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01:00 review 2 slit experiment. 
states change in a linear way 
                  m 

         A        . 

 0                . 

         B        . 

                  . 

         

 
electron emitted at 0, has equal probability of going through A or B (quantum superposition – add 
amplitudes) 

 
 

 if electron goes through A, the quantum probability of arriving at the 
mth position: 

 or, if started at B, then will arrive a position m with probability 
amplitudes: 

 if slot B is closed, then probability arrive at the mth position is ℙA
m; 

 similarly if slot A closed, ℙB
m is ϕ*ϕ 

 
06:50 In classical statistics, if both holes open, the the classical probability of arriving a position m 
would be the sum of the individual probabilities; Pa + Pb 
 
07:00 in quantum probability, going through A or B (both holes open) 

A or B is sum of all probabilities at m 

http://itunes.stanford.edu/
http://www.susskindsblogphysicsforeveryone.blogspot.com/


the probability is the amplitude squared (ψ + ϕ)* . (ψ + ϕ) 
which is the sum of the two individual trajectories plus the interference trajectory of going through A 
(ψ* ϕ) and going through B (ψ ϕ*) 

 
If we position at m=0 (equal distance between A B) the ψ ϕ amplitudes will be equal which gives us 4 
four times the probabilty, not twice as in classical. 
 
09:45 you can also, by inserting things or changing wave phase, make ψ = - ϕ; in which case you will 
get zero probability (destructive interference) 
10:00 what happens if someone records whether electron goes through A or B; i.e. add something that 

flips, records, …, if electron goes through A recording device at slot A to determine if 
electron goes through A 

 
so now we have a different set of conditions. if the electron leaves point 0 with spin down (1)if it goes 
through A will be flipped up (2)if through B left as down: 

 
The two states A and B are correllated and entangled with the spin. 
now states are different at position m, depending on {A up} or {B down}  

 
 
20:00 formal calculation of probability that electron found at m 
using probability operator 

1) find sub space; 
2) find orthogonal basis for that subspace; 
3) calculate proability operator as a sum of dyads |i><i| 

 
2 ways electron found at m, spin up or spin down. we need to build the projection operator onto the 
state where the electron is at point m. 

ℙ   projection operator at m (|m u><m u| + |m d><m d|) 
eq. as above, but now we have to sum both states – not a simple probability as |ket> vectors are 
different final state is sum of states through A, through B 
state vector; 

RH  Σψn|n u> + ϕn|n d> summed over n 
on other side, the conjugate to calculate the probability. 



LH ψn*<n u| + ϕn*<n d| 
 

{ψn*<n u| + ϕn*<n d|} |m u><m u| + |m d><m d| { Σψn|n u> + ϕn|n d>} 
 
22:00 destroying the interference pattern 
24:00 Calculating – you only get a contribution when up=up (down=down) and when the state vector 
position “n” is equal to “m” of our test position. when equal, the probability is 1 (because cross 
interference terms vanish) 
 

 the probability is square of amplitude; same as classical 
so- if you do a measurement the same as classical probability. 
The measurement destroys the interference pattern (entangled state) 
 
30:00 another way to destroy the interference pattern is by the electron emitting a photon as it goes 
through A or B. For a slow electron this probability is low (~ 1 in 100) but if you increase the energy of an 
electron the probability is higher and would be enough to destroy the interfernce pattern. 
 
32:00 this also means you have to use a large number of electrons in the experiment to overcome this 
“accelerating electron emitting a photon effect” 
 
34:00 if you collect statistics from only when the photon was emitted then you would find that the 
interfeerence pattern was worse. Some problem though because a photon emitted from A may not be 
completely orthhogonal to a photon emitted from B so you may still have some interference from the 
photons. 
 
35:00 another effect is the interference destruction from the atmosphere. The atmosphere acts like a 
continual measurement thus constantly destroying the interference patterns. 
 
