Quantum Entanglement Lecture 7 2006-11-06
review 2 slit experiment
formal calculation of probability that electron found at m destroying the interference pattern
shrodinger's cat is not in a superposition of alive and dead
classical entropy
Trace of a matrix
quantum density matrix
Quantum mechanical entropy of a density matrix
Prof. Leonard Susskind; videos on Stanford on iTunes U
Susskind's Blog: Physics for Everyone
©Brian Carpenter, 2009 - Please acknowledge when copying
01:00 review 2 slit experiment.
states change in a linear way

	A	m
0	B	•
		.

-

0
electron emitted at 0 , has equal probability of going through A or B (quantum superposition - add amplitudes)
$|0\rangle \longrightarrow|4\rangle+18\rangle$

if electron goes through A, the quantum probability of arriving at the $\mathrm{m}^{\text {th }}$ position:

or, if started at B, then will arrive a position m with probability
amplitudes:

if slot B is closed, then probability arrive at the $m^{\text {th }}$ position is \mathbb{P}^{A};

similarly if slot A closed, $\mathbb{P}^{\mathrm{B}}{ }_{\mathrm{m}}$ is $\varphi^{*} \varphi$
06:50 In classical statistics, if both holes open, the the classical probability of arriving a position m would be the sum of the individual probabilities; $\mathrm{Pa}+\mathrm{Pb}$

07:00 in quantum probability, going through A or B (both holes open)

A or B is sum of all probabilities at m
the probability is the amplitude squared $(\psi+\varphi)^{*} .(\psi+\varphi)$
which is the sum of the two individual trajectories plus the interference trajectory of going through A $\left(\psi^{*} \varphi\right)$ and going through B ($\left.\psi \varphi^{*}\right)$

If we position at $m=0$ (equal distance between $A B$) the $\psi \varphi$ amplitudes will be equal which gives us 4 four times the probabilty, not twice as in classical.

09:45 you can also, by inserting things or changing wave phase, make $\psi=-\varphi$; in which case you will get zero probability (destructive interference)
10:00 what happens if someone records whether electron goes through A or B; i.e. add something that
flips, records, ..., if electron goes through A
recording device at slot A to determine if electron goes through A
so now we have a different set of conditions. if the electron leaves point 0 with spin down (1)if it goes through A will be flipped up (2)if through B left as down:

The two states A and B are correllated and entangled with the spin.
now states are different at position m, depending on $\{A$ up $\}$ or $\{B$ down $\}$

20:00 formal calculation of probability that electron found at m

using probability operator

1) find sub space;
2) find orthogonal basis for that subspace;
3) calculate proability operator as a sum of dyads |i><i|

2 ways electron found at m, spin up or spin down. we need to build the projection operator onto the state where the electron is at point m.

P

projection operator at $m(|m u><m u|+|m d><m d|)$ eq. as above, but now we have to sum both states - not a simple probability as |ket> vectors are different final state is sum of states through A, through B
state vector;

RH

$\Sigma \psi_{n}|n u>+\varphi n| n d>$ summed over n
on other side, the conjugate to calculate the probability.
$\left\{\Psi_{n}{ }^{*}<n u\left|+\varphi_{n}{ }^{*}\langle n d|\right\}|m u><m u|+|m d><m d|\left\{\Sigma \psi_{n}|n u>+\varphi n| n d>\right\}\right.$

22:00 destroying the interference pattern

24:00 Calculating - you only get a contribution when up=up (down=down) and when the state vector position " n " is equal to " m " of our test position. when equal, the probability is 1 (because cross interference terms vanish)

the probability is square of amplitude; same as classical so- if you do a measurement the same as classical probability.

The measurement destroys the interference pattern (entangled state)

30:00 another way to destroy the interference pattern is by the electron emitting a photon as it goes through A or B. For a slow electron this probability is low (~ 1 in 100) but if you increase the energy of an electron the probability is higher and would be enough to destroy the interfernce pattern.

32:00 this also means you have to use a large number of electrons in the experiment to overcome this "accelerating electron emitting a photon effect"

34:00 if you collect statistics from only when the photon was emitted then you would find that the interfeerence pattern was worse. Some problem though because a photon emitted from A may not be completely orthhogonal to a photon emitted from B so you may still have some interference from the photons.

35:00 another effect is the interference destruction from the atmosphere. The atmosphere acts like a continual measurement thus constantly destroying the interference patterns.

