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05:00 Review: completion of single bit system 
an entangled system involves 2 or more systems but we need to  
 
unit vectors shown with ^ on top;  

n̂. n̂ = n12 + n22 +n32 = 1 
 
for any vector n (n1,n2,n3) the dot product with the sigma matrices: 

σ.n̂ = σ1*n1 + σ2*n2 + σ3*n3 

σ.n̂ =  
0 𝑛1
𝑛1 0

 +   
0 −𝑖𝑛2
𝑖𝑛2 0

 +   
𝑛3 0
0 −𝑛3

 =   
𝑛3 𝑛1 − 𝑖𝑛2

𝑛1 + 𝑖𝑛2 −𝑛3
   

 
definitions or notations: in vector n1 n2 n3, let 
 n1–i n2 = n- 
 n1+i n2 = n+ 
 (n-)(n+) = n12 + n22 + n32 - n32 = 1- n32 

σ.n̂ =  
𝑛3 n−
n+ −𝑛3

   

   
for sigmas  (for i ne j), reversing order of matrix multiplication reverses the sign: 

σi . σj = - σj . σi 
 
measurable component checked by placing magnet in direction of n̂ and check to see if it emits a 
photon. If it doesn’t emit a photon then the electron is aligned with n. 
 
dot product of sigma matrices with a unit vector is one (amplitude) 

(σ.n̂)2 = 1 
σ.n eigenvalues are +1,-1,  
 

 

12:00 probability of finding an electron in a particular state 

http://itunes.stanford.edu/
http://www.susskindsblogphysicsforeveryone.blogspot.com/


force the component of spin along n̂ axis by placing in a large magnetic field;  
then what is the probability I will find the measure along m̂ axis to be +1? 
(note: later uses n1 for n, n2 for m) 
 
Notation: eigenvector of σ.n with eigen vector of +1 is: | σ.n = 1> 
 
if you apply eigenvector against above, you get +1 times the same vector 
σ.n | σ.n = 1> = +1| σ.n = 1>  
σ.m | σ.m = 1> = +1| σ.m = 1> 
this is the eigenvector of the state when, if measured, σ.n is definitely equal to +1 
 
 
1—first find eigen vectors along n1 
2-then dot product n2 and n1 
 
probability if σ.n=1 (spin along n vector) what is the probability of spin=1 along m axis  
 < σ.m=1 | σ.n=1>  (amplitude, probability is the square) 
 
21:00 calculate eigenvectors of σ.n, i.e. solve: 

  
𝑛3 n−
n+ −𝑛3

  
𝛼
𝛽 =   

𝛼
𝛽  

step 1. set α=1, find z 

  
𝑛3 n−
n+ −𝑛3

  
1
𝑧
 =   

1
𝑧
  

 
n3 + zn- = 1 
z = 1-n3 / n- 

25:00 eigenvector for a.m 

so eigen vector is  
1

1−𝑛3

n−

  ; forming the dot product. note we use n+ on the ro0w vector conjugate: 

  1
1−𝑛3

n+
  

1
1−𝑛3

n−

 = 1 +  
1−𝑛3)2

n+n−
 =

n+n−+1−2n3+ n32

n+n−
 

 

 =
1− n32  +1−2n3+ n32

1− n32 =
2−2𝑛3

 1+𝑛3  1−𝑛3 
=

2

1+𝑛3
   

 

now must normalize by setting dot product to 1;  multiply by  
1+𝑛3

2
 

normalized eigenvector for +1 is: 
1+𝑛3

2
   

1
1−𝑛3

n−

    



30:18 normalized eigenvector 
 
multiply by matrix to check  M|a⟩ = λ |a⟩   

  
𝑛3 n−
n+ −𝑛3

  
1

1−𝑛3

n−

 = 

calculating the top element 
 n3 + n- * (1-n3)/ n- = n3 + 1 – n3 = 1 
calculating the bottom element 

 n+ -n3 * (1-n3)/ n- = (n+ n-  - n3 + n3*n3)/ n-  = (1-n3*n3 – n3 + n3*n3)/ n- = (1-n3)/ n- 

so the eigenvector for eigenvalue +1 is valid (need scale factor) 

  
𝑛3 n−
n+ −𝑛3

  
1

1−𝑛3

n−

 =   
1

1−𝑛3

n−

  

 
31:50 we calculate σ .m the same way, replacing n with m; 
 to calculate <σ.m|σ.n> 

   hard to read – formatted below 

 <σ.m|σ.n> =   
1+𝑚3

2
 

1+𝑚3

2
 (

1−𝑚3

m+
)  

 

 
 

1+𝑛3

2

 
1+𝑛3

2
(

1−𝑛3

n−
)  
 

