
Quantum Entanglement Lecture 7  2006-11-06 
 review 2 slit experiment 
  formal calculation of probability that electron found at m 
  destroying the interference pattern 
 shrodinger’s cat is not in a superposition of alive and dead 
 classical entropy 
 Trace of a matrix 
 quantum density matrix 

Quantum mechanical entropy of a density matrix 
 

Prof. Leonard Susskind; videos on Stanford on iTunes U 
Susskind's Blog: Physics for Everyone 

©Brian Carpenter, 2009 – Please acknowledge when copying 
 
01:00 review 2 slit experiment. 
states change in a linear way 
                  m 

         A        . 

 0                . 

         B        . 

                  . 

         

 
electron emitted at 0, has equal probability of going through A or B (quantum superposition – add 
amplitudes) 

 
 

 if electron goes through A, the quantum probability of arriving at the 
mth position: 

 or, if started at B, then will arrive a position m with probability 
amplitudes: 

 if slot B is closed, then probability arrive at the mth position is ℙA
m; 

 similarly if slot A closed, ℙB
m is ϕ*ϕ 

 
06:50 In classical statistics, if both holes open, the the classical probability of arriving a position m 
would be the sum of the individual probabilities; Pa + Pb 
 
07:00 in quantum probability, going through A or B (both holes open) 

A or B is sum of all probabilities at m 

http://itunes.stanford.edu/
http://www.susskindsblogphysicsforeveryone.blogspot.com/


the probability is the amplitude squared (ψ + ϕ)* . (ψ + ϕ) 
which is the sum of the two individual trajectories plus the interference trajectory of going through A 
(ψ* ϕ) and going through B (ψ ϕ*) 

 
If we position at m=0 (equal distance between A B) the ψ ϕ amplitudes will be equal which gives us 4 
four times the probabilty, not twice as in classical. 
 
09:45 you can also, by inserting things or changing wave phase, make ψ = - ϕ; in which case you will 
get zero probability (destructive interference) 
10:00 what happens if someone records whether electron goes through A or B; i.e. add something that 

flips, records, …, if electron goes through A recording device at slot A to determine if 
electron goes through A 

 
so now we have a different set of conditions. if the electron leaves point 0 with spin down (1)if it goes 
through A will be flipped up (2)if through B left as down: 

 
The two states A and B are correllated and entangled with the spin. 
now states are different at position m, depending on {A up} or {B down}  

 
 
20:00 formal calculation of probability that electron found at m 
using probability operator 

1) find sub space; 
2) find orthogonal basis for that subspace; 
3) calculate proability operator as a sum of dyads |i><i| 

 
2 ways electron found at m, spin up or spin down. we need to build the projection operator onto the 
state where the electron is at point m. 

ℙ   projection operator at m (|m u><m u| + |m d><m d|) 
eq. as above, but now we have to sum both states – not a simple probability as |ket> vectors are 
different final state is sum of states through A, through B 
state vector; 

RH  Σψn|n u> + ϕn|n d> summed over n 
on other side, the conjugate to calculate the probability. 



LH ψn*<n u| + ϕn*<n d| 
 

{ψn*<n u| + ϕn*<n d|} |m u><m u| + |m d><m d| { Σψn|n u> + ϕn|n d>} 
 
22:00 destroying the interference pattern 
24:00 Calculating – you only get a contribution when up=up (down=down) and when the state vector 
position “n” is equal to “m” of our test position. when equal, the probability is 1 (because cross 
interference terms vanish) 
 

 the probability is square of amplitude; same as classical 
so- if you do a measurement the same as classical probability. 
The measurement destroys the interference pattern (entangled state) 
 
30:00 another way to destroy the interference pattern is by the electron emitting a photon as it goes 
through A or B. For a slow electron this probability is low (~ 1 in 100) but if you increase the energy of an 
electron the probability is higher and would be enough to destroy the interfernce pattern. 
 
32:00 this also means you have to use a large number of electrons in the experiment to overcome this 
“accelerating electron emitting a photon effect” 
 
34:00 if you collect statistics from only when the photon was emitted then you would find that the 
interfeerence pattern was worse. Some problem though because a photon emitted from A may not be 
completely orthhogonal to a photon emitted from B so you may still have some interference from the 
photons. 
 
35:00 another effect is the interference destruction from the atmosphere. The atmosphere acts like a 
continual measurement thus constantly destroying the interference patterns. 
 
