Research Links

 

Fermat's little theorem states that if p is a prime number, then for any integer a, the number a p − a is an integer multiple of p. In the notation of modular arithmetic, this is expressed as

a^{p} mod {p} = a

For example, if a = 2 and p = 7, 27 = 128, and 128 − 2 = 7 × 18 is an integer multiple of 7.

If a is not divisible by p, Fermat's little theorem is equivalent to the statement that a p − 1 − 1 is an integer multiple of p:

a^{p-1} mod p = 1

The following table has  a = 3 with p=17.  Notice how the result Mod(in)  has every number 1 through 16 exactly 1 time each.    I call this disordered sequential list a "jumble".  This can be used to generate a quick intuitive derivation of the theorem.

 

Multiply each row together to get: 

  ( a * 2a * 3a *4a * .... (p-1)a ) mod p   = ( 3 * 6 * 9 * 12 * 15 * 1 * .......11 * 14 ) mod p  

  ( (p-1)! a^{p-1} ) mod p   = (p-1)! mod p  

  ( a^{p-1} ) mod p   =  1 mod p  

  ( a^{p-1} ) mod p   =  1 

   {a^p} mod p   =  a 

It is in the above paragraph of mathematics that you can see that all the numbers 1,2,3....p-1 must be relatively prime to p in order for the derivation to work and the relation to hold.  If not some of the values in the jumble will be skipped.


 

???????  Not sure what I saw below

= (a^p-1) mod p  = 0   Below is an example of the values of this phrase with p=5

Fermat's Little Theorem Spreadsheet

Observation: Relationship of the Roots of the Polynomial

Using the example x^4-1 assuming p=5 you get the following root map:

x^4-1 = (x-1)(x-i)(x+1)(x+i) 

for x=2:

x^4-1 = (1)(2-i)(2+1)(2+i)=(1)(3)(5)= 15 and this relationship works for all the coprimes. 

for x=3:

x^4-1 = (2)(3-i)(3+1)(3+i)=(2)(4)(10)=80 

Categories: Math

0 Comments

Leave a Reply

Avatar placeholder

Your email address will not be published. Required fields are marked *