  

 
to get probability:  square this eq. by multiplying with complex conjugate (takes about 15-30 minutes)  
 
Probability of finding the state along the m-vector of a system that was prepared in the n-vector state: 
 P = |<σ.m|σ.n>|2  
 
34:50  

Probability or (1+ m.n)/2   

  n.m is the cosine of the angle between vector n and vector m 

probability expressed in angle θ between m & n 



 
notes on preparing and measuring a system (not in video) 

1- you first prepare the system by placing a magnet in the n̂ direction; 
2- you then move the magnet to the m̂ direction;  
3- the electron may precess to the  m̂ direction, emitting a photon of energy; 
4- if a photon is emitted then the electron spin is observed in the m̂ direction; 
5- once measured – the system stay in that state until a new measurement or change. 

you have to repeat the experiment many times to get the probability ending up with something like 
“483 out of 1000” to get the experimental probability – but it should eventually match the calculated 
probability 
 
40:00 various discussions about a single bit electron state 
Notes: 
1 – probability only depends on the angle – you can rotate the whole experiment with no change; 
2 -  rotational invariance; 
3 -  symmetric in m & n – depends only on the angle between them; 
4 -  if m & n are in the same direction, the probability is one (cos 0 = 1); 
5 -  if m & n are in the opposite direction, the probability is zero (cos 180 = -1); 
 
 
55:00 simultaneous measurement 
if two systems A, B have the same eigenvectors (eigenvalues may be different) 
then you can measure them simultaneously – otherwise not 
 
A|α>= λ|α> 
B|α> = μ|α> 
then AB = BA (they commute) 
[A,B] is math notation for commutation AB-BA=0 
 

58:00  for any vector there is always some direction where the spin is definitely plus one. 
that is always some eigenvector of σ.n (some vector direction n) where the state is 1 is always true: 
 
 σ.n|a> = λ |a>  shows connection between electron spin state and direction in space. 
 
 
 
 
68:00 entanglement – simple definition 



 action on sigma matrices: u=up {1 0}, d=down {0 1} 
an example: 

 σ3|d⟩ = -|d⟩   
1 0
0 −1

  
0
𝑑

=  
0
−𝑑

 

 
pair of electrons: 
|u u> electron 1,up electron 2,up 
|d u> 
|u d> 
|d d> 
 
72:00 two electrons, two sets of observables – introduce labels to keep track of the states: 

first electron spin labelled σ sigma;  
second electron spin labelled τ tau 

 
sigma acts on 1st electron, 2nd electron doesn’t change 

σ1|u d> = |d d> 
σ1|d d> = |u d> 

tau acts on 2nd electron, 1st doesn’t change 
 τ2|u d> = -i|u u> 
 
80:00 two independent variables are needed to specify the state of one electron; (up, down  |u d>) 
for two electrons: 

this is a 4 dimensional vector space:  |u u>   |u d>    |d u>    |d d> 
you can multiply each of the above by a complex number to get the most general state: 

you get 8 complex variables (removing 2 for |u u> |d d>) you end up with 6 possible states. 
--- seems two electron state more complicated than just “two separate electrons” ‼‼! 
 

84:00 two electrons prepared separately  
a1|u> + b1|d>   => state of electron 1 
a2|u> + b2|d>   => state of electron 2 

 
joint product state: 

(a1|u> + b1|d>)*(a2|u> + b2|d>) 
a1a2|u u> + a1b2|u d> + b1a2|d u> + b1b2|d d> 

can always find direction corresponding to state 1,2 
can always find direction(s) corresponding to product state. 
 
88:00 entangled state, prepared together 



 
(|u d> + |d u>) / √2  

 if 1st electron up, 2nd down, etc… 
That is: if you measure the state of one electron you know something about the state of the other 
electron. 
 

90:00 all sigma expectation values are 0 (probabilities are 
1

2

1

2
   along any direction) 

you calculate the expectation (average value) by <a|M|a> - which is the expectation of the observable 
M being in the state a 
 

92:00 σ1 between <bra| and |ket> states 
sigma 1 state bra ket 

{<u d| + <d u|} σ1 {|u d> + |d u>} 
 
applying σ1 (check table above) 

{<u d| + <d u|} {|d d> + |u u>} 
multplying you always get zero as {<u d|}*{|d d>} are orthogonal 
(they all are)  
 
σ 1,2,3 expectation values are all zero 
 
σ3  
{<u d| + <d u|} σ3 {|u d> + |d u>} 
applying σ1 
{<u d| + <d u|} {|u d> - |d u>} 
product: 1 – 1 = 0 
 
101:00 general discussion 
to get into an entangloed state just bring the electrons close enough so there ± spins interact – after a 
while they will be in an entangled state. (a photon may or may not be emitted)  
 
 


