

GNU/LINUX

APPLICATION PROGRAMMING

SECOND EDITION

M. TIM JONES

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

Charles River Media

A part of Course Technology, Cengage Learning

© 2008 Course Technology, a part of Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright

herein may be reproduced, transmitted, stored, or used in any form or by

any means graphic, electronic, or mechanical, including but not limited to

photocopying, recording, scanning, digitizing, taping, Web distribution,

information networks, or information storage and retrieval systems, except

as permitted under Section 107 or 108 of the 1976 United States Copyright

Act, without the prior written permission of the publisher.

GNU/Linux Application Programming,

Second Edition

M. Tim Jones

Publisher and General Manager, Course

Technology PTR: Stacy L. Hiquet

Associate Director of Marketing:

Sarah Panella

Manager of Editorial Services:

Heather Talbot

Marketing Manager: Mark Hughes

Acquisitions Editor: Mitzi Koontz

Project Editor: Marta Justak

Technical Reviewer: Jim Lieb

Editorial Services Coordinator:

Jen Blaney

Copy Editor: Kevin Kent

Interior Layout Tech: Judy Littlefield

Cover Designer: Tyler Creative Services

Indexer: Joan Green

Proofreader: Kate Shoup

CD-ROM Producer: Brandon Penticuff

Printed in the United States of America

1 2 3 4 5 6 7 11 10 09 08

For product information and technology assistance, contact us at

Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,

submit all requests online at cengage.com/permissions

Further permissions questions can be emailed to

permissionrequest@cengage.com

Library of Congress Control Number: 2007939373

ISBN-13: 978-1-58450-568-6

ISBN-10: 1-58450-568-0

Course Technology

25 Thomson Place

Boston, MA 02210

USA

Cengage Learning is a leading provider of customized learning solutions

with office locations around the globe, including Singapore, the United

Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:

international.cengage.com/region

Cengage Learning products are represented in Canada by

Nelson Education, Ltd.

For your lifelong learning solutions, visit courseptr.com

Visit our corporate website at cengage.com

eISBN-10: 1-58450-610-5

This book is dedicated to my wife Jill,
and my children Megan, Elise, and Marc—especially Elise,
who always looks for what’s most important in my books.

This page intentionally left blank

Acknowledgments xiii

About the Author xv

Reader’s Guide xvii

Introduction xix

Part I Introduction 1

1 GNU/Linux History 3

Introduction 3
History of the UNIX Operating System 3
GNU/Linux History 5
Linux Distributions 7
Summary 8
References 8

2 GNU/Linux Architecture 9

Introduction 9
High-Level Architecture 9
Linux Kernel Architecture 10
Summary 18
Resources 18

3 Free Software Development 19

Introduction 19
Open Source Licenses 21
Problems with Open Source Development 23
Summary 24
References 25
Resources 25

Contents

v

4 Linux Virtualization and Emulation 27

Introduction 27
What Is Virtualization? 28
Short History of Virtualization 29
What’s the Point? 31
Virtualization Taxonomy 32
Open Source Virtualization Solutions 37
Summary 42

Part II GNU Tools 43

5 The GNU Compiler Toolchain 45

Introduction 45
Introduction to Compilation 46
GCC Optimizer 51
Debugging Options 56
Other Tools 56
Summary 57

6 Building Software with GNU make 59

Introduction 59
Makefile Variables 64
Summary 71

7 Building and Using Libraries 73

Introduction 73
What Is a Library? 73
Building Static Libraries 75
Building Shared Libraries 82
Dynamically Loaded Libraries 83
Utilities 88
Summary 92
Dynamic Library APIs 92

8 Building Packages with automake/autoconf 93

Introduction 93
Summary 103

vi Contents

9 Source Control in GNU/Linux 105

Introduction 105
Defining Source Control 105
Source Control Paradigms 106
Useful Source Control Tools 108
Summary 127

10 Data Visualization with Gnuplot 129

Introduction 129
Gnuplot 129
Summary 143
Resources 143

Part III Application Development Topics 145

11 File Handling in GNU/Linux 149

Introduction 149
File Handling with GNU/Linux 149
File Handling API Exploration 150
Base API 168
Summary 171
File Handling APIs 171

12 Programming with Pipes 173

Introduction 173
The Pipe Model 173
Detailed Review 176
Summary 184
Pipe Programming APIs 184

13 Introduction to Sockets Programming 185

Introduction 185
Layered Model of Networking 186
Sockets Programming Paradigm 186
Sample Application 191
Sockets API Summary 197
Other Transport Protocols 207
Multilanguage Perspectives 209

Contents vii

Summary 211
Sockets Programming APIs 212
References 213
Resources 213

14 GNU/Linux Process Model 215

Introduction 215
GNU/Linux Processes 215
Whirlwind Tour of Process APIs 216
Traditional Process API 226
System Commands 247
Summary 250
Proc Filesystem 250
References 252
API Summary 252

15 POSIX Threads (pthreads) Programming 253

Introduction 253
The pthreads API 256
Building Threaded Applications 274
Summary 275
References 275
API Summary 276

16 IPC with Message Queues 277

Introduction 277
Quick Overview of Message Queues 278
The Message Queue API 284
User Utilities 298
Summary 299
Message Queue APIs 300

17 Synchronization with Semaphores 301

Introduction 301
Semaphore Theory 301
Quick Overview of GNU/Linux Semaphores 304
The Semaphore API 313
User Utilities 327
Summary 329
Semaphore APIs 329

viii Contents

18 Shared Memory Programming 331

Introduction 331
Quick Overview of Shared Memory 332
Shared Memory APIs 339
Using a Shared Memory Segment 350
User Utilities 356
Summary 357
References 357
Shared Memory APIs 357

19 Advanced File Handling 359

Introduction 359
Enumerating Directories 364
Summary 375
Advanced File Handling APIs 375

20 Other Application Development Topics 379

Introduction 379
Linux Error Reporting 396
Summary 399
API Summary 399

Part IV GNU/Linux Shells and Scripting 401

21 Standard GNU/Linux Commands 405

Introduction 405
Redirection 405
Summary 422

22 Bourne-Again Shell (Bash) 423

Introduction 423
bash Scripting 425
Conditional Structures 430
Looping Structures 437
Input and Output 441
Functions 442
Sample Scripts 444

Contents ix

Scripting Language Alternatives 449
Summary 449
Resources 449

23 Editing with sed 451

Introduction 451
Anatomy of a Simple Script 452
sed Spaces (Buffers) 454
Typical sed Command-Line Options 454
Regular Expressions 455
Ranges and Occurrences 456
Essential sed Commands 457
Summary 460
Some Useful sed One-Liners 461
Resources 461

24 Text Processing with awk 463

Introduction 463
Command-Line awk 464
Scripted awk 468
Other awk Patterns 472
Summary 473
Useful awk One-Liners 474

25 Parser Generation with flex and bison 475

Introduction 475
A Simple Grammar 483
Encoding the Grammar in bison 483
Hooking the Lexer to the Grammar Parser 486
Building a Simple Configuration Parser 489
The Big Picture 493
Summary 497

26 Scripting with Ruby 499

Introduction 499
An Introduction to Ruby 499
Quick Ruby Examples 501
Language Elements 503
Advanced Features 513
Ruby as an Embedded Language 518

x Contents

Summary 518
Resources 518

27 Scripting with Python 519

Introduction 519
An Introduction to Python 519
Quick Python Examples 522
Language Elements 525
Advanced Features 535
Summary 539
Resources 539

28 GNU/Linux Administration Basics 541

Introduction 541
Navigating the Linux Filesystem 541
Package Management 542
Kernel Upgrades 550
Summary 554

Part V Debugging and Testing 555

29 Software Unit Testing Frameworks 557

Introduction 557
Unit Testing Frameworks 560
Summary 576
Resources 576

30 Debugging with GDB 577

Introduction 577
Using GDB 578
Other GDB Debugging Topics 587
Summary 592
Resources 592

31 Code Hardening 593

Introduction 593
Code Hardening Techniques 594
Source Checking Tools 602
Code Tracing 603

Contents xi

Summary 605
Resources 605

32 Coverage Testing with GNU gcov 607

Introduction 607
What Is gcov? 607
Preparing the Image 608
Using the gcov Utility 609
Options Available for gcov 615
Considerations 616
Summary 617
References 617
Resources 617

33 Profiling with GNU gprof 619

Introduction 619
What Is Profiling? 619
What Is gprof? 620
Preparing the Image 620
Using the gprof Utility 622
Considerations 629
Summary 629
References 629

34 Advanced Debugging Topics 631

Introduction 631
Memory Debugging 631
Cross-Referencing Tools 639
System Call Tracing with ltrace 641
Dynamic Attachment with GDB 644
Summary 646
Resources 647

Appendix A Acronyms and Partial Acronyms 649

Appendix B About the CD-ROM 653

Index 655

xii Contents

M
y first exposure to open source was in the summer of 1994. I had just come
off a project building an operating system kernel for a large geosynchro-
nous communication spacecraft in the Ada language on the MIL-STD-

1750A microprocessor. The Ada language was technically very nice, safe, and easily
readable. The MIL-STD-1750A processor was old, even by early 1990 standards. (It
was a 1970s instruction set architecture designed for military avionics, but was still
very elegant in its simplicity.)

I moved on to work on a research satellite to study gamma ray bursts, and on the
side, supported the validation of a project called “1750GALS.” This project, man-
aged by Oliver Kellogg, consisted of a GCC compiler, assembler, linker, and simula-
tor for the Ada language targeted to the 1750A processor family. Since I had some
background in Ada and the 1750A, and the gamma ray burst project was just ramp-
ing up, I loaned some time to its validation. Some number of months later, I saw a
post in the comp.compilers usenet group, of which a snippet is provided below:

`1750GALS’, the MIL-STD-1750 Gcc/Assembler/Linker/Simulator, now has a

European FTP home, and an American FTP mirror.

[snip]

Kudos to Pekka Ruuska of VTT Inc. (Pekka.Ruuska@vtt.fi), and M. Tim

Jones of MIT Space Research (mtj@space.mit.edu), whose bugreports made

the toolkit as useable as it now is. Further, Tim Jones kindly set up

the U.S. FTP mirror. [1]

I was automatically world famous, and my 15 minutes of fame had begun. An
exaggeration, of course, but my time devoted to helping this project was both in-
teresting and worthwhile and introduced me to the growing world of Free Software
(which was already 10 years old at this time) and Open Source (whose name would
not be coined for another three years).

Acknowledgments

xiii

[1] “[announce] 1750GALS now have an FTP home” http://compilers.iecc.com/comparch/article/94-11-043

http://compilers.iecc.com/comparch/article/94-11-043

This second edition is the result not only of many months of hard work, but
also of many decades of tireless work by UNIX and GNU tools developers around
the world. Since an entire book could be written about the countless number of
developers who created and advanced these efforts, I’ll whittle it down to four people
who (in my opinion) made the largest contributions toward the GNU/Linux
operating system:

Dennis Ritchie and Ken Thompson of AT&T Bell Labs built the first UNIX
operating system (and subsequent variants) and also the C programming language.

Richard Stallman (father of GNU and the Free Software Foundation) moti-
vated and brought together other free thinkers around the world to build the world-
class GNU/Linux operating system.

And last, but not least, Linus Torvalds introduced the Linux kernel and remains
the gatekeeper of the kernel source and a major contributor.

I’m also extremely grateful to Jim Lieb, whose wealth of UNIX knowledge and
comprehensive review of this text improved it in innumerable ways. Thanks also to
Cengage (in particular Jen Blaney and Marta Justak) for making this second edition
possible.

xiv Acknowledgments

FIGURE I.1 Copyright (C) 1999, Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this image under the

terms in the GNU General Public License or GNU Free Documentation License.

M. Tim Jones is an embedded software architect and the author of numerous books,
including Artificial Intelligence: A Systems Approach, AI Application Programming,
BSD Sockets Programming from a Multilanguage Perspective, and many articles on a
variety of technical subjects. His engineering background ranges from the develop-
ment of kernels for geosynchronous spacecraft to embedded systems architecture
and networking protocols development. Tim is a consultant engineer for Emulex
Corp. in Longmont, Colorado.

About the Author

xv

This page intentionally left blank

T
his book was written with GNU/Linux application developers in mind. You’ll
note that topics such as the Linux kernel or device drivers are absent. This was
intentional, and while they’re fascinating topics in their own right, they are

rarely necessary to develop applications and tools in the GNU/Linux environment.
This book is split into five parts, each focusing on different aspects of GNU/Linux

programming. Part I, “Introduction,” introduces GNU/Linux for the beginner. It
addresses the GNU/Linux architecture, a short introduction to the process model and
also licenses, and a brief introduction to open source development and licenses. Linux
virtualization is also explored, including models and options in Linux.

Part II, “GNU Tools,” concentrates on the necessary tools for GNU/Linux pro-
gramming. The de facto standard GNU compiler tool chain is explored, along with
the GNU make automated build system. Building and using libraries (both static
and dynamic) are then investigated. Coverage testing and profiling are explored,
using the gcov and gprof utilities, as is application bundling and distribution with
automake and autoconf. Finally, source control is reviewed with some of the popu-
lar options on Linux and also data visualization with Gnuplot.

With an introduction to the GNU/Linux architecture and necessary tools for ap-
plication development, we focus next in Part III, “Application Development Topics,”
on the most useful of the services available within GNU/Linux. This includes pipes,
Sockets programming, dealing with files, both traditional processes and POSIX
threads, message queues, semaphores, and finally shared memory management.

In Part IV, “GNU/Linux Shells and Scripting,” we move up to application devel-
opment using shells and scripting languages. Some of the most useful GNU/Linux
commands that you’ll encounter in programming on GNU/Linux are covered, and
there is a tutorial on the Bourne-Again Shell (bash). Text processing is explored using
two of the most popular string processing languages (awk and sed). We’ll also look
at the topic of parser generation using GNU Flex and Bison utilities (lex and yacc-
compatible parser generator). Scripting with Ruby and Python is investigated as well.

Reader’s Guide

xvii

In Part V, “Debugging and Testing,” debugging is addressed using a variety of
different aspects. We investigate some of the unit-testing frameworks that can help
in automated regression. The GNU Debugger is introduced, with treatment of the
most common commands and techniques. Finally, the topic of code hardening is
explored along with a variety of debugging tools and techniques to assist in the de-
velopment of reliable and secure GNU/Linux applications.

While the book was written with an implicit order in mind, each chapter can be
read in isolation, depending upon your needs. Where applicable, references to
other chapters are provided if more information is needed on a related topic.

THREADS IN THIS BOOK

This book can be read part-by-part and chapter-by-chapter, but a number of
threads run through it that can be followed independently. A reader interested in
pursuing a particular aspect of the GNU/Linux operating system can concentrate
on the following sets of chapters for a given topic thread.

GNU/Linux Inter-Process Communication Methods: Chapters 12, 13, 15, 16,
17, and 18.
Scripting and Text Processing: Chapters 10, 21, 22, 23, 24, 25, 26, and 27.
Building Efficient and Reliable GNU/Linux Applications: Chapters 5, 29, 31,
33, and 34.
Multiprocess and Multithreaded Applications: Chapters 14 and 15.
GNU/Linux Testing and Profiling: Chapters 29, 30, 32, and 33.
GNU Tools for Application Development: Chapters 5, 6, 8, 9, 30, and 34.
GNU Tools for Packaging and Distribution: Chapters 6, 8, 21, and 28.

xviii Reader’s Guide

G
NU/Linux is the Swiss army knife of operating systems. You’ll find it in the
smallest devices (such as an Apple iPod) to the largest most powerful
supercomputers (like IBM’s Blue Gene). You’ll also find GNU/Linux

running on the most diverse architectures, from the older x86 processors to the
latest cell processor that powers the PlayStation 3 console.

This book provides the basis for application development on the GNU/Linux
operating system. Whether you’re developing applications for an iPod or a Blue
Gene, this book covers the APIs and concepts that you’ll need.

WHAT YOU’LL FIND IN THIS BOOK

This book provides everything that you’ll need to develop applications in the
GNU/Linux environment. Split into five distinct parts, the book covers GNU tools,
topics in application development, shells and scripting, debugging and hardening,
and introductory toptics, including the fundamentals of virtualization.

Some of the specific topics that you’ll explore include:

GNU/Linux architecture and virtualization mechanisms.
GNU Tools such as GCC, make, automake/autoconf, source control systems, the
GNU Debugger, and GNUplot.
Fundamental application development topics such as libraries (static and
dynamic), file handling, Pipes, Sockets, programming, and more.
GNU/Linux process models (including threads) and POSIX IPC mechanisms
(message queues, semaphores, and shared memory).
Shells and scripting basics, from useful GNU/Linux commands to Bash, Ruby,
and Python. Text processing is also covered with sed, awk, and parser con-
struction with flex and bison.

Introduction

xix

Debugging and hardening techniques are also covered, including software test-
ing tools, coverage testing and profiling with GCov and GProf, and memory
debugging tools (such as valgrind and others).

WHO THIS BOOK IS FOR

This book is written for beginning and intermediate GNU/Linux programmers
who want to learn how to develop applications on the GNU/Linux operating
system or to extend their knowledge into more advanced areas of development. The
book covers tools, APIs, and techniques with many examples illustrating the use of
GNU/Linux APIs.

xx Introduction

Chapter 1: GNU/Linux History

Chapter 2: GNU/Linux Architecture

Chapter 3: Free Software Development

Chapter 4: Linux Virtualization and Emulation

This first part of the book explores a few introductory topics of the GNU/Linux op-
erating system and its development paradigm. This includes a short history of UNIX,
GNU, and the GNU/Linux operating system; a quick review of the GNU/Linux
 architecture; a discussion of the free software (and open source) development para-
digm; and finally a short tour of Linux virtualization and emulation solutions.

CHAPTER 1: GNU/LINUX HISTORY

The history of GNU/Linux actually started in 1969 with the development of the first
UNIX operating system. This chapter discusses the UNIX development history and
the motivations (and frustrations) of key developers that led up to the release of the
GNU/Linux operating system.

