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General Formulation Methods

The formulation methods introduced in Chapter 2 are quite efficient and have
been used successfully in many applications, but they cannot handle all ideal
elements. To avoid the restrictions, general formulation methods are introduced
in this chapter. In Section 4.1, the tableau formulation [1] is discussed. Here
all branch currents, all branch voltages, and all nodal voltages are retained as
unknown variables of the problem. Thus the formulation is most general (every-
thing is available after the solution) but Jeads to large system matrices.

Section 4.2 indicates that blocks of variables can be eliminated and, under
special circumstances, this naturally leads to the nodal formulation. However,
if we wish to retain the ability to handle all types of network elements, complete
block elimination is not possible and the modified nodal formulation [2] must
be used. This can be done using graphs, as discussed in Section 4.3, or without
graphs, as shown in Section 4.4.

The modified nodal formulations given in Sections 4.3 and 4.4 are efficient
but still retain many redundant variables. It is demonstrated in Section 4.5 that
active networks can be analyzed extremely efficiently if we follow a set of spe-
cial rules. The rules given there cannot be easily used for computer solutions,
and a systematic method must be found. The basis for eliminating redundant
variables is the use of separate voltage and current graphs, discussed in Section
4.6, where they are applied to the tableau formulation. The graphs are a rep-
resentation of the interconnections and, as such, can be replaced by tables which
can be used for automated formulation. Such tabular representation is given in
Section 4.7. With this background, the two-graph modified nodal formulation
is developed in Section 4.8. Finally, Section 4.9 compares the various formu-
lations introduced in this chapter, and Section 4.10 gives an example.
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4.1. TABLEAU FORMULATION

The formulations discussed in the last two chapters can all be derived from a
general formulation called the tableau. In this formulation, all equations
describing the network are collected into one large matrix equation involving
the KVL, the KCL, and the constitutive equations.

We will first comment on the most convenient type of tableau. For initial
considerations, let the network have b branches; n + 1 nodes; R, G, L, and C
elements; and sources. We can express the topological properties of such a
network by means of the A, Q, and B matrices. The last two matrices are
interdependent, and considerable effort is required to obtain them: a tree must
be selected and the matrices brought into a proper form. It is much easier to
work with the incidence matrix, and for this reason the tableau is based on it.
Recall that the KCL was expressed by

Al, =0 4.1.1)
whereas the KVL was given by
V, —A'V, =0 4.1.2)

The subscript 7 stands for nodes, the subscript b for branches, and in applica-
tions b will be replaced by the element number. (For the fifth element, 5 will
be written instead of b.)

The general representation describing all possible constitutive equations has
the following form:

currents: Y, K, W,
Vb + Ib =
voltages: - K, Z, W,,
where Y, and Z, represent admittances and impedances, respectively; K; and
K, contain dimensionless constants; and W, and W,, include the independent
current and voltage sources, as well as the influence of initial conditions on

capacitors and inductors. For notational compactness, we will use the following
form: ’

vab + ZbIb = Wb' (4.13)

In all subsequent formulations, capacitors will be entered in admittance form
and inductors in impedance form to keep the variable s in the numerator. Since
the Laplace transform variable s is equivalent to the differentiation operator, we
will get a set of algebraic-differential equations when performing time domain
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TABLE 4.1.1.  Tableau Entries for Selected Elements

Constitutive Value of Value of Value of
Element Equation Y, Z, W,
Resistor V, — R,I, =0 1 -R, 0
Conductor GV,—-1,=0 G, -1 0
Capacitor sCV, — I, =C,V, sC, -1 (o/8 48
Inductor V, — sL,I, = —L,I 1 —sL, —L,1,
Voltage source V, =E, 1 0 E,
Current source I, =1J, 0 1 Jy

analysis. Table 4.1.1 indicates the choices of Y,, Z,, and W, for various two-
terminal elements.

Equations (4.1.1) to (4.1.3) can be collected, for instance, in the following
sequence:

Vb - AIV" =0
vab + ZbIb = Wb

A.Ib = 0
and put into one matrix equation
b | b | n

b 1 0 -A Vs 0

b Yb Zb 0 Ib = Wb (414)

n 0 A 0 v, 0
or, in general,

TX = W. 4.1.5)

The arrangement indicated in (4.1.4) has square submatrices on the diagonal.
In the tableau, there is no reason to distinguish between sources and passive
elements, as we did in Chapter 3. The element numbering can be completely
arbitrary. For theoretical considerations, one might wish to have special
arrangements, depending on the purpose.

ExampLE4.1.1. Write the tableau equations for the network and graph in Fig.
4.1.1.
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Fig. 4.1.1.  Example demonstrating the tableau formulation.

The A matrix is

1 2 3 4
-1 1 10

A= .
00 —-11

In this example, both R and G elements were intentionally introduced. The
tableau is

1 ; P10 Tn_ [ ]
1 § -1 0 || w» ,
1 § 0 11w 0
1 Lo -1 || v
----------------- -1]----——--—--------—---____Jl__-________ ——-—— _————
0 Lo 3 2 7,
1 g —R, L0 | o
sC; E -1 i I 0
G, -1 I 0
_________________ J-- JES— ] ————— ———— ——
P-1 1 1 0! V.
0 L0 0 -1 1 0 Voo 0

If'the capacitor initially had a voltage V;, across it, positive at node 1 and neg-
ative at node 2, the right-hand-side entry of the seventh row would be C;V,.
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Fig. 4.1.2.  One- and two-port networks and their graph representations.

Until now, we have been able to handle only two-terminal elements. We do
not yet have a graph representation for the various ideal two-ports introduced
in Chapter 1.

In order to generalize the tableau to any element, we will introduce first the
simpler one-graph concept (to be distinguished from the two-graph concept
introduced later). In the one-graph, each port of a two-port network is repre-
sented by an oriented line segment and two constitutive equations must be given.
The graph representation is shown in Fig. 4.1.2. Two numbers are associated
with each two-port when numbering the edges. The constitutive equations are
precisely those discussed in Chapter 1 for the two-ports; the most important
ideal elements are collected in Fig. 4.1.3.

ELEMENT SYMBOL CONSTITUTIVE EQUATIONS
i
CURRENT }
SOURCE ‘J i=J
-
1
VOLTAGE : +
SOURCE E V=E
i

Fig. 4.1.3.  Constitutive equations of ideal elements for tableau formulation.
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ELEMENT SYMBOL CONSTITUTIVE EQUATIONS
o |
OPEN
CIRCUIT =0
o j
j
SHORT
CIRCUT V=0
It
j
ADMITTANCE y yV—-1=0
i
j
IMPEDANCE z V_z1=0
i
j
NULLATOR 1=0
v=0
i
j
1,V ARBITRARY
NORATOR {NO CONSTITUTIVE
EQUATIONS)
i
Iy
j O—— k
Vs é"i’ Va I:g o][v2+o ~1{|1,| 7 |0
j " o— k’
|1 =0; |2 =gV1
) Iy 12
] O—— " k r
VVT Vv 0 ol V4 1 Off14f_10
e é_“\“ V2 I:;z— vol*lo ofl1y " |o
J o ok’
|1 = 0, V2 =}1V1

Fig. 4.1.3.

(Continued)

ELEMENT SYMBOL CONSTITUTIVE EQUATIONS
j
of|vil. 10 offyy|_|0
.
i k | r ar 7 r ar A T
+ 1 Vil,|0 ofltl |0
CvT It th Y, o —1||vy| T |r off1g |0
i k|- -k -k i
Vi=0;Vy=rl4
_ g e a4 “ra o
l°—’—v 1 Off Vi, ol|14] _]0
2 1 oo
OPAM i o K’ _0 0_ ‘Vz_ _1 0_ ng -0_
V1 = 0,' |1 =0
Fig. 4.1.3.  (Continued)

EXAMPLE 4.1.2. Write the A matrix and the constitutive matrices Y,, Z, for

the network and graph shown in Fig. 4.1.4.