37:00 collapse of the wave packet means you get rid of the additive expresssion and thus elimitate cross terms:

additive function of interference $\left(\Sigma\left(\Psi_{m}+\varphi_{m}\right) \mid m>\right)$

cross terms attributed to additive packet $\left(+\psi_{\mathrm{m}}{ }^{*} \varphi_{\mathrm{m}}+\psi_{\mathrm{m}} \varphi_{\mathrm{m}}{ }^{*}\right)$

41:20 shrodinger's cat is not in a superposition of alive and dead.

The cat is entangled with another system. The composite system is in a superposition of |live unfired> |dead fired>
$\mathrm{I}, \mathrm{d}=$ cat alive, dead. $\mathrm{u}, \mathrm{f}=\mathrm{gn}$ unfired,fired

$$
||u>\rightarrow \alpha| d u>+\beta| d f\rangle
$$

49:00 if you add further measurement devices. schrodinger looks into box thus entangling the cat, gun, and him - and then someone watches schrodinger, etc..
--- because of linearity of actions all come out to be the same thing
50:00 measurement differences classical <-> quantum

- a classical experiment can always be measured without disturbing the system.
- in a quantum experiment the measurement is not done until entanglement is established;
- and it is that entanglement that disturbs the system;
- Also destroys any previous entanglement.

60:00 entropy
64:00 how do you determine degree of entanglement between two systems?
this measurement is call entanglement entropy.
66:00 classical entropy, probability just uses boolean set theory.
entropy is a state of the system together with your state of knowledge about the system. the less you know, the more its entropy. The more you know, the less its entropy.

68:00 say we have a finite system of N states; we know the system is in one of the (small) n states; --- the smaller the area of little n ; the more defined is the state of the system .
n is a measure of our degree of ignorance about the system.
--- if little n is one state, then the entropy is 1
--- if little $\mathrm{n}=\mathrm{big} \mathrm{N}$, then we know nothing and the entropy is maximum;
69:00 S is a measure of entropy. use log because total number of states is exponential (state1 * state2 * state3 ${ }^{*}$... 2^{3})
 classical: use set theory to measure entropy

72:00 probability of being in state i is $1 / n$ if i is in the subset n. otherwise the probability is zero (n being the subset where we know the system is in).

probability of i being in n

74:00 formula for general probability distribution. Probability of the $i^{\text {th }}$ state times the logarithm of the probability of the $\mathrm{i}^{\text {th }}$ state. note probability is <1 so \log is negative.

75:00 probability of a state inside n (contribution of any state within subset " n ")
\mathbb{P} of 1 state inside $\mathrm{n}: \quad S=-\left(\frac{1}{n}\right) \log \left(\frac{1}{n}\right)=\left(\frac{1}{n}\right) \log (n)$ as $-\log \left(\frac{1}{n}\right)=\log (n)$
\mathbb{P} of all n states in $\mathrm{n}: \quad S=n\left(\frac{1}{n}\right) \log (n)=\log (n)$
In the case of a probability distribution of either zero or one, the probability is normal classical probability

78:00 the difference between maximum entropy and actual entropy is called information.

80:00 definition: Trace of a matrix

let M be any matrix;
1 is any diagonal element
trace of M is <i|M|i>
 trace is sum of diagonal elements
the trace of M is independent of the basis vectors. all basis vectors give same trace.
83:00 if M is a diagonal matrix (say a Hermitian) then the diagonal elements are the eigenvalues. The sum of the eigenvalues equals the trace of the matrix.

87:00 quantum density matrix.
you use this when you do not know what state a system is in but you do know the probability of being in one state or the other.

90:00 someone has prepared the system along one of the basis vectors I with a probability of P_{i}. $\mathrm{\rho i}$ 92:00 probability matrix - trace is $(\Sigma \mathrm{PI})=1$

say we have an observable F (is also a Hermitian operator) then the average of F is just that expectation value of the state < I | F | I >
93:50 Definition the average of F is the trace times the product of F and rho.

average of vector $\mathrm{F}=\operatorname{Tr}(\mathrm{F} \rho)$

the unit vector is formed from the DYAD of the basis unit vectors.
inserting between F and P (because a unit vector can be inserted anywhere)

but $<\mathrm{j}|\mathrm{P}| \mathrm{i}>$ is just Pi (diagonal) and <i|F|i> is Fi - expectation value. which summed gives the Tr F P (trace being sum of values)

which is the quantum mechanical version of the classic probability:

classical probability function x probability of the function another analogy: classical probabilities sum to one; density matrix trace sums to one.

99:00 Quantum mechanical entropy of a density matrix

- if any of the (diagonal) ρ is equal to 1 , then the entropy is zero.
- if all equal then the probability is the log of the number of states
entropy is the trace Tr times the density matrix ρ times the log density matrix ρ

