Quantum Entanglement Lecture 4 2006-10-16
Review: completion of single bit system
probability of finding an electron in a particular state
calculate eigenvectors of $\sigma . n$
notes on preparing and measuring a system (not in video)
simultaneous measurement
entanglement - simple definition
entangled state, prepared together

> Prof. Leonard Susskind; videos on Stanford on iTunes U
> Susskind's Blog: Physics for Everyone
> @Brian Carpenter, 2009 - Please acknowledge when copying

05:00 Review: completion of single bit system
an entangled system involves 2 or more systems but we need to
unit vectors shown with ^ on top;

$$
\text { n. } \hat{n}=n 1^{2}+n 2^{2}+n 3^{2}=1
$$

for any vector $\mathrm{n}(\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3)$ the dot product with the sigma matrices:

$$
\begin{aligned}
& \sigma . \hat{n}=\sigma 1^{*} n 1+\sigma 2^{*} n 2+\sigma 3^{*} n 3 \\
& \sigma . \hat{n}=\left[\begin{array}{cc}
0 & n 1 \\
n 1 & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & -i n 2 \\
i n 2 & 0
\end{array}\right]+\left[\begin{array}{cc}
n 3 & 0 \\
0 & -n 3
\end{array}\right]=\left[\begin{array}{cc}
n 3 & n 1-i n 2 \\
n 1+i n 2 & -n 3
\end{array}\right]
\end{aligned}
$$

definitions or notations: in vector n 1 n 2 n 3 , let
n 1 - $\mathrm{n} 2=\mathrm{n}$.
n1+in2 $=n_{+}$
$(\mathrm{n}-)(\mathrm{n}+)=\mathrm{n} 1^{2}+\mathrm{n} 2^{2}+\mathrm{n} 3^{2}-\mathrm{n} 3^{2}=1-n 3^{2}$
$\sigma . \hat{n}=\left[\begin{array}{cc}n 3 & n_{-} \\ n_{+} & -n 3\end{array}\right]$
for sigmas (for ine j), reversing order of matrix multiplication reverses the sign:
$\sigma i . \sigma j=-\sigma j$. $\sigma i$
measurable component checked by placing magnet in direction of $\hat{n}$ and check to see if it emits a photon. If it doesn't emit a photon then the electron is aligned with n .
dot product of sigma matrices with a unit vector is one (amplitude)

$$
\begin{aligned}
& (\sigma . \hat{n})^{2}=1 \\
& \sigma . n \text { eigenvalues are }+1,-1 \text {, }
\end{aligned}
$$

12:00 probability of finding an electron in a particular state

force the component of spin along $\hat{n}$ axis by placing in a large magnetic field;
then what is the probability I will find the measure along $\hat{\mathrm{m}}$ axis to be +1 ?
(note: later uses n 1 for $\mathrm{n}, \mathrm{n} 2$ for m )
Notation: eigenvector of $\sigma . \mathrm{n}$ with eigen vector of +1 is: | $\sigma . \mathrm{n}=1>$
if you apply eigenvector against above, you get +1 times the same vector
$\sigma . n|\sigma . n=1>=+1| \sigma . n=1>$
$\sigma . m|\sigma . m=1>=+1| \sigma . m=1>$
this is the eigenvector of the state when, if measured, $\sigma . n$ is definitely equal to +1

1-first find eigen vectors along n1
2-then dot product n 2 and n 1
probability if $\sigma . n=1$ (spin along $n$ vector) what is the probability of spin=1 along $m$ axis
$<\sigma . m=1 \mid \sigma . n=1>$ (amplitude, probability is the square)
21:00 calculate eigenvectors of $\sigma . n$, i.e. solve:

$$
\left[\begin{array}{cc}
n 3 & \mathrm{n}_{-} \\
\mathrm{n}_{+} & -n 3
\end{array}\right]\binom{\alpha}{\beta}=\binom{\alpha}{\beta}
$$

step 1. set $\alpha=1$, find $z$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
n 3 & \mathrm{n}_{-} \\
\mathrm{n}_{+} & -n 3
\end{array}\right]\binom{1}{z}=\binom{1}{z}} \\
& \mathrm{n} 3+\mathrm{zn}-=1 \\
& \mathrm{z}=1-\mathrm{n} 3 / \mathrm{n}-
\end{aligned}
$$

