Quantum Entanglement Lecture 3 2006-10-09

Quantum Mechanics is calculation of probabilities sigma matrices
observables, eigenvalues and eigenvectors are orthogonal
can measure component of electron spin in any x, y, z
example, unit pointer in any arbitrary direction

Prof. Leonard Susskind; videos on Stanford on iTunes U

 Susskind's Blog: Physics for Everyone©Brian Carpenter, 2009 - Please acknowledge when copying
01:00 Quantum Mechanics is calculation of probabilities
$|a>=\alpha|$ up $>+\beta \mid$ down $>$
$\alpha \beta$ are probabilities $\alpha^{2}+\beta^{2}=1$
Hermitean matrices, some identities

- Transpose and complex conjugate, $\mathrm{M}_{\mathrm{Z}} \mathrm{ij}=\mathrm{M} \mathbf{j} \mathrm{i}$ *
- M^{\dagger} (dagger \dagger is Hermitian conjugate)
- Real elements on diagonal,
- Complex conjugate off-diagonal

$$
\begin{aligned}
\langle b \mid a\rangle & =<a|b\rangle^{*}=\left[\begin{array}{ll}
b 1 & b 2
\end{array}\right]\left[\begin{array}{l}
a 1 \\
a 2
\end{array}\right]=\left(\left[\begin{array}{ll}
a 1 & a 2
\end{array}\right]\left[\begin{array}{l}
b 1 \\
b 2
\end{array}\right]\right)^{*} \\
& <b \mid a>=b 1^{*} 1+b 2^{*} a \\
& <a \mid b>=a 1^{*} b 1+a 2^{*} b 2 \\
& <a\left|b>^{*}=b 1^{*} a 1+b 2^{*} a 2=<b\right| a>
\end{aligned}
$$

<bra| is row vector, complex conjugate; |ket> is normal column vector
Hermitian calculation:

$$
\left.\langle\mathbf{b}| \mathbf{M}|\mathbf{a}\rangle=<\mathbf{a}\left|\mathbf{M}^{\top}\right| \mathbf{b}\right\rangle^{*}=\left[\begin{array}{ll}
b 1 & b 2
\end{array}\right]\left|\begin{array}{cc}
m 11 & m 12 \\
m 12 * & m 22
\end{array}\right|\left[\begin{array}{c}
a 1 \\
a 2
\end{array}\right]=\left(\left[\begin{array}{ll}
a 1 & a 2
\end{array}\right]\left|\begin{array}{cc}
m 11 & m 12 \\
m 12 * & m 22
\end{array}\right|\left[\begin{array}{l}
b 1 \\
b 2
\end{array}\right]\right)^{*}
$$

could multiply this out but as we know $\mathrm{M}=\mathrm{M}^{\dagger}$ and above result it appears obvious.

- a is real
- expectation value of a

36:00 any observable can be represented as a collection of real numbers
39:00 eigenvalues and eigenvectors
$\mathrm{M}\left|\mathrm{a}>=\lambda_{\mathrm{a}}\right| \mathrm{a}>$

- If M is a Hermitean matrx then λ_{a} is real
- Take inner product
$-<a|M| a\rangle=\lambda_{a}|<a| a>\left(\lambda_{a}\right.$ is a number)
- <a|M|a> for $M=$ hermitean $\rightarrow a$ is real
- Therefore λ_{a} is real
- If M is an observable then the value λ_{a} is a measurable value.