1 1 0

0 -1 1
A=

0 0 -1

0 0 0 -100

0000
1000
0110

1

Edge 6 denotes the input, edge 7 the output of the VVT, in agreement with Fig.
4.1.2. The constitutive equations for the elements are

Vi

GV, — b
GV — I
sCGV, — 1,
sCsVs — Is
Is

wVs — V5

=E1
=0
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The last two equations describe the VVT. The constitutive equations are rewrit-
ten in the form (4.1.3)

© o o o o

© © o o
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Fig. 4.1.4.

T O O © © © o

I""OOOOOOI

Active network with a VVT and its graph.
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To compare various formulations, it is convenient to introduce the matrix

density, defined as follows:

_ number of nonzero entries in the matrix .1.6)
total number of all entries in the matrix T

For Example 4.1.2, the tableau has the size 18 X 18 and there are 39 nonzero
entries. Thus the density becomes D = 39 /18 = 0.12 or 12%.

EXAMPLE 4.1.3. The use of the OPAMP will be demonstrated on the gener-
alized impedance convertor shown in Fig. 4.1.5. The two OPAMPs are rep-

Fig. 4.1.5.  Generalized impedance convertor and its graph.
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Fig. 4.1.6.  One-graph tableau for the network in Fig. 4.1.5.

resented in the graph by the first four edges, the passive elements and the source
by the remaining six. Write the tableau formulation for this network. The result
is shown in Fig. 4.1.6. The matrix is of size 25 X 25, there are 57 nonzero
entries, and the density is 9.12%.

The networks in Examples 4.1.2 and 4.1.3 will be used repeatedly in the
rest of this chapter, and the sizes of the matrices will be given for various
formulations. The tableau discussed in this section has mainly theoretical
importance. The reader should note that many ideal two-ports introduce redun-
dant variables: for instance, the input current of the VVT or VCT, or the input
branch voltage of the CVT or CCT are known to be zero but they are kept in
this formulation as variables. Elimination of such variables will be the subject
of Section 4.6.

The tableau formulation has another problem: the resulting matrices are
always quite large, and sparse matrix solvers are needed. Unfortunately, the
structure of the matrix is such that coding these routines is complicated. Their
treatment is beyond the scope of this book.
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4.2. BLOCK ELIMINATION ON THE

TABLEAU
In any network, the branch voltages are either equal to the node voltages (for
grounded elements) or given by the difference of two node voltages (fqr ele-
ments connected between two nodes). Since this is a simple relationship and
the node voltages are available after the tableau equations are solved, we can
eliminate all branch voltages from the equations. Write the tableau equations

again:
vV, = AV,
YV, +Z,J,=W,
AL, = 0.

Substitute the first equation into the second:

YbAIV" + ZbIb = Wb (421)
AL, = 0. 4.2.2)

t
[Y"A Z”] \:V] = [wb]. 4.2.3)
0 AlLL 0
The size of this matrix is (& + n).

We can proceed even further under special circumstances. Assume that every
element in the network is represented by its admittance. Then the branch current
can be easily recovered either as Y,V,, = I, or, for an ungrounded element, as
YLV — Vo) = L In such cases, we can also eliminate the currents from

(4.2.1) and (4.2.2). Let every element have the description

In matrix form

Ybe_Ib=0

and let only current sources be permitted:

These two types of equations can be combined into a common matrix form:

Ib = Y[,Vb + Jb' (4.24)
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Substituting for V,, gives

I, = YAV, + J,. 4.2.5)
Inserting, finally, (4.2.5) into (4.2.2) gives

AY,AYV,+]J) =0

or
AY,A'V, = —AJ,. 4.2.6)

This is exactly the nodal formulation discussed in (3 7.10) in Chapter 3. The
size of the matrix is now.only n X n.

It must be noted that the admittance form does not exist for many useful
ideal elements: voltage source, VVT, CVT, CCT, transformer, ideal trans-
former, OPAMP, norator, and nullator. Moreover, if we wish to preserve the
variable s in the numerator, the inductor must be entered in its impedance form.
In nonlinear networks (to be discussed later), a resistor may be a current-con-
trolled device and its describing function may not be invertible. In all these
cases, some currents must be retained in the formulation. We will present both
formal and by-inspection methods for writing such formulations.

4.3. MODIFIED NODAL FORMULATION
USING ONE GRAPH

This section presents the formal steps required in deriving the modified nodal
formulation for all ideal elements. The idea underlying this formulation is to
split the elements into groups; one group is formed by elements which have an
admittance description and the other by those which do not. Then we can elim-
inate all branch currents for elements having the admittance description. This
will partly fill the empty block in (4.2.3) and will reduce the number of unknown
currents I,. Every element will be represented by the graphs given in Fig. 4.1.2.
Initial conditions on inductors and capacitors will be replaced by equivalent
sources (see Table 4.1.1).

Rearrange the elements of the network so that the KCL equation can be
written in the following form:

I,
Ay Ay Al || =0. 4.3.1)
J

General Formﬁlation Methods 135

The partitions are created so that:

1. I, contains branch currents of elements that have an admittance represen-
tation and that are not required as solutions.

2. I, contains branch currents for elements that do not have an admittance
representation. It contains, in addition, branch currents of voltage sources
and branch currents which are required as solutions.

3. J contains independent current sources.

The KVL equations are partitioned the same way:

\Z A}
V,|=|Ay|V, 4.3.2)
\Z Aj

Equation (4.3.2) in fact represents threc separate matrix equations:

V, = AV, 4.3.3)
V, = A}V, 4.3.4)
V, = ALV, 4.3.5)

Equation (4.3.5) is used to compute the voltages across the current sources once
the V,, are found.
The branch relations for elements in partition 2 are
Y2V2 + Z2I2 = W2 (43.6)
where the right-hand-side vector W, contains nonzero entries only for the volt-

age sources.
The branch relations in the first partition are of the form

Y, Vv, = 1. 4.3.7)
Rewrite (4.3.1) in the following form:

AlIl + A2I2 = _A3J
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and substitute (4.3.7) for I;:
A YY)V, + AL, = —AyJ.
Branch voltages V; can be eliminated by substituting (4.3.3):
AY AV, + AL = —A,l (4.3.8)
Substituting similarly (4.3.4) into 4.3.6), obtain.
VALY, + 7,1, = W, (4.3.9)

Equations (4.3.8) and (4.3.9) can be put into one matrix equation:

AY Al ALV, —A3]
= . (4.3.10)
YzA’z Zz Iz WZ
Let us denote
A YA =Y, “4.3.1D
~AJ =17, 4.3.12)

Comparing this with the nodal formulation (4.2.6), we see that Y,,, is the nodal
admittance matrix for the elements in partition 1, while J,. represents the equiv-
alent nodal current sources. Both Y,, and J, can be written by inspection as
explained in Chapter 2. The final form of the modified nodal formulation is

node voltages - additioral currents

current sources
KCL [Y,,, Az] [Vn] -[J,, J applied to nodes
additional | Y,A} Z, | L W, | influence of
equations voltage sources.
4.3.13)

Once (4.3.13) has been solved, the remaining currents are obtained from 4.3.7)
and the branch voltages are obtained by using (4.3.2).
Note, for future reference, that the top equations express the KCL ar the

nodes. The system (4.3.13) retains the advantages of both the nodal and tableau
methods.
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ExaMPLE 4.3.1. Apply the modified nodal method to the network in Fig. 4. 1:5.

The two OPAMPs are represented by the first four branches. The constitutl\./e
equations for the OPAMPs are taken from Fig. 4.1.3 and are put into one matrix
equation:

1000][w 0000]][1 0
0000 2 1000f 1L} 10
0010 V3+0000 L| |o
000 o0l Ly, 0010 4 0

The submatrix A, has the following form:

edges —>
1 2 3 4
i 10 00
2 00 01
nodes ‘
A, = i 31 -1 0 10
4 01 00
5L 0 0 -1 0_]

[—Gs ~Gs 0 0 0 10 o0o0]|]v, To]
-G Gs+G; G5 0 0 foo o1jlv, 0
0 -G G+G -G 0 -1 0 104V, 0
0 0 -G, G +G -Gy 01 00V, 0
o o 0 =Gy Gi+Gy | 00 -1 Ot =1°
Ty T o o oo oolln K
0 0 0 0 o (10 oolln 0
0 0 1 0 -1 00 00j}|£5L 0
Lo 0 0 0 0 foo IOJ_I‘*J | 0]
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The size of the matrix is 9 X 9 (compared with the 25 X 25 tableau formula-
tion). The number of nonzero entries is also reduced to 25. The density is
increased to D = 30.9%.