37:00 collapse of the wave packet means you get rid of the additive expresssion and thus elimitate 
cross terms: 

 additive function of interference (Σ(ψm+ϕm)|m>) 
 

 cross terms attributed to additive packet (+ ψm*ϕm + ψmϕm*) 
 
41:20 shrodinger’s cat is not in a superposition of alive and dead.  
The cat is entangled with another system.  The composite system is in a superposition of |live unfired> 
|dead fired> 
l,d=cat alive,dead.  u,f=gn unfired,fired 



|l u> → α|d u> + β|d f> 
 
49:00 if you add further measurement devices. schrodinger looks into box thus entangling the cat, 
gun, and him – and then someone watches schrodinger, etc.. 
--- because of linearity of actions all come out to be the same thing 
 
50:00 measurement differences classical <-> quantum 

 a classical experiment can always be measured without disturbing the system. 

 in a quantum experiment the measurement is not done until entanglement is established; 

 and it is that entanglement that disturbs the system; 

 Also destroys any previous entanglement. 
 
60:00 entropy 
64:00 how do you determine degree of entanglement between two systems? 
this measurement is call entanglement entropy. 
 
66:00 classical entropy, probability just uses boolean set theory. 
entropy is a state of the system together with your state of knowledge about the system. 
the less you know, the more its entropy. The more you know, the less its entropy. 
 
68:00 say we have a finite system of N states;  we know the system is in one of the (small) n states;  
--- the smaller the area of little n; the more defined is the state of the system . 
 
n is a measure of our degree of ignorance about the system. 
--- if little n is one state, then the entropy is 1 
--- if little n = big N, then we know nothing and the entropy is maximum; 
69:00 S is a measure of entropy. use log because total number of states is exponential (state1 * state2 
* state3 * … 23) 

classical: use set theory to measure entropy 
 
72:00 probability of being in state i is 1/n if i is in the subset n. otherwise the probability is zero (n 
being the subset where we know the system is in). 

probability of i being in n 
 



74:00 formula for general probability distribution. Probability of the ith state times the logarithm of the 
probability of the ith state. note probability is < 1 so log is negative. 

general probability distributation 
 
75:00 probability of a state inside n (contribution of any state within subset “n”) 

 ℙ of 1 state inside n: 𝑆 = − 
1

𝑛
 log  

1

𝑛
 =   

1

𝑛
 log 𝑛  𝑎𝑠 −log  

1

𝑛
 =  log 𝑛    

 ℙ of all n states in n: 𝑆 = 𝑛  
1

𝑛
 log 𝑛 =  log 𝑛    

In the case of a probability distribution of either zero or one, the probability is normal classical 
probability  
 
78:00 the difference between maximum entropy and actual entropy is called information. 
 
80:00 definition: Trace of a matrix 
let M be any matrix; 
I is any diagonal element 
trace of M is <i|M|i> 

trace is sum of diagonal elements 
 
the trace of M is independent of the basis vectors. all basis vectors give same trace. 
 
83:00 if M is a diagonal matrix (say a Hermitian) then the diagonal elements are the eigenvalues.  

The sum of the eigenvalues equals the trace of the matrix. 
 
87:00 quantum density matrix.  
you use this when you do not know what state a system is in but you do know the probability of being in 
one state or the other. 
 
90:00 someone has prepared the system along one of the basis vectors I with a probability of Ρi . ρi 
92:00 probability matrix –  trace is( Σ Ρ I ) = 1 

trace of ℙ matrix = 1 (i.e. sum of probabilities = 1) 
 
say we have an observable F (is also a Hermitian operator) then the average of F is just that expectation 
value of the state < I | F | I >  
93:50 Definition the average of F is the trace times the product of F and rho. 



average of vector F =Tr (Fρ) 

 take the basis, take the expectation and sum over i 

 the unit vector is formed from the DYAD of the basis unit vectors. 
 
inserting between F and Ρ (because a unit vector can be inserted anywhere) 

---only valid if I = j 
 
but <j|Ρ|i> is just Ρi (diagonal) and <i|F|i> is Fi – expectation value. which summed gives the Tr F P 
(trace being sum of values) 

 
 
which is the quantum mechanical version of the classic probability: 

classical probability function x probability of the function 
another analogy:  classical probabilities sum to one; density matrix trace sums to one. 
 
99:00 Quantum mechanical entropy of a density matrix 

 if any of the (diagonal) ρ is equal to 1, then the entropy is zero. 

 if all equal then the probability is the log of the number of states 
 
entropy is the trace Tr times the density matrix ρ times the log density matrix ρ 

 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