CHAPTER 2: GNU/LINUX ARCHITECTURE

The deconstruction of the GNU/Linux operating system is the topic of the second
chapter. The chapter identifies the major elements of the GNU/Linux operating
system and then breaks them down to illustrate how the operating system works at
a high level.

CHAPTER 3: FREE SOFTWARE DEVELOPMENT

The free software and open source development paradigms are detailed in this
chapter, including some of the licenses that are available for free software. The two
major types of open development called free software and open source are dis-
cussed, as well as some of the problems that exist within the domains.

Part

I Introduction

1

CHAPTER 4: LINUX VIRTUALIZATION AND EMULATION

Virtualization is a technique that allows multiple operating systems to be executed
concurrently on the same machine. The operating systems need not be the same
type, nor for the same architecture (x86, PowerPC, and so forth). This chapter ex-
plores the basics of virtualization techniques and then introduces a few of the vir-
tualization and emulation options available for Linux.

2 GNU/Linux Application Programming

3

GNU/Linux History1

INTRODUCTION

Before we jump into the technical aspects of GNU/Linux, let’s invest a little time in
the history of the GNU/Linux operating system (and why we use the term GNU/
Linux). We’ll review the beginnings of the GNU/Linux operating system by look-
ing at its two primary sources and the two individuals who made it happen.

HISTORY OF THE UNIX OPERATING SYSTEM

To understand GNU/Linux, let’s first step back to 1969 to look at the history of the
UNIX operating system. Although UNIX has existed for over 30 years, it is one of
the most flexible and powerful operating systems to have ever been created. A time-
line is shown in Figure 1.1.

The goals for UNIX were to provide a multitasking and multiuser operating
system that supported application portability. This tradition has continued in all
UNIX variants, and given the new perspective of operating system portability (runs
on many platforms), UNIX continues to evolve and grow.

In This Chapter

UNIX History
Richard Stallman and the GNU Movement
Linus Torvalds and the Linux Kernel

AT&T UNIX

UNIX began as a small research project at AT&T Bell Labs in 1969 for the DEC PDP-
7. Dennis Ritchie and Ken Thompson designed and built UNIX as a way to replace
the Multics operating system then in use.

After Multics was withdrawn as the operating system at AT&T, Thompson and
Ritchie developed UNIX on the PDP-7 in order to play a popular game at the time
called Space Travel [Unix/Linux History04].

The first useful version of UNIX (version 1) was introduced in late 1971. This ver-
sion of UNIX was written in the B language (precursor of the C language). It hosted a
small number of commands, many of which are still available in UNIX and Linux
 systems today (such as cat, cp, ls, and who). In 1972, UNIX was rewritten in the newly
created C language. In the next three years, UNIX continued to evolve, with four new
versions produced. In 1979, the Bourne shell was introduced. Its ancestor, the bash
shell, is the topic of Chapter 22, “Bourne-Again Shell (Bash)” [Unix History94].

BSD

The BSD (Berkeley Software Distribution) operating system was created as a fork of
UNIX at the University of California at Berkeley in 1976. BSD remains not only a
strong competitor to GNU/Linux, but in some ways is superior. Many innovations
were created in the BSD, including the Sockets network programming paradigm
and the variety of IPC mechanisms (addressed in Part III of this book, “Application
Development Topics”). Many of the useful applications that we find in GNU/Linux
today have their roots in BSD. For example, the vi editor and termcap (which allows
programs to deal with displays in a display-agnostic manner) were created by Bill
Joy at Berkeley in 1978 [Byte94].

One of the primary differences between BSD and GNU/Linux is in licensing.
We’ll address this disparity in Chapter 3, “Free Software Development.”

4 GNU/Linux Application Programming

FIGURE 1.1 Timeline of UNIX/Linux and the GNU [RobotWisdom02].

GNU/LINUX HISTORY

The history of GNU/Linux is actually two separate stories that came together to
produce a world-class operating system. Richard Stallman created an organization
to build a UNIX-like operating system. He had tools, a compiler, and a variety of
applications, but he lacked a kernel. Linus Torvalds had a kernel, but no tools or ap-
plications for which to make it useful.

A controversial question about GNU/Linux is why it’s called GNU/Linux, as
opposed to the commonly used name Linux. The answer is very simple. Linux refers
to the kernel (or the core of the operating system), which was initially developed by
Linus Torvalds. The remaining software—the shells, compiler tool chain, utilities
and tools, and plethora of applications—operate above the kernel. Much of this
software is GNU software. In fact, the source code that makes up the GNU/Linux
operating system dwarfs that of the kernel. Therefore, to call the entire operating
system Linux is a misnomer, to say the least.

Richard Stallman provides an interesting perspective on this controversy in his
article, “Linux and the GNU Project” [Linux/GNU04].

GNU AND THE FREE SOFTWARE FOUNDATION

Richard Stallman, the father of open source, began the movement in 1983 with a
post to the net.unix-wizards Usenet group soliciting help in the development of
a free UNIX-compatible operating system [Stallman83]. Stallman’s vision was the
development of a free (as in freedom) UNIX-like operating system whose source
was open and available to anyone.

Even in the 1970s, Stallman was no stranger to open source. He wrote the
Emacs editor (1976) and gave the source away to anyone who would send a tape
(on which to copy the source) and a return envelope.

The impetus for Stallman to create a free operating system was the fact that a
modern computer required a proprietary operating system to do anything useful.
These operating systems were closed and not modifiable by end users. In fact, until
very recently, it was impossible to buy a PC from a major supplier without having
to buy the Windows operating system on it. But through the Free Software Foun-
dation (FSF), Stallman collected hundreds of programmers around the world to
help take on the task.

By 1991, Stallman had pulled together many of the elements of a useful oper-
ating system. This included a compiler, a shell, and a variety of tools and applica-
tions. Work was underway in 1986 to migrate MIT’s TRIX kernel, but divisions
existed on whether to use TRIX or CMU’s Mach microkernel. It was not until 1990
that work began on the official GNU Project kernel [Stallman02].

Chapter 1 GNU/Linux History 5

THE LINUX KERNEL

Our story left off with the development of an operating system by the FSF, but de-
velopment issues existed with a kernel that would make it complete. In an odd twist
of fate, a young programmer by the name of Linus Torvalds announced the devel-
opment of a “hobby” operating system for i386-based computers. Torvalds wanted
to improve on the Minix operating system (which was widely used in the day) and
thought a monolithic kernel would be much faster than the microkernel that Minix
used. (While this is commonly believed to be true, operating systems such as
Carnegie Mellon’s Mach and the commercial QNX and Neutrino microkernels
provide evidence to the contrary [Montague03].)

Torvalds released his first version of Linux (0.01) in 1991, and then later in the
year he released version 0.11, which was a self-hosted release (see Figure 1.2). Tor-
valds used the freely available GNU tools such as the compiler and the bash shell
for this effort. Much like Thompson and Ritchie’s first UNIX more than 20 years
earlier, it was minimal and not entirely useful. In 1992, Linux 0.96, which supported
the X Window System, was released. That year also marked Linux as a GNU soft-
ware component.

6 GNU/Linux Application Programming

FIGURE 1.2 Linux development timeline [Wikipedia04].

Linux, much like the GNU movement, encompassed not just one person but
hundreds (and today thousands) of developers. While Torvalds remains the gate-
keeper of Linux, the scope of this monolithic kernel has grown well beyond the
scope of one person.

From Figure 1.2, it’s important to note why the released minor version num-
bers are all even. The even minor number represents a stable release, and odd mi-
nors represent development versions. Because development releases are usually
unstable, it’s a good idea to avoid them for production use.

BRINGING IT TOGETHER

The rest, as they say, is history. GNU/Linux moved from an i386 single-CPU oper-
ating system to a multiprocessor operating system supporting many processor
 architectures. Today, GNU/Linux can be found in large supercomputers and small
handheld devices. It runs on the x86 family, ARM, PowerPC, Hitachi SuperH, 68K,
and many others. This is an important attribute for GNU/Linux as its adoption in
the embedded community continues.

GNU/Linux in recent years has become the trailblazer for important new tech-
nologies like virtualization. In the old days (1960s IBM mainframe days), special
operating systems called hypervisors were created to serve as an operating system for
other operating systems. Today, Linux has become the hypervisor with projects like
Xen and the Kernel Virtual Machine (KVM). In Chapter 4, “Linux Virtualization
and Emulation,” we’ll learn more about virtualization and emulation technologies
that are built on Linux.

GNU/Linux has evolved from its humble beginnings to be one of the most
scalable, secure, reliable, and highest performing operating systems available.
GNU/Linux, when compared to Windows, is less likely to be exploited by hackers
[NewsForge04]. When you consider Web servers, the open source Apache HTTP
server is far less likely to be hacked than Microsoft’s IIS [Wheeler04].

LINUX DISTRIBUTIONS

In the early days, running a GNU/Linux system was anything but simple. Users
sometimes had to modify the kernel and drivers to get the operating system to
boot. Today, GNU/Linux distributions provide a simple way to load the operating
system and selectively load the plethora of tools and applications. Given the dy-
namic nature of the kernel with loadable modules, it’s simple to configure the op-
erating system dynamically and automatically to take advantage of the peripherals
that are available. Projects such as Debian [Debian04] and companies such as Red
Hat [RedHat04] and Suse [Suse04] introduced distributions that contained the
GNU/Linux operating system and precompiled programs on which to use it. Most
distributions typically include over 10,000 packages (applications) with the kernel,
making it easy to get what you need. If you don’t find what you need, package man-
agement systems (like apt) can be used to easily update your OS with the software
you need. We’ll explore package managers and administration in Chapter 28,
“GNU/Linux Administration Basics.”

Chapter 1 GNU/Linux History 7

SUMMARY

The history of GNU/Linux is an interesting one because at three levels, it’s a story
of frustration. Thompson and Ritchie designed the original UNIX as a way to re-
place the existing Multics operating system. Richard Stallman created the GNU
and FSF as a way to create a free operating system that anyone could use, free of
proprietary licenses. Linus Torvalds created Linux out of frustration with the Minix
[Minix04] operating system that was used primarily as an educational tool at the
time. Whatever their motivations, they and countless others around the world suc-
ceeded in ways that no one at the time would have ever believed. GNU/Linux today
competes with commercial operating systems and offers a real and useful alterna-
tive. GNU/Linux is predominantly the operating system for other operating sys-
tems (speaking virtually). Even in the embedded systems domain, Linux has begun
to dominate and operates in the smallest devices, including smartphones.

REFERENCES

[Byte94] “Unix at 25” at http://www.byte.com/art/9410/sec8/art3.htm.
[Debian04] Debian Linux at http://www.debian.org.
[Linux/GNU04] “Linux and the GNU Project” at http://www.gnu.org/gnu/

linux-and-gnu.html.
[Minix04] Minix Operating System at http://www.minix3.org.
[Montague03] “Why You Should Use a BSD-Style License,” Bruce R. Montague, at

http://63.249.85.132/open_source_license.htm.
[NewsForge04] “Linux and Windows Security Compared,” Stacey Quandt, at

http://os.newsforge.com/os/04/05/18/1715247.shtml.
[RedHat04] Red Hat at http://www.redhat.com and http://fedora.redhat.com.
[RobotWisdom02] “Timeline of GNU/Linux and UNIX” at http://www.robotwis-

dom.com/linux/timeline.html.
[Stallman83] “Initial GNU Announcement” at http://www.gnu.org/gnu/initial-

 announcement.html.
[Stallman02] “Free as in Freedom,” Richard Stallman, O’Reilly & Associates, Inc., 2002.
[Suse04] Suse Linux at http://www.suse.com.
[Unix/Linux History04] “History of UNIX and Linux” at http://www.computerhope.

com/history/unix.htm.
[Unix History94] “Unix History” at http://www.english.uga.edu/hc/unixhistoryrev.

html.
[Wheeler04] “Why Open Source Software/Free Software,” David A. Wheeler, at

http://www.dwheeler.com/oss_fs_why.html.
[Wikipedia04] Timeline of Linux Development at http://en.wikipedia.org/wiki/

Timeline_of_Linux_development.

8 GNU/Linux Application Programming

http://www.byte.com/art/9410/sec8/art3.htm
http://www.debian.org
http://www.gnu.org/gnu/linux-and-gnu.html
http://www.gnu.org/gnu/linux-and-gnu.html
http://www.minix3.org
http://63.249.85.132/open_source_license.htm
http://os.newsforge.com/os/04/05/18/1715247.shtml
http://www.suse.com
http://fedora.redhat.com
http://www.redhat.com
http://www.robotwisdom.com/linux/timeline.html
http://www.robotwisdom.com/linux/timeline.html
http://www.gnu.org/gnu/initial-announcement.html
http://www.gnu.org/gnu/initial-announcement.html
http://www.computerhope.com/history/unix.htm
http://www.computerhope.com/history/unix.htm
http://www.english.uga.edu/hc/unixhistoryrev.html
http://www.english.uga.edu/hc/unixhistoryrev.html
http://www.dwheeler.com/oss_fs_why.html
http://en.wikipedia.org/wiki/Timeline_of_Linux_development
http://en.wikipedia.org/wiki/Timeline_of_Linux_development

9

GNU/Linux Architecture2

INTRODUCTION

The GNU/Linux operating system is organized into a number of layers. While un-
derstanding the internals of the kernel isn’t necessary for application development,
knowing how the operating system is organized is important. This chapter looks at
the composition of GNU/Linux starting at a very high level and then works its way
through the layers.

HIGH-LEVEL ARCHITECTURE

First, take a high-level look at the GNU/Linux architecture. Figure 2.1 shows the
20,000-foot view of the organization of the GNU/Linux operating system. At the
core is the Linux kernel, which mediates access to the underlying hardware resources
such as memory, the CPU via the scheduler, and peripherals. The shell (of which
there are many different types) provides user access to the kernel. The shell provides
command interpretation and the means to load user applications and execute them.
Finally, applications are shown that make up the bulk of the GNU/Linux operating
system. These applications provide the useful functions for the operating system,
such as windowing systems, Web browsers, e-mail programs, language interpreters,
and of course, programming and development tools.

In This Chapter

High-Level Architecture
Architectural Breakdown of Major Kernel Components

Within the kernel, you also have the variety of hardware drivers that simplify
access to the peripherals (such as the CPU for configuration). Drivers to access the
peripherals such as the serial port, display adapter, and network adapter are also
found here.

This is a simplistic view, but the next section digs in a little deeper to help you
understand the makeup of the Linux kernel.

LINUX KERNEL ARCHITECTURE

The GNU/Linux operating system has a layered architecture. The Linux kernel is
monolithic and layered also, but with fewer restrictions (dependencies can exist
between noncontiguous layers). Figure 2.2 provides one perspective of the
GNU/Linux operating system with emphasis on the Linux kernel.

Note here that the operating system has been split into two software sections.
At the top is the user space (where you find the tools and applications as well as the
GNU C library), and at the bottom is the kernel space where you find the various
kernel components. This division also represents address space differences that are
important to note. Each process in the user space has its own independent memory
region that is not shared. The kernel operates in its own address space, but all ele-
ments of the kernel share the space. Therefore, if a component of the kernel makes

10 GNU/Linux Application Programming

FIGURE 2.1 High-level view of the GNU/Linux

operating system.

a bad memory reference, the entire kernel crashes (also known as a kernel panic). Fi-
nally, the hardware element at the bottom operates in the physical address space
(which is mapped to virtual addresses in the kernel).

The rest of this section now looks at each of the elements of the Linux kernel
to identify what they do and what capabilities they provide to you as application
developers.

GNU/Linux is primarily a monolithic operating system in that the kernel is a
single entity. This differs from microkernel operating systems that run a tiny ker-
nel with separate processes (usually running outside of the kernel) providing the
capabilities such as networking, filesystem, and memory management. Many mi-
crokernel operating systems exist today, including CMU’s Mach, Apple’s Darwin,
Minix, BeOS, Next, QNX/Neutrino, and many others. Which is better is certainly
hotly debated, but microkernel architectures have shown themselves to be dynamic
and flexible. In fact, GNU/Linux has adopted some microkernel-like features with
its loadable kernel module feature.

Chapter 2 GNU/Linux Architecture 11

FIGURE 2.2 GNU/Linux operating system architecture.

GNU SYSTEM LIBRARIES (GLIBC)

The glibc is a portable library that implements the standard C library functions, in-
cluding the top half of system calls. An application links with the GNU C library to
access common functions in addition to accessing the internals of the Linux kernel.
The glibc implements a number of interfaces that are specified in header files. For
example, the stdio.h header file defines many standard I/O functions (such as
fopen and printf) and also the standard streams that all processes are given (stdin,
stdout, and stderr).

When building applications, the GNU compiler automatically resolves symbols
to the GNU libc (if possible), which are resolved at runtime using dynamic linking
of the libc shared object.

In embedded systems development, use of the standard C libraries can some-
times be problematic. The GCC permits disabling the behavior of automatically
resolving symbols to the standard C library by using -nostdlib. This permits a de-
veloper to rewrite the functions that were used in the standard C library to his own
versions.

When a system call is made, a special set of actions occurs to transfer control
between the user space (where the application runs) and the kernel space (where
the system call is implemented).

SYSTEM CALL INTERFACE

When an application calls a function like fopen, it is calling a privileged system
call that is implemented in the kernel. The standard C library (glibc) provides a
hook to go from the user space call to the kernel where the function is provided. Be-
cause this is a useful element to know, let’s dig into it further.

A typical system call results in the call of a macro in user space (special assem-
bly sequences to map library calls to system call identifiers). The arguments for the
system call are loaded into registers, and a system trap is performed, though newer
virtualization processors provide a different means that take advantage of virtual-
ization instructions. This interrupt causes control to pass from the user space to the
kernel space where the actual system call is available (vectored through a table
called sys_call_table). After the call has been performed in the kernel, return to
user space is provided by a function called _ret_from_sys_call. Registers are loaded
properly for a proper stack frame in user space.

