​

MOSFET-n-slope-factor

{C_D/C_ox}={varepsilon_S}/{t_D}  {/}  {varepsilon_ox}/{t_ox}  

Definition of n is:

{n}= 1 + {C_D/C_ox} 

Substituting:

{n}= 1 +{varepsilon_S}/{x_D} {/} {varepsilon_ox}/{t_ox}

Using the depletion width from table:

{n}= 1 +{varepsilon_S}/{sqrt { {2 phi_s } / {Phi_s}}} {/} {varepsilon_ox}/{t_ox}

Which can be simplified quickly to the following when needed:

{n}= 1 + 1/{C_ox} {sqrt{ {q{varepsilon_S}{N_a}}/{2 phi_s} } }   ….this is almost the same as equation 2.1.58 of CMOS Analog Design Using All Region MOSFET Modeling

If you want to include the linear term of depletion region electric field then substitute  {(phi_s - phi_t)}   for  {phi_s}

{n}= 1 + 1/{C_ox} {sqrt{ {q{varepsilon_S}{N_a}} / {2 (phi_s - phi_t)} } }

And the phrase now exactly matches the book.

 

Identity Table

Phi = {qN_a / varepsilon_s} E_surface = sqrt { {2 phi_s Phi_s} }
 x_d = sqrt { {2 phi_s } / {Phi_s} }  E_surface = Phi_s x_d 
 
{C_D/C_ox}={varepsilon_S}/{t_D}  {/}  {varepsilon_ox}/{t_ox}   gamma =  {varepsilon_s}/{1} {/} {varepsilon_ox}/{t_ox} {sqrt{2 Phi_s }}

Research Links


0 Comments

Leave a Reply

Avatar placeholder

Your email address will not be published. Required fields are marked *