for $\sigma 2$

65:00 expectation value for $\sigma 1$ is 1 ; trace is equal to 1 entropy is zero, because it has one eigenvalue of 1 , the other zero a pair of spins which are both lying along the x-axis non-entangled

66:00 if you slightly change the wave function, say $\Psi u d=\Psi d u=.4$ you would find a small degree of entanglement, the entropy would have a small value. Entropy and entanglement go together (called entanglement entropy)

68:00 in general entropy does not add, in particular entanglement entropy.
a system may have an entropy of zero - but the sub-systems each may have entropy.

70:00 how states change with time

a discrete system goes from state to state, but not necessarily continuous.
i.e. the dimension of the vector space is finite, not continuous
 classical - note 2 different states do not evolve to the same state.
but you can have a possibility of a continuous space.
The space $\{d u\}$ can be measured as spin up or spin down but there can be a continuous number of states in between.

73:00
assumption: the logical relationships between states doesn't change with time;
(1)if 2 states are equal they will stay that way;
(2)if 2 states are orthogonal they will evolove into orthogonal states (if 2 states are measurably different they will remain measurably different)
in classical systems this is called conservation of phase state volume;
in quantum mechanics refers to unit parity.

77:00 Second principle of time evolution

what it means is the inner product between two states (magnitude) stays the same with time.

78:00 first principle of time evolution.

governed by a linear operator.
take a space $|\Psi 0\rangle$ (at time zero). after a while it evolves to a new state, $\mid \Psi$ t> $|\Psi \mathrm{t}\rangle$ is always equal to U (some linear operator) times $|\Psi 0\rangle$

ψ evolves linearly governed by an time oprator
note $\mathrm{U}(0)=1 ;|\Psi \mathrm{t}\rangle=\mathrm{U}(0)|\Psi 0\rangle$
Principle 1: there exists a linear operator $U(t)$ which describes the system evolution. (sort of an observed, empirical theory)
Principle 2: if there are any 2 systems that evolve in time - the dot product remains the same

dot product at time t equals dot product at time 0
assumption (repeated): The logical relations between states are invariant in time.
82:00 determine what happens to operator U (a matrix) in time; take the bra

which makes the last relation as $\mathrm{U}^{\mathrm{t}} \mathrm{U}$ being the unit operator. U is a unitary operator.

the time evolution of a system is governed by unitary operators that depend on time

85:00 lets take a very small interval of time ϵ, and define: $U(\epsilon)=1-I \epsilon H$

```
L \| ( \varepsilon ) = 1 - i \varepsilon ~ H ~ \% ~ m i n u s ~ s i g n ~ a r b i t r a r y , ~ a s ~ i s ~ i ~
```

87:00 determine the conditions on H

multiplying out, remember $U^{\top} U=1$

or $\mathrm{H}^{\top}=H$, the H is Hermitian.

89:55 H is called the Hamiltonian, it is Hermitian, and an observable, the energy of the system. The eigenvalues of the matrx H are the energy levels of the system.

small change in the system

rearranging ϵ, the small unit of time

93:00 hamiltonian
$\frac{\partial|\psi\rangle}{\partial t}=\frac{-i H}{\hbar}|\psi\rangle$ governs how every quantum state evolves in time.

98:00 entropy is the measure of entanglement?
entropy is dimensionless.
in classical thermodynamics:

the difference in energy = time x difference in entropy;
time has units of energy;
formula for KE contains Boltzman constant - which is only necessary to convert time from units of enegry to units of time.

100:00
say we have an eigenvector Ψ; H hamiltonian, E (energy) is an eigenvector

equation for Ψ evolving with time;
substituting with $\partial|\Psi>/ \partial t=-i H| \Psi>/ \hbar$

if you start with a start with an eigenvector of the hamiltonian then it evolves with time just like multiplying with a phase.
the value $(-I E / \hbar)$, when modifying time in the above, is called the angular frequency $\omega--E=h \lambda$