4.4. MODIFIED NODAL FORMULATION BY
INSPECTION

The formal description of the modified nodal formulation by means of one graph
eliminated all branch voltages plus branch currents for elements which have an
admittance description. It cannot eliminate redundant variables which are known
in advance (I; = 0 for a VVT, etc.). This elimination by means of graphs is
possible if we introduce separate graphs for voltages and currents. However,
based on the considerations and results obtained in Section 4.3, we can intro-
duce a method which eliminates some of the redundant variables and, in addi-
tion, does not need any graphs or incidence matrices. The result is an important
practical formulation method for computer application.

Using (4.3.11), enter by inspection all elements which have the admittance
description. Denote the size of the Y part of the matrix by m = n, m being
initially the number of ungrounded nodes. We will increase the size of the basic
matrix whenever we enter an element which does not have an admittance
description. Its constitutive equation will be attached at the bottom of the set of
equations (as another row of the matrix), and the current flowing into the ele-
‘ment will be attached to the system as a new variable (an additional column of
the matrix).

To facilitate programming considerations, let us make some simple assump-
tions. Define two matrices G and C of equal sizes N (N larger than m). Define
as well a vector W of length N for the right-hand-side vector of the system.
The values of J, E, CV,, and LI, will be entered into this vector. All conductors
and frequency-independent numbers arising in the formulation will be stored in
the matrix G, whereas capacitor and inductor values and other values that are
associated with the frequency variable will be stored in the matrix C. All induc-
tors will be considered in impedance form. Once the formulation part has been
completed, and the matrices G and C and the vector W are prepared, the system
matrix is obtained, for any s, by writing

T=G+ sC

and the solution may follow.

Assume that all conductances and VCTs are entered into G by means of the
symbolic formulae discussed in Chapter 2. All capacitors are entered into the
matrix C, and the current sources are placed properly into the source vector.
So far, only the upper left comers of the matrices are occupied by network
entries.
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Consider now, for instance, a voltage source. It is given, along with all other
elements, in Fig. 4.4.1. The nodes are denoted by j, j' and the voltage source
enforces the condition

v~V =E.

This constitutive equation is in terms of nodal voltages and is appended to the
set of previously defined equations. In addition, a current / will flow between
the terminals j, j’. To unify the notation, the currents at terminals j or k will be
considered to be positive; thus for the voltage source [; = I, I, = —I. They are
taken into account in the KCL as a new variable: [ in the jth row and —7 in the
j'th row. The matrix and the source vector will have the following forms:

I
V, Vi m+1 right side
j o1
i -1,
’ t

m+1 1 -1 E

The increased size is indicated by the (m + 1)st row and column. Should one,
say the jth, node of the voltage source be grounded, the jth row and column of
the G and C matrices will not exist.

For a VVT (Fig. 4.4.1) the following equations apply:

—uVi+ ¥y + Ve~ Ve =0,
[ =1=0

J

Ik = —Ik' =1

One row is added to the matrix, representing the constitutive equation. An addi-
tional column takes care of the unknown current I

V. V. V, Ve I

J J
i [ b
7
k Lol
k' j;—l
me1l-p p 1 —-17 _
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ELEMENT SYMBOL MATRIX EQUATIONS ELEMENT SYMBOL MATRIX EQUATIONS
j Vi V' Wk W T
CURRENT 3 I |-T| source I =J fo k| | Vi + aVj + Vi
| VECTOR + ], : [ Vi =0
SOURCE . j | Vi
. "LJ . Ijy =-J vvT \ K 1l
i ol , " { . Ik =1
. X -
SOURCE lo— +=——0"  j-~——--—=—= (. I =-1
Vi Vel VECTOR L] I K
JI + . ] i i | \/j _vi- = E
j
VOLTAGE E w | - Vi VoV, Vb 1
SOURCE N ol I =1 o W
j4- m+l || -1 E Ij' =1 i Kk j' :_1 Vi'Vi 20
cer 1y (gt K la Ij=-dy=1
jo+ i N o ::j I, =-Iy= al
OPEN VS mal 1 -1 )
CIRCUIT v VeV -y |
jle” Vi Vl‘ Vk Vk'l L ‘IZ
1 L2 o] o1 Vj -Vj'=0
. V. Ve 1 i' 1ot
} - 1 - 1-1I, =0
. 1 }, | vi -vj._o I, +rI| " ' : : Vk V' -,
T i l cVT
SHOR I | - L e 4 K Lo 1; =-Ip=1I
CIRCUIT TN R P i L ol Kl Ao L= h
. mel LV -1y Ios-1 ) maf| 1 -1 . 1, =-I=1
! . 2 I e I ot A k k 2
'“‘ZL to-rgen
v Vit
lo+ ] ] Vi Ve V Vi 1
) . vV v k Vk
ADMITTANCE . iy - LA A iT : !
YV . . ! Vi =V =0
il -y y 1j' ==y (V] -V}) OPERATIONAL i : J |
L= L J AMPLIFIER K L L=-Ty=1I
Kl 4zl
W
jot Vi I mt l
I i T V)T
V. =Viezl =2 V. VoV, Vo L Vi =Vj' = KyViHK,Vp= 0
IMPEDANCE z [|v il -1 joV-2t=0 T BT T A 'I..I_I.. .1 i
j mel [V -] 1j=-Ij =1 I ’ I i
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j Vj Yj v - vy - Kl 1% , TRANSFORMER
1 -k, K1 K =Ky = n
NULLATOR [ Lelreo me [t -1 -Ky K 1=Kz
" met 1 AT P VooV, Ve I 1
i y AL % N Vj - Vj'= sliTj-sMIp= O
i I~ L2 k ) P!
j " .
! ! Fae N i j | -1= Vi= Vi - sMI - sL,1,20
R 1 V. k 1 L= 1y =
NORATOR % ’[ f 'I] V, 1 ARE TRANSFORMEFJ ihgglte ol b Lj=-Tj =1
] [ ITRARY | - ! 7Y | = et o
) | ARBITRARY e s¢l mar[ 1 2 l-sbyi-sM | Ly=-Ig' =1,
! jo— L—sfms 1 1 JshlsM
B m+2[ 1 -11-sMp-sl;
j k . N
vVeT v ‘gv ) [: 9 -9 =0 Fig. 4.4.1.  (Continued)
_ k'i-g 9 I = glvj-vj)
o 1 Q) )
k Ig=-glVj-Vj)

Fig. 4.4.1.  Ideal elements in the modified nodal formulation without graphs.
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The reader should have no difficulty in deriving the formulae for the remaining
ideal elements. They are all collected in Fig. 4.4.1.

It is interesting to show that even a perfect switch can be incorporated into
the formulation. Consider a conductance for which we wish to retain the current
as the variable available upon the solution of the system. The constitutive equa-
tion for a conductance between nodes j, j' is

GV, = V) =1=0

and this equation is appended to the system of equations. The current is taken
into account by an additional column:

= !

j Jj o om+1

J Lol
J -1
m+1[1 -1 {-R

An open circuit requires G = 0, while R = 0 results in a short circuit. We can
thus combine the above representations as follows:

J L1
A P -1 (4.4.1)
m+1|F —-Fi{F-1

and select the value of F according to the following scheme:

Condition ) F
Open circuit 0
Short-circuit 1
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If the system matrix is generated by means of (4.4.1), the switches can be
opened or closed without reformulating the equations. Only the proper value
for F is inserted in the matrix before the solution.

We next present two examples to demonstrate the writing of the modified

nodal equations.

EXAMPLE 4.4.1. Write the modified nodal formulation for the network of Fig.
4.1.4 by inspection.

Using the node numbering in the figure, write the nodal admittance portion
for the conductors and capacitors. Then append the equation for the voltage
source and finally for the VVT. Denote I; = Ig, I; = Iyyr.

