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example, unit pointer in any arbitrary direction 
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01:00 Quantum Mechanics  is calculation of probabilities 
|a> = α|up> +  β|down> 
 α  β are probabilities  α2  + β2 = 1 
 
Hermitean matrices, some identities 

- Transpose and complex conjugate, M_ij = M_ji * 
- M† (dagger † is Hermitian conjugate) 
- Real elements on diagonal, 
- Complex conjugate off-diagonal 
 

<b|a> = <a|b>* =  𝑏1 𝑏2  
𝑎1
𝑎2

 =   𝑎1 𝑎2  
𝑏1
𝑏2

  
∗

   

<b|a>  = b1*a1 + b2*a2 
<a|b>  = a1*b1 + a2*b2 
<a|b>* = b1*a1 + b2*a2 = <b|a> 

 
 
<bra|  is row vector, complex conjugate;  |ket> is normal column vector 
 
Hermitian calculation: 

<b|M|a> = <a|MT|b>* =   𝑏1 𝑏2  
𝑚11 𝑚12

𝑚12 ∗ 𝑚22
  

𝑎1
𝑎2

 =   𝑎1 𝑎2  
𝑚11 𝑚12

𝑚12 ∗ 𝑚22
  

𝑏1
𝑏2

  
∗

 

 
could multiply this out but as we know M = M† and above result it appears obvious. 

- a is real 
-  expectation value of a 

 
36:00 any observable can be represented as a collection of real numbers 
 
39:00 eigenvalues and eigenvectors 
M|a> = λa |a> 

- If M is a Hermitean matrx then λa is real 
- Take inner product 

o <a|M|a> = λa |<a|a>  (λa is a number) 
o <a|M|a> for M=hermitean → a is real 
o Therefore λa is real 

http://itunes.stanford.edu/
http://www.susskindsblogphysicsforeveryone.blogspot.com/


- If M is an observable then the value λa is a measurable value. 
 

44:00  
The eigenvector (collection of λ eigenvalues) is the state of the system. 
 
 
54:00 sigma matrices 
sigma 3 z-axis (sometimes called the spin operator) 

 σ3 =  
1 0
0 −1

  

eigenvector {1 0},{0 -1}, eigenvalues +1,-1 

 σ3|1  0> =  
1 0
0 −1

  
    1 
   0

  =  +1  
   1
   0

  

 σ3|0 -1> =  
1 0
0 −1

  
    0
−1

  =  −1  
   0
   1

  

 
sigma 1 x-axis 

 σ1 =  
0 1
1 0

  

eigenvector {1 1},{1 -1}, eigenvalues +1,-1 (divided by √2) 

 σ1|1  1> =  
0 1
1 0

  
    1 
   1

  =  
1

 2
  

   1
   1

  

 σ1|1 -1> =  
0 1
1 0

  
    1 
−1

  =  
−1

 2
  

−1
   1

  

 
sigma 2 y-axis 

 σ1 =  
0 −𝑖
𝑖 0

  

eigenvector {1 i},{1 -i}, eigenvalues +1,-1 

 σ2|1  i> =  
0 −𝑖
𝑖 0

  
    1 
   𝑖

  = +1  
 1
   𝑖

  

 σ2|1 -i> =  
0 −𝑖
𝑖 0

  
    1 
−𝑖

  = −1  
−1
  𝑖

  

sigma identities 
σ12 = σ32 = σ22 = I 

  
0 1
1 0

  
0 1
1 0

  =  
1 0
0 −1

  
1 0
0 −1

  =  
0 −𝑖
𝑖 0

  
0 −𝑖
𝑖 0

  =   
1 0
0 1

  

 

σ1 σ2  = -i σ3  
0 1
1 0

  
0 −𝑖
𝑖 0

 =  −𝑖  
𝑖 0
0 −𝑖

  

 

σ3 σ1  = -i σ2  
1 0
0 −1

  
0 1
1 0

 =  −𝑖  
0 1

−1   0
  

 

σ2 σ3  = -i σ1  
0 −𝑖
𝑖 0

  
1 0
0 −1

 =  −𝑖  
0 𝑖
𝑖 0

  

note if you reverse the sigma matrix multiply order, the sign is reversed: 
σ2 σ1  = +i σ3 
σ1 σ3  = +i σ2 
σ3 σ2  = +i σ1 
 
 
60:00 observables, eigenvalues and eigenvectors are orthogonal 



suppose an observable with 2 eigenvalue 
 (normally 3x3 M has 3, 4x4 has 4, …) 
 
an observable with 2 eigenvalue 
 M|a> = λa |a>  eigenvector a with eigenvalue λa 
 M|b> = λb |b>  eigenvector b with eigenvalue λb 
 
if λa & λb are different then they are orthogonal 
 (the vectors a,b are the states of the systems) 
 
proof 
1  <b|M|a> = λa <b|a> multiply by b 
2 <a|M|b> = λb <a|b> multiply by a 
take complex conjugate of 2 
2a <a|M|b>* = λb* <a|b>* or  
2b <b|M|a>  = λb  <b|a> 
subtract 2b from 1 giving: 
3 0 = (λa – λb) <b|a> 
if a ne b, then a is orthogonal to b 
 
--- exercise: check that σ vectors are orthogonal 
use σ2  defn. and identities: 
 σ2= σ2† ;  λa=+1, λb=-1 

  𝑎 = (
1
𝑖

)  ⟨𝑎| = (1 −𝑖)  |𝑏 = (
1
−𝑖

)  ⟨𝑏| = (1 𝑖) 

