SYMMETRY OF THE GAMMA FUNCTION

In the open right complex half plane, the gamma function is

['(s) = / toe" ﬁ, Re(s) > 0.
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Two basic properties of gamma are
e I'(1)=1and I'(1/2) = /7.
o I'(s+1) =sI(s), so that I'(n+1) =n! forn =0,1,2,---.
The volume of the n-dimensional unit ball is 7%/2/(n/2)! for n = 1,2,3, - - -, where
naturally (n/2)! is understood to mean I'(n/2 + 1).
Various methods extend the gamma function meromorphically to the full com-
plex plane. One approach is to note that the left side of the equality

[(s+ 1) =sI(s)

is defined on the larger half plane Re(s) > —1, defining the right side on the larger
half plane as well; now the left side is defined on Re(s) > —2, and so on.

A second approach is to note that the integral f;oo t*e~tdt/t converges robustly
for all complex s at its upper endpoint and is fragile only at its lower endpoint,
requiring Re(s) > 0 there. Thus, for Re(s) > 0 we break the integral into two
pieces and then pass the exponential power series through the first one,
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The last expression just computed extends meromorphically to C, with a simple
pole at each nonpositive integer —n, where the residue is (—1)"/n!.

A third approach is suggested by the second one, as follows. Because I'(s) has
a simple pole at each nonpositive integer as just described, I'(s)['(1 — s) has a
simple pole at every integer. Further the residue of I'(s)I'(1 — s) at any nonpositive
integer —n is (—1)™ because I'(n+ 1) = n!. And because T'(s)I'(1 — s) is symmetric
about the vertical line Re(s) = 1/2, similarly its residue at any positive integer n is
also (—1)™. All these properties of I'(s)I'(1 —s) are shared by the function 7/ sin s,
and so we wonder how the two are related.

In fact they are equal. It suffices to show that

™

I(s)I'(1—s) = 0 < Re(s) < 1.
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And then this identity can be used to extend I'(s) meromorphically to C without
reference to the arguments given above. With these ideas in mind, this writeup
establishes the boxed identity.



2 SYMMETRY OF THE GAMMA FUNCTION

The Haar measure of the multiplicative group of positive real numbers (RZ), )
is
dt
dpu(t) =
Compatibly with the familiar rules d(t + ¢) = dt and d(at) = adt for the usual
measure dt of the additive group (R, +), we have
(ct

antet) = S = 8 _ g,
and d(te dt
du(t) = % =a, = adu(t).

The integral [ t*du(t) converges for Re(s) < 0, and so, because du(t™!) =
—dp(t), the integral ftlzo t* du(t) converges for Re(s) > 0.
The definition of the gamma function as an integral is really

I(s) = /]RX t5e~tdu(t), Re(s)>0

In the usual notation for the gamma integral as in integral from 0 to oo, it should
be understood that the lower limit of integration 0 is just as improper as the
upper limit co. Despite the lower limit of integration being improper, the integral
converges for Re(s) > 0, as just explained. Also, the gamma integral converges
at its improper upper limit of integration because the exponential decay of e~¢
dominates the polynomial growth of ¢°.

Now we establish the desired identity,

T(s)[(1 — ) = Sigm, 0 < Re(s) < 1

To do so, it suffices to consider only real s between 0 and 1. For such s, the
definition of gamma gives

P - = [ e, I ) )
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Replace = by wz and recall that dg( wx) = du(z),

T(s)I'(1—s) // wr' %™ 0F) dp(z) dp(w).
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Exchange the order of integration and change to ordinary measure,

L(s)I'(1 —s) :/ x*S/ e~ (HD)v qoy dur.
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The inner integral is 1/(1 + z), leaving
© xfde

F(s)F(l—s):/:O T3z

And we have evaluated this last integral by contour integration,

D(s)D(1—s) = SJM, 0<s<l.

As above, the result extends by uniqueness to all complex s such that 0 < Re(s) < 1,
and then it extends I' to all of C.



