Quantum Entanglement Lecture 6 2006-10-30

review of entangled states, sub-spaces
review of projection operators, probabilities
review: classical probability (Bell's)
the 2 slit experiment, one hole, two hole
Destructive interference of a reording device
Entanglement of the experiment with an apparatus
Prof. Leonard Susskind; videos on Stanford on iTunes U
Susskind's Blog: Physics for Everyone
©Brian Carpenter, 2009 - Please acknowledge when copying

01:00 review of entangled states

If you have the $1^{\text {st }}$ electron entangled with $2^{\text {nd }}$ electron.
--- if the $2^{\text {nd }}$ electron is in bathtub the entire state ($1^{\text {st }}$ electron plus bathtub electrons becomes entangled;
--- if bathtub evaporates, electrons still remain entangled;

$2^{\text {nd }}$ electron moves into bathtub and entangles all electrons
--- two electrons get entangled providing they are close enough together;
--- similarly, two entangled electrons disentangle providing they are close enough to interact with each other.

06:00 projection operators (elementary level)

07:00 dimensionality is maximum number of linearly independent vectors - that is you cannot write any one of them as a sum of any of the others (opposite of linear dependent) --- they do not have to be orthogonal, just non-related

11:00 definition of basis vectors;
given a vector n ($\mid \mathrm{n}>(\mathrm{n}=1, \ldots \mathrm{~d}) \mathrm{n}$-dimensional space) there will always be (a family of) n mutually orthogonal unit vectors.
$<m \mid n>=\delta m n$ (Kronecker delta) $=1, m=n ;=0 m \neq n$

$$
\langle\mathrm{m} \mid \mathrm{n}\rangle=\delta_{m n} \quad \text { evaluated over all } m \text { and } n
$$

definition: any vector can be expressed as a sum of orthogonal basis vectors

$$
|\Psi\rangle=\Sigma_{n} a_{n}|n\rangle
$$

vector ψ projected onto m (basis vector) is just a_{m}

$$
\langle m \mid \Psi\rangle=\sum a_{n}\langle m \mid m\rangle=a_{m}
$$

vector ψ can be also be expressed by the inner product of the n basis vectors, times n

$$
|\Psi\rangle=\Sigma|\mathrm{n}\rangle\langle\mathrm{n} \mid \Psi\rangle \quad\left[\begin{array}{l}
x 1 \\
x 2 \\
x 3
\end{array}\right]\left[\begin{array}{lll}
x 1 & x 2 & x 3
\end{array}\right]\left[\begin{array}{l}
\left(\Psi_{1}\right) \\
\left(\Psi_{2}\right) \\
\left(\Psi_{3}\right)
\end{array}\right]
$$

18:00 dyad operator - this is the unit operator; ।
$\Sigma|n\rangle\langle n|$

$$
\left[\begin{array}{l}
x 1 \\
x 2 \\
x 3
\end{array}\right]\left[\begin{array}{lll}
x 1 & x 2 & x 3
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

20:00 Sub-spaces
K is a Hermitian operator, operating on two independent vectors $a b$ if λ is an eigenvalue of a and b, then any linear combination of eigenvectors is also an eigenvector
this linear combination of eigenvectors is called a sub space

$a b$ have common eigenvalues
combination also an eigenvector
you can form a set of basis vectors for that sub-space. Say $a b$ are the basis vectors of that sub-space; if the vector ψ is within the sub-space, a dyad with a basis vector just returns ψ

if the vector ψ is not in the sub-space, you get the projection onto the sub-space

dyad operator on ψ gives projection onto the sub-space
28:00 projection operator. Thus the expression $\Sigma|a><a|$ is the projection operator where $K=\lambda$ (i.e. eigenvectors of hermitian operator) thus projection operators are specific, i.e. $\mathbb{P}_{\sigma 3+}$ projects onto z-axis in the positive "up" direction.
a eigenvector for eigenvalue $=\lambda$ used to create projection onto $k=\lambda$ sub-space

to determine a projection operator for a property you are interested in ---find the subspace the property corresponds to; (eigenvectors, Hermitian)
---find the basis vectors for that subspace
---then construct the projection operator $\quad \Sigma|a><a|$
31:00 the probability postulate is calculated using projection operators.
--- given an arbitrary state ψ, which may or may not be in the subspace, the probability has the property of $K=\lambda$ is the expection value of:

probability of ψ at basis state K defined by λ
or, the sum of all ways you can find that property. (projection onto basis vectors)
Note: Σ means sum over all vectors (-not a particular vector such as a or b)
(side note) a projection operator applied to a vector gives the eigenvector in that space

this gives probability amplitudes (dot products) for each basis vector, then summed

example: probability of spin being up:

probability $1^{\text {st }}$ state is u u plus probability of ud

38:00 2 commuting vector operators.

to commute the two properties ($K=\lambda$ and $L=\mu$) must have vectors in common.

you need to determine: (1)which basis vectors do they have in common and (2)common projection operator

the product of $\mathbb{P k} \mathbb{P l}$ will have the common properties:
proof:

If $\mathbb{P k}(\mathbb{P}||\psi\rangle)=\mathbb{P l}(\mathbb{P} k|\psi\rangle$ then the operators commute;
the $\mathbb{P k} \mid \psi>$ is the probability of ψ have property $k ;$
the $\mathbb{P l} \mid \psi>$ is the probability of ψ have property \mid
$\mathbb{P k}$ and $\mathbb{P l}$ commute so the terms are equal.
probability ψ has joint property k and I