In cases where more than scalar arguments are used (such as pointers to stor-
age), copies are performed to migrate the data from user space to kernel space.

The source code for the system calls can be found in the kernel source at
./linux/kernel/sys.c.

12 GNU/Linux Application Programming

KERNEL COMPONENTS

The kernel mediates access to the system resources (such as interfaces, the CPU,
and so on). It also enforces the security of the system and protects users from one
another. The kernel is made up of a number of major components, which we’ll dis-
cuss here.

init

The init component is performed upon boot of the Linux kernel. It provides the
primary entry point for the kernel in a function called start_kernel. This function
is very architecture dependent because different processor architectures have dif-
ferent init requirements. The init also parses and acts upon any options that are
passed to the kernel.

After performing hardware and kernel component initialization, the init com-
ponent opens the initial console (/dev/console) and starts up the init process. This
process is the mother of all processes within GNU/Linux and has no parent (unlike
all other processes, which have a parent process). After init has started, the control
over system initialization is performed outside of the kernel proper.

The kernel init component can be found in linux/init in the Linux kernel
source distribution.

Process Scheduler

The Linux kernel provides a preemptible scheduler to manage the processes running
in a system. This means that the scheduler permits a process to execute for some
duration (an epoch), and if the process has not given up the CPU (by making a
system call or calling a function that awaits some resource), then the scheduler
temporarily halts the process and schedules another one.

The scheduler can be controlled, for example, by manipulating process prior-
ity or chaining the scheduling policy (such as FIFO or round-robin scheduling).
The time quantum (or epoch) assigned to processes for their execution can also be
manipulated. The timeout used for process scheduling is based upon a variable
called jiffies. A jiffy is a packet of kernel time that is calculated at init based upon
the speed of the CPU.

The source for the scheduler (and other core kernel modules such as process
control and kernel module support) can be found in linux/kernel in the Linux
kernel source distribution.

New in the 2.6 Linux kernel is a scheduler that operates in constant time re-
gardless of the number of processes to be scheduled. This new scheduler, called the
O(1) scheduler because of its linear time complexity, is ideal for systems with large
numbers of tasks.

Chapter 2 GNU/Linux Architecture 13

Memory Manager

The memory manager within Linux is one of the most important core parts of the
kernel. It provides physical-to-virtual memory mapping functions (and vice versa)
as well as paging and swapping to a physical disk. Because the memory manage-
ment aspects of Linux are processor dependent, the memory manager works with
architecture-dependent code to access the machine’s physical memory.

While the kernel maintains its own virtual address space, each process in user
space has its own virtual address space that is individual and unique.

The memory manager also provides a swap daemon that implements a demand
paging system with a least-recently used replacement policy.

The memory manager component can be found in linux/mm of the Linux kernel
source distribution.

Elements of user-space memory management are discussed in Chapter 18,
“Shared Memory Programming,” and Chapter 20, “Other Application Develop-
ment Topics,” of this book.

Virtual File System

The Virtual File System (VFS) is an abstract layer within the Linux kernel that pre-
sents a common view of differing filesystems to upper-layer software. Linux sup-
ports a large number of individual filesystems, such as ext2, Minix, NFS, and Reiser.
Rather than present each of these as a unique filesystem, Linux provides a layer into
which filesystems can plug their common functions (such as open, close, read,
write, select, and so on). Therefore, if you needed to open a file on a Reiser jour-
naling filesystem, you could use the same common function open as you would on
any other filesystem.

The VFS also interfaces to the device drivers to mediate how the data is written
to the media. The abstraction here is also useful because it doesn’t matter what kind
of hard disk (or other media) is present; the VFS presents a common view and
therefore simplifies the development of new filesystems. Figure 2.3 illustrates this
concept. In fact, multiple filesystems can be present (mounted) simultaneously.

The Virtual File System component can be found in linux/fs in the Linux ker-
nel source distribution. You also find there a number of subdirectories represent-
ing the individual filesystems. For example, linux/fs/ext3 provides the source for
the third extended filesystem.

GNU/Linux provides a variety of filesystems, and each of these provides char-
acteristics that can be used in different scenarios. For example, xfs is very good for
streaming very large files (such as audio and video), and Reiser is good at handling
large numbers of very small files (< 1 KB). Filesystem characteristics influence per-
formance, and therefore you need to select the filesystem that makes the most sense
for your particular application.

14 GNU/Linux Application Programming

The topic of file I/O is discussed in Chapter 11 of this book, “File Handling in
GNU/Linux.”

Network Interface

The Linux network interface offers a very similar architecture to what you saw with
the VFS. The network interface component is made up of three layers that work to
abstract the details of networking to higher layers, while presenting a common in-
terface regardless of the underlying protocol or physical medium (see Figure 2.4).

Common interfaces are presented to network protocols and network devices so
that the protocol and physical device can be interchanged based upon the actual
configuration of the system. As was the case with the VFS, flexibility was a design
key.

The network component also provides packet scheduler services for quality of
service requirements.

The network interface component can be found in linux/net of the Linux ker-
nel source distribution.

The topic of network programming using the BSD Sockets API is discussed in
Chapter 13, “Introduction to Sockets Programming,” of this book.

Chapter 2 GNU/Linux Architecture 15

FIGURE 2.3 Abstraction provided by the virtual file system.

Interprocess Communication (IPC)

The IPC component provides the standard System V IPC facilities. This includes
semaphores, message queues, and shared memory. Like VFS and the network com-
ponent, the IPC elements all share a common interface.

The IPC component can be found in linux/ipc of the Linux kernel source dis-
tribution.

The topic of IPC is detailed within this book. In Chapter 17, “Synchronization
with Semaphores,” semaphores and the semaphore API are discussed. Chapter 16,
“IPC with Message Queues,” discusses the message queue API, and Chapter 18 de-
tails the shared memory API.

Loadable Modules

Loadable kernel modules are an important element of GNU/Linux as they provide
the means to change the kernel dynamically. The footprint for the kernel can there-
fore be very small, with required modules dynamically loaded as needed. Outside of
new drivers, the kernel module component can also be used to extend the Linux
kernel with new functionality.

Linux kernel modules are specially compiled with functions for module init
and cleanup. When installed into the kernel (using the insmod tool), the necessary
symbols are resolved at runtime in the kernel’s address space and connected to the
running kernel. Modules can also be removed from the kernel using the rmmod tool
(and listed using the lsmod tool).

16 GNU/Linux Application Programming

FIGURE 2.4 Network subsystem hierarchy.

Because using loadable modules involves no performance disadvantage, they
should be used when possible. Not using loadable modules results in a larger ker-
nel packed with the various drivers that might not even be used.

The source for the kernel side of loadable modules is provided in linux/kernel
in the Linux kernel source distribution.

DEVICE DRIVERS

The device drivers component provides the plethora of device drivers that are avail-
able. In fact, almost half of the Linux kernel source files are devoted to device dri-
vers. This isn’t surprising, given the large number of hardware devices out there,
but it does give you a good indication of how much Linux supports.

The source code for the device drivers is provided in linux/drivers in the
Linux kernel source distribution. The vast majority of source in the Linux kernel
exists within drivers. You can find drivers for special devices and also numerous
drivers for common devices using different hardware.

ARCHITECTURE-DEPENDENT CODE

At the lowest layer in the kernel stack is architecture-dependent code. Given the
variety of hardware platforms that are supported by the Linux kernel, source for the
architecture families and processors can be found here. Within the architecture
family are common boot support files and other elements that are specific to the
given processor family—for example, hardware interfaces such as direct memory
access (DMA), memory interfaces for memory management unit (MMU) setup,
interrupt handling, and so on. The architecture code also provides board-specific
source for popular board vendors.

HARDWARE

While not part of the Linux kernel, the hardware element (shown at the bottom of
the original high-level view of GNU/Linux, Figure 2.1) is important to discuss given
the number of processors and processor families that are supported. Today you can
find Linux kernels that run on single-address space architectures and those that
support an MMU. Processor families including Arm, PowerPC, Intel × 86 (includ-
ing AMD, Cyrix, and VIA variants), MIPS, Motorola 68K, Sparc, and many others.
The Linux kernel can also be found on Microsoft’s Xbox (Pentium III), Sega’s
Dreamcast (Hitachi SuperH), and even the new Cell processor-based PlayStation 3.
The kernel source provides information on these supported elements.

The source for the processor and vendor board variants is provided in
linux/arch in the Linux kernel source distribution.

Chapter 2 GNU/Linux Architecture 17

SUMMARY

The Linux kernel is the core of the GNU/Linux operating system. It is monolithic
in nature and defined in a number of layers segregating its necessary elements. The
kernel has been designed in such a way that adding new device drivers or protocols
is simple, given the uniform interfaces that are available. This chapter provided a
very high-level look at the architecture, with discussion of the major elements. Ref-
erences to Linux kernel source were provided where applicable.

RESOURCES

Linux Kernel Archive at http://www.kernel.org.
Linux Kernel Cross-Reference at http://lxr.linux.no/.

18 GNU/Linux Application Programming

http://www.kernel.org
http://lxr.linux.no/

19

Free Software Development3

INTRODUCTION

Whereas many consider the concept of free software (or open source) something that
surfaced with the GNU/Linux operating system, it can actually be traced back to early
use in universities and research labs where source was released for others to use, mod-
ify, and hopefully improve. The goal of open source is to make source code available
to others so that they can identify bugs, create new features, and generally evolve the
software. Free software can promote greater reliability and quality through increased
use of the software, in addition to greater visibility into how it works.

This chapter discusses the free software development models and introduces
some of the licenses that are used to release open source. To keep it fair and bal-
anced, it also discusses some of the common problems with free software.

OPEN SOURCE VERSUS FREE SOFTWARE

Before discussing free software, this chapter first covers one of the many religious
debates that exist. Open source was a term coined by Eric Raymond with the cre-
ation of the Open Source Initiative (OSI) in 1997. The term free software was coined

In This Chapter

The Free Software/Open Source Development Paradigm
Open Source versus Free Software
Free and Open Software Licenses
Problems with Free Software

by Richard Stallman with the release of the GNU Project in 1984 and the founding
of the Free Software Foundation in 1985.

While the two terms appear to be similar, and most open source software is re-
leased under the GPL (also created by Stallman), the debate is over the motivation
for the release of open software. Richard Stallman defines it best: “Open source is a
development methodology; free software is a social movement” [Stallman04]. Ray-
mond has also been criticized by many for hijacking the free software movement
for his own self-promotion (13 years after it was originally created) [Raymond04].

ANATOMY OF A FREE SOFTWARE PROJECT

Free software (including open source) is simply a set of useful source code that is
licensed under a free software license such as the GNU General Public License (or
GPL). Popular Web sites such as SourceForge and Freshmeat provide a means to
make free software available to the Internet community. In addition to providing a
means for others to find free software, these sites also serve as a meeting place for
free software developers. Developers can create new free software projects or join
existing projects. This is the essence of free software: developers coming together to
build software that is both useful and free to the wider community.

The fact that source code is available means that if something doesn’t work the
way it should, it can be modified to suit the needs of others. The availability of
source also solves the myth of proprietary software, called “security through ob-
scurity.” Companies believe that because their software isn’t provided in source
form, it’s more secure because it can’t be opened to identify exploits. In fact, what
happens in free software is that because it’s open, exploits are found and fixed more
quickly, making them less likely to be exploited as the distribution of the software
widens. Open source is also more likely to uphold higher quality standards because
of its openness. If a developer knows that it can (and will) be seen by many, more
care will be taken during the coding process. Proprietary software is quickly prov-
ing that obscurity does not provide security.

As free software gains in popularity, so does the desire of others who want to
help. Free software gains not only in development support but also in documenta-
tion, testing, and advertising (typically word of mouth).

Free software has gained so much popularity that even large companies con-
tribute source code to the community. In 2003, IBM donated source code under
the Common Public License (in addition to $40 million) to the Eclipse Consortium
to help in the development of the Visual Editor Project [zdnet.com03]. IBM has
been very supportive of open source and has stated that it is one of the key factors
fueling software discovery and innovation around the world [ibm.com04].

20 GNU/Linux Application Programming

Numerous industries have spawned from open source software, not only for
companies that produce it, but also those that help to advertise and propagate it.
Two such companies act as websites that store open source software and make that
software available for download (SourceForge and Freshmeat). SourceForge, at the
time of this writing, hosts over 150,000 projects and almost two million registered
users. In fact, a fork of the web-based SourceForge site is available as open source
itself in the project called GForge.

OPEN SOURCE LICENSES

Now it’s time to take a quick look at the free and open source licenses. This section
looks at a few different examples that provide different aspects of licensing (rang-
ing from preventing commercial distribution to supporting it).

GPL

The GNU General Public License is one of the most popular licenses used in free
software. The GPL provides the user with three basic “rights”:

The right to copy the software and give it away
The right to change the software
The right to access the source code

Within these rights is the catch with GPL software. Any changes that are made
to GPL software are covered by the GPL and must be made available to others in
source form. This makes the GPL unattractive from a commercial perspective be-
cause it means that if a company changes GPL software, that source code must be
made available to everyone (including competitors). This is what’s called the “taint-
ing” effect of GPL software. What “touches” GPL software becomes GPL software
(otherwise known as a derivative work, something derived from the GPL).

A variation of the GPL exists called the LGPL (Library GPL, or what is now
called the Lesser GPL to indicate the loss of freedom). A library released under the
LGPL makes it possible for proprietary software to be linked with the libraries with-
out the tainting effect. For example, the GNU C library is released under the LGPL,
allowing proprietary software to be developed on GNU/Linux systems.

Software built into the Linux kernel is automatically GPL, though differences of
opinion exist in the case of kernel modules (which can be viewed both ways). The
issue of kernel modules has yet to be challenged in court.

Chapter 3 Free Software Development 21

At the time of this writing, the latest version of the GPL (version 3) has been
introduced with added protections for embedded use of Linux. In one case, a
product that used an embedded version of GNU/Linux released source code (in
compliance with the GPL), but when users attempted to load new software on the
product based upon that released source code, the product detected this and con-
veniently shut down. [TiVO-isation06] This was against the “spirit” of the GPL,
and additions were made to the GPLv3 to protect against this.

QT PUBLIC LICENSE

The Qt Public License (QPL) is an oddity in the open source community because
it breaks the openness created by other public licenses. The QPL permits two types
of licenses: a free license and a commercial license. In the free version, any software
that links to the Qt framework must be opened using either the QPL or GPL.
Developers could instead purchase a commercial license for Qt, which allows them
to build an application using the Qt framework and keep it closed (it’s not required
to be released to the open source community).

From the perspective of openness, “buying out” of the license makes the Qt
framework less useful.

BSD

If one could identify a spectrum of licenses with the GPL on the left, the BSD license
would exist on the right. The BSD license offers a more commercial friendly license
because a program can be built with BSD-licensed software and not be required to
then be BSD licensed itself. The BSD community encourages returning modified
source code, but it’s not required. Despite this, the BSD UNIX operating system is
as advanced, if not more so, as the GNU/Linux operating system.

The issue of the BSD license is what’s called forking (two or more versions of
source code existing from a single source distribution). A commercial incentive
exists to fork rather than make your hard work available to your competitors. The
BSD UNIX operating system has itself been forked into a number of variants,
including FreeBSD, NetBSD, and OpenBSD.

The lack of distribution restrictions defines the primary difference between the
BSD and GPL. GPL specifies that if one uses the GPL in a program, then that pro-
gram becomes a derivative work and therefore is GPL itself. BSD has no concept of
a derivative work, and developers are free to modify and keep their changes.

LICENSE SUMMARY

Many licenses exist and can be viewed at the Open Source Initiative or in reference
[gnu.org04], which also identifies their relation to the GPL and free software.

22 GNU/Linux Application Programming

How one defines freedom determines how one views these licenses. If freedom
means access to source code and access to source code that uses the original code,
then the GPL is the license to use. If freedom is viewed from a commercial per-
spective (the freedom to build a product without distributing any changes to the
source base), then BSD is a fantastic choice. From our short list, the QPL tries to
straddle both extremes. If a commercial license is purchased, then the application
using the Qt can be distributed without source. Otherwise, without a commercial
license (using the so-called free license), source code must be made available.

You are encouraged to read the available references and license resources dis-
cussed at the end of this section. Like anything legal, nothing is really black and
white, and a careful review is suggested.

PROBLEMS WITH OPEN SOURCE DEVELOPMENT

It wouldn’t be fair to discuss the open source development paradigm without men-
tioning any of the problems that exist. Open source is a wonderful development
paradigm, but it does suffer from many of the same problems as proprietary soft-
ware development.

USABILITY/RELIABILITY RAMP

The early days of the GNU/Linux operating system were not for the faint of heart.
Installing GNU/Linux was not a simple task, and commonly, source changes were
necessary to get a system working. The operating system, after all, was simply a
hobby in the early days and did not have the plethora of drivers and hardware sup-
port that exists today. New open source projects mirror some of these same issues.
Early adoption can be problematic if you are not willing to get your hands dirty. But
if an application is truly of interest, just wait a few releases, and someone will make
it more usable.

For a demonstration of the simplicity of building the Linux kernel, check out the
kernel building section in Chapter 28, “GNU/Linux Administration Basics.”

DOCUMENTATION

Documentation on any software project is one of the last elements to be done.
Open source is no different in that respect. Some have claimed that the only real
way to make money from open source is to sell documentation (such as what the
Free Software Foundation does today, though it’s also freely downloadable).

Chapter 3 Free Software Development 23

EGO

Like proprietary software, ego plays a large part in the architecture and develop-
ment direction. Ego is a key reason for the failure of many open source projects,
probably more than technical failings, but this is a personal opinion. Related to ego
are the conflicts that can arise in open source development. One developer sees an
application moving in one direction, while another sees a different path. A com-
mon result is forking of an application, which in itself can be beneficial if viewed
from the perspective of natural selection.