44:00
The eigenvector (collection of λ eigenvalues) is the state of the system.

```
54:00 sigma matrices
sigma 3 z-axis (sometimes called the spin operator)
    \sigma3 =[ [\begin{array}{cc}{1}&{0}\\{0}&{-1}\end{array}]
eigenvector {1 0},{0 -1}, eigenvalues +1,-1
    \sigma3|1 0> = [\begin{array}{cc}{1}&{0}\\{0}&{-1}\end{array}](\begin{array}{l}{1}\\{0}\end{array})=+1(\begin{array}{l}{1}\\{0}\end{array})
```


sigma 1 x-axis
$\sigma 1=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
eigenvector $\{11\},\{1-1\}, ~ e i g e n v a l u e s ~+1,-1 ~(d i v i d e d ~ b y ~ V 2) ~$
$\sigma 1 \left\lvert\, 1 \quad 1>=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\binom{1}{1}=\left(\frac{1}{\sqrt{2}}\right)\binom{1}{1}\right.$
$\sigma 1|1-1\rangle=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\binom{1}{-1}=\left(\frac{-1}{\sqrt{2}}\right)\binom{-1}{1}$

sigma 2 y-axis

$$
\sigma 1=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]
$$

$$
\text { eigenvector \{1 i\},\{1 -i\}, eigenvalues +1,-1 }
$$

$$
\sigma 2 \left\lvert\, 1 \quad i>=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]\binom{1}{i}=+1\binom{1}{i}\right.
$$

$$
\sigma 2|1-i\rangle=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]\binom{1}{-i}=-1\binom{-1}{i}
$$

sigma identities

$\sigma 1^{2}=\sigma 3^{2}=\sigma 2^{2}=1$
$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]=\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\sigma 1 \sigma 2=-i \sigma 3 \quad\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]=-i\left[\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right]$
$\sigma 3 \sigma 1=-i \sigma 2 \quad\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=-i\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$
$\sigma 2 \sigma 3=-i \sigma 1 \quad\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]=-i\left[\begin{array}{ll}0 & i \\ i & 0\end{array}\right]$
note if you reverse the sigma matrix multiply order, the sign is reversed:
$\sigma 2 \sigma 1=+i \sigma 3$
$\sigma 1 \sigma 3=+i \sigma 2$
$\sigma 3 \sigma 2=+i \sigma 1$

60:00 observables, eigenvalues and eigenvectors are orthogonal
suppose an observable with 2 eigenvalue
(normally $3 \times 3 \mathrm{M}$ has $3,4 \times 4$ has $4, \ldots$)
an observable with 2 eigenvalue
$M|a\rangle=\lambda a \mid a>$ eigenvector a with eigenvalue λa
$M|b>=\lambda b| b>$ eigenvector b with eigenvalue λb
if $\lambda a \& \lambda b$ are different then they are orthogonal
(the vectors a, b are the states of the systems)
proof
$1<b|\mathrm{M}| \mathrm{a}>=\lambda \mathrm{a}<\mathrm{b} \mid \mathrm{a}>$ multiply by b
$2<a|M| b>=\lambda b<a \mid b>$ multiply by a
take complex conjugate of 2
$2 a \quad<a|M| b>^{*}=\lambda b^{*}<a \mid b>^{*}$ or
$2 b \quad<b|M| a>=\lambda b<b \mid a>$
subtract $2 b$ from 1 giving:
$3 \quad 0=(\lambda a-\lambda b)<b \mid a>$
if a ne b, then a is orthogonal to b
--- exercise: check that σ vectors are orthogonal
use $\sigma 2$ defn. and identities:

$$
\begin{aligned}
& \sigma 2=\sigma 2+; \lambda a=+1, \lambda b=-1 \\
& |a\rangle=\binom{1}{i}\langle a|=\left(\begin{array}{ll}
1 & -i
\end{array}\right)|b\rangle=\binom{1}{-i}\langle b|=\left(\begin{array}{ll}
1 & i
\end{array}\right)
\end{aligned}
$$

$4<b|\sigma 2| a>=\lambda a<b \mid a>$

$$
\left(\begin{array}{ll}
1 & +i
\end{array}\right)\left[\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right]\binom{1}{+i}=+1\left(\begin{array}{ll}
1 & +i
\end{array}\right)\binom{1}{+i}
$$