37:00 collapse of the wave packet means you get rid of the additive expresssion and thus elimitate 
cross terms: 

 additive function of interference (Σ(ψm+ϕm)|m>) 
 

 cross terms attributed to additive packet (+ ψm*ϕm + ψmϕm*) 
 
41:20 shrodinger’s cat is not in a superposition of alive and dead.  
The cat is entangled with another system.  The composite system is in a superposition of |live unfired> 
|dead fired> 
l,d=cat alive,dead.  u,f=gn unfired,fired 



|l u> → α|d u> + β|d f> 
 
49:00 if you add further measurement devices. schrodinger looks into box thus entangling the cat, 
gun, and him – and then someone watches schrodinger, etc.. 
--- because of linearity of actions all come out to be the same thing 
 
50:00 measurement differences classical <-> quantum 

 a classical experiment can always be measured without disturbing the system. 

 in a quantum experiment the measurement is not done until entanglement is established; 

 and it is that entanglement that disturbs the system; 

 Also destroys any previous entanglement. 
 
60:00 entropy 
64:00 how do you determine degree of entanglement between two systems? 
this measurement is call entanglement entropy. 
 
66:00 classical entropy, probability just uses boolean set theory. 
entropy is a state of the system together with your state of knowledge about the system. 
the less you know, the more its entropy. The more you know, the less its entropy. 
 
68:00 say we have a finite system of N states;  we know the system is in one of the (small) n states;  
--- the smaller the area of little n; the more defined is the state of the system . 
 
n is a measure of our degree of ignorance about the system. 
--- if little n is one state, then the entropy is 1 
--- if little n = big N, then we know nothing and the entropy is maximum; 
69:00 S is a measure of entropy. use log because total number of states is exponential (state1 * state2 
* state3 * … 23) 

classical: use set theory to measure entropy 
 
72:00 probability of being in state i is 1/n if i is in the subset n. otherwise the probability is zero (n 
being the subset where we know the system is in). 

probability of i being in n 
 



74:00 formula for general probability distribution. Probability of the ith state times the logarithm of the 
probability of the ith state. note probability is < 1 so log is negative. 

general probability distributation 
 
75:00 probability of a state inside n (contribution of any state within subset “n”) 

 ℙ of 1 state inside n: 𝑆 = − 
1

𝑛
 log  

1

𝑛
 =   

1

𝑛
 log 𝑛  𝑎𝑠 −log  

1

𝑛
 =  log 𝑛    

 ℙ of all n states in n: 𝑆 = 𝑛  
1

𝑛
 log 𝑛 =  log 𝑛    

In the case of a probability distribution of either zero or one, the probability is normal classical 
probability  
 
78:00 the difference between maximum entropy and actual entropy is called information. 
 
80:00 definition: Trace of a matrix 
let M be any matrix; 
I is any diagonal element 
trace of M is <i|M|i> 

trace is sum of diagonal elements 
 
the trace of M is independent of the basis vectors. all basis vectors give same trace. 
 
83:00 if M is a diagonal matrix (say a Hermitian) then the diagonal elements are the eigenvalues.  

The sum of the eigenvalues equals the trace of the matrix. 
 
87:00 quantum density matrix.  
you use this when you do not know what state a system is in but you do know the probability of being in 
one state or the other. 
 
90:00 someone has prepared the system along one of the basis vectors I with a probability of Ρi . ρi 
92:00 probability matrix –  trace is( Σ Ρ I ) = 1 

trace of ℙ matrix = 1 (i.e. sum of probabilities = 1) 
 
say we have an observable F (is also a Hermitian operator) then the average of F is just that expectation 
value of the state < I | F | I >  
93:50 Definition the average of F is the trace times the product of F and rho. 



average of vector F =Tr (Fρ) 

 take the basis, take the expectation and sum over i 

 the unit vector is formed from the DYAD of the basis unit vectors. 
 
inserting between F and Ρ (because a unit vector can be inserted anywhere) 

---only valid if I = j 
 
but <j|Ρ|i> is just Ρi (diagonal) and <i|F|i> is Fi – expectation value. which summed gives the Tr F P 
(trace being sum of values) 

 
 
which is the quantum mechanical version of the classic probability: 

classical probability function x probability of the function 
another analogy:  classical probabilities sum to one; density matrix trace sums to one. 
 
99:00 Quantum mechanical entropy of a density matrix 

 if any of the (diagonal) ρ is equal to 1, then the entropy is zero. 

 if all equal then the probability is the log of the number of states 
 
entropy is the trace Tr times the density matrix ρ times the log density matrix ρ 

 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