FANATICISM

The open source movement is filled with fanatically committed people. Phrases
such as “GNU zealot” and “Linux zealot” are not uncommon from those on the
“outside.” Arguments over, for example, which operating system is better mirror
many of the political debates to which you’ve become accustomed. The danger of
fanaticism is that you don’t see the real issues and focus on what’s really important.
You can use both Windows and Linux and lead a full and productive life. It’s not
an either/or argument; it’s more about the best tool for the job.

Many of the deeply fervent debates on open source result in arguments such as
“open source is better, just because it is.” The argument becomes a disjunctive syl-
logism, such as “Windows or GNU/Linux; definitely not Windows, therefore
GNU/Linux.” You could argue the merits of the vi editor over Emacs (or vice
versa), but ultimately what’s most important is that the editor does what you need
it to do. Can you operate efficiently using it? From personal experience, I know en-
gineers are aghast that someone would use such an editor as vi. But if you can edit
as efficiently in vi as you can in any other editor, why not? Personal preference def-
initely plays a part in the use of open source software.

SUMMARY

The Free Software movement and open source community have changed the way
that people look at pro bono software development. The GNU/Linux operating sys-
tem, the Apache Web server, and the Python object-oriented scripting language
(just to name a few) have resulted from distributed and sometimes ad hoc devel-
opment around the world. Free and open software licenses have been created to
protect free software and maintain it as free, but differences exist depending upon
the goal. However, free software development isn’t a panacea to today’s software
development issues, as it does suffer from the same issues of proprietary software
development.

24 GNU/Linux Application Programming

REFERENCES

[ibm.com04] “Innovation Thriving, Depends on Openness to Continue,” IBM, 2004.
[gnu.com04] “Various Licenses and Comments about Them” at http://www.gnu.

org/philosophy/license-list.html
[Raymond04] Wikipedia: “Eric S. Raymond” at http://en.wikipedia.org/wiki/

Eric_Raymond
[Stallman04] “Why ‘Free Software’ Is Better Than ‘Open Source’” at http://www.

gnu.org/philosophy/free-software-for-freedom.html
[TiVO-isation06] “GPLv3 issues: TiVO-isation” at http://www.digital-rights.

net/?p=548
[zdnet.com03] “IBM Donates Code to Open-Source Project” at http://zdnet.

com.com/2100-1104_2-5108886.html

RESOURCES

Developer.com at http://www.developer.com/open/.
Freshmeat at http://www.freshmeat.net.
GForge Content Management System at http://gforge.org/.
GNU Project License List at http://www.gnu.org/licenses/license-list.html.
Open Source Initiative (OSI) at http://www.opensource.org/.
Open Source Technology Group at http://www.ostg.com/.
SourceForge at http://www.sourceforge.net.
“Why Open Source Software/Free Software (OSS/FS)? Look at the Numbers!” at

http://www.dwheeler.com/oss_fs_why.html.

Chapter 3 Free Software Development 25

http://www.gnu.org/philosophy/license-list.html
http://www.gnu.org/philosophy/license-list.html
http://en.wikipedia.org/wiki/Eric_Raymond
http://en.wikipedia.org/wiki/Eric_Raymond
http://www.gnu.org/philosophy/free-software-for-freedom.html
http://www.gnu.org/philosophy/free-software-for-freedom.html
http://www.digital-rights.net/?p=548
http://www.digital-rights.net/?p=548
http://zdnet.com.com/2100-1104_2-5108886.html
http://zdnet.com.com/2100-1104_2-5108886.html
http://www.developer.com/open/
http://www.freshmeat.net
http://gforge.org/
http://www.gnu.org/licenses/license-list.html
http://www.opensource.org/
http://www.ostg.com/
http://www.sourceforge.net
http://www.dwheeler.com/oss_fs_why.html

This page intentionally left blank

27

Linux Virtualization
and Emulation

4

L
inux is a great operating system, not just for production use, but also for the
research and development of cutting-edge operating-system technologies.
One of the biggest and most important areas today is that of virtualization.

This chapter explores the ideas behind virtualization and then discusses the various
means by which virtualization can be accomplished in GNU/Linux.

INTRODUCTION

At the time of this writing, virtualization could not be bigger. VMware is moving
toward an IPO, Xen has been acquired by Citrix, and a virtualization solution called
KVM has finally been integrated directly into Linux (via a loadable module). Linux
is at the center of this new revolution and is, therefore, an important technology to
understand and know how to exploit.

This chapter starts with a short history of virtualization, as it truly is a technol-
ogy that is as old as modern computing itself. Then you’ll review the options for
Linux virtualization and explore how each can be used.

In This Chapter

Introduction to Virtualization
Taxonomy of Virtualization
Virtualization History
Open Source Virtualization Methods

WHAT IS VIRTUALIZATION?

Virtualization is unfortunately one of those words that when used in isolation cre-
ates confusion. This chapter discusses what is called platform virtualization, which
means that the bare-metal hardware is virtualized, allowing more than one operat-
ing system to run concurrently on it. The abstraction of the computer hardware is
performed commonly through what is called a hypervisor, or Virtual Machine
Monitor (VMM). The hypervisor creates an environment from which guest soft-
ware (commonly an operating system) can be run (see Figure 4.1).

28 GNU/Linux Application Programming

FIGURE 4.1 Graphical depiction of basic platform virtualization.

Note the similarities here between a hypervisor, which creates an environment for
an operating system, and an operating system, which creates an environment for
applications. From this perspective, and as you can see in the short history section,
virtualization is certainly not a new technique, but instead a tried and true one
with many applications.

Because the hypervisor abstracts the resources for each of the guest operating
systems, the failure of one guest operating system does not mean that other guest
operating systems fail. Each guest is isolated from the others.

This is one of the first advantages of virtualization. While a computer can be
better utilized with multiple guests, their isolation means that one’s failing does not
impact another.

SHORT HISTORY OF VIRTUALIZATION

The history of virtualization is interesting and worthy of more study than is covered
here. The term virtualization began being used in the 1960s with IBM’s CP-40
research operating system (the starting point to the popular System/360 family of
mainframe computers). The CP-40 (see Figure 4.2) provided the ability to run mul-
tiple instances of an operating system (in the early days, this was the Cambridge
Monitor System, or CMS).

Chapter 4 Linux Virtualization and Emulation 29

FIGURE 4.2 Early virtualization with IBM’s CP-40.

Note the similarities this system has to the basic virtualization platform in
Figure 4.1. The Control Program was the first hypervisor, with virtual machines im-
plementing the fully virtualized platforms for isolating separate operating systems.

The CP-40 implemented multiple forms of virtualization that at this time were
purely research oriented. The first, as shown in Figure 4.2, was the concept of a vir-
tual machine. In those days, this was called time-sharing because the system was
shared by multiple users who were each unaware of the others’ existence on the CP-
40 platform. Up to 14 individual virtual machines could be supported on a single CP.

Another innovation in the CP-40 (demonstrated also in the University of Man-
chester’s Atlas computer and IBM’s experimental M44/44X) was the concept of
paging. Paging allows memory to be paged in and out of the available physical
memory, allowing a much larger address space to be represented than is physically
available. Paging transparently moves blocks of memory (called pages) between

central (local) storage and auxiliary (non-local) storage. Local storage is addressed
as virtual memory, abstracting the physical memory of the system. This allows a
page of virtual memory to exist in physical memory or auxiliary memory. Pages are
moved out of local memory based upon a replacement algorithm (commonly least-
recently used).

One of the most popular virtualization platforms is IBM’s System/370 mainframe.
While you might not have access to this platform, it might interest you to know that
you can virtualize an entire System/370 mainframe or even the latest 64-bit
z/Architecture on Linux with the open source Hercules emulator.

While Linux is the focus of this book, it’s useful at times to run other operating
systems (such as Darwin, ReactOS, or BeOS). Virtualization allows two or more
different operating systems to coexist on the same host at the same time (see Fig-
ure 4.3).

30 GNU/Linux Application Programming

FIGURE 4.3 Virtualization can support multiple operating systems.

In addition to CPU and memory, virtualization has also been applied to other
computing system objects. For example, storage systems have been (and are cur-
rently) virtualized. While IBM introduced the concepts in a 1978 patent, the term
Redundant Array of Inexpensive Disks (RAID) was not coined until 1987 by the
University of California. Conceptually, RAID is the virtualization of disks to ab-
stract them into other entities. For example, two disks can be virtualized into one
through mirroring, essentially keeping two copies of storage on two disks for relia-
bility (if one disk fails, the data is still available on the other). Multiple disks can also

be viewed as multiple logical disks through striping, which increases performance
through parallel access to multiple independent disks (see Figure 4.4).

Chapter 4 Linux Virtualization and Emulation 31

FIGURE 4.4 Disk virtualization with RAID levels.

Other virtualization possibilities exist such as breaking a single physical volume
into multiple logical disks or, vice versa, taking multiple physical disks and making
them appear as one large volume.

Linux is a great operating system on which to try virtualization technologies. In ad-
dition to a variety of solutions for platform virtualization, you also find standard
solutions for storage virtualization (supporting all useful RAID levels).

Today, virtualization is the new big thing. With numerous methods to achieve
platform virtualization, Linux supports an approach that meets any need. In the
next section, you explore the methods by which virtualization is implemented and
then review and see demonstrated some of the options for Linux.

WHAT’S THE POINT?

Modern virtualization is important for many reasons. From a developer’s perspec-
tive, virtualization allows you to develop within a virtualized kernel. If your code
causes the kernel to crash, it simply causes that virtualized platform to crash, but
your machine (and host operating system) continues to run. It can also be simpler
to debug kernels that are part of a virtualized platform, as you have greater control
over that environment.

Virtualization also allows the development of software for other architectures
in a simpler fashion. For example, it’s not always necessary for the software that’s
being virtualized to be of the same instruction set as the host. You could, for ex-
ample, virtualize a Linux kernel for a PowerPC on an x86 host.

But the real value of virtualization is as old as its first use in multi-user systems.
Servers in the enterprise used to support a small number of applications, but in
most cases, the server was dormant much of the time. Servers can be better utilized
if more applications (and operating systems) can run on them. Platform virtual-
ization makes this possible, with added reliability. If a virtual server crashes, no
other virtual server goes down with it. Therefore, the servers are better utilized, and
fewer servers are required, meaning less expense.

Another interesting advantage of virtualization is migration. A virtualized
server can be stopped, migrated to a new physical server, and then restarted. This
allows a particular server to be removed from the working set (for maintenance)
while the application remains running (with a small delay for migration). Related
to migration is checkpointing. When Linux is migrated, its state is stored in its en-
tirety in a file. This file can then be migrated, or can be saved to represent the OS,
applications, and all state at that point in time.

VIRTUALIZATION TAXONOMY

If there’s one thing that GNU/Linux is known for, it’s options. If you need to build
an application using a scripting language, you have many choices. You need sup-
port for a particular network card, a driver exists, and in most cases, it simply
works. Virtualization is no different. Linux supports a number of different virtual-
ization methods, each with its own advantages and disadvantages. In this section,
you can see the more popular virtualization approaches and then look at some of
the options that are available to you.

FULL VIRTUALIZATION

Full virtualization refers to the method by which a virtual machine instance is cre-
ated for a guest operating system to allow it to run unmodified. The virtual ma-
chine simulates some portion of the underlying hardware, trapping calls when
necessary to arbitrate within the hypervisor (Virtual Machine Monitor). This form
of virtualization was shown in Figure 4.1.

Full virtualization requires that all operating systems be targeted to the same
processor architecture, which is a common constraint in all but experimental or de-
velopmental scenarios. Each operating system is unmodified and is unaware that it
is executing on a virtualized platform. Further, full virtualization can run on hard-
ware with virtualization support.

32 GNU/Linux Application Programming

The biggest issue in virtualization is how to handle special privileged-mode in-
structions. These must be trapped appropriately and allowed to be handled by the
hypervisor. So in an unmodified operating system (without virtualization hard-
ware), these calls must be found and converted to hypervisor calls. This is called
code scanning, and the result is a modification of the original code to insert hyper-
visor calls where privileged trap instructions were found.

PARAVIRTUALIZATION

The definition of paravirtualization has changed given recent announcements. The
early method of paravirtualization required modifications to the guest operating
system so that it was aware of the fact that it was being virtualized. This meant
higher performance (as code scanning was not necessary) but limited the operating
systems that could be virtualized (see Figure 4.5).

Chapter 4 Linux Virtualization and Emulation 33

FIGURE 4.5 Early paravirtualization solution.

But today, the definition of paravirtualization has changed. Given hardware
support for virtualization, operating system modifications are no longer necessary.
This means that all operating systems can be virtualized because the virtualization
is transparent to each guest operating system (see Figure 4.6).

As you will see shortly, Linux itself is the ideal hypervisor, making it possible to
virtualize guest operating systems on top of Linux (including Linux guest operat-
ing systems).

EMULATION

An older technique, though still popular because of its versatility, is called emulation.
With emulation, you have not just one hypervisor, but potentially many servicing
each virtualized platform. The hypervisor emulates the entire platform, providing the
means to emulate a processor different from that of the host. For example, with em-
ulation, you can run a Linux kernel targeted for PowerPC on an x86 host.

Emulation is obviously not a new idea; in fact, it has been used since the early
days of computing. Further, some other examples of emulation that are not specific
to operating systems are useful to understand.

System Emulation

One fascinating example of a full system emulator is MAME, or Multiple Arcade
Machine Emulator. This software emulates a large number of arcade machines, in-
cluding not only their CPUs, video, and sound hardware, but also control devices
such as joysticks and sliders. It’s an amazing example of an emulator because of the
vast number of processors and hardware configurations that are emulated.

The ROMs (or storage device for the games) are typically emulated as a file in
the host operating system, which is a common method for any emulator (includ-
ing the Linux virtualization solutions). As of this writing, over 3,600 individual
games can be emulated on MAME.

34 GNU/Linux Application Programming

FIGURE 4.6 Current paravirtualization solution.

Language VM

While not the first language to make use of a virtual machine, Java is the most
popular (see Figure 4.7). Early examples of bytecode execution include the UCSD
p-System, which was the portable execution environment for UCSD Pascal. Forth
is another language that relied on emulation, typically on a simple stack-based
machine.

Chapter 4 Linux Virtualization and Emulation 35

FIGURE 4.7 The Java Virtual Machine (JVM) as the virtualization

environment for Java applications.

Java is emulated, but still has very good performance and great portability. Java
and older Pascal implementations are not the only ones that are emulated. In fact,
many of the modern scripting languages (such as Ruby or Python) are interpreted
rather than being languages that execute directly on the host processor.

Specialized Emulators

One final example of an emulator is a popular one in embedded development. Prior
to hardware being available, embedded developers commonly relied on instruction
set simulators (ISS). These emulators/simulators allow code to be executed on
simulated hardware for preverification. These simulators commonly support cycle
accuracy, simulating the processor exactly and allowing performance evaluation to
be performed.

OPERATING SYSTEM VIRTUALIZATION

One final virtualization method to be discussed is called operating system virtualiza-
tion. This is different from the methods discussed so far because it’s more about
isolating services at the operating system layer than virtualizing two or more operating

systems on a given platform. For example, in OS virtualization, a single operating sys-
tem exists with multiple user-space environments (see Figure 4.8).

36 GNU/Linux Application Programming

FIGURE 4.8 Operating system virtualization focuses on virtualizing user-space

environments.

Operating system virtualization is very popular for server sharing by multiple
users. It has the advantage of being fast (multiple kernels aren’t virtualized), but is
not as reliable as other virtualization schemes. For example, if one user space causes
the system to crash, then all user spaces crash because they rely on the same kernel.

HARDWARE-ASSISTED VIRTUALIZATION

Virtualization is such a popular technique and brings so many advantages to com-
puting that processors are now being introduced with instruction sets that acceler-
ate it. Modern CPUs support efficient ways of mediating between privileged modes
of execution (to support user-mode and kernel-mode software, for example). In
the same vein, new CPUs include instructions to mediate between guest operating
systems and hypervisors (as hypervisors are more privileged than guest operating
systems). Two CPU vendors are producing processors with virtualization support
and are explored in this section.

Many of the virtualization techniques, such as full and paravirtualization
schemes, take advantage of these CPUs. Emulators are also now incorporating sup-
port for virtualization instruction sets in search of better efficiency.

x86 Virtualization

Intel provides the VT-x (and VT-i) processors with extensions to support virtual-
ization. AMD provides the AMD-V x86 architecture with extensions for virtualiza-

tion. Each provides roughly the same capabilities, so I’ll speak generally about
what’s necessary for x86 virtualization and how it’s achieved.

In x86 architectures, four rings represent privileged levels of execution. Ring 0
is the most privileged and is used to execute the operating system. Ring 3, the least
privileged, is where user applications are run (with rings 1 and 2 rarely being used).
Therefore, operating systems expect to be running in ring 0. Also, numerous in-
structions surface in the privileged state of the CPU. While these would be usable
in a hypervisor, they should not be executed in guest operating systems. One solu-
tion is to provide rings for guest operating systems, and another is to alias the rings
so that they can be swapped in and out based upon the virtual machine being run.
The Intel CPU provides a set of rings for the hypervisor while another set of rings
exists for the guest virtual machines.

Virtualization-aware CPUs also add new instructions to manage control between
the hypervisor and guest operating systems. For example, the AMD-V processor
introduces a new instruction called VMRUN that migrates the processor between
virtualization modes. For example, the VMRUN instruction can migrate the CPU and its
state from the Hypervisor to the guest operating system, and back. Another
instruction called VMMCALL allows the hypervisor and a guest operating system to com-
municate directly. AMD also introduced the concept of application-space IDs, which
provide control over TLBs (as the guest operating systems never touch the real page
tables managed by the CPU).

As virtualization is an important technology, the ability to efficiently execute
hypervisors and quickly transition between guest operating systems is critical. CPU
vendors are now doing their part to improve this process.