25:00 $\left.\begin{array}{cc}n_{3} & n \\ n_{4} & -n_{3}\end{array}\right)\binom{1}{z}=\binom{1}{z}=\binom{1}{\frac{1-n_{3}}{n_{-}}}_{\text {eigenvector for a.m }}$
so eigen vector is $\left(\frac{1}{1-n 3} n_{-}\right)$; forming the dot product. note we use $n+$ on the roOw vector conjugate:

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & \frac{1-n 3}{n_{+}}
\end{array}\right)\binom{1}{\frac{1-n 3}{n_{-}}}=1+\left(\frac{1-n 3)^{2}}{n_{+} n_{-}}\right)=\frac{n_{+} n_{-}+1-2 n 3+n 3^{2}}{n_{+} n_{-}} \\
& =\frac{1-n 3^{2}+1-2 n 3+n 3^{2}}{1-n 3^{2}}=\frac{2-2 n 3}{(1+n 3)(1-n 3)}=\frac{2}{1+n 3}
\end{aligned}
$$

now must normalize by setting dot product to 1 ; multiply by $\sqrt{\frac{1+n 3}{2}}$
normalized eigenvector for +1 is: $\sqrt{\frac{1+n 3}{2}}\left(\frac{1}{\frac{1-n 3}{n_{-}}}\right)$

multiply by matrix to check $M|a\rangle=\lambda|a\rangle$

$$
\left[\begin{array}{cc}
n 3 & \mathrm{n}_{-} \\
\mathrm{n}_{+} & -n 3
\end{array}\right]\binom{1}{\frac{1-n 3}{\mathrm{n}_{-}}}=
$$

calculating the top element

$$
n 3+n . *(1-n 3) / n-n 3+1-n 3=1
$$

calculating the bottom element

$$
n_{+}-n 3 *(1-n 3) / n_{-}=\left(n_{+} n_{-}-n 3+n 3 * n 3\right) / n_{-}=(1-n 3 * n 3-n 3+n 3 * n 3) / n_{-}=(1-n 3) / n \text {. }
$$

so the eigenvector for eigenvalue +1 is valid (need scale factor)

$$
\left[\begin{array}{cc}
n 3 & \mathrm{n}_{-} \\
\mathrm{n}_{+} & -n 3
\end{array}\right]\binom{1}{\frac{1-n 3}{\mathrm{n}_{-}}}=\binom{1}{\frac{1-n 3}{\mathrm{n}_{-}}}
$$

31:50 we calculate $\sigma . m$ the same way, replacing $n$ with $m$; to calculate <o.m| $\sigma . n>$

hard to read - formatted below
to get probability: square this eq. by multiplying with complex conjugate (takes about 15-30 minutes)
Probability of finding the state along the $m$-vector of a system that was prepared in the $n$-vector state:

$$
P=|<\sigma . m| \sigma . n\rangle\left.\right|^{2}
$$

34:50

$n$. $m$ is the cosine of the angle between vector $n$ and vector $m$

probability expressed in angle $\theta$ between $m$ \& $n$
notes on preparing and measuring a system (not in video)
1- you first prepare the system by placing a magnet in the nidection;
2- you then move the magnet to the $\hat{m}$ direction;
3- the electron may precess to the $\hat{m}$ direction, emitting a photon of energy;
4- if a photon is emitted then the electron spin is observed in the $\hat{m}$ direction;
5- once measured - the system stay in that state until a new measurement or change.
you have to repeat the experiment many times to get the probability ending up with something like "483 out of 1000 " to get the experimental probability - but it should eventually match the calculated probability

## 40:00 various discussions about a single bit electron state

## Notes:

1 - probability only depends on the angle - you can rotate the whole experiment with no change;
2 - rotational invariance;
3 - symmetric in m \& $n$ - depends only on the angle between them;
4 - if $m \& n$ are in the same direction, the probability is one ( $\cos 0=1$ );
$5-$ if $\mathrm{m} \& \mathrm{n}$ are in the opposite direction, the probability is zero $(\cos 180=-1)$;