[ G, -G, 0 o 10w | [o]
G, G, +Gy+5C, -G, —sC, | 00| |v, 0
0 _G, G,+sCs 0 0ol 0
0 —sC, 0 sCy i 01 V,a B 0
T T T o o T | |E
0 0 —u 1 0 0| |Iyvr 0

EXAMPLE 4.4.2. Write the modified nodal formulation for the network of Fig.
4.1.5.

6 G 0 0 o fool[v.] [T
~Gs; Gs+Gs —Gg 0 o do 1| |¥. 0
0 -Gy Gg+G, —G o ool |v, 0
0 0 G, G+G Gy (1o0||v.|=10
0 0 0 G, G +Gio ol |w, 0
T o -1 0 "5""50 0| | Zop 0
K 0 -1 0 1o 0| [for]| L0

For the network of Fig. 4.1.4, the original 18 X 18 tableau matrix was reduced
to 6 X 6. For the example of Fig. 4.1.5, the original 25 X 25 tableau matrix
was reduced to 7 X 7 without losing any relevant information. We still calculate
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the current of the voltage source, the current of the source-port of the VVT,
and the current of the output port of the OPAMPs.

4.5. NODAL ANALYSIS OF ACTIVE
NETWORKS

Active networks are, in most cases, realized by means of VVTs or OPAMPs.
They are usually excited by a voltage source, and their output is usually a volt-
age. A direct application of the nodal admittance concept is not possible, but
considerable reduction of the system matrix size is possible if we apply some
simple preprocessing steps.

The method presented here is intended for hand calculatlons but is also an
introduction to the formal methods presented in the following sections. We will
start with the assumption that one terminal of each voltage source, dependent
or independent, is grounded.

If the voltage source has one grounded terminal, the other terminal voltage
is known. The output voltage of a VVT depends on some voltage elsewhere,
but once that has been specified, the voltage of the source port is known as
well. If we are not interested in the current flowing through the source, we do
not have to write the KCL for the node to which it is connected.

The above facts can be combined into the following rules for writing the
equations of a network with grounded voltage sources:

1. Insert the known voltages into the circuit diagram. Each node must have a
voltage, known or unknown.

2. Denote all resistors by their conductances: G; = 1/R;.

3. Write the KCL equations for the nodes nor connected to independent or
dependent voltage sources.

To illustrate the procedure, the rules will be applied to several examples.

We also introduce the usual active network symbol for the VVT, shown in Fig.
4.5.1.

+o I K —0 + +o o+

| .
V1 V2 = KV1 = V1 V2 = KV1
— O —0 — — O O —

Fig. 4.5.1.  Symbol for an amplifier and its VVT equivalent.
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EXAMPLE 4.5.1. Write the network equations for the network shown in Fig.
4.5.2.

T

Fig. 4.5.2.  Network with an independent voltage source.

The voltages are indicated in the figure, and the node with the voltage source
is marked with a cross to indicate that the KCL equation is not written there.
Every node must be assigned a voltage, as shown in the figure. The KCL equa-
tions are written for nodes 1 and 2 only:

(G, + sC; + sC)V, — sV, = sC E
_SCZ Vl + (Gz + G3 + SCz)Vz = G3E

It is convenient to rewrite them as a matrix equation:
[Gl + sC; + sC, —sC, } {V,} B [sc1 E}
_SC2 Gz + G3 + SCZ V2 G3E

ExaMPLE 4.5.2. Apply the method to the network in Fig. 4.1.4.

Nodes 1 and 4 are not considered for the KCL, and equations are written
only at nodes 2 and 3. We also know that ¥V, = pV.
KCL at node 2:

(Gz + G3 + SC4)V2 - G3V3 - SC4[LV3 = GZEI'
KCL at node 3:

_G3V2 + (G3 + SCS)V3 = 0.
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In matrix form, this is

I:Gz + G3 + SC4 _(G3 + SC4[J.)} [szl l:GzEljl
~G, G, + sCs vl Lo ]

ExAMPLE 4.5.3. Apply the method to the network in Figure 4.5.3.

L, ©
c

} Vy @‘ Vo M lb o
c, @ & l K,V L
A ‘[C2 KiKaVa = Vou
5.3

O

Fig. 4.5.3.  Network with two amplifiers.

The nodes where we do not write the KCL are crossed out; equations are
written only for nodes 1 and 2:

(Gl + Gz + SCI + SC3)VI - Gl Vz - SC3K1 Vz - GzKleVz = SC[E

_Gl Vl + (Gl + SCz)Vz O

In matrix form:

[(G, + G, + 5C; + sC;) — (G, + sCK; + GZK,KZ)] [V,} [JC,E}
—Gl (Gl + SCZ) Vz 0

Analysis of networks with ideal OPAMPs is based on the same idea. The
ideal OPAMP was introduced in Fig. 1.6.5. Its output is a voltage source,
ideally with infinitely large gain, acting on the difference of the two input volt-
ages. Marking the output with subscript 0, we can write

Ve, —Vyd=V, 4.5.1)

General Formulation Methods 147

It is convenient to introduce the inverted gain at this point

B=— 4.5.2)

1
e

The reason for the minus sign will become clear in Section 5.3. The advantage
of the inversion is that infinity cannot be handled by computers but zero can.
Equation (4.5.1) changes into

V., ~V_+ BV, =0. 4.5.3)

If the OPAMP gain approaches infinity, A — oo, then B is simply set equal to
zero and

vV, =V_.

We conclude that the voltages at the input terminals of an ideal OPAMP must
be equal. The rules stated above are supplemented by:

4. Write equal voltages at the input terminals of the ideal OPAMP. If one of
the terminals is grounded, the other one will also be at zero potential. Do
not write the KCL equation at the output node of the OPAMP.

ExAaMPLE 4.5.4. Analyze the network in Fig. 4.5.4.
Node 1 is at the same potential, E, as the other input node. The KCL is
written at node 1 only:

(G, + GE — GV, = 0.

The network acts as a VVT, with gain defined by the ratio of the conductances.

Fig. 4.5.4. OPAMP realization of a VVT with positive gain.
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EXAMPLE 4.5.5. Apply the above rules to write the equations for the network
in Fig. 4.5.5.

Fig. 4.5.5.  Active network with three OPAMPs.

One input terminal of each OPAMP is grounded; the voltage at the other
input node must be zero. Denote the nonzero voltages by V,, Vs, V.. The
nodes with voltage sources are marked by a cross to indicate that no equations
are written there. We write equations only at the nodes denoted as 1, 2, and 3:

(G, + G, + G, + sC)) ~ Vi(G, + sC)) — VouuGs = GL,E
(G, + sC) — V,G, — VssC, =0
0(Gs + Gg) — V5Gs — Vo Gs = 0
Here we have intentionally retained the terms multiplied by zero voltage for

better understanding, but there was no need to write them. Putting the remaining
terms into a matrix equation, we get

- Gl - S Cl 0 - G3 V4 G4 E
- G2 ) C2 0 V5 = 0
0 - Gs - Gs Vout 0

ExaMPLE 4.5.6. Write the necessary equations for the network in Fig. 4.5.6.
The OPAMPs are ideal.
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Fig. 4.5.6.  Network with two ideal OPAMPs.

Notice that ideal OPAMPs force three node voltages of the network to be
equal to the input voltage, E. The nodes with voltage sources are marked with
crosses, and only two equations need be written:

E(G2 + G3) - V1G2 - V2G3 = 0
E(G4 + Gs) - G4 V2 = 0

Note that we have written the KCL at the nodes with numbers enclosed in
circles, using the voltage symbols shown on the figure. In matrix form:

{Gz 63] I:Vljl _ [E(Gz + G3)}
0 G,V EG, + Gy

If the OPAMPs are nonideal, we can no longer assume that the input ter-
minals are at the same potential, but the method still remains valid. All nodes
are assigned different voltages, equations are not written at the nodes marked
with crosses, and use is made of (4.5.2) and (4.5.3). We will apply the method
to two problems.
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EXAMPLE 4.5.7. Write the equations for the network in Fig. 4.5.7. The
OPAMPs are nonideal.