You can tell if your CPU has virtualization support by checking procinfo within
the /proc filesystem. The flags line within proc-info should have either vmx if you
have an Intel processor that’s virtualization aware or svm if you have an AMD
processor that’s virtualization aware. You can easily check this with the following
command line:

$ grep svm /proc/cpuinfo

OPEN SOURCE VIRTUALIZATION SOLUTIONS

You have numerous open source solutions for virtualization on Linux. In this sec-
tion, I’ll show you how to use two. QEMU is more accessible, because you don’t
need special hardware to use it. KVM requires a platform with a virtualization-
aware processor, so you’ll need a bit more to use it.

Chapter 4 Linux Virtualization and Emulation 37

QEMU

QEMU is a platform virtualization application that allows you to virtualize an op-
erating system on top of Linux. QEMU virtualizes an entire PC system including
peripherals such as the display, sound hardware, and NIC. QEMU also is equipped
with an accelerator that speeds up PC emulation on x86 physical hosts. If your host
is x86, it’s very worthwhile to enable this.

How QEMU Works

QEMU is a full system emulator, which means that it creates (virtually) a PC within
an application and then emulates the desired operating system on it (see Figure
4.9). QEMU offers a couple of ways to emulate the operating system, depending
upon the instruction set being emulated. If the code is the same as the host ma-
chine, then the process of emulation is much simpler (because the instruction sets
match). QEMU permits execution of the guest code directly on the CPU (without
emulating it), making it more of a paravirtualization solution (but with an emu-
lated PC environment).

38 GNU/Linux Application Programming

FIGURE 4.9 The QEMU approach to virtualization through emulation.

QEMU can also emulate other architectures on x86, for example. One example
is emulating a Linux kernel built for PowerPC on an x86 host system. Emulators of
this type are traditionally very slow, but QEMU emulates in a much more efficient
way through a process called dynamic translation. In dynamic translation, trans-
lated code (code from the guest that’s been translated to run on the host CPU) is

cached for use. This means that a block of translated code can be reused without re-
translating. QEMU also takes a very smart approach to translation by employing
compiler techniques within the translator to quickly and efficiently translate in-
struction sequences (called micro-operations) from one instruction set to another.

Now have a look at the process for emulating an operating system on Linux.

Installing and Emulating a Guest OS

The process of installing and emulating a guest OS on top of Linux is surprisingly
simple. The process of building and installing won’t be covered here, but it’s the stan-
dard configure/make/make install procedure that exists for most Linux software.

The first step after building and installing QEMU is to install the QEMU accel-
erator. This is a kernel module that is inserted into the kernel using the insmod com-
mand:

$ insmod kqemu.ko

$

This permits much faster emulation of x86 code on an x86 host system.
The process of emulating an operating system begins with an installation. Just

like installing a new operating system on a computer, you must first install your
new operating system within the QEMU environment. To emulate an operating
system, you begin with a hard disk onto which the guest operating system is in-
stalled. In virtualization, you use a shared hard disk, so your hard disk for QEMU
is actually a file within the filesystem of the host operating system.

Creating this disk uses a special command in QEMU called qemu-img. This util-
ity can be used to create images and also convert them between image types. QEMU
supports a number of image types, but the most useful is called qcow (or QEMU
Copy On Write). This is a compressed image type that consumes only what is used.
For example, a 4 GB qcow image file can be created, but it consumes only 16 KB
when empty. As files are added to the emulated disk (qcow file), it grows accord-
ingly. The following creates a qcow image that’s 256 MB in size:

$ qemu-img create qcow disk.img 256M

Formating ‘disk.img’, ftm=qcow, size=262144 kB

$

With the newly created hard disk image, the next step is to install the desired
operating system. This happens very much like installing a new operating system on
a standard PC, except that you control it from the command line. Most operating
system images are loaded from a CD-ROM in what’s called an ISO format. ISO (or
ISO9660) is the standard format for CD-ROMs. ISO images for operating systems

Chapter 4 Linux Virtualization and Emulation 39

can be downloaded from any Linux distribution website. But it doesn’t have to be
GNU/Linux; you could grab BSD images or any of the other operating systems that
are available.

With the ISO image downloaded, the next step is to use QEMU to boot the
CD-ROM image in order to install it to the emulated hard disk. This is performed
with the following command line:

$ qemu -hda disk.img -cdrom image.iso -boot d

This command line specifies the hard disk image (that was previously created),
the ISO file, and what to boot. The -boot option specifies where to boot, in this case
d means the CD-ROM (n would be network, a the floppy, and c the hard disk). This
command boots (emulates) the image on the emulated CD-ROM. The purpose of
the CD-ROM is to install the operating system image onto the hard disk. QEMU
emulates the entire platform, including the hard disk (represented a file in the host
operating system) and how to deal with a simulated CD-ROM (in addition to other
devices).

After this command is executed, the CD-ROM image is emulated and this re-
sults in the typical install process in a new window (which represents the emulated
PC platform). When the install process is complete, the emulation platform ends.
The emulated hard disk has now been populated (through the install process) with
a bootable OS image. This can now be booted with QEMU, but this time you can
specify that the hard disk should be used for the boot process:

$ qemu -hda disk.img -boot c

This creates a new window for the QEMU guest OS instance and proceeds to
boot the newly installed operating system. This same process can be used to install
any operating system, from Linux to Windows.

Booting from Emulated Floppy Disks

QEMU can also be used to boot smaller operating systems, such as those that reside
on a single floppy disk. QEMU provides a special option to boot a floppy disk
image. The example that follows illustrates QEMU booting a live floppy disk image
(fda), specifying a floppy disk boot (-boot a), and disabling boot signature check-
ing.

$ qemu -fda aros.bin -boot a -no-fd-bootchk

$

40 GNU/Linux Application Programming

This example booted the AROS operating system, which is compatible with the
AmigaOS 3.1 OS (at least at the API level). This is one of the greatest features of
QEMU, the ability to try new operating systems without having to install them
directly on your system. The AROS workbench screen is shown in Figure 4.10, as
emulated on a standard GNU/Linux desktop.

Chapter 4 Linux Virtualization and Emulation 41

FIGURE 4.10 Booting a floppy image with QEMU.

Another portable PC emulator is called Bochs. This emulator, like QEMU, can run
on a variety of operating systems providing an emulation of common PC periph-
erals (display, BIOS, disks, memory, etc.). Like QEMU, Bochs can support a num-
ber of guest operating systems including DOS, Windows, BSD, and, of course,
Linux.

KVM

A recent addition to the virtualization arena is called KVM, which is an acronym for
Kernel Virtual Machine. KVM is a paravirtualization solution that in essence turns
the Linux host operating system into a hypervisor. This was an ideal solution be-
cause as it turns out the Linux kernel is an ideal base for a hypervisor.

KVM exists as a loadable module that extends a file within the proc filesystem
to support virtualization. Each virtualized kernel exists as a single process in the
process space of the host operating system (in this case, the hypervisor). KVM relies
on QEMU for the platform virtualization and also relies on a virtualization-aware
processor. This can presently be viewed as an issue, because virtualization-aware
CPUs are not in widespread use. But it won’t be long before these CPUs are com-
monplace.

Installing and virtualizing a new guest operating system is very similar to the
process demonstrated with QEMU; in fact, KVM relies on QEMU. For example,
the first step is to create a hard disk image with qemu-img:

$ qemu-img create -f qcow disk.img 4G

Then, a new OS can be installed into the emulated disk using kvm (the KVM
image):

$ kvm -m 384 -cdrom newguestos.iso -hda disk.img -boot d

After the guest operating system is installed, it can be executed as:

$ kvm -m 384 -hda disk.img

Note here that the -m option specifies that the virtualized platform has 384 MB
of memory available. Because KVM relies on hardware support for virtualization,
it is faster than QEMU.

SUMMARY

Virtualization is not a new technology, but it has made a huge comeback in recent
years given its benefits in server environments. You can also find great benefits in
virtualization, not just for running two operating systems simultaneously (for
application access), but also from a development perspective. Kernel development
became much simpler with the introduction of virtualization because a kernel crash
doesn’t require the reboot time. Instead, the virtualized kernel can be restarted, in
seconds. Virtualization is one technology that can fundamentally change the land-
scape of computing, and Linux is at the center.

42 GNU/Linux Application Programming

Chapter 5: The GNU Compiler Toolchain

Chapter 6: Building Software with GNU make

Chapter 7: Building and Using Libraries

Chapter 8: Building Packages with automake/autoconf

Chapter 9: Source Control in GNU/Linux

Chapter 10: Data Visualization with Gnuplot

This part of the book focuses on GNU tools. Because a plethora of tools are
available, the focus here is primarily on those that are necessary to build, segment,
test and profile, and finally distribute applications.

CHAPTER 5: THE GNU COMPILER TOOLCHAIN

The GNU compiler toolchain (known as GCC) is the standard compiler on
GNU/Linux systems (it is, after all, an acronym for GNU Compiler Collection). This
chapter addresses compiling C programs for native systems, but GCC provides a
front end for a number of different languages and back ends for almost any proces-
sor architecture you can think of.

CHAPTER 6: BUILDING SOFTWARE WITH GNU make

The GNU make utility provides a way to automatically build software based upon
defined source files, source paths, and dependencies. But that’s not all! The make
utility is a general utility that can be used for a variety of tasks that have ordered de-
pendencies. This chapter looks at the typical—and some not so typical—uses.

Part

II GNU Tools

43

CHAPTER 7: BUILDING AND USING LIBRARIES

Software libraries allow you to collect and compile software (objects) into a single
entity. In this chapter you’ll explore the methods for creating both static and dy-
namic libraries as well as the API functions that allow applications to build and use
dynamic (shared) libraries.

CHAPTER 8: BUILDING PACKAGES WITH AUTOMAKE/AUTOCONF

Next, this chapter takes you back to the topic of application building with a look at
automake and autoconf. These tools can be used to automatically create build files
for make based upon the given architecture and available tools. In this process, au-
toconf and automake can determine if the given system has the necessary elements
(such as tools or libraries) to build an application correctly.

CHAPTER 9: SOURCE CONTROL IN GNU/LINUX

Source control is the process in which source can be managed and tracked over
time. Source control is a key aspect of software development, and GNU/Linux pro-
vides many options to help protect your source. This chapter introduces the major
source control paradigms and then explores the various applications available, such
as CVS, Subversion, Arch, and Git.

CHAPTER 10: DATA VISUALIZATION WITH GNUPLOT

Visualizing data is important in any field and GNU/Linux provides an endless
number of options to help organize and then visualize your data. This chapter pre-
sents a number of options and then explores the various ways that data can be por-
trayed and reduced. Common tools like GNUplot are covered as well as some of the
more complex options like GNU Octave.

44 GNU/Linux Application Programming

45

The GNU Compiler
Toolchain

5

INTRODUCTION

The GNU Compiler Collection (otherwise known as GCC) is a compiler and set of
utilities to build binaries from high-level source code. GCC is not only the de facto
standard compiler on GNU/Linux, but it’s also the standard for embedded systems
development. This is because GCC supports so many different target architectures.
For example, the use in this chapter concentrates on host-based development
(building software for the platform on which you are compiling), but if you were
cross-compiling (building for a different target), then GCC provides for 40 differ-
ent architecture families. Examples include x86, RS6000, Arm, PowerPC, and many
others. GCC can also be used on over 40 different host systems (such as Linux, So-
laris, Windows, or the Next operating system).

GCC also supports a number of other languages outside of standard C. You can
compile for C++, Ada, Java, Objective-C, FORTRAN, Pascal, and three dialects of
the C language.

In This Chapter

A Review of the Compilation Process
Introduction to Common GCC Patterns
Using the GCC Warning Options
Using the GCC Optimizer
Architectural Specification to GCC
Related Tools such as size and objdump

This chapter looks at some of the basic features of GCC and some of the more ad-
vanced ones (including optimization). It also looks at some of the related tools within
GCC that are useful in image construction (such as size, objcopy, and others).

This chapter addresses the 3.2.2 version of GCC. This is the default version for Red
Hat 9.0. Newer versions of GCC now exist, but the details explored here remain
compatible.

INTRODUCTION TO COMPILATION

The GNU compiler involves a number of different stages in the process of building
an object. These stages can be filtered down to four: preprocessing, compiling, as-
sembling, and linking (see Figure 5.1).

46 GNU/Linux Application Programming

FIGURE 5.1 The stages of compilation.

The preprocessing, compiling, and assembling stages are commonly collected
together into one phase, but they’re shown as independent here to illustrate some
of the capabilities of GCC. Table 5.1 identifies the input files and files that result.

In the preprocessing stage, the source file (*.c) is preprocessed with the include
files (.h headers). At this stage, directives such as #ifdef, #include, and #define are
resolved. The result is an intermediate file. Usually, this file isn’t externally generated
at all, but it is shown here for completeness. With the source file now preprocessed,
it can be compiled into assembly in the compiling stage (*.s). The assembly file is
then converted into machine instructions in the assembling stage, resulting in an ob-
ject file (*.o). Finally, the machine code is linked together (potentially with other
machine code objects or object libraries) into an executable binary.

That’s enough preliminaries. Now it’s time to dig into GCC and see the variety
of ways it can be used. What follows first looks at a number of patterns that illus-
trate GCC in use and then explores some of the most useful options of GCC. This
includes options for debugging, enabling various warnings, and optimizing. Then
you investigate a number of GNU tools that are related to GCC.

PATTERNS FOR GCC (COMPILE, COMPILE, AND LINK)

The simplest example from which to begin is the compilation of a C source file to
an image. In this example, the entire source necessary is contained within the sin-
gle file, so you use GCC as follows:

$ GCC test.c -o test

Here you compile the test.c file and place the resulting executable image in a
file called test (using the -o output option). If instead you wanted just the object
file for the source, you’d use the -c flag, as follows:

$ GCC -c test.c

By default, the resulting object is named test.o, but you could force the output
of the object to newtest.o, as shown here:

Chapter 5 The GNU Compiler Toolchain 47

Stage Input Output GCC Example

Preprocessing *.c *.i gcc -E test.c -o test.i

Compiling *.i *.s GCC -S test.i -o test.s

Assembling *.s *.o GCC -c test.s -o test.o

Linking *.o * GCC test.o -o test

TABLE 5.1 Compilation Stages with Inputs and Outputs

$ GCC -c test.c -o newtest.o

Most programs you develop involve more than one file. GCC handles this eas-
ily on the command line as shown here:

$ GCC -o image first.c second.c third.c

Here you compile three source files (first.c, second.c, and third.c) and link
them together into the executable named image.

In all examples where an executable results, all C programs require a function
called main. This is the main entry point for the program and should appear once
in all the files to be compiled and linked together. When you are simply compiling
a source file to an object, the link phase is not yet performed, and therefore the main
function is not necessary.

USEFUL OPTIONS

In many cases, you keep your header files in a directory that’s separate from where
you keep your source files. Consider an example where the source is kept in a sub-
directory called ./src and at the same level is a directory where the include files are
kept, ./inc. You can tell GCC that the headers are provided there while compiling
within the ./src subdirectory as shown here:

$ gcc test.c -I../inc -o test

You could specify numerous include subdirectories using multiple -I specs:

$ gcc test.c -I../inc -I../../inc2 -o test

Here you specify another include subdirectory called inc2 that is two directo-
ries up from the current directory.

For configuration of software, you can specify symbolic constants on the com-
pile line. For example, defining a symbolic constant in the source or header as

#define TEST_CONFIGURATION

can be just as easily defined on the command line using the -D option as shown
here:

$ gcc -DTEST_CONFIGURATION test.c -o test

The advantage to specifying this on the command line is that you need not
modify any source to change its behavior (as specified by the symbolic constant).

48 GNU/Linux Application Programming

One final useful option provides you with the means to emit a source and as-
sembly interspersed listing. Consider the following command line:

$ gcc -c -g -Wa,-ahl,-L test.c

Most interesting in this command is the -Wa option, which passes the subse-
quent options to the assembler stage to intersperse the C source with assembly.

COMPILER WARNINGS

Whereas the GCC compiler aborts the compilation process if an error is detected,
the discovery of warnings indicates potential problems that should be fixed, though
the result might still be a working executable. GCC provides a very rich warning
system, but it must be enabled to take advantage of the full spectrum of warnings
that can be detected.

The most common use of GCC for finding common warnings is the -Wall
option. This turns on “all” warnings of a given type, which consists of the most
generally encountered issues in applications. Its use is this:

$ gcc -Wall test.c -o test

A synonym for -Wall is -all-warnings. Table 5.2 lists the plethora of warning
options that are enabled within -Wall.

Chapter 5 The GNU Compiler Toolchain 49

Option Purpose

unused-function Warn of undefined but declared static function.

unused-label Warn of declared but unused label.

unused-parameter Warn of unused function argument.

unused-variable Warn of unused locally declared variable.

unused-value Warn of computed but unused value.

format Verify that the format strings of printf and so on

have valid arguments based upon the types

specified in the format string.

implicit-int Warn when a declaration doesn’t specify a type.

implicit-function-declaration Warn of a function being used prior to its

declaration.

→

TABLE 5.2 Warning Options Enabled in -Wall

Note that most options also have a negative form, so that they can be disabled
(if on by default or covered by an aggregate option such as -Wall). For example, if
you wanted to enable -Wall but disable the unused warning set, you could specify
this as follows:

$ gcc -Wall -Wno-unused test.c -o test

Numerous other warnings can be enabled outside of -Wall. Table 5.3 provides
a list of some of the more useful options and their descriptions.

One final warning option that can be very useful is -Werror. This option speci-
fies that instead of simply issuing a warning if one is detected, the compiler instead
treats all warnings as errors and aborts the compilation process. This can be very
useful to ensure the highest quality code and is therefore recommended.