## 55:00 simultaneous measurement

if two systems $A, B$ have the same eigenvectors (eigenvalues may be different)
then you can measure them simultaneously - otherwise not
$A|\alpha>=\lambda| \alpha>$
$B|\alpha>=\mu| \alpha>$
then $A B=B A$ (they commute)
$[A, B]$ is math notation for commutation $A B-B A=0$

for any vector there is always some direction where the spin is definitely plus one.
58:00 e eigenvector of $\sigma . n$ (some vector direction $n$ ) where the state is 1 is always true:
$\sigma . n|a\rangle=\lambda \mid a>\quad$ shows connection between electron spin state and direction in space.

68:00 entanglement - simple definition

action on sigma matrices: $u=u p\{10\}, d=$ down $\{01\}$
an example:

$$
\sigma 3|\mathrm{~d}\rangle=-|\mathrm{d}\rangle \quad\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]_{d}^{0}=\begin{gathered}
0 \\
-d
\end{gathered}
$$

pair of electrons:
|uu> electron 1,up electron 2,up
$\mid d u>$
$\mid u d>$
$|d \mathrm{~d}\rangle$
72:00 two electrons, two sets of observables - introduce labels to keep track of the states:
first electron spin labelled $\sigma$ sigma;
second electron spin labelled $\tau$ tau
sigma acts on 1st electron, 2nd electron doesn't change
$\sigma 1|u d\rangle=|d d\rangle$
$\sigma 1|d d\rangle=\mid u d>$
tau acts on 2 nd electron, 1 st doesn't change
$\tau 2|u d>=-i| u u>$
80:00 two independent variables are needed to specify the state of one electron; (up, down \|ud>) for two electrons:
this is a 4 dimensional vector space: $|u u\rangle|u d\rangle|d u\rangle|d d\rangle$
you can multiply each of the above by a complex number to get the most general state:
you get 8 complex variables (removing 2 for $|u u\rangle|d d\rangle$ ) you end up with 6 possible states.
--- seems two electron state more complicated than just "two separate electrons" !!!!!

```
84:00 two electrons prepared separately
    a1|u>+b1|d> => state of electron 1
    a2 |u> +b2||> => state of electron 2
```

joint product state:
$(a 1|u>+b 1| d>) *(a 2|u>+b 2| d>)$
$a 1 a 2|u u>+a 1 b 2| u d>+b 1 a 2|d u>+b 1 b 2| d d\rangle$
can always find direction corresponding to state 1,2
can always find direction(s) corresponding to product state.
88:00 entangled state, prepared together

(|ud>+|du>)/v2
if 1st electron up, 2nd down, etc...
That is: if you measure the state of one electron you know something about the state of the other electron.

90:00 all sigma expectation values are 0 (probabilities are $\frac{1}{2} \quad \frac{1}{2}$ along any direction) you calculate the expectation (average value) by <a|M|a> - which is the expectation of the observable M being in the state a

92:00
$\{\langle u d|+\langle d u|\} \sigma_{1}\{|u d\rangle+|d u\rangle\} \sigma$ between <bra| and |ket> states
sigma 1 state bra ket
$\{\langle u d|+\langle d u|\} \sigma 1\{|u d\rangle+|d u\rangle\}$
applying $\sigma 1$ (check table above)
$\{<u d \mid+\langle d u|\}\{|d d>+| u u>\}$
multplying you always get zero as $\{<u d \mid\}^{*}\{\mid d d>\}$ are orthogonal
(they all are)
$\sigma 1,2,3$ expectation values are all zero
o3
$\{<u d|+\langle d u|\} \sigma 3\{|u d\rangle+|d u\rangle\}$
applying $\sigma 1$
$\{<u d|+\langle d u|\}\{|u d\rangle-|d u\rangle\}$
product: 1-1 = 0
101:00 general discussion
to get into an entangloed state just bring the electrons close enough so there $\pm$ spins interact - after a while they will be in an entangled state. (a photon may or may not be emitted)