Fig. 4.5.7.  Network with two nonideal OPAMPs.

All the preliminary operations have been written into the figure. We give
only the matrix form:

(G, + G, + sC) 0 -G, 0 —(G; + sCy) |
0 (G, +Gy) 0 0 -G,
0 0 —sC, (Gs + sCy) 0
-1 1 B, 0 0
| -1 0 0 1 B, _
1 o~
v, 0
v, | =| EG;s
v, 0
| Vou| _ 0 _|
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ExaMPLE 4.5.8. Write the nodal equations for the network in Fig. 4.5.8. The
OPAMPs are nonideal.

1L
1 I02
Gs |Ve
| 1
Vs P 60
Vy= Vout, 3
—Q
Vs = Voul. 2

. /;‘C O

Fig. 4.5.8.  Network with three nonideal OPAMPs.

We write four nodal equations:

(Gs + GV, — G, V3 ~ G3V; = 0
(G, + G)V, — G,Vs = EG,

—GsV; + (Gs + sC)V, — sC Vs = 0

~GsVs + (Gg + sC)Vs — sGVy = 0

followed by the equations describing the properties of the operational amplifiers:

- Vl + VZ + Bl V3 = O
- V4 + Bz Vs = O
- V6 + B3 V7 = O.
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The matrix equation is

(G, + G) 0 -G, 0 0 0 -G,
0 (G, +G) 0 0 -G, 0 0
0 0  —Gs (Gs+sC) —sC 0 0

0 0 0  —Gg (Gs+sGC) —sG

1 +1 B, 0 0 0 0

0 0 1 B, 0 0

0 0 0 0 0 -1 B,
S To

v, EG,

v, 0

v, =1 o

v 0

v, 0

v, 0

To summarize the development thus far, we were able to eliminate all cur-
rents of the voltage sources from the equations; the only variables are nodal
voltages. So far, all voltage sources had one of their terminals grounded.

The situation changes considerably if the voltage sources are floating, but it
is still possible to eliminate the currents. In order to derive additional rules, first
consider the network with one floating independent voltage source, Fig. 4.5.9.

af | | [y]@

Fig. 4.5.9.  Network with a floating independent voltage source.
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One terminal of the voltage source is assigned the voltage V. The other has the
voltage V| + E. If we write the KCL at all nodes, then we get the system

ViiG + G) — GV, — [ =0
(V, + E)YGs — VoG5 + I, = 0

-GV, — V; + E)YGs + (G, + G3 + GV, = 0.

We are not interested in the current I, and its elimination can be accomplished
by adding the first two equations:

(G, + G, + GV, — (G, + Gy)V, = —EGy
— (G, + GV + (G, + G + GV,

EG;.
In matrix form:
[Gl + G, + G, —(G, + Gy) } [Vl} |i—EG3j|
—(G, +Gy) G, + G+ Gl L, EG; ]
Let us now discuss how we can take advantage of the above steps. We can
consider both ends of the voltage source as one node when writing the KCL,

~ but we must preserve the nodal voltages as they actually are. We could say that

we are collapsing the two nodes into one when writing the KCL.

ExaMPLE 4.5.9. Write the nodal equations for the network Fig. 4.5.10, using
the concept of collapsing the nodes when writing the KCL. The OPAMP is
ideal.

The input nodes of the OPAMP are at the same potential, as indicated. The
independent voltage source is grounded, and we can mark the node with a cross.
We will still write the KCL with the current /,, to show that the rule of adding
the KCL of the output terminals is valid.

(Gl + G2 + G7) V] - G7 V2 = EG]
(G4 + G5 + G6) Vl - G6 V3 = E G4
_G7 V] + (G3 + G7)V2 + IOp = EG3

‘—G6V1 + G6V3 - Iop = Q.
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=l

—X -
G1 V1 _ Vv
Gy I 3

Fig. 4.5.10.  Network with a floating OPAMP.

Elimination of the current I,, is achieved by adding the last two equations; this
is equivalent to collapsing the nodes when writing the KCL. This results in the
following system matrix:

Gl + G2 + G7 - G7 0 Vl E G]
G4 + G5 + G6 0 - GG VZ = E G4
- (G6 + G7) G3 + G7 G6 V3 E G3

If the amplifier does not have infinite gain, the voltages at its input terminals
cannot be considered equal. We will use the same network as in the previous
example, but let the amplifier gain be 4.

ExAMPLE 4.5.10. Write the equations for the network in Fig. 4.5.11. Collapse
the output nodes of the amplifier without considering its currents.
The equations are

(G + G, + GV, — G;[V; + AV, — Vy)] = EG,
(G4 + G5 + GG)VZ - G6 V3 = EG4
—G7 V] + [V3 + A(Vl - VZ)] (G3 + G7) - GG Vz + G6 V3 = EG3
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Gs
Gy
lo
N NV, + AV, — V)
G1 V1 A V
Gy lop ®
+
E (R v,
G, Ge
G5

Fig. 4.5.11.  Network with a floating amplifier.

Rearranging terms, this results in

G, + G, + Gy(1 — A) G, A -G, v,
0 G, + Gs + G —G; v,

—G,(1 — A) + AG;, —Gg — AG, ~ AG, Gs + G5 + G, |V
EG,
= | EG,

| EG, |

The above developments will help understand the two-graph method, the sub-
ject of the next section.

4.6. SEPARATE CURRENT AND VOLTAGE
GRAPHS

For two-terminal elements, an edge on a single graph simultaneously represents
the current through it and the voltage across it. For two-port networks, one of
the variables may be zero, for instance, the input port current of a VVT. In
order to handle two-ports by a single graph, we added the input current to the
constitutive equations and allowed separate edges for the input and the output.
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Separate voltage and current graphs offer a way to eliminate this redundancy.
If the current into the port is zero, the edge is omitted on the J-graph but is kept
on the V-graph. '
" A study of the various possibilities leads to the following set of rles for
drawing the /- and V-graphs:

1. If the current in the branch does not enter the constitutive equations and is
of no interest, its edge is collapsed on the I-graph.

2. If the current in the branch is zero, its edge is deleted from the I-graph.

3. If the voltage across the branch does not enter the constitutive equatlons and
is of no interest, the edge is deleted on the V-graph.

4. If the voltage across the branch is zero, its edge is collapsed on the V- graph

Note that the edge of a variable which enters the constitutive equations cannot
be collapsed. The words ‘‘of no interest’” imply that the particular variable will
not be needed as the solution of the system; otherwise, the edge must be retained
on the graph. For instance, one is often not interested in the current through a
voltage source or the voltage across a current source.

If the rules are applied, the graphs may not only differ in structure but may
even have a different number of nodes and edges. The incidence matrix of the
I-graph is used to write the KCL, whereas the incidence matrix of the V-graph
is used for the KVL:

Vb = ALVn
Ybe + Z[,Ib = Wb

Al, = 0. 4.6.1)

The subscripts i, v refer to the I or V-graph; Y, and Z, need no longer be square
matrices.

The rules stated above were applied to all ideal elements and are collected
in Fig. 4.6.1. It was assumed that the voltage across the current source (depen-
dent or independent) or the current through the voltage source (dependent or
independent) is of no interest. All four transducers now have only one consti-
tutive equation; the variable whose value is known to be zero is eliminated.
Two-ports which need two equations for their full description (gyrator, con-
verter, inverter, and transformer) are represented as in the one-graph method.

Since collapsing of nodes requires renumbering, we will use the following
notation:

Original nodes of the network will be denoted by numbers in circles.
Renumbered nodes of the /-graph will be denoted by numbers in squares.
Renumbered nodes of the V-graph will be denoted by numbers in triangles.
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ELEMENT
CURRENT
SOURCE
VOLTAGE
SOURCE
°j [-3] ‘fi
OPEN
CIRCUIT | , 1“
o} o} )
j i
SHORT T a
CIRCUIT . . -
bj i
J j j
ADMITTANCE @V i I yv -1 =
; i )
j i J
IMPEDANCE éz I ] ~v 421 =
il j' jl
j j -
} ° j=)
NULLATOR .
i °j’ |
i=j' °
NCRATOR . —_
ojl

Fig. 4.6.1.