50 GNU/Linux Application Programming

Option Purpose

char-subscripts Warn if an array is subscripted by a char (a common

error considering that the type is signed).

missing-braces Warn if an aggregate initializer is not fully bracketed.

parentheses Warn of omissions of ()s if they could be

ambiguous.

return-type Warn of function declarations that default to int or

functions that lack a return, which note a return

type.

sequence-point Warn of code elements that are suspicious (such as

a[i] = c[i++];).

switch In switch statements that lack a default, warn of

missing cases that would be present in the switch

argument.

strict-aliasing Use strictest rules for aliasing of variables (such as

trying to alias a void* to a double).

unknown-pragmas Warn of #pragma directives that are not recognized.

uninitialized Warn of variables that are used but not initialized

(enabled only with -O2 optimization level).

GCC OPTIMIZER

The job of the optimizer is essentially to do one of three potentially orthogonal
tasks. It can optimize the code to make it faster and smaller, it can optimize the
code to make it faster but potentially larger, or it can simply reduce the size of the
code but potentially make it slower. Luckily, you have control over the optimizer to
instruct it to do what you really want.

While the GCC optimizer does a good job of code optimization, it can sometimes
result in larger or slower images (the opposite of what you might be after). It’s im-
portant to test your image to ensure that you’re getting what you expect. When you
don’t get what you expect, changing the options you provide to the optimizer can
usually remedy the situation.

This section looks at the various mechanisms to optimize code using GCC.
In its simplest form, GCC provides a number of levels of optimization that can

be enabled. The -O (oh) option permits the specification of five different optimiza-
tion levels, listed in Table 5.4.

Chapter 5 The GNU Compiler Toolchain 51

Option Purpose

cast-align Warn whenever a pointer is cast and the required

alignment is increased.

sign-compare Warn if a signed vs. unsigned compare could yield an

incorrect result.

missing-prototypes Warn if a global function is used without a previous

prototype definition.

packed Warn if a structure is provided with the packed

attribute and no packing occurs.

padded Warn if a structure is padded to align it (resulting in a

larger structure).

unreachable-code Warn if code is found that can never be executed.

inline Warn if a function marked as inline could not be

inlined.

disabled-optimization Warn that the optimizer was not able to perform a

given optimization (required too much time or

resources to perform).

TABLE 5.3 Other Useful Warning Options Not Enabled in -Wall

Enabling the optimizer simply entails specifying the given optimization level on
the GCC command line. For example, in the following command line, you instruct
the optimizer to focus on reducing the size of the resulting image:

$ gcc -Os test.c -o test

Note that you can specify different optimization levels for each file that is to
make up an image. Certain optimizations (not contained within the optimization
levels) require all files to be compiled with the option if one is compiled with it, but
none of those are addressed here.

Now it’s time to dig into the optimization levels and see what each does and
also identify the individual optimizations that are provided.

-O0 OPTIMIZATION

With -O0 optimization (or no optimizer spec specified at all), the compiler simply
generates code that provides the expected results and is easily debuggable within a
source code debugger (such as the GNU Debugger, gdb). The compiler is also much
faster when not optimizing, as the optimizer is not invoked at all.

-O1 OPTIMIZATION (-O)

In the first level of optimization, the optimizer’s goal is to compile as quickly as pos-
sible and also to reduce the resulting code size and execution time. Compilation
might take more time with -O1 (over -O0), but depending upon the source being
compiled, this is usually not noticeable.

The individual optimizations in -O1 are shown in Table 5.5.

52 GNU/Linux Application Programming

Optimization Level Description

-O0 No optimization (the default level).

-O, -O1 Tries to reduce both compilation time and image size.

-O2 More optimizations than -O1, but only those that don’t

increase size over speed (or vice versa).

-Os Optimize for resulting image size (all -O2, except for

those that increase size).

-O3 Even more optimizations (-O2, plus a couple more).

TABLE 5.4 Optimization Settings and Descriptions

The -O1 optimization is usually a safe level if you still desire to safely debug the
resulting image.

When you are specifying optimizations explicitly, the -f option is used to iden-
tify them. For example, to enable the defer-pop optimization, you simply define
this as -fdefer-pop. If the option is enabled via an optimization level and you want
it turned off, simply use the negative form -fno-defer-pop.

-O2 OPTIMIZATION

The second optimization level provides even more optimizations (while including
those in -O1) but does not include any optimizations that trade speed for space (or
vice versa). The optimizations that are present in -O2 are listed in Table 5.6.

Note that Table 5.6 lists only those optimizations that are unique to -O2; it
doesn’t list the -O1 optimizations. You can assume that -O2 is the collection of
optimizations shown in Tables 5.5 and 5.6.

Chapter 5 The GNU Compiler Toolchain 53

Optimization Level Description

defer-pop Defer popping function args from stack until necessary.

thread-jumps Perform jump threading optimizations (to avoid

jumps to jumps).

branch-probabilities Use branch profiling to optimize branches.

cprop-registers Perform a register copy-propagation optimization pass.

guess-branch-probability Enable guessing of branch probabilities.

omit-frame-pointer Do not generate stack frames (if possible).

TABLE 5.5 Optimizations Available in -O1

Optimization Description

align-loops Align the start of loops.

align-jumps Align the labels that are only reachable by jumps.

align-labels Align all labels.

align-functions Align the beginning of functions.

optimize-sibling-calls Optimize sibling and tail recursive calls.

→

TABLE 5.6 Optimizations Available in -O2

-Os OPTIMIZATION

The -Os optimization level simply disables some -O2 optimizations that would
otherwise increase the size of the resulting image. Those optimizations that are
disabled for -Os (that do appear in -O2) are -falign-labels, -falign-jumps,
-falign-labels, and -falign-functions. Each of these has the potential to increase
the size of the resulting image, and therefore they are disabled to help build a
smaller executable.

-O3 OPTIMIZATION

The -O3 optimization level is the highest level of optimization provided by GCC. In
addition to those optimizations provided in -O2, this level also includes those
shown in Table 5.7.

54 GNU/Linux Application Programming

Optimization Description

cse-follow-jumps When performing CSE, follow jumps to their

targets.

cse-skip-blocks When performing CSE, follow conditional jumps.

gcse Perform global common subexpression

elimination.

expensive-optimizations Perform a set of expensive optimizations.

strength-reduce Perform strength reduction optimizations.

rerun-cse-after-loop Rerun CSE after loop optimizations.

rerun-loop-opt Rerun the loop optimizer twice.

caller-saves Enable register saving around function calls.

force-mem Copy memory operands into registers before using.

peephole2 Enable an rtl peephole pass before sched2.

regmove Enable register move optimizations.

strict-aliasing Assume that strict aliasing rules apply.

delete-null-pointer-checks Delete useless null pointer checks.

reorder-blocks Reorder basic blocks to improve code placement.

schedule-insns Reschedule instructions before register allocation.

schedule-insns2 Reschedule instructions after register allocation.

Chapter 5 The GNU Compiler Toolchain 55

Optimization Description

-finline-functions Inline simple functions into the calling function.

-frename-registers Optimize register allocation for architectures with large

numbers of registers (makes debugging difficult).

TABLE 5.7 Optimizations Enabled in -O3 (Above -O2)

ARCHITECTURAL OPTIMIZATIONS

Whereas standard optimization levels can provide meaningful improvements on
software performance and code size, specifying the target architecture can also be very
useful. The -mcpu option tells the compiler to generate instructions for the CPU type
as specified. For the standard x86 target, Table 5.8 lists some of the options.

Target CPU -mcpu=

i386 DX/SX/CX/EX/SO i386

i486 DX/SX/DX2/SL/SX2/DX4 i486

487 i486

Pentium pentium

Pentium MMX pentium-mmx

Pentium Pro pentiumpro

Pentium II pentium2

Celeron pentium2

Pentium III pentium3

Pentium IV pentium4

Via C3 c3

Winchip 2 winchip2

Winchip C6-2 winchip-c6

AMD K5 i586

AMD K6 k6

AMD K6 II k6-2

→

TABLE 5.8 Architectures (CPUs) Supported for x86

So if you were compiling specifically for the Intel Celeron architecture, you’d
use the following command line:

$ gcc -mcpu=pentium2 test.c -o test

Of course, combining the -mcpu option with an optimization level can lead to
additional performance benefits. One very important point to note is that after you
compile for a given CPU, the software might not run on another. Therefore, if
you’re more interested in an image running on a variety of CPUs, allowing the
compiler to pick the default (i386) supports any of the x86 architectures.

DEBUGGING OPTIONS

If you want to debug your code with a symbolic debugger, you can specify the -g
flag to produce debugging information in the image for GDB. The -g option can
specify an argument to specify which format to produce. To request debugging in-
formation to be produced using the dwarf-2 format, you would provide the option
as follows:

$ gcc -gdwarf-2 test.c -o test

OTHER TOOLS

This final section takes a look at some of the other GNU tools (usually called binu-
tils) that help you in the development process.

56 GNU/Linux Application Programming

Target CPU -mcpu=

AMD K6 III k6-3

AMD Athlon athlon

AMD Athlon 4 athlon

AMD Athlon XP/MP athlon

AMD Duron athlon

AMD Tbird athlon-tbird

First, how can you identify how large your executable image or intermediate
object is? The size utility emits the text size (instruction count) and also the data
and bss segments. Consider this example:

$ size test.o

text data bss dec hex filename

789 256 4 1049 419 test.o

$

Here you request the size of your intermediate object file, test.o. You find that
the text size (instructions and constants) is 789 bytes, the data segment is 256
bytes, and the bss segment (which is automatically initialized to zero) is 4 bytes. If
you want more detailed information on the image, you can use the objdump utility.
You can explore the symbol table of the image or object using the -syms argument,
as follows:

$ objdump -syms test.o

This results in a list of symbols available in the object, their type (text, bss,
data), lengths, offset, and so on. You can also disassemble the image using the
—disassemble argument, as follows:

objdump —disassemble test.o

This provides a list of the functions found in the object, along with the in-
structions that were generated for each by GCC.

Finally, the nm utility can also be used to understand the symbols that are pre-
sent in an object file. This utility lists not only each symbol but also detailed infor-
mation on the type of the symbol. Numerous other options are available, which can
be found in the nm main page.

SUMMARY

In this chapter, you explored the GCC compiler and some of the related tools. You
investigated some of the commonly used patterns with GCC and looked over de-
tails of the use of the warning options. You also reviewed the various optimization
levels provided by GCC in addition to the architectural specifier that provides even
greater optimization. Finally, you reviewed a few tools that relate to the GCC prod-
ucts, such as size, objdump, and nm.

Chapter 5 The GNU Compiler Toolchain 57

This page intentionally left blank

59

Building Software
with GNU make

by Curtis Nottberg

6

INTRODUCTION

Creating a binary in a compiled language often involves lots of steps to compile all
of the source files into object code and then invoke the linker to put the object code
modules together into an executable. The necessary steps can all be performed by
hand, but this becomes tedious very quickly. Another solution is to write a shell
script to perform the commands each time. This is a better solution but has a num-
ber of drawbacks for larger projects and tends to be hard to maintain over the life
of a project. Building software has a number of unique requirements that justify the
development of a tool that is specifically targeted at automating the software build
process. The developers of UNIX recognized this requirement early on and devel-
oped a utility named make to solve the problem. This chapter is an introduction to
GNU make, the open source implementation of the make utility commonly used in
Linux software development.

The make utility was originally developed at Bell Labs in 1977 by Dr. Stuart Feld-
man. Dr. Feldman was part of the original team that developed UNIX at Bell Labs
and also wrote the first Fortran 77 compiler.

In This Chapter

Compiling C
Basic Makefile
Makefile Constructs
Dependency Tracking

A SAMPLE PROJECT

The approach used in this chapter will be to introduce a simple sample project and
then show how to build the project starting with a command-line solution and
progress to a fairly complete GNU make implementation. The examples in this
chapter will show various ways to build a project consisting of four source files. The
diagram shown in Figure 6.1 illustrates the directory layout of the project.

60 GNU/Linux Application Programming

FIGURE 6.1 Directory structure of sample project.

COMPILING BY HAND

The simplicity of the sample project makes it very easy to compile by hand. Exe-
cuting the following command in the top-level project directory generates the
application named appexp with a single command.

gcc -o appexp src/main.c src/app.c src/bar.c src/lib.c

This command runs the GCC wrapper program that invokes the preprocessor,
compiler, and linker to turn these four c-files into an executable. The single com-
mand approach is acceptable for such a simple project, but for a larger project this
would be impractical. The following set of commands breaks the compilation into
the incremental steps commonly seen in a more complicated build process.

gcc -c -o main.o src/main.c

gcc -c -o app.o src/app.c

gcc -c -o bar.o src/bar.c

gcc -c -o lib.o src/lib.c

gcc -o appexp main.o app.o bar.o lib.o

The first four commands in this series turn the c-files in the src directory into
object files in the top-level directory. The last command invokes the linker to com-
bine the four generated object files into an executable.

A BUILD SCRIPT

Typing any of the commands described in the previous section would get pretty te-
dious if it had to be done every time the application needed to be rebuilt. The next
obvious step is to put these commands into a script so that a single command can
perform all of the steps needed to build the application. Listing 6.1 shows the con-
tents of the buildit script that might be written to automate the build process.

LISTING 6.1 The buildit Script (on the CD-ROM at ./source/ch6/buildit)

1: #!/bin/sh

2: # Build the chapter 6 example project

3:

4: gcc -c -o main.o src/main.c

5: gcc -c -o app.o src/app.c

6: gcc -c -o bar.o src/bar.c

7: gcc -c -o lib.o src/lib.c

8: gcc -o appexp main.o app.o bar.o lib.o

The script collects the commands outlined in the previous section into one
place. It allows the developer and user of the source code to build the application
with the simple ./buildit command line. Also, it can be revision controlled and
distributed with the source code to ease the understanding needed by those trying
to build an application.

One of the disadvantages of the build script is that it rebuilds the entire project
every time it is invoked. For the small example in this chapter, this does not cause
a significant time increase in the development cycle, but as the number of files in-
creases, rerunning the entire build process turns into a significant burden. One of
the major enhancements of the make utility over a shell-script solution is its capa-
bility to understand the dependencies of a project. Understanding the dependencies
allows the make utility to rebuild only the parts of the project that need updating be-
cause of source file changes.

Chapter 6 Building Software with GNU make 61

A SIMPLE Makefile

The make utility uses a developer-created input file to describe the project to be
built. GNU make uses the name Makefile as the default name for its input file. Thus,
when the make utility is invoked by typing the make command, it looks in the current
directory for a file named Makefile to tell it how to build the project. Listing 6.2 il-
lustrates a basic Makefile used to build the sample project.

LISTING 6.2 Simple Makefile (on the CD-ROM at ./source/ch6/Makefile.simple)

1: appexp: main.o app.o bar.o lib.o

2: gcc -o appexp main.o app.o bar.o lib.o

3:

4: main.o : src/main.c src/lib.h src/app.h

5: gcc -c -o main.o src/main.c

6:

7: app.o : src/app.c src/lib.h src/app.h

8: gcc -c -o app.o src/app.c

9:

10: bar.o : src/bar.c src/lib.h

11: gcc -c -o bar.o src/bar.c

12:

13: lib.o : src/lib.c src/lib.h

14: gcc -c -o lib.o src/lib.c

Line 1 illustrates the basic construct in Makefile syntax, the rule. The portion of
the rule before the colon is called the target, whereas the portion after the colon is
the rule dependencies. Rules generally have commands associated with them that
turn the prerequisites into the target. In the specific case of line 1, the target of the
rule is the appexp application that depends on the existence of main.o, app.o, bar.o,
and lib.o before it can be built. Line 2 illustrates the command used to invoke the
linker to turn the main.o, app.o, bar.o, and lib.o object files into the appexp exe-
cutable. It is important to note that one of the idiosyncrasies of Makefile syntax is
the need to put a hard tab in front of the commands in a Makefile; this is how the
make utility differentiates commands from other Makefile syntax. The make utility
uses rules to determine how to build a project. When the make utility is invoked on
the command line, it parses the Makefile to find all of the target rules. It then at-
tempts to build a target with the name all; if the all target has not been defined,
then make builds the first target it encounters in the Makefile.

For the Makefile in Listing 6.2, the default target is the appexp application be-
cause its rule (line 1) occurs first in the Makefile. The neat part about the Makefile
rule syntax is that the make utility can chain the rules together to create the whole

62 GNU/Linux Application Programming

build process. When the make utility is invoked, it begins to build the project by try-
ing to build the default rule: rule 1 in the sample Makefile. The rule on line 1 tells
the make utility that to build appexp, it must have the files main.o, app.o, bar.o, and
lib.o. make checks for the existence of those files to determine if it has everything
needed to build the application. If one of the prerequisite files is missing or is newer
than the target, then make starts searching the target rules to determine if it has a
rule to create the prerequisite.

