
Quantum Entanglement Lecture 8  2006-11-12 
Density matrix: a more general way to make probability statements about a system 

 classical definition of entropy, probabilities 

 entanglement and unentangled probabilities 
 how states change with time 
 H is called the Hamiltonian, it is Hermitian, and an observable, the energy of the system.  

  
𝝏|𝝍⟩

𝝏𝒕
=  

−𝒊 𝑯

ℏ
|𝝍⟩   governs how every quantum state evolves in time 

 entropy is the measure of entanglement? 
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Density matrix: a more general way to make probability statements about a system. 
 
(1)Density matrix is the quantum analogy of the probability distribution: F = Σ Fi * Pi 
 
(2) Tr Ρ = 1 the trace of the density matrix (probabilities) adds up to one; 

 
(3) The eignevalues of the Density Matrix can be though of as the probabilities of the different states; 
 
(4) Density matrix is a Hermitian matrix (probabilities, the diagonal elements,  are real); 

 label the eigenvalues as λ 
each eigenvalue corresponds to an eigen state vector; 

  n mutually orthogonal basis vector of sub space 
each eigenvalue corresponds to the probability that the system was prepared in the direction of that 
particular basis. 
 
(5) minimum knowledge – all eigenvalues equal; maximum knowledge – only one eigenvalue > 0 

the probability matrix is the projection onto that basis state. 
 
09:30 with any pure state the dot product with that vector is the vector. any other vector the result is 
zero. 

 
 
10:47 The average value (expectation) of the observable M is the trace*density matrix*M 

   𝑀 = 𝑇𝑟 ρM =   ⟨i ρM i⟩i   
 
13:39 example. for any M, in basis ψ  (trace is the same in all basis) – summed over all indicies (basis) 
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  M = Σ ⟨ i|ψ⟩⟨ψ|M|i⟩ 

 Σ⟨ψ|M|i⟩⟨ i|ψ⟩  -- shifting <i|ψ> 
14 :04 the expression Σ |i><i| is the unit matrix I which can be cancelled out, leaving  

 the average of M is the expectation value of M (if a pure state) 
 
16:19 General case, where there are mixed eigenvalues. you need to sum probabilities ρ against all 
indices in M: 

 
 
if I am working in the basis in which ρ is diagonal (i.e. probabilities on the diagonal) then I know what the 
matrix element <I|ρ|j> is. In order for their to be a value I must equal j (because ρ, the probability, is 
diagonal) so this is the sum over the eigenvalues λj 

 Σ λj ⟨j|M|j⟩  when ρ, the density matrix, has probabilities on the 
diagonal 
 
17:46 <j|M|j> is the expectation value of M in the jth state, λj is the probability. so the above 
expression is the average of M in the jth state weighed with the probability of the jth state. 

the eigenvalues λ can be though of as the probabilities – but only in the case where ρ is diagonal. 
 
19:56 classical definition of entropy 

 
(minus because Pi ≤ 1 which means logPi is negative) 
--- if only one Pi (=1) the entropy=0; complete knowledge of the system; 
---if all Pi equal, entropy is maximum, complete ignorance. 
 

22:00 entanglement 
Say we have a system |a b> where a goes from 1 to N, and b goes from 1 to m. the total number of 
states for this system is N * m; 
 
24:15 then the system is described as the sum, over a and b, of some function Ψ (the wave function) 
of a and b) – a nd b are discrete values (now, for our purposes) multiplied by the state vector a b 

 Σ Ψ(a,b) |a b> (summed over a and b) 
to normalize the sum Σ Ψ*Ψ , overa  and b, must add to one. 
 
 
25:30 experiment which only involves sub-system a,  



 
which means when M acts on a subsystem |a b>, M will act on the a coordinate but leave the b 
coordinate alone. 
 
27:49 to determine the expectation of M on the combined system we need to construct a bra vector 
(introducing primed variables) 

 
 
against M and the ket; sum over a’ b’ to find bra vector; sum over a b to find the ket vector 

 
29:00 M does nothing to b, so b’ and b must be the same. 
 
aside:  

for state vectors, not density matrices expectation for a state vector is: say we have a wave 
function Ψ(a)|a> (simple system) and now we want to calculate the expectation of an 
observable M.  