Ideal elements and their two-graph representation.
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EL EMENT SYMBOL 1-GRAPH | V- GRAPH | CONSTITUTIVE EQUATIONS

jo— K oj k j ok

VCT v 1gV I [ gV-1:0
j‘U k' Oj' kl ).I ok’
jo— k oj ' j k

= -1 Vi

VVT v +V2=F-V| k.k I I [F' ] [v':|=o
; el o o by 2
i k i k| _, ok

ceT I,} §l011=12 I ] S [e “][i']w
jl kt jl kt °k| 2
j K J p—— N . 13

’ :+ k=] =]

cvT 1 vV =rl I ° I r1-V =0

j e i .
I I i
i 1 2 « oj =x jEj' ok
OPAMP v . . . —_—
J k j '
Vi=0; L;=0 e ok
Fig. 4.6.1.  (Continued)

The tableau matrix equation is easy to set up once we know the sizes of the
various partitions. They are indicated in (4.6.2):

number of number of
retained retained
branch branch
voltages currents
number of retained —
branch 1 0
voltages
number of
const!tunve Y b Z b
equations
number of
nodes on 0 A.
I-graph L )

number of
nodes on
V-graph

_A:

— — —
v, 0
Ib = Wb (46.2)
\'A 0

ExAaMPLE4.6.1. Draw the I- and V-graphs for the network of Fig. 4.1.4. Write
the A;, A, matrices, determine the sizes of the submatrices in (4.6.2), and write
the two-graph tableau equation.
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The graphs are in Fig. 4.6.2. Collapsing of the nodes followed the instruc-
tions given in Fig. 4.6.1. The matrices are

2 3 45

El[—1 1 0}
A=

0 -1 1

—_ =
- N
o W
- o &~ © =
S O wn
S O O

-1 1

o o ©
o
|
—
o
ek
—

0 0 -1001

Current and voltage graphs for the network in Fig. 4.1.4.

Fig. 4.6.2.
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The constitutive equations are

V, = E|
GV,—-L =90
GV, ~L =0
sCV,— 1, =0
sCVs —I; =0
wVs — V, = 0.

The sizes of the submatrices can now be determined. Horizontally they are
7 + 4 + 4, vertically 7 + 6 + 2. Once the sizes are known, it is easier to fill
the constitutive equations directly, one by one, without preparing the matrices.
The result is shown in Fig. 4.6.3.

[

|
A
%
va

O S T e —

Fig. 4.6.3.  Two-graph tableau for the network in Fig. 4.1.4.
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J10T@ % HGQ

- = — L. -

EXAMPLE 4.6.2. Prepare the two-graph tableau formulation of the generalized

impedance converter of Fig. 4.1.5. .
The network is redrawn, and its graphs are shown in Fig. 4.6.4. The matrices

® Gg @ ae Gy Gg ®

B 3 o A

10 ©0@® °
©
V-GRAPH
I - GRAPH

Fig. 4.6.4.  Current and voltage graphs for the network of Example 4.6.2.
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are

8 9 10

)
—
o
o
o
o
|
—

B
1
—
|
_
—
|
_
—

A,=A[-1 1 0 0
AL O 0 -1 10

o

In the two-graph method, the OPAMPs do not have any constitutive equations.

The remaining ones are
GV;—-1,=0, fori =5,6,7,8,9
Iip = Jio

The sizes of the submatrices will be horizontally 5 + 6 + 3, vertically 5 +
6 + 3. The tableau formulation is shown in Fig. 4.6.5.

4.7. REPR_ESENTATiON OF THE GRAPHS
ON THE COMPUTER

This section describes one way of representing the graphs on the computer. The
topology of the network must be given to the computer in the form of a table.
Such a table will contdin information on the type of the element and the nodes
from which and to which the element goes. The values are not needed for this
explanation.

. Consider the network in Fig. 4.1.4. A table of the following form will con-
tain the necessary information:

VVT
Element: E, G, G, C, Cs Input Output
From node: 1 1 2 2 3 3 4
To node: 0 2 3 4 0 0 0

This representation contains the required information for the one-graph method.
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V-GRAPH 1 - GRAPH IV-GRAPH |
I| BRANCH l BRANCH | NODE I
| VOLTAGES | CURRENTS |VOLTAGESI

}56769]5678910“ 2 3 |
|

o | B
o | | |- 1 1 [vs W _}
KVL SATIS- 1 0 | V- Ve
FIED ON \ | -t Vs 0
V - GRAPH | L - v
| | l 8
| . _l'_]_ ] Ve -
T Gg J-1 | Is
Gg l - ‘ Ig =
CE - 1
| GB | | | l I:
"._ GQI - I 1 J
: + \ ] _lo_ _lO_
—— — [ T T VA
KCL SATIS- ! |
FIED ON 0 -1 0 VA 0
I-GRAPH | ‘l -1 E (&l L

Fig. 4.6.5. Two-graph tableau for the network in Fig. 4.1.5.

In the two-graph method, two new tables must be prepared, each taking into
account the collapsing of the nodes due to some elements or the absence of the
edges for others. . .

Consider first the I-graph for the preceding table. The vqltage source col-
lapses nodes 0 and 1. Thus 1 changes everywhere in the table into 0. Moreover,
the VVT collapses the output node to ground. This means that 4 will change
everywhere into 0. The table for the I-graph thus far would be

Edge: . 1 2 3 4 5 6 7

From node: 0 0 2 2 3 3 0
To node: 0 2 3 0 0 0 0

As there is no node 1, all the numbers are decreased by one. This amounts to
the renumbering of the nodes on the I-graph:

Edge: 1 2 3 4 5 6 7

From node: 0 0 1 1 2 2 0
To node: 0 1 2 Y 0 0 0
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In the final step, note that there is no longer any current associated with the
voltage source or with the output of the VVT and that the input current of the
VVT is zero. Scan the data again and implicitly delete these edges:

Edge: b 2 3 4 5 é 7

I-graph 4.7.1)

—
[
(=]
(=]

From node: 0 0 1
To node: 0 1 2 0 0 0 0

The I-graph will have two nodes and edges 2, 3, 4, 5. Edges 1, 6, 7 will be
absent (they form self-loops from O to O node). The table is in agreement with
the I-graph in Fig. 4.6.2.

For the voltage graph, one proceeds with the same basic information. Check-
ing Fig. 4.6.1, we conclude that no collapsing of nodes will take place and all
edges will be present; the graph is thus represented by the information in the
original table, and we have

Edge: 1 2 3 4 5 6 1

V-graph 4.7.2
Frommode: 1 1 2 2 3 3 grap ( )
To node: 0 2 3 4 0 0 0

4.8. MODIFIED NODAL FORMULATION
USING /- AND V-GRAPHS

Elimination of all branch voltages and of some branch currents was considered
in previous sections. The same basic approach can be applied when using the
two-graph modified nodal method.

The elimination of unwanted variables is done systematically by:

1. Replacing all branch currents of elements which have admittance description
by their constitutive equations. This introduces branch voltages for these
elements into the KCL equations.

. Replacing all branch voltages by the node voltages of the V-graph.

3. Collecting these and the remaining equations into a matrix.

N

The above steps are best seen on a simple example in which we eliminate
the variables by using the above steps. Consider the network in Fig. 4.8.1 and
its I- and V-graphs. The node numbering on the I-graph has been changed.
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G2
+
E, ==C,4
©
CIRCUIT
A /A
@, M 2
® ®
2 3 | 3
ot NN
1- GRA:PH V - GRAPH

Fig. 4.8.1.  Circuit demonstrating the two-graph modified nodal formulation.
There remains only one node with a nonzero number. The KCL equation is:

From the V-graph we have the following branch-node voltage relations:

V,=VA
KVL: Va=VA - VA
Vs =VA. 4.8.2)

and the constitutive equations of the elements are

Vi = E,
12 = G2 V2
13 = SC3 V3. (483)
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Note that the current of the voltage source has been eliminated directly by the
topological properties of the I-graph.