After an appropriate rule is identified, then the process starts again by ensuring
that the new rule’s prerequisites exist. Thus the make utility chains rules together
into a tree of dependencies that must be satisfied to build the original target. make
then starts executing the commands associated with the rules at the leaves of the
tree to build the prerequisites needed to move back toward the root of the tree. In
the sample Makefile, the process would start with the default rule on line 1. If the
object files didn’t exist yet, then the make utility would find the rules to make them.
First, it would find a rule to create main.o, which occurs on line 4. Next, make would
examine the rule on line 4 and realize that the main.c, lib.h, and app.h prerequisites
all exist, so the commands to create main.o (line 5) would be executed. The next
prerequisite needing to be created would be app.o, so make would move to the rule
on line 7 and execute the command on line 8. This process would then continue
to create bar.o and lib.o, and finally the command on line 2 would be executed
to create the application. If the make command is executed in a clean directory,
then you can expect that make would automatically execute the following series of
commands:

gcc -c -o main.o src/main.c

gcc -c -o app.o src/app.c

gcc -c -o bar.o src/bar.c

gcc -c -o lib.o src/lib.c

gcc -o appexp main.o app.o bar.o lib.o

Comparing this to the script in Listing 6.1, you can see that you have reimple-
mented the simple build script using GNU make. So why use GNU make instead of a
build script? After all, it seems like a more complicated way to implement the same
steps the build script took care of for you. The answer is the capability of GNU make
to build things in an incremental fashion based upon the dependencies that are set
up in the Makefile. For example, suppose after building the appexp program you
discover an error in the app.c source file. To correct this, you can edit the app.c
source file and then rebuild the executable. If you were using the Listing 6.1 script,
then all of the source files are rebuilt into objects, and those objects are linked into
an executable. On the other hand, with the make utility, the rebuild is accomplished
with the following two commands:

Chapter 6 Building Software with GNU make 63

gcc -c -o app.o src/app.c

gcc -o appexp main.o app.o bar.o lib.o

How did GNU make eliminate the need for the other commands? Because GNU
make understands each step that goes into the creation of the executable, it can
examine the dates on the files to determine that nothing in the dependency tree for
main.o, bar.o, and lib.o changed, and thus these object files don’t need to be re-
created. Conversely, it examines app.o and realizes one of its dependencies, namely
app.c, did change, so it needs to be rebuilt. If you understand the dependency tree
that is represented in the Makefile syntax, then you understand the power of make
over a simple build script. The Makefile syntax also provides other capabilities
beyond those that have been discussed in this section; the rest of this chapter will
consider some of the more useful capabilities of GNU make.

MAKEFILE VARIABLES

GNU make provides support for a form of variable that closely resembles the vari-
ables provided in the standard UNIX shells. The variables allow a name to be asso-
ciated with an arbitrarily long text string. The basic syntax to assign a value to a
variable is as follows:

MY_VAR = A text string

This results in the creation of a variable named MY_VAR with a value of A text
string. The value of a variable can be retrieved in subsequent portions of the Make-
file by using the following syntax: ${var-name}, where var-name is replaced with the
name of the variable that is being retrieved. Listing 6.3 provides a sample Makefile
to illustrate the basic use of variables in a Makefile.

LISTING 6.3 Simple Variable Makefile (on the CD-ROM at

./source/ch6/Makefile.simpvar)

1:

2: MY_VAR=file1.c file2.c

3:

4: all:

5: echo ${MY_VAR}

6:

Line 2 assigns the value file1.c file2.c to the MY_VAR variable. When the make
utility is invoked, it attempts to build the all target defined on line 4. The com-
mand on line 5 is executed, and the output is illustrated in Listing 6.4.

64 GNU/Linux Application Programming

LISTING 6.4 Simple Variable Makefile Output

1:

2: $ make

3: echo file1.c file2.c

4: file1.c file2.c

5:

Line 2 is the invocation of the make utility. Line 3 is output by the make utility
when it runs the command on line 5 of Listing 6.3. Notice that the variable re-
placement has already occurred by this point in the execution. Line 4 is the actual
output from the echo command that make invokes.

GNU make allows the value in a variable to be constructed incrementally by
providing the ability to concatenate strings to the existing value of a variable. GNU
make syntax uses the addition symbol to indicate a concatenation operation. Listing
6.5 illustrates this by modifying the simple Makefile in Listing 6.3 to use the con-
catenation operation when creating the value in the MY_VAR variable.

LISTING 6.5 Variable Concatenation Makefile (on the CD-ROM at

./source/ch6/Makefile.varconcat)

1:

2: MY_VAR=file1.c

3: MY_VAR+=file2.c

4:

5: all:

6: echo ${MY_VAR}

7:

Running make against the Makefile in Listing 6.5 should generate the exact same
output, illustrated in Listing 6.4, as the Makefile in Listing 6.3.

GNU make provides a wide range of built-in functionality to operate on defined
variables. Functions are provided for general string-handling operations such as
substitution, stripping, and tokenizing. A common use of variables in Makefiles is
to store and manipulate filenames and paths that are involved in the make process.
To facilitate this use of variables, GNU make provides specialized functions that
operate on the contents of a variable as a path or filename. The contrived Makefile
in Listing 6.6 illustrates the use of some of the functions provided by GNU make.
Listing 6.7 illustrates the expected output from running the make utility on the
Makefile in Listing 6.6.

Chapter 6 Building Software with GNU make 65

LISTING 6.6 Variable Manipulation Makefile (on the CD-ROM at

./source/ch6/Makefile.varmanip)

1:

2: SRC_VAR=My test string for variable manipulation.

3:

4: TEST1_VAR=$(subst for,foo,${SRC_VAR})

5: TEST2_VAR=$(patsubst t%t,T%T, ${SRC_VAR})

6: TEST3_VAR=$(filter %ing %able, ${SRC_VAR})

7: TEST4_VAR=$(sort ${SRC_VAR})

8: TEST5_VAR=$(words ${SRC_VAR})

9: TEST6_VAR=$(word 2,${SRC_VAR})

10: TEST7_VAR=$(wordlist 2, 3, ${SRC_VAR})

11:

12: all:

13: @echo original str: ${SRC_VAR}

14: @echo substitution: ${TEST1_VAR}

15: @echo pattern sub : ${TEST2_VAR}

16: @echo filter : ${TEST3_VAR}

17: @echo sort : ${TEST4_VAR}

18: @echo word count : ${TEST5_VAR}

19: @echo word 2 : ${TEST6_VAR}

20: @echo word 2 thru 4: ${TEST7_VAR}

Line 2 sets up the source string that is used to exercise the GNU make string ma-
nipulation functions. Lines 4–10 illustrate the use of the Makefile functions: subst,
patsubst, filter, sort, words, word, and wordlist. Notice that the make file syntax
for a function call takes the general form of ${func arg1,arg2,...). Lines 13–20
output the results when the Makefile is evaluated. Notice the use of the @ before the
echo commands in lines 13–20, which tells the make utility to suppress the printing
of the command line before it executes.

LISTING 6.7 Output from the Makefile in Listing 6.6

1:

2: original str: My test string for variable manipulation.

3: substitution: My test string foo variable manipulation.

4: pattern sub : My TesT string for variable manipulation.

5: filter : string variable

6: sort : My for manipulation. string test variable

7: word count : 6

8: word 2 : test

9: word 2 thru 4: test string

66 GNU/Linux Application Programming

Line 2 outputs the value of the original string that is to be manipulated with the
Makefile functions. Line 3 illustrates the output of the subst function, substituting
the word for with the word foo. Line 4 illustrates the output of the patsubst func-
tion; the word test has been modified to TesT. Notice how the patsubst function
uses the wildcard % to match one or more characters in a pattern. The result of the
wildcard match can then be substituted back into the replacement string by using
the % character. Line 5 illustrates the use of the filter function, which again makes
use of the % wildcard character to match words ending in ing or able. Line 6 shows
the output of the sort function that rearranges the input variables into lexical
order. Line 7 illustrates the output of the words function that performs a word
count operation on the input string. Line 8 illustrates the word function that allows
the subsetting of a string by numerical index. In this case the second word, test, is
selected. Notice that the indexes start at one rather than zero. Line 8 illustrates the
wordlist function that allows a substring to be extracted based on word indexes. In
the example, words 2 through 3 have been extracted, resulting in the substring test
string.

The example in Listing 6.7 provides a taste of some of the string-manipulation
functions provided by GNU make. GNU make provides many others that can be
found by consulting the GNU make documentation.

One of the primary uses of variables in a Makefile is to contain and manipulate
the filename and path information associated with the build process. Take note of
the use of variables in the next couple of sections, where they are employed in more
realistic Makefile examples.

PATTERN-MATCHING RULES

The conversion of one type of file into another in a Makefile often follows a very
specific pattern that varies only with the conversion and not the specific file. If this
is the case, then GNU make provides a special type of rule that allows the target and
dependencies to both be specified as patterns. Listing 6.8 contains a Makefile for the
sample project introduced at the beginning of this chapter. This example uses a
pattern-matching rule in combination with the GNU make VPATH capability to
simplify the Makefile. Still problematic are the header file dependencies that have
been sequestered at the bottom of the new Makefile. The next section introduces
one mechanism for automating the processing of header dependencies.

LISTING 6.8 More Realistic Makefile (on the CD-ROM at

./source/ch6/Makefile.realistic)

1:

2: SRC_FILES=main.c app.c bar.c lib.c

3: OBJ_FILES=$(patsubst %.c, %.o, ${SRC_FILES})

Chapter 6 Building Software with GNU make 67

4:

5: VPATH = src

6:

7: CFLAGS = -c -g

8: LDFLAGS = -g

9:

10: appexp: ${OBJ_FILES}

11: gcc ${LDFLAGS} -o appexp ${OBJ_FILES}

12:

13: %.o:%.c

14: gcc ${CFLAGS} -o $@ $

15:

16: clean:

17: rm *.o appexp

18:

19: MAIN_HDRS=lib.h app.h

20: LIB_HDRS=lib.h

21:

22: main.o : $(addprefix src/, ${MAIN_HDRS})

23: app.o : $(addprefix src/, ${MAIN_HDRS})

24: bar.o : $(addprefix src/, ${LIB_HDRS})

25: lib.o : $(addprefix src/, ${LIB_HDRS})

This Makefile is quite different from the first one introduced in Listing 6.2, but
it accomplishes the same basic task as the original Makefile. First, you should no-
tice the introduction of variables into the Makefile to allow the control parameters
(compile flags, file lists, and so on) to be enumerated and set at the top of the
Makefile. Lines 2 through 8 set up the variables that control the build process. Line
3 illustrates the use of the pattern substitution function to generate a list of object
files on which the final application is dependent. The pattern substitution results in
the OBJ_FILES variable being assigned the value main.o app.o bar.o lib.o. There-
fore, the OBJ_FILES variable now contains a list of the object files that are needed to
link the appexp executable. Line 10 is the rule that explicitly states this relationship;
it uses the value of the OBJ_FILES variable as its dependency list. Lines 16 and 17
illustrate a target that is often found in standard Makefiles. The name of the target
is clean, and its responsibility is to remove files that are generated by the make
process. This provides a nice mechanism for a developer to clean up generated files
so that a complete rebuild of the entire project can occur. Lines 16 through 25 rep-
resent the header file dependencies. It will be left to you to understand how this
works because in the next section a different mechanism is introduced to handle
include file dependencies automatically.

68 GNU/Linux Application Programming

The most interesting part of Listing 6.8 is the addition on lines 5, 13, and 14.
Line 13 introduces a pattern rule to indicate to the make utility how to transform an
arbitrary file ending with a .c extension into a corresponding file ending in a .o
extension. The transformation is accomplished by executing the commands asso-
ciated with the pattern rule, in this case the command on line 14. Notice that the
command on line 14 uses some special variable references to indicate the files that
GCC should operate on. GNU make provides a large number of these special vari-
ables to allow the commands in a pattern rule to gain access to information about
the matched files. In the specific case of line 14, the $@ variable contains the file-
name matched for the left side of the rule, and the $ variable contains the filename
matched for the right side of the variable. GNU make provides a large number of
these special variables for pattern rules that are documented in the GNU make man-
ual. This one pattern rule replaces the four specific rules used in Listing 6.2 to build
the object files.

The previous paragraph breezed over an important detail concerning the use of
pattern-matching rules. The pattern-matching rules don’t really take into account
filename and path when performing comparisons. They assume that the left and
right sides of the pattern rule both occur in the same directory. In the example
provided in this chapter that is not the case, because the source files are one level
removed from the location of the Makefile. The source files are all contained in the
src directory. To resolve the situation, the VPATH feature of GNU make is used to
provide the pattern-matching rules with a list of search directories to use when the
right side of a rule isn’t found in the current directory. In line 5, the special VPATH
variable is set to src so that the pattern rule on line 13 can find the source files it
needs when trying to generate the object files.

So what have you gained between Listing 6.2 and Listing 6.8? The Makefile in
Listing 6.8 scales much better. It attempts to make a distinction between the oper-
ations used to build an application and the files on which those operations are per-
formed. All of the variable aspects of the build process are controlled in the
variables at the top of the Makefile, whereas the actions are contained in the rules
lower in the file. Thus, to add or delete files from the build, you need only modify
the variables at the top of the file. Listing 6.8 still has a problem with the include file
tracking, but the next section illustrates how to resolve this situation.

AUTOMATIC DEPENDENCY TRACKING

You encounter problems with including header file dependencies in a Makefile. For
example, keeping the Makefile current with the #include directives in the source
files becomes problematic as the project grows. Because the preprocessor in the tool-
chain already has to resolve the #includes, most modern compilers provide a mech-
anism to output these rules automatically. The generated rules can then be used in

Chapter 6 Building Software with GNU make 69

the Makefile to track changes to the #include structure and rebuild the project
appropriately. Listing 6.9 illustrates the Listing 6.8 Makefile modified to use the
automatic dependency tracking mechanism proposed in the GNU make manual.

LISTING 6.9 Makefile with Dependency Tracking (on the CD-ROM at

./source/ch6/Makefile.deptrack)

1:

2: SRC_FILES=main.c app.c bar.c lib.c

3: OBJ_FILES=$(patsubst %.c, %.o, ${SRC_FILES})

4: DEP_FILES=$(patsubst %.c, %.dep, ${SRC_FILES})

5:

6: VPATH = src

7:

8: CFLAGS = -c -g

9: LDFLAGS = -g

10:

11: appexp: ${OBJ_FILES}

12: gcc ${LDFLAGS} -o appexp ${OBJ_FILES}

13:

14: %.o:%.c

15: gcc ${CFLAGS} -o $@ $

16:

17: clean:

18: rm *.o appexp

19:

20: include ${DEP_FILES}

21:

22: %.dep: %.c

23: @set -e; rm -f $@; \

24: gcc -MM $(CFLAGS) $< > $@.$$$$; \

25: sed ‘s,\($*\)\.o[:]*,\1.o $@ : ,g’ < $@.$$$$ > $@;

\

26: rm -f $@.$$$$

Listing 6.9 is very similar to Listing 6.8 except for line 4 and lines 20 through 26.
Line 4 is creating a variable based on the source file list by replacing the .c exten-
sion with a .dep extension. The .dep files contain the generated dependency rules
for each source file. Line 20 is the most important line in the new Makefile because
it establishes a dependency between the main Makefile and all the generated .dep
files. When make goes to evaluate Listing 6.9, it first realizes that to evaluate the
Makefile it needs to find all of the *.dep files that are included by line 20. make must
also ensure that all of the *.dep files are up to date before it can proceed. So how

70 GNU/Linux Application Programming

do the .dep files get generated? When make is trying to include the *.dep files, it also
evaluates the rules in the current Makefile to see if it knows how to create the *.dep
files from other files it knows about. Lines 22 through 26 are a pattern-matching
rule that tell make how to create .dep files given a .c file. Line 24 invokes the C
compiler to generate the basic #include dependency rule. The result is dumped into
a temporary file. Line 25 then uses sed to massage the output so that the .dep file
itself is dependent on the same dependencies; when any of the dependent files
change, the .dep file gets rebuilt as well.

The following is the content of the main.dep file generated by the Makefile in
Listing 6.9.

main.o main.dep : src/main.c src/lib.h src/app.h

This generated rule indicates that main.o and main.dep are dependent on the
source files main.c, lib.h, and app.h. Comparing the generated rule against the
same handwritten rule in previous listings illustrates that you have automated this
process in Listing 6.9.

The method chosen for automatic dependency tracking in this section is the
one proposed in the GNU make manual. Numerous other mechanisms have been
employed to accomplish the same thing; please consult the resources to find the one
that works best for your application.

SUMMARY

A good understanding of make and how it operates is an essential skill in any mod-
ern software development environment. This chapter provided a brief introduction
to some of the capabilities of the GNU make utility. GNU make has a rich set of
capabilities beyond what was discussed in this chapter; a consultation of the re-
sources can help you if you will be using make extensively.

Most of the large projects in Linux software development do not employ make
directly but instead employ the GNU automake/autoconf utilities that are layered on
top of GNU make. Chapter 8, “Building Packages with automake/autoconf,” intro-
duces GNU automake/autoconf, which should be used when starting a new Linux
development project. Don’t worry; the knowledge of GNU make introduced in this
chapter is still invaluable when understanding and debugging problems in the GNU
automake/autoconf environment.

Chapter 6 Building Software with GNU make 71

This page intentionally left blank

73

Building and Using
Libraries

7

INTRODUCTION

This chapter explores the topic of program libraries. First you will investigate static
libraries and their creation using the ar command. Then you’ll look at shared
libraries (also called dynamically linked libraries) and some of the advantages (and
complexities) they provide. Finally, you’ll take a look at some of the utilities that
manipulate libraries in GNU/Linux.

WHAT IS A LIBRARY?

A library is really nothing more than a collection of object files (a container). When
the object files collectively provide related behaviors in a given problem, the objects
can be integrated into a library to simplify their access and distribution for appli-
cation developers.

In This Chapter

Introduction to Libraries
Building and Using Static Libraries
Building and Using Shared Libraries
Building and Using Dynamic Libraries
GNU/Linux Library Commands

Static libraries are created using the ar, or archive, utility. After the application
developer compiles and then links with the library, the needed elements of the
library are integrated into the resulting executable image. From the perspective of
the application, the external library is no longer relevant because it has been com-
bined with the application image.

One of the most famous libraries is the standard C library that contains the set of
ANSI C library functions (string functions, math functions, etc.). One of the most
popular is the GNU C Library (glibc), which is the GNU version of the standard
C library. Lighter-weight versions of the standard C library exist, such as newlib,
uClibc, and dietlibc (which are ideal for embedded applications).

Shared, or dynamic, libraries are also linked with an application image, but in
two separate stages. In the first stage (at the application’s build time), the linker
verifies that all of the symbols necessary to build the application (functions or vari-
ables) are available within either the application or libraries. Rather than pull the
elements from the shared library into the application image (as was done with the
static library), at the second stage (at runtime) a dynamic loader pulls the necessary
shared libraries into memory and then dynamically links the application image
with them. These steps result in a smaller image, as the shared library is separate
from the application image (see Figure 7.1).