     𝜓(𝑎)⟨𝑎′ |𝑀𝑎′   𝜓 𝑎 |𝑎⟩𝑎  
This is the value <s’|M|a>, where, in this case: (you have 2 sums to do) 

 
31:00 b’ b being the same means b is a diagonal and M is only a matrix of a’ a 

 
ignore that the sum goes over a’ a; and just do the sum over b 

 
rearranging values that depend on b; 

 we call the expression Ψ(a b) Ψ*(a’ b)  ρa a’ 
 
34:50 this function is the trace of M times Ρ 

   𝑀𝑎′𝑎𝜌𝑎𝑎 ′  𝑎𝑎 ′ = 𝑇𝑟 𝑀𝜌  
 
36:00 checking the above identity 



definition of a trace: 
insert a complete set of states a  |a><a|, a DYAD 

 
<a’|M|a> is just Ma’a (M containing only a’ a 
<a|Ρ|a’> is just Ρ a a’ (Ρ containing only a a’ 
 
 
37:00 when you have a pure state of |a b> but you focus only on the a subsystem the system is 
described by a density matrix. 
 
you obtain the density matrix by taking the full wave function and summing over b 

  sum over b:    𝜓 𝑎 𝑏 𝜓∗(𝑎′𝑏)𝑏  
 
37:46 when you have a combined composite system |a b>, say Shrodinger’s cat and a gun; then the 
cat and the gun is described by an entangled system but the cat alone is described by a density matrix. 
 
in general, that density matrix will be of mixed phase. There is a specific case which it will describe a as a 
pure state. 
 
38:50 the trace of a product is not the product of a trace (non-communative) 

(Tr MΡ ≠ MΡ Tr) 
 
40:20 you may have complete knowledge of the combined system Ψ(a b) – but when you select a sub-
system a; you must describe that sub-system by a density matrix. 
---in classical systems, if you have complete knowledge of a system you also have complete knowledge 
of the sub-systems. 
 
42:30 is there a condition on Ψ(a b) so that the sub-systems are in pure states? 
yes – anytime the wave function factorizes into products: 

suppose: ψ factors into ϕ(a) χ(b) 
 
expand the density matrix Ρa a’ 

  Ρ𝑎 𝑎′ =   𝜙 𝑎 𝜒 𝑏 𝜙∗ 𝑎′ 𝜒∗(𝑏)  𝑏  
seperating Φ(a) – as sum does not depend on a; 

   𝜙 𝑎 𝜙∗ 𝑎′  𝜒 𝑏 𝜒∗(𝑏)  𝑏   
but  𝜒 𝑏 𝜒∗(𝑏)  𝑏  is just one; so the density matrix of a product is just the product of wave functions 
Φ(a) Φ*(a) 



 
 
calculate the expectation value of M with these Φ functions: 
 𝑀 = ⟨𝜙∗ 𝑎′  𝑀𝑎 ′ 𝑎  𝜙 𝑎 ⟩ = ⟨𝜙 𝑀 𝜙⟩   which is exactly the same if the state vector was just Φ 
 
Rule: When a pure system can be expressed by two factors of functions then each system can be 
described as a pure state of each function. 
--- the density matrix has only one value, all the others are zero. (i.e. zero entropy) 
 
49:00 One way of determining how close you are to a pure state is to calculate the entropy of the 
state. If the entropy is low you are close to a pure state.  
--- deeply entangled means close to maximum entropy. 
(calculate entropy by determing change increment over time) 
 
50:00 Example. Calculate a Density Matrix and the Entropy 
 
ex.1 highly entangled singlet state of 2 electrons: 

 
write in terms of a 2 variable wave function 

no u u component 

value of u d component 

value of d u component 

no d d component 
 
calculate the density matrix of the a system; the a system being spin  (of particle) #1 

 
 
Ρuu is the a a’ density matrix – start first with spin up (note a’ is *) 
we sum over b.  
calculation of the Ρ (uu dd ud du) components: 

calculate for Ρ{u d} 

set a = Ψu     Ψ*d   +  Ψu   Ψ*d 

set b = Ψuu    Ψ*uu  +  Ψud  Ψ*dd 

 
Ρuu = Ψuu   Ψ*uu  +  Ψud   Ψ*ud 
Ρdd = Ψdu   Ψ*du  +  Ψdd   Ψ*dd 
Ρud = Ψuu   Ψ*du  +  Ψud   Ψ*dd 



Ρdu = Ψdu   Ψ*uu  +  Ψdd   Ψ*ud 
 

 Ρuu = 0 × 0 + 1/√2 × 1/√2 = ½ 

 Ρdd = - 1/√2 × -1/√2 +  0 × 0 = - ½  
Pud = Pdu = 0 

 
55:39 Density matrix is:  
trace is 1; proportional to the unit matrix. 
entropy is log 2  ( 1/2log1/2  + 1/2log1/2 ) = ½ (-log2) + ½ (-log2) = -log2 (but entropy has – sign in 
definition) 
because the diagonal elements are both non-zero, and equal this means the singlet state is a non-pure. 

 the singlet state is a maximally mixed state, maximum ignorance 
 
57:00 what is the expectation value of spin #1 
Ρ = ½ (x unit matrix) 
expectation value (along a σ matrix) is trace x Ρ x sigma matrix 
which is: 
 ½ Tr σ.n 
but trace of any sigma matrix is zero – so – expectation value is zero 
 
59:00 in the singlet state, the spin of any component is equally likely to be along that direction or 
opposite to that direction. 