Substitution of the constitutive equations for the conductor and capacitor into
the KCL leads to

_G2 V2 + SC3 V3 =0. (484)

Next, replace all branch voltages in (4.8.4) and in V| = E, by the V-graph node
voltages (4.8.2). The equations, written in matrix form, become

KCL [—G2 G, + scﬂ [VA} [o]
______________________ = (4.8.5)
1 0 VA E,

The admittance portion of (4.8.5) has one row and two columns. The first row
expresses the KCL relationship. The second row takes care of the constitutive
equation of the voltage source whose current has been eliminated topologically.

Formally, the two-graph modified nodal formulation can be derived by par-
titioning appropriately the constitutive equations. Partitioning of the KCL and
KVL equations must follow the same sequence. Subscripts on voltages refer to
the V-graph, subscripts on currents to the I-graph, and the branch numbering
on the two graphs is done independently. We have

I, =YV, (admittances)

V, = 7,1, (impedances)

I; = ], (current sources) 4.8.6)
V; = E; (voltage sources)

I, = al; (CCTs), Vs = pVs (VVTs)

YVs + ZJ, = W (general multiterminal networks).

Since there are six types of constitutive equations, A;, A, must be partitioned
into six submatrices. The KCL equation A,I, = 0 becomes

AL+ AL + AL + Ay + AL + A Jg = 0. 4.8.7)
The KVL equation V, = ALV A is rewritten as six equations:

V.=AVA, k=1,2,34,5,6. (4.8.8)
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Substitute for I,, I3, and I, into (4.8.7), using the constitutive equations. This
results in

A,-,Ylvl + Ai212 + (Au(l + Ais)IS + Ai616 = _Ai3JS' (4.89)

In the second step, replace the branch voltage V, by the first equation in (4.8.8).
This results in

AYA, VA +AL + (Aye + AL + Ads = —AJ,.  (4.8.10)

Use the remaining equations (4.8.8) and substitute them into the remaining
constitutive equations (4.8.6). The result is

ALVA =70,

ALVA =E,
/ AerA = l"‘AtusV& .
YALVA + Zs = W. (4.8.11)

Equations (4.8.10) and (4.8.11) can be written in matrix form as follows:

V-graph node subset of branch currents
voltages on /-graph
KCL on F A Y A, A, ALa+ Ay Ag VA —AJ,

At —Z2 0 0 0

v2 12
' 0 0 =| kg

A, 0 I,
— nA’ 0 0

ements (AIUA I‘I'AVS) 0 0 16

| YA, 0 0 Z;_| L w

(4.8.12)

This is the formal expression of the formulation with two graphs. It is nor used
in this form for actual network formulation. Its properties are studied and the
conclusions applied below.

Equation (4.8.12) presents one important result: the portion A; YA}, has a
form in which the rows satisfy the KCL equations on the I-graph, whereas the
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columns are expressed by nodal voltages on the V-graph. This is the same form
as in the previous type of the modified nodal formulation, the only exception
being that the numbers of the rows and columns are those of the nodes given
on the two independent graphs. Let an admittance y have an edge going from
Ji to j; on the J-graph. Similarly, let the edge on the V-graph go from Jo o ji.
The symbolic formula for entering an admittance into the nodal portion has the
following form:

V-graph edge pointing
from node  to node
Jo Jo
fromnode j,| ¥ -y
I-graph edge pointing ] . (4.8.13)
to node j} -y y

If j; or j; is zero, the row is omitted in the matrix. Similarly, if j, or j/, is zero,
the column is absent from the matrix. As an example, consider the I-graph
information provided by (4.7.1) and the V-graph information given by (4.7.2).
The third element, G;, has its I-graph edge pointing from node 1 to node 2,
while the V-graph edge points from node 2 to node 3. Using the above sche-
matic representation, + G, will be in the positions (1, 2) and (2, 3), while — G,
will be in the positions (2, 2) and (1, 3). All elements not having admittance
description are entered into the remaining partitions. This can be done system-
atically, and Fig. 4.8.2 collects all usually encountered ideal network elements
and the way they are entered into the matrix of the two-graph modified nodal
matrix without writing the matrices A;, A,. This method cannot avoid entirely
the use of graphs (or their computer equivalents), but examples given below
show that writing the matrix equation is as easy as in the previous cases.

EXAMPLE 4.8.1. Write the two-graph modified nodal formulation for the net-
work of Fig. 4.1.4 without generating the matrices A;, A,. The graphs were
given in Fig. 4.6.2, and their tabular equivalents are (4.7.1) and (4.7.2).

The I-graph has two ungrounded nodes, while the V-graph has four. Thus
the nodal portion of the formulation will be 2 X 4.

Element 1 does not enter the matrix since it forms a self-loop on the /-graph.
The same will be true for the input and output of the VVT (edges 6 and 7). The
remaining elements are filled by the schematic rule given above. The consti-
tutive equation for the voltage source is VA = E,, and for the VVT, V5 —
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gV A = 0. They are appended below the nodal portion. The result is

N A A A
O[-G, G+ G +sC, -G, —sC, VA 0
0 -G, G, +sCs 0 va | ] o
T o o o ||va | |E&
0 0 —u 1 VA 0

ExAMPLE 4.8.2. Consider the generalized impedance converter of Fig. 4.1.5
and its I- and V-graphs (Fig. 4.6.4). The information can be transferred into
tables as follows:

Edge: 1 2 3 4 5 6 7 8 9 10
Lgraph: Fromjz: 0 ©0 0 ©0 1 0 2 0 3 0
To ji: 0 0 0 0 0 2 0 3 0 1
Edge: 1 2 3 4 5 6 7 8 9 10
V-graph:  From j,: 0 0 0 0 1 2 1 3 1 0
To ji: o o o o 2 1 3 o o

Both I- and V-graphs have three nodes, the matrix will be 3 X 3, and no
additional constitutive equations will be appended. The result, filled by the
scheme given above, is

V-graph nodes

A A A
I-graph nodes G+ G, -Gy -G, ||va [=]0
G+Gy, 0 —GgllVa 0

which is the same result obtained in Example 4.5.5.
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ExaMpPLE4.8.3. We wish to know what the idealized properties of the network
in Fig. 4.8.3 are. To do so, replace the transistors by their idealized represen-
tation by means of nullators and norators. This is also done in Fig. 4.8.3, along
with the I- and V-graphs. The information in the graphs can be transferred into
the following tables:

Element: C, G, C.

I-graph: From j;: 1 2 2
To ji: 0 0 0
Element: C, G, C.

V-graph: From j,: 0 2 1
To ji: 2 0 0

FCe CIRCUIT

(a)

@

SINGLE GRAPH

(] 2]
ONO; @, @AG) ®A®
i Ca Gp ce Co Gp e
Le® £O®
I~ GRAPH V -GRAPH

(c) (d)

Fig. 4.8.3.  (a) Transistor realization of an impedance converter; (b) idealized simulation using
nullators and norators (see Fig. 1.6.6); (c, d) current and voltage graphs.
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The 2 X 2 matrix equation is filled by inspection:
sC, G, llva 0l

Solution indicates that Z;, = V, /J = G, /s*C,C..

4.9. SUMMARY OF THE FORMULATION
METHODS

Five methods of formulating network equations were presented in this chapter.
Four of them are intended for computer use, one for hand calculation.

The methods were demonstrated repeatedly in two examples: a second-order
active network (Fig. 4.1.4) and a generalized impedance converter (Fig. 4.1.5).
The matrix sizes and density of the matrices are compared in Tables 4.9.1 and
49.2. .

The tableau matrices are large even for very small problems. They are always
very sparse, and sparse solvers are a necessity. Unfortunately, since the matrices
do not have regular structures, the renumbering and preprocessing are compli-

TABLE 4.9.1.  Second-Order Active Network of Fig. 4.1.4.

Nonzero
Matrix Size Entries Density
One-graph tableau 18 x 18 39 12.04%
Two-graph tableau 15 x 15 33 14.67%
Modified nodal L 6% 6 15 41.67%
Two-graph modified nodal * 4 x4 9 56.25%
By hand 2Xx2 : 4 100%

TABLE 4.9.2.  Generalized Impedance Converter of Fig. 4.1.5.