$5<a|\sigma 2| b>=\lambda b<a \mid b>$
$\left(\begin{array}{ll}1 & -i\end{array}\right)\left[\begin{array}{cc}0 & i \\ -i & 0\end{array}\right]\binom{1}{-i}=-1\left(\begin{array}{ll}1 & -i\end{array}\right)\binom{1}{-i}$
take complex conjugate of 5
$5 a \quad<a|\sigma 2| b>^{*}=\lambda b^{*}<a \mid b>^{*}$
$5 \mathrm{~b} \quad<\mathrm{a}|\sigma 2| \mathrm{b}\rangle^{*}=\left(\begin{array}{ll}1 & +i\end{array}\right)\left[\begin{array}{cc}0 & i \\ -i & 0\end{array}\right]\binom{1}{+i}=\langle\mathrm{b}| \sigma 2|\mathrm{a}\rangle$
$5 \mathrm{c} \quad \lambda \mathrm{b}^{*}<\mathrm{a}\left|\mathrm{b}>^{*}=-1\left(\begin{array}{ll}1 & +i\end{array}\right)\binom{1}{i}=\lambda \mathrm{b}<\mathrm{b}\right| \mathrm{a}>$
5d <b|c2|a> = $\lambda b<b \mid a>$
subtracting 4-5d; as $\lambda a \neq \lambda b$ then $<b \mid a>=0$
$6 \quad 0=\lambda a<b|a>-\lambda b<b| a>$
notes:
1 as any $\sigma=\sigma^{\dagger}$, and a, b can be replaced with any σ eigenvector the above is sufficient for $\sigma 1, \sigma 3$
2 could have used (3) and just calculate $\langle b \mid a\rangle=\langle a\} b\rangle=0$

72:00 can measure component of electron spin in any x, y, z

- but not simultaneously
- \quad sigma vectors are the x, y, z components
let:
M be a system of observables; with $\lambda \mathrm{a}$, the probability of M being in state a (eigenvector a)
if you prepare the system as b - what is the probability that will be in the state a ?
the probability is the square of the dot product of b and a
<a|b> <a|b>*
dot product of a, b times the dot product of the conjugate (square)
notes:
1: a, b are unit vectors;
2: <a|b> is a complex number, the square (complex conjugate) is a real number;
3: the probability, a real number, will always be ≤ 1;
4: if a, b are orthogonal the probability <a|b> is zero

80:00 if a, b were real vectors then the dot product squared $<a|b><a| b>$ would be the cosine between them. But a, b are in general, complex so that the squre must be the complex conjugate.

82:00 prepare as $\sigma 3$, test as $\sigma 1$ - probability is $1 / 2$

$$
\text { prepared as } \sigma 3 \text {, which means } \sigma 3=+1
$$

this is done by placing a magnetic field in the "up" or " $+z$ " direction. The observable, the spin, will be +1
now we will measure $\sigma 1$ (horizontal " $+x$ " direction) and ask what is the probability we will get +1 ?

the inner product $<a \mid b>$ is $(1 / \sqrt{ } 2)$, the amplitude is $(1 / \sqrt{ } 2)(1 / \sqrt{ } 2)=(1 / 2)$

similar probability for " -x "; $(-1 / \sqrt{ } 2)(-1 / \sqrt{ } 2)=(1 / 2)$
86:00 if line up spin in one direction, measure in another - probability is $1 / 2$

93:00 example, unit pointer in any arbitrary direction.
--- always get +1 or -1 probabilities ...

vector $\mathrm{n}(\mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3$) projected onto sigma 3-D axis
n1 n2 n3 pointer components (unit normalized)
components of the spin are:

$$
\begin{aligned}
& \sigma . \mathrm{n} \quad \text { dot product } \\
& \sigma 1^{*} \mathrm{n} 1+\sigma 2^{*} \mathrm{n} 2+\sigma 3^{*} \mathrm{n} 3
\end{aligned}
$$

multiplying each sigma matrix by n, then adding:

$$
\left[\begin{array}{cc}
0 & n 1 \\
n 1 & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & -i n 2 \\
i n 2 & 0
\end{array}\right]+\left[\begin{array}{cc}
n 3 & 0 \\
0 & -n 3
\end{array}\right]=\left[\begin{array}{cc}
n 3 & n 1-i n 2 \\
n 1+i n 2 & -n 3
\end{array}\right]
$$

we get a Hermitian matrix:

$$
\sigma \cdot \mathrm{n}=\sigma 1 * \mathrm{n} 1+\sigma 2 * \mathrm{n} 2+\sigma 3 * \mathrm{n} 3=\left[\begin{array}{cc}
n 3 & n 1-i n 2 \\
n 1+i n 2 & -n 3
\end{array}\right]
$$

let us square the dot product; $(\sigma . n) *(\sigma . n)$ to show this equals one:
$(\sigma 1 * n 1+\sigma 2 * n 2+\sigma 3 * n 3) *(\sigma 1 * n 1+\sigma 2 * n 2+\sigma 3 * n 3)$
the normal terms equal one:
$\sigma 1 * \mathrm{n} 1 * \sigma 1^{*} \mathrm{n} 1+\sigma 2^{*} \mathrm{n} 2 * \sigma 2 * \mathrm{n} 2+\sigma 3 * \mathrm{n} 3 * \sigma 3^{*} \mathrm{n} 3$
grouping,
($\mathrm{n} 1^{*} \mathrm{n} 1^{*} \sigma 1^{*} \sigma 1$) + we know that any sigma squared = one, leaves us with:
$n 1 * n 1+n 2 * n 2+n 3 * n 3+=1$ as vector n is unit normalized by defn.
the cross product terms all disappear:
$\sigma 1 * n 1 * \sigma 2 * n 2+\sigma 1^{*} n 1 * \sigma 3 * n 3+$
$\sigma 2^{*} 2^{*} \sigma 1^{*} \mathrm{n} 1+\sigma 2{ }^{*} \mathrm{n} 2 * \sigma 3^{*} \mathrm{n} 3+$
$\sigma 3 * \mathrm{n} 3$ * $\sigma 1^{*} \mathrm{n} 1+\sigma 3^{*} \mathrm{n} 3$ * $\sigma 2{ }^{*} \mathrm{n} 2$
re-grouping:
$\sigma 1^{*} \mathrm{n} 1 * \sigma 2^{*} \mathrm{n} 2+\sigma 2^{*} \mathrm{n} 2 * \sigma 1^{*} \mathrm{n} 1+$
$\sigma 1^{*} \mathrm{n} 1 * \sigma 3{ }^{*} \mathrm{n} 3+\sigma 3^{*} \mathrm{n} 3 * \sigma 1^{*} \mathrm{n} 1+$
$\sigma 2 * n 2 * \sigma 3 * n 3+\sigma 3 * n 3 * \sigma 2 * n 2$
note that each line is equal to zero because of reverse order of matrix multiplication:
$\sigma 1 * n 1 * \sigma 2 * n 2=\left[\begin{array}{cc}0 & n 1 \\ n 1 & 0\end{array}\right]\left[\begin{array}{cc}0 & -i n 2 \\ i n 2 & 0\end{array}\right]=\left[\begin{array}{cc}n 1+i n 2 & 0 \\ 0 & n 1-i n 2\end{array}\right]$
$\sigma 2 * \mathrm{n} 2 * \sigma 1 * \mathrm{n} 1=\left[\begin{array}{cc}0 & -i n 2 \\ i n 2 & 0\end{array}\right]\left[\begin{array}{cc}0 & n 1 \\ n 1 & 0\end{array}\right]=\left[\begin{array}{cc}n 1-i n 2 & 0 \\ 0 & n 1+i n 2\end{array}\right]$
or $\left(\sigma 1^{*} \mathrm{n} 1^{*} \sigma 2 * \mathrm{n} 2\right)=-\left(\sigma 2^{*} 2^{*} \sigma 1^{*} \mathrm{n} 1\right)$
the cross products equalling zero can be deduced by the sigma idenities above.