 
 
60:00 lets define a wave function as: 

a normalized state with all entries equal to ½ 
recalculating: 
Ρuu = Ψuu   Ψ*uu  +  Ψud   Ψ*ud = ½ x ½ + ½ x ½ = ½ 
Ρdd = Ψdu   Ψ*du  +  Ψdd   Ψ*dd = ½ x ½ + ½ x ½ = ½ 
Ρud = Ψuu   Ψ*du  +  Ψud   Ψ*dd = ½ x ½ + ½ x ½ = ½ 
Ρdu = Ψdu   Ψ*uu  +  Ψdd   Ψ*ud = ½ x ½ + ½ x ½ = ½ 



 

the density matrix is:  𝜌 =  

1

2

1

2
1

2

1

2

    

 
62:00 the trace is still equal to one, but the eigenvectors are different: 
theorems:  

1.  the product of the eigenvalues is equal to the determinant; 
2. the sum of the eigenvalues is equal to the trace 

 
(in this case determinant = 0) so the eigenvalues are 1 0 
corresponds to the product state of 2 unentangled electrons aligned along the x-axis ??? (why) 
 
σ3 x Ρ – the trace is zero; so the expectation value of σ3 is 0; same is true for σ2 

 σ3 x Ρ; Tr=0  same result for σ2 
 

65:00 expectation value for σ1 is 1; trace is equal to 1 
entropy is zero, because it has one eigenvalue of 1, the other zero 
a pair of spins which are both lying along the x-axis non-entangled 

  σ1 × P; Tr=1  
 
66:00 if you slightly change the wave function, say Ψud = Ψdu = .4 you would find a small degree of 
entanglement, the entropy would have a small value. Entropy and entanglement go together (called 
entanglement entropy) 
 
68:00 in general entropy does not add, in particular entanglement entropy.  
 a system may have an entropy of zero – but the sub-systems each may have entropy. 
 

70:00 how states change with time 

a discrete system goes from state to state, but not necessarily continuous.  
i.e. the dimension of the vector space is finite, not continuous 

classical – note 2 different states do not evolve to the same state. 
but you can have a possibility of a continuous space.  
The space {d u} can be measured as spin up or spin down but there can be a continuous number of 
states in between. 
 



73:00  
assumption: the logical relationships between states doesn’t change with time; 
(1)if 2 states are equal they will stay that way; 
(2)if 2 states are orthogonal they will evolove into orthogonal states (if 2 states are measurably different 
they will remain measurably different) 
 
in classical systems this is called conservation of phase state volume; 
in quantum mechanics refers to unit parity. 
 
77:00 Second principle of time evolution 
what it means is the inner product between two states (magnitude) stays the same with time. 
 
78:00 first principle of time evolution. 
 governed by a linear operator. 
take a space |Ψ 0> (at time zero). after a while it evolves to a new state, |Ψ t> 
|Ψ t> is always equal to U (some linear operator) times |Ψ 0> 

 ψ evolves linearly governed by an time oprator 
 note U(0)=1;  |Ψ t> = U(0) |Ψ 0> 
 
Principle 1: there exists a linear operator U(t) which describes the system evolution. (sort of an observed, 
empirical theory) 
Principle 2: if there are any 2 systems that evolve in time – the dot product remains the same 
 

dot product at time t equals dot product at time 0 
 
assumption (repeated): The logical relations between states are invariant in time. 
 
82:00 determine what happens to operator U (a matrix) in time; take the bra 

 
which makes the last relation as Ut U being the unit operator. U is a unitary operator. 

 
 
the time evolution of a system is governed by unitary operators that depend on time 



 
85:00 lets take a very small interval of time ϵ, and define: U(ϵ ) = 1 – I ϵ H 

minus sign arbitrary, as is i 
 
87:00 determine the conditions on H 

 
 
multiplying out, remember UTU = 1 

 

 ignoring ϵ squared term (very small) 
or HT = H, the H is Hermitian. 
 
89:55 H is called the Hamiltonian, it is Hermitian, and an observable, the energy of the system.  
The eigenvalues of the matrx H are the energy levels of the system. 

small change in the system 

rearranging ϵ , the small unit of time 

 
 

93:00 hamiltonian 
𝝏|𝝍⟩

𝝏𝒕
=  

−𝒊 𝑯

ℏ
|𝝍⟩   governs how every quantum state evolves in time. 

 
98:00 entropy is the measure of entanglement?  
entropy is dimensionless. 
 
in classical thermodynamics: 



 
the difference in energy = time x difference in entropy; 
time has units of energy; 
formula for KE contains Boltzman constant – which is only necessary to convert time from units of 
enegry to units of time. 
 
100:00 
say we have an eigenvector Ψ ; H hamiltonian, E (energy) is an eigenvector 

 

 equation for Ψ evolving with time; 
 

substituting with ∂|Ψ>/∂t = - i H|Ψ>/ℏ 

 
if you start with a start with an eigenvector of the hamiltonian then it evolves with time just like 
multiplying with a phase.  
 
the value (- I E/ℏ ), when modifying time in the above,  is called the angular frequency ω --- E = hλ  