Nonzero
Matrix Size Entries Density
One-graph tableau 25 x 25 57 9.12%
Two-graph tableau 14 x 14 31 15.81%
Modified nodal 7x7 19 38.78%
Two-graph modified nodal 3x3 7 71.78%
By hand 3x3 7 71.78%
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cated. Modified nodal formulations are much more compact and can be solved
without sparse matrix solvers even in case of moderate-sized networks.

The two nodal formulations are recommended for problems connected with
programming. The tableau equations are mainly of theoretical importance. The
two-graph nodal formulation is especially advantageous for the analysis of
switched networks, as demonstrated in Chapters 15 and 16.

4.10. EXAMPLE

This section will demonstrate the design of an active ninth-order Cauer-param-
eter low-pass filter with the following specifications: pass-band from 0 to.3470
Hz, 0.03 dB ripple, and stop-band starting at 3800 Hz with minimum attenua-
tion of 50 dB. '

The design method will be briefly explained. First, an LC equivalent filter
is designed. The specifications are tightened to 0.02 dB in the pass-band to
provide a safety margin. The filter is shown in Fig. 4.10.1, scaled to R = 1
and the pass-band scaled to w = 1 rad/sec. Active realization is based on
impedance transformations which convert each inductor into a resistor, each
resistor into a capacitor, and each capacitor into an active element called a
Jfrequency-dependent negative resistance (FDNR) (see Fig. 4.10.2). The ele-
ment is realized by means of the circuit shown in Fig. 4.1.5 by replacing G;
and G, by capacitances. Additional information on FDNRs and filter design
using these elements can be found, for instance, in [3, 4].

The formulation method of Section 4.4 is used. Each ideal OPAMP is incor-
porated into the system matrix, as given by Fig. 4.4.1. The pass-band response
is shown in Fig. 4.10.3 and the stop-band response in Fig. 4.10.4. A slight
departure from equiripple behavior is due to the rounding of element values.
This filter will be optimized in Chapter 19 with linear models of nonideal
OPAMPs, and the final element values will be changed.

1.19244 0.96649

0.70095

0.79165 0.26559

0.43702 1.30606 1.28066

1.20086 T 0.63117 T 0.57651 T T
o

® ® & & *—0

0.22423

0.86114

Fig. 4.10.1.  Initial ninth-order Cauer-parameter low-pass filter with approximately 0.02 dB in
the pass-band and minimum 50 dB attenuation in the stop band. The values are in F (farads), H
(henrys), and { and the pass-band is scaled to w = 1 rad/sec.

A,

O+
Vout

10

.-
Les

R,

= 5.88327
R,s = 5.62599
R, = 3.63678

R12
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9]
=]

<t -
©0 O
o W
® N
0 -
W
R &
r o

R in kNl
C in nF’

RZO

Active realization of the filter shown in Fig. 4.10.1.

Fig. 4.10.2.
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01
[V, ! dB)
0 '}

-.01

-02 -

—04

—.05 I L 1 I L |

400 600 800 1000 1500 2000 3000 4000
—»f

Fig. 4.10.3.  Pass-band response of the filter shown in Fig. 4.10.2.

20

HVoutl
dB

-

-80 L 1 I 1 I
5 1 2 5 10 20 50

—» f(kHz)

Fig. 4.10.4.  Overall response of the filter in Fig. 4.10.2.
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PROBLEMS

P.4.1. Write the incidence matrices for the networks shown in Fig. P.4.1 and
use them in setting up the tableau matrix equations.

©
Fig. P.4.1.

P.4.2. Write the one-graph incidence matrices for the networks in Fig. P.4.2
and write their tableau matrix equations.

+ V% -
1 IH
——3 1
+ 3F 29
E_(b' 2H + Iout (a)
3V

Fig. P.4.2.
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P.4.3.

P.4.4.

P.4.5.

P.4.6.
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Iout (b)

38

Tout ()

0) @

Gt L

. 1% .

Apply the formulation of Section 4.3 to the networks shown in Fig.

P.4.1.

Fig. P.4.2.

(Continued)

Apply the modified nodal formulation without graphs to the networks
shown in Fig. P.4.1.

Apply the modified nodal formulation without graphs to the networks
shown in Fig. P.4.2.

Practice the modified nodal formulation without graphs on the net-
works shown in Fig. P.4.6.

I

General Formuiation Methods

6, (B

G2
@62 |G I—©
Ca
KaVs O
{c) ’
G| G}
 — ———
1 O | ol@u [0 @0
J + +
K3Ils 1 K Lo L Kzlz_CB 1,
(d)
® ®. @
K3 Vag l l l
c + K, V28 Cffcl } AR CZl'GZ ]

(e)
Fig. P.4.6.

(Continued)
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P.4.7. Apply the modified nodal formulation without graphs to the trans-
former networks shown in Fig. P.4.7.

Ca
|,_—
o ey
Ly +
JT@ G| Gz C?_E

|

T
(b)
Fig. P.4.7.

P.4.8. Apply the nodal formulation of Section 4.5 to the active networks
shown in Fig. P.4.8.

(a)
Fig. P.4.8.

(e)
Fig. P.4.8. (Continued)




182

P.4.9.

P.4.10.

P.4.11.

P.4.12.
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Draw separate voltage and current graphs for the networks shown in
Fig. P.4.2.

Write the two-graph tableau formulation for the networks shown in
Fig. P.4.2, using the graphs of Problem P.4.9.

Write the two-graph modified nodal formulation for the networks
shown in Fig. P.4.2.

Apply the two-graph modified nodal formulation to the networks shown
in Fig. P.4.12.

2AT€® 19 - l® C?

30
® @ 30 ®
N ) , 228 N
6V 4F‘Ez S5H 7V,
(c)

1
B . 30
3A f 12 22 v, 2v, 2l
()
Fig. P.4.12.
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P.4.13. The network shown in Fig. P.4.13 is a phase-shift oscillator, provided

that the gain of the inverting amplifier is adjusted to 4 = 29. In such
cases, the oscillation frequency is

G 1
w = — —= rad/sec.

=

(a) Set up the system equations for this network using the formulation
method of Section 4.5. Note that the right-hand-side vector will be
a zero vector.

(b) Find the determinant of the system matrix, set it equal to zero, and
substitute s = jw. Separating real and imaginary parts, obtain the
condition on the gain and the oscillating frequency (given above).

(c) Find the poles of the determinant by retaining the variable s.

(d) Calculate the pole positions for 27 < 4 < 31and G/C = 1.

[

c c L ¢ : + -
v, Ay, |
G ¢ U : : ¥
, - + |
|
L WIT_ _
Fig. P.4.13

P.4.14. Write the modified nodal formulation for the network in Fig. P.4.14.

Enter the inductor in impedance form and use Table 4.1.1 to handle
the initial conditions.

(D 18 @
I,=3A
i + 12
IF —= V°=2V IH

Fig. P.4.14.
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5

Sensitivities

This chapter introduces the concept of sensitivity and provides basic informa-
tion by considering network functions in explicit form. Computational aspects
of sensitivity evaluation will be covered in Chapter 6.

Sensitivities are mathematical measures that provide additional insight into
the behavior of a physical system. There are three main reasons for their study:

1. Sensitivities help in the understanding of how variations of parameters, such
as those of element values, influence the response.

2. They help in comparing the quality of various networks having the same
nominal response.

3. They provide response gradients in optimization applications.

Various sensitivity definitions are introduced in Section 5.1 and applied to
the most common response variables: network functions, their poles and zeros,
and the Q’s and w’s of the poles and zeros. The formulae derived are valid for
networks of arbitrary complexity.

As a network response is usually influenced by simultaneous variations in
several parameters, multiparameter sensitivity is discussed and its use demon-
strated in Section 5.2. :

The designer is often interested in the behavior of his network in the presence
of parasitic elements. Under ideal conditions, these elements have zero nominal
values. Sensitivities are defined with respect to these elements and can be used
to predict response variations when parasitics take on small values. Section 5.3
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