Poissons-Equation-Derivation

Phi = {q_total / varepsilon_s}

E circ A = {rho A x/ varepsilon_s}

E = {rho}/{varepsilon_s} {x} 

dE/dx = {rho}/{varepsilon_s} 

{{d^2{phi}}/dx^2} = -{rho}/{varepsilon_s}   which is Poisson's equation.

Substitute the depletion region charge density

 {rho}= q(p-n+N_D-N_A)  at the surface

0 = q(p-n+N_D-N_A)       far from the surface

Subtracting:

 {rho}= q(p-p_0)-q(n-n_0) 

Depletion Derivation Line Inversion Derivation Line
 {rho}= q(p-p_0)=q{p_0}[e^{{-phi}/{phi_t}}-1]    {rho}= -q(n-n_0)=-q{n_0}[e^{{phi}/{phi_t}}-1]=-q{{{n_i}^2}/{p_0}^2}{p_0}[e^{{phi}/{phi_t}}-1]    {{{n_i}^2}/{p_0}^2}=e^{-2{phi_F}/{phi_t}}    
{{d^2{phi}}/dx^2} = {{-qp_0}/{varepsilon_s}} {[e^{{-phi}/{phi_t}}-1]} {{d^2{phi}}/dx^2} = {{qp_0}/{varepsilon_s}}{e^{{-2{phi_F}}/{phi_t}}}{[e^{{phi}/{phi_t}}-1]}
int{0}{phi_s}{2{{d^2{phi}}/dx^2}{d{phi}/{dx}}} = {{-2qp_0}/{varepsilon_s}} int{0}{phi_s}{{[e^{{-phi}/{phi_t}}-1]} {{d{phi}}/{dx}}} int{0}{phi_s}{2{{d^2{phi}}/dx^2}{d{phi}/{dx}}} = {{-2qp_0}/{varepsilon_s}}{e^{-2{phi_F}/{phi_t}}} int{0}{phi_s}{{[e^{{phi}/{phi_t}}-1]} {{d{phi}}/{dx}}}  
({d{phi}}/{dx})^2 = {{2qp_0}/{varepsilon_s}} {[{phi_t}e^{{-phi}/{phi_t}}+{phi}]} ({d{phi}}/{dx})^2 = {{2qp_0}/{varepsilon_s}}{e^{-2{phi_F}/{phi_t}}} {[{phi_t}e^{{phi}/{phi_t}}+{phi}]}   right hand side evaluated 0 to  {phi_s}
({d{phi}}/{dx})^2 = {{2qp_0{phi_t}}/{varepsilon_s}} {[e^{{-phi_s}/{phi_t}}+{phi_s}/{phi_t}-1]} ({d{phi}}/{dx})^2 = {{2qp_0{phi_t}}/{varepsilon_s}}{e^{-2{phi_F}/{phi_t}}}{[e^{{phi_s}/{phi_t}}+{phi_s}/{phi_t}-1]}
({d{phi}}/{dx})^2 = {{2qN_A}/{varepsilon_s}}{[{phi_t}e^{{-phi_s}/{phi_t}}+{phi_s}-{phi_t}]} ({d{phi}}/{dx})^2 = {{2qN_A}/{varepsilon_s}}{e^{-2{phi_F}/{phi_t}}}{[{phi_t}e^{{phi_s}/{phi_t}}+{phi_s}-{phi_t}]}

 

 Identity Table

Phi = {qN_a / varepsilon_s} E_surface = sqrt { {2 phi_s Phi_s} }
 x_d = sqrt { {2 phi_s } / {Phi_s} }  E_surface = Phi_s x_d 
 
{C_D/C_ox}={varepsilon_S}/{t_D}  {/}  {varepsilon_ox}/{t_ox}   gamma =  {varepsilon_s}/{1} {/} {varepsilon_ox}/{t_ox} {sqrt{2 Phi_s }}
 

0 Comments

Leave a Reply

Avatar placeholder

Your email address will not be published. Required fields are marked *