 

4 <b|σ2|a> = λa<b|a>   1 +𝑖  
0 𝑖
−𝑖 0

 ( 
  1
+𝑖

) = +1(1 +𝑖)(
  1
+𝑖

) 

5 <a|σ2|b> = λb<a|b>   1 −𝑖  
0 𝑖
−𝑖 0

   
  1
−𝑖

 = −1(1 −𝑖)(
1
−𝑖

) 

 
take complex conjugate of 5 
5a <a|σ2|b>* = λb*<a|b>* 

5b <a|σ2|b>* =  1 +𝑖  
0 𝑖
−𝑖 0

   
  1
+𝑖

   = <b|σ2|a> 

5c λb*<a|b>* = −1(1 +𝑖)(
 1
𝑖

)  = λb<b|a> 

5d <b|σ2|a>  = λb<b|a> 
 
subtracting 4-5d; as λa ≠ λb then <b|a> = 0 
6 0 = λa<b|a> - λb<b|a>  
notes: 
1 as any σ = σ†, and a,b can be replaced with any σ eigenvector the above is sufficient for σ1, σ3  
2 could have used (3) and just calculate <b|a> = <a}b> = 0 
 
72:00 can measure component of electron spin in any x,y,z 

- but not simultaneously 
- sigma vectors are the x, y, z components 

 



let: 
M be a system of observables; with  λa, the probability of M being in state a (eigenvector a) 
 
if you prepare the system as b – what is the probability that will be in the state a? 
the probability is the square of the dot product of b and a 
 <a|b> <a|b>* 
 dot product of a,b times the dot product of the conjugate (square) 
notes:  
1:  a,b are unit vectors; 
2:  <a|b> is a complex number, the square (complex conjugate) is a real number; 
3: the probability, a real number, will always be ≤ 1; 
4: if a,b are orthogonal the probability <a|b> is zero 
 
80:00 if a,b were real vectors then the dot product squared <a|b><a|b> would be the cosine between 
them. But a,b are in general, complex so that the squre must be the complex conjugate. 
 
82:00 prepare as σ3, test as σ1 – probability is ½ 

prepared as σ3, which means σ3 = +1 
this is done by placing a magnetic field in the “up” or “+z” direction. The observable, the spin, will be +1 
 
now we will measure σ1 (horizontal “+x” direction) and ask what is the probability we will get +1? 

a is an eigenvector of σ1 
 
the inner product <a|b> is (1/√2), the amplitude is  (1/√2) (1/√2) = (1/2) 

the form |<a|b>|2 is convention for <a|b><a|b>* 
 
similar probability for “-x”; (-1/√2) (-1/√2) = (1/2) 
86:00 if line up spin in one direction, measure in another – probability is ½ 
 
93:00 example, unit pointer in any arbitrary direction. 
--- always get +1 or -1 probabilities … 
 



 
 
 n1 n2 n3 pointer components (unit normalized) 
components of the spin are: 
 σ . n dot product 
 σ1*n1 + σ2*n2 + σ3*n3 
multiplying each sigma matrix by n, then adding: 

  
0 𝑛1
𝑛1 0

 +  
0 −𝑖𝑛2

𝑖𝑛2 0
 +   

𝑛3 0
0 −𝑛3

 =   
𝑛3 𝑛1 − 𝑖𝑛2

𝑛1 + 𝑖𝑛2 −𝑛3
  

we get a Hermitian matrix: 

 σ . n = σ1*n1 + σ2*n2 + σ3*n3 =  
𝑛3 𝑛1 − 𝑖𝑛2

𝑛1 + 𝑖𝑛2 −𝑛3
  

 
let us square the dot product; (σ . n)*(σ . n) to show this equals one: 
(σ1*n1 + σ2*n2 + σ3*n3) * (σ1*n1 + σ2*n2 + σ3*n3) 
 
the normal terms equal one: 
σ1*n1 * σ1*n1 + σ2*n2 * σ2*n2 + σ3*n3 * σ3*n3 
grouping,  
(n1*n1* σ1* σ1) +  we know that any sigma squared = one, leaves us with: 
n1*n1 + n2*n2 + n3*n3 + = 1  as vector n is unit normalized by defn. 
 
the cross product terms all disappear: 
σ1*n1 * σ2*n2 + σ1*n1 * σ3*n3 + 
σ2*n2 * σ1*n1 + σ2*n2 * σ3*n3 + 
σ3*n3 * σ1*n1 + σ3*n3 * σ2*n2 
re-grouping: 
σ1*n1 * σ2*n2 + σ2*n2 * σ1*n1 + 
 σ1*n1 * σ3*n3 + σ3*n3 * σ1*n1 + 
 σ2*n2 * σ3*n3 + σ3*n3 * σ2*n2 
note that each line is equal to zero because of reverse order of matrix multiplication: 

σ1*n1 * σ2*n2 =  
0 𝑛1
𝑛1 0

  
0 −𝑖𝑛2

𝑖𝑛2 0
 =   

𝑛1 + 𝑖𝑛2 0
0 𝑛1 − 𝑖𝑛2

  

 

σ2*n2 * σ1*n1 =  
0 −𝑖𝑛2

𝑖𝑛2 0
  

0 𝑛1
𝑛1 0

 =   
𝑛1 − 𝑖𝑛2 0

0 𝑛1 + 𝑖𝑛2
  

 



or  (σ1*n1 * σ2*n2) = - (σ2*n2 * σ1*n1) 
 
the cross products equalling zero can be deduced by the sigma idenities above. 