45:00 note:
having both properties (and) take the product having one, other, or both (or) take the sum

50:00 review: classical probability (Bell's)

statement in classical probability
determine equivalent quatum state probability statement
take $A=90^{\circ}$ spin up; $B=\operatorname{spin} 45^{\circ}$; $C=0^{\circ}$ horizontal:
then \sim ? means electron pointing in the opposite direction; ($+180^{\circ}$)

in an entangled state, the property of 1 is the \sim property of $2(A 1=\sim A 2)$.
56:00 we can then write the above $N(A, \sim B)$, for 2 electrons, as $N(A, B)$ probability of $1^{\text {st }}$ electron up, $2^{\text {nd }}$ electron 45°

prob. shown in terms of ($\left.1^{\text {st }} 2^{\text {nd }}\right)$ "up" angle of electron spin
$(1+\sigma 3) / 2$ is projection operator for $1^{\text {st }}$ spin up along z-axis; $\left((1+(\tau 1+\tau 3) \sqrt{ } 2) / 2\right.$ is projection operator for $2^{\text {nd }}$ spin 45°

73:00 the 2 slit experiment.
simple: electron starts out a 0 and can only go into a finite number of positions (+3 to -3)
assume electron can move horizontally.

electron starts at 0 ; all slots at B blocked except for $+1,-1$ then calculate probability that the electron will arrive at a particular slot.

Assumption: the quantum evolution of a system is linear. That means if a system starts in a state |A> and evolves to a state $\left|A^{\prime}\right\rangle$; and $|B\rangle$ to $\mid B^{\prime}>$ then if we start the system in a state $A+B$ it will evolve to a state of A^{\prime} plus B^{\prime}

$$
\begin{aligned}
& \left.|A>\rightarrow| A^{\prime}\right\rangle \\
& \left.|B>\rightarrow| B^{\prime}\right\rangle
\end{aligned}
$$

then $|A>+| B\rangle \rightarrow\left|A^{\prime}\right\rangle+\left|B^{\prime}\right\rangle$

can use arbitrary coefficients: $\alpha|A>+\beta| B>\rightarrow \alpha\left|A^{\prime}\right\rangle+\beta \mid B^{\prime}>$

80:00
starting the electron at zero and forced through +1 or -1 - equal likelyhood of being at either slot:

now what happens if an electron starts at $\mathbf{B + 1}$;

we will make an arbitrary assumption that electron arrives at C as $\Sigma \psi_{n} \mid n>$. That is some combination of the orthogonal basis at $C(+3,+2,+1 \ldots-3)$ - assume they do not get mixed up.

electron starts at $B+1$; arrives at C positions with various probabilities

similarly, if started at $B-1$; then some combination of $\Sigma \varphi_{n}$ start at a combination of $B+1 ; B-1$; - will be some combination of the two

$\Sigma\left(\varphi_{n}+\psi_{n}\right)|n\rangle 2$ electrons is some combination of above
probability that the electron will arrive at position n is the square of the 2 probabilities:
$\left(\psi_{\mathrm{m}}{ }^{*}+\varphi_{\mathrm{m}}{ }^{*}\right)\left(\psi_{\mathrm{m}}+\varphi_{\mathrm{m}}\right)$
$\psi_{\mathrm{m}} * \psi_{\mathrm{m}}+\varphi_{\mathrm{m}} * \varphi_{\mathrm{m}}+\psi_{\mathrm{m}}{ }^{*} \varphi_{\mathrm{m}}+\varphi_{\mathrm{m}}{ }^{*} \psi_{\mathrm{m}}$

pretty bad image --- camera guy not focused
for instance - probability of arriving at C 0 ; with both electrons:

2 holes open; 4 times the probability of C+0
Having both holes open (+1 and -1) has 4 times the probability of only one (+1 or -1) of arriving at a particular point.

92:00 Destructive interference of a reording device

If you insert a device to change the sign, say before B-1; then;
--- the probability if one one route open stays the same;
--- the probability of arriving at a point, with both routes open, is zero.
basically this means if you insert a device to measure which hole ($B+1, B-1$) the electron goes through you destroy or change the experiment.

98:00 entanglement of the experiment with an apparatus which measures it.

 we have an apparatus which, if the electron goes through $B+1$, flips the spin to up. no detector needed at $\mathrm{B}-1$.

2 entangled electrons. "up" at slit B+1 forces "down" at slit b-1

103:00 say you start at $A+0$ with spin down;
---B+1 open, flips, state |B+1 d>
---B-1 open, state |B-1 d>
--- both holes open; combination |+1 u>+|-1 d>
105:00 now what happens to the probability?
if nothing happens to the spin, conditions stay the same:

both routes are open - entangled state with the measuring apparatus.

entangled, states are summed
what is the probability that we have arrived at the origin, $\mathrm{C}+0$??
turns out the probability is twice - a classical probability.

110:00 results of different slit experiments;

a) both holes open, probability is 4 times (not twice)
b) both holes, but modified before reaching B , probability is zero (destructive)
c) both holes, but measure (and change) after B, probability is twice.