74 GNU/Linux Application Programming

FIGURE 7.1 Memory savings of static versus shared libraries.

The tradeoff to this memory saving for shared libraries is that the libraries must
be resolved at runtime. This requires a small amount of time to figure out which
libraries are necessary, find them, and then bring them into memory.

The next sections take you through building a couple of libraries using both the
static and shared methods to see how they’re built and how the program changes to
support them.

BUILDING STATIC LIBRARIES

First, take a look at the simplest type of library development in GNU/Linux. The
static library is linked statically with the application image. This means that after the
image is built, the external library does not need to be present for the image to
execute properly as it is a part of the resulting image.

To demonstrate the construction of libraries, take look at a sample set of source
files. This sample builds a simple random number generator wrapper library using
the GNU/Linux random functions. First take a look at the API for our library. The
header file, randapi.h, is shown in Listing 7.1.

LISTING 7.1 Random Number Wrapper API Header (on the CD-ROM at

./source/ch7/statshrd/randapi.h)

1: /*

2: * randapi.h

3: *

4: * Random Functions API File

5: *

6: */

7:

8:

9: #ifndef __RAND_API_H

10: #define __RAND_API_H

11:

12: extern void initRand(void);

13:

14: extern float getSRand(void);

15:

16: extern int getRand(int max);

17:

18: #endif /* __RAND_API_H */

Chapter 7 Building and Using Libraries 75

This API consists of three functions. The first function, initRand, is an initial-
ization function that prepares the wrapper libraries for use. It must be called once
prior to calling any of the random functions. Function getSRand() returns a ran-
dom floating-point value between 0.0 and 1.0. Finally, function getRand(x) returns
a random integer between 0 and (x–1).

While this functionality could be implemented in a single file, this example
splits it between two files for the purposes of demonstration. The next file,
initrand.c, provides the initialization function for the wrapper API (see Listing
7.2). The single function, initRand(), simply initializes the random number gener-
ator using the current time as a seed.

LISTING 7.2 Random Number Initialization API (on the CD-ROM at

./source/ch7/statshrd/initapi.c)

1: /*

2: * Random Init Function API File

3: *

4: */

5:

6: #include <stdlib.h>

7: #include <time.h>

8:

9:

10: /*

11: * initRand() initializes the random number generator.

12: *

13: */

14:

15: void initRand()

16: {

17: time_t seed;

18:

19: seed = time(NULL);

20:

21: srand(seed);

22:

23: return;

24: }

The final API file, randapi.c, provides the random number functions (see List-
ing 7.3). The integer and floating-point random number wrapper functions are
provided here.

76 GNU/Linux Application Programming

LISTING 7.3 Random Number Wrapper Functions (on the CD-ROM at

./source/ch7/statshrd/randapi.c)

1: /*

2: * randapi.c

3: *

4: * Random Functions API File

5: *

6: */

7:

8: #include <stdlib.h>

9:

10:

11: /*

12: * getSRand() returns a number between 0.0 and 1.0.

13: *

14: */

15:

16: float getSRand()

17: {

18: float randvalue;

19:

20: randvalue = ((float)rand() / (float)RAND_MAX);

21:

22: return randvalue;

23: }

24:

25:

26: /*

27: * getRand() returns a number between 0 and max-1.

28: *

29: */

30:

31: int getRand(int max)

32: {

33: int randvalue;

34:

35: randvalue = (int)((float)max * rand() / (RAND_MAX+1.0));

36:

37: return randvalue;

38: }

Chapter 7 Building and Using Libraries 77

That’s it for the API. Note that both initapi.c and randapi.c use the single
header file randapi.h to provide their function prototypes. Now it’s time to take a
quick look at the test program that utilizes the API and then get back to the task at
hand—libraries!

Listing 7.4 provides the test application that uses the wrapper function API.
This application provides a quick test of the API by identifying the average value
provided, which should represent the average around the middle of the random
number range.

LISTING 7.4 Test Application for the Wrapper Function API (on the CD-ROM at

./source/ch7/statshrd/test.c)

1: #include "randapi.h"

2:

3: #define ITERATIONS 1000000L

4:

5: int main()

6: {

7: long i;

8: long isum;

9: float fsum;

10:

11: /* Initialize the random number API */

12: initRand();

13:

14: /* Find the average of getRand(10) returns (0..9) */

15: isum = 0L;

16: for (i = 0 ; i < ITERATIONS ; i++) {

17:

18: isum += getRand(10);

19:

20: }

21:

22: printf("getRand() Average %d\n", (int)(isum /

ITERATIONS));

23:

24:

25: /* Find the average of getSRand() returns */

26: fsum = 0.0;

27: for (i = 0 ; i < ITERATIONS ; i++) {

28:

29: fsum += getSRand();

30:

31: }

78 GNU/Linux Application Programming

32:

33: printf("getSRand() Average %f\n", (fsum /

(float)ITERATIONS));

34:

35: return;

36: }

If you wanted to build all source files discussed here and integrate them into a
single image, you could do the following:

$ gcc initapi.c randapi.c test.c -o test

This compiles all three files and then links them together into a single image
called test. This use of gcc provides not only compiling of the source files, but also
linking to a single image. Upon executing the image, you see the averages for each
of the random number functions:

$./test

getRand() Average 4

getSRand() Average 0.500001

$

As expected, the random number that is generated will generate an average
value that’s in the middle of the random number range.

Now it’s time to get back to the subject of libraries, and rather than build the
entire source together, you’ll build a library for the random number functions.
This is achieved using the ar utility (archive). Next is the demonstration of the
building of the static library along with the construction of the final image.

$ gcc -c -Wall initapi.c

$ gcc -c -Wall randapi.c

$ ar -cru libmyrand.a initapi.o randapi.o

$

In this example, you first compile the two source files (initapi.c and
randapi.c) using gcc. You specify the -c option to tell gcc to compile only (don’t
link) and also to turn on all warnings. Next, you use the ar command to build the
library (libmyrand.a). The cru options are a standard set of options for creating
or adding to an archive. The c option specifies to create the static library (unless it
already exists, in which case the option is ignored). The r option tells ar to replace
existing objects in the static library (if they already exist). Finally, the u option is a
safety option to specify that objects are replaced in the archive only if the objects to
be inserted are newer than existing objects in the archive (of the same name).

Chapter 7 Building and Using Libraries 79

You now have a new file called libmyrand.a, which is your static library con-
taining two objects: initapi.o and randapi.o. Now look at how you can build your
application using this static library. Consider the following:

$ gcc test.c -L. -lmyrand -o test

$./test

getRand() Average 4

getSRand() Average 0.499892

$

Here you use gcc to first compile the file test.c and then link the test.o object
with libmyrand.a to produce the test image file. The -L. option tells gcc that
libraries can be found in the current subdirectory (the period represents the direc-
tory). Note that you can also provide a specific subdirectory for the library, such as
-L/usr/mylibs. The -L option identifies the library to use. Note that myrand isn’t the
name of your library, but instead it is libmyrand.a. When the -L option is used, it
automatically surrounds the name specified with lib and .a. Therefore, if you had
specified -ltest, gcc would look for a library called libtest.a.

Now that you see how to create a library and use it to build a simple applica-
tion, you can return to the ar utility to see what other uses it has. You can inspect
a static library to see what’s contained within it by using the -t option:

$ ar -t libmyrand.a

initapi.o

randapi.o

$

If desired, you can also remove objects from a static library. This is done using
the -d option, such as:

$ ar -d libmyrand.a initapi.o

$ ar -t libmyrand.a

randapi.o

$

It’s important to note that ar won’t actually show a failure for a delete. To see
an error message if the delete fails, add a -v option as shown in the following:

$ ar -d libmyrand.a initapi.o

$ ar -dv libmyrand.a initapi.o

No member named ‘initapi.o’

$

80 GNU/Linux Application Programming

In the first case, you try to delete the object initapi.o, but no error message is
generated (even though it doesn’t exist in the static library). In the second case, you
add the verbose option and the corresponding error message results.

Rather than remove the object from the static library, you can extract it using
the -x option.

$ ar -xv libmyrand.a initapi.o

x - initapi.o

$ ls

initapi.o libmyrand.a

$ ar -t libmyrand.a

randapi.o

initapi.o

$

The extract option is coupled with verbose (-v) so that you can see what ar is
doing. The ar utility responds with the file being extracted (x - initapi.o), which
you can see after doing an ls in the subdirectory. Note here that you also list the
contents of the static library after extraction, and your initapi.o object is still pre-
sent. The extract option doesn’t actually remove the object, it only copies it exter-
nally to the archive. The delete (-d) option must be used to remove it outright
from the static library.

The ar utility option list is shown in Table 7.1.

Chapter 7 Building and Using Libraries 81

Option Name Example

-d Delete ar -d <archive> <objects>

-r Replace ar -r <archive> <objects>

-t Table list ar -t <archive>

-x Extract ar -x <archive> <objects>

-v Verbose ar -v

-c Create ar -c <archive>

-ru Update object ar -ru <archive> <objects>

TABLE 7.1 Important Options for the ar Utility

BUILDING SHARED LIBRARIES

Now it’s time to try the test application again, this time using a shared library in-
stead of a static library. The process is essentially just as simple. First, build a shared
library using the initapi.o and randapi.o objects. One change is necessary when
building source for a shared library. Because the library and application are not tied
together as they are in a static library, the resulting library can’t assume anything
about the binding application. For example, in addressing, references must be rel-
ative (through the use of a GOT, or Global Offset Table). The loader automatically
resolves all GOT addresses as the shared library is loaded. To build source files for
position independence, we use the PIC option of gcc:

$ gcc -fPIC -c initapi.c

$ gcc -fPIC -c randapi.c

This results in two new object files containing position-independent code. You
can create a shared library of these using gcc and the -shared flag. This flag tells gcc
that a shared library is to be created:

$ gcc -shared initapi.o randapi.o -o libmyrand.so

You specify your two object modules with an output file (-o) as your shared li-
brary. Note that you use the .so suffix to identify that the file is a shared library
(shared object).

To build your application using the new shared object, you link the elements
back together as you did with the static library:

$ gcc test.c -L. -lmyrand -o test

You can tell that the new image is dependent upon the shared library by using
the ldd command. The ldd command prints shared library dependencies for the
given application. For example:

$ ldd test

libmyrand.so => not found

libc.so.6 => /lib/tls/libc.so.6 (0x42000000)

/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

$

The ldd command identifies the shared libraries to be used by test. The stan-
dard C library is shown (libc.so.6) as is the dynamic linker/loader (ld-linux.so.2).
Note that the libmyrand.so file is shown as not found. It’s present in the current sub-

82 GNU/Linux Application Programming

directory with the application, but it must be explicitly specified to GNU/Linux. You
do this through the LD_LIBRARY_PATH environment variable. After exporting the lo-
cation of the shared library, you try the ldd command again:

$ export LD_LIBRARY_PATH=./

$ ldd test

libmyrand.so => ./libmyrand.so (0x40017000)

libc.so.6 => /lib/tls/libc.so.6 (0x42000000)

/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

$

You specify that the shared libraries are found in the current directory (./).
Then, after performing another ldd, the shared library is successfully found.

If you had tried to execute the application without having done this, a reason-
able error message would have resulted, telling you that the shared library could not
be found:

$./test

./test: error while loading shared libraries: libmyrand.so:

cannot find shared object file: No such file or directory.

$

DYNAMICALLY LOADED LIBRARIES

The final type of library that this chapter explores is the dynamically loaded (and
linked) library. This library can be loaded at any time during the execution of an
application, unlike a shared object that is loaded immediately upon application
startup. You’ll build the shared object file as you did before, as follows:

$ gcc -fPIC -c initapi.c

$ gcc -fPIC -c randapi.c

$ gcc -shared initapi.o randapi.o -o libmyrand.so

$ su -

<provide your root password>

$ cp libmyrand.so /usr/local/lib

$ exit

In some distributions, such as Ubuntu, you have no root user. You can gain root
access by typing sudo su - and providing your user password, instead of su -.

In this example, you’ll move your shared library to a common location
(/usr/local/lib, which is a standard directory for libraries) rather than relying on

Chapter 7 Building and Using Libraries 83

the image and shared library always being in the same location (as was assumed in
the previous example). Note that this library is identical to your original shared li-
brary. What is different is how the application deals with the library.

To copy the library to /usr/local/lib, you must first gain root privileges. To do so,
you use the su command (or sudo su -) to create a login shell for the root access.

Now that you have your shared library re-created, how do you access this in a
dynamic fashion from your test application? The answer is that you must modify
your test application to change the way that you access the API. First, you can take
a look at your updated test app (modified from Listing 7.4). Then you’ll investigate
how this is built for dynamic loading. The updated test application is shown in List-
ing 7.5. The next part of the chapter walks through this, identifying what changed
from the original application, and then looks at the dynamically loaded (DL) API
in more detail.

LISTING 7.5 Updated Test Application for Dynamic Linkage (on the CD-ROM at

./source/ch7/dynamic/test.c)

1: /*

2: * Dynamic rand function test.

3: *

4: */

5:

6: #include <stdlib.h>

7: #include <stdio.h>

8: #include <dlfcn.h>

9: #include "randapi.h"

10:

11: #define ITERATIONS 1000000L

12:

13:

14: int main()

15: {

16: long i;

17: long isum;

18: float fsum;

19: void *handle;

20: char *err;

21:

22: void (*initRand_d)(void);

23: float (*getSRand_d)(void);

24: int (*getRand_d)(int);

84 GNU/Linux Application Programming

25:

26: /* Open a handle to the dynamic library */

27: handle = dlopen("/usr/local/lib/libmyrand.so",

RTLD_LAZY);

28: if (handle == (void *)0) {

29: fputs(dlerror(), stderr);

30: exit(-1);

31: }

32:

33: /* Check access to the initRand() function */

34: initRand_d = dlsym(handle, "initRand");

35: err = dlerror();

36: if (err != NULL) {

37: fputs(err, stderr);

38: exit(-1);

39: }

40:

41: /* Check access to the getSRand() function */

42: getSRand_d = dlsym(handle, "getSRand");

43: err = dlerror();

44: if (err != NULL) {

45: fputs(err, stderr);

46: exit(-1);

47: }

48:

49: /* Check access to the getRand() function */

50: getRand_d = dlsym(handle, "getRand");

51: err = dlerror();

52: if (err != NULL) {

53: fputs(err, stderr);

54: exit(-1);

55: }

56:

57:

58: /* Initialize the random number API */

59: (*initRand_d)();

60:

61: /* Find the average of getRand(10) returns (0..9) */

62: isum = 0L;

663: for (i = 0 ; i < ITERATIONS ; i++) {

64:

65: isum += (*getRand_d)(10);

66:

67: }

Chapter 7 Building and Using Libraries 85

68:

69: printf("getRand() Average %d\n", (int)(isum /

ITERATIONS));

70:

71:

72: /* Find the average of getSRand() returns */

73: fsum = 0.0;

74: for (i = 0 ; i < ITERATIONS ; i++) {

75:

76: fsum += (*getSRand_d)();

77:

78: }

79:

80: printf("getSRand() Average %f\n",

(fsum/(float)ITERATIONS));

81:

82: /* Close our handle to the dynamic library */

83: dlclose(handle);

84:

85: return;

86: }

This code might appear a little convoluted given the earlier implementation,
but it’s actually quite simple after you understand how the DL API works. All that’s
really going on is that you’re opening the shared object file using dlopen, and then
assigning a local function pointer to the function within the shared object (using
dlsym). This allows you then to call it from your application. When you’re done,
you close the shared library using dlclose, and the references are removed (freeing
any used memory for the interface).

You make the DL API visible to you by including the dlfcn.h (DL function)
header file. The first step in using a dynamic library is opening it with dlopen (line
27). You specify the library you need to use (/usr/local/lib/libmyrand.so) and
also a single flag. Of the two flags that are possible (RTLD_LAZY and RTLD_NOW), you
specify RTLD_LAZY to resolve references as you go, rather than immediately upon
loading the library, which would be the case with RTLD_NOW. The function dlopen
returns an opaque handle representing the opened library. Note that if an error
occurs, you can use the dlerror function to provide an error string suitable for
emitting to stdout or stderr.

While not necessary in this example, if you desired to have an initialization
function called when the shared library was opened via dlopen, you can create a
function called _init in the shared library. The dlopen function ensures that this
_init function is called before dlopen returns to the caller.

86 GNU/Linux Application Programming

Getting the references for the functions that you need to address is the next
step. Take a look at the one that follows (taken from lines 34–39 of Listing 7.5).

34: initRand_d = dlsym(handle, "initRand");

35: err = dlerror();

36: if (err != NULL) {

37: fputs(err, stderr);

38: exit(-1);

39: }

The process, as can be seen from this code snippet, is very simple. The API
function dlsym searches the shared library for the function defined (in this case, the
initialization function "initRand"). Upon locating it, a (void *) pointer is returned
and stored in a local function pointer. This can then be called (as shown at line 59)
to perform the actual initialization. You automatically check the error status (at line
35), and if an error string is returned, you emit it and exit the application.

That’s really it for identifying the functions that you desire to call in the shared
library. After you grab the initRand function pointer, you grab getSRand (lines
42–47) and then getRand (lines 49–55).

The test application is now fundamentally the same, except that instead of call-
ing functions directly, you call them indirectly using the pointer-to-function inter-
face. That’s a small price to pay for the flexibility that the dynamically loaded
interface provides.

The last step in the new test application is to close out the library. This is done
with the dlclose API function (line 83). If the API finds that no other users of the
shared library exist, then it is unloaded. The test image can be built, specifying -dl
(for linking with libdl) as follows:

gcc -ldl test.c -o test

As was provided with dlopen, dlclose provides a mechanism by which the shared
object can export a completion routine that is called when the dlclose API func-
tion is called. The developer must simply add a function called _fini to the shared
library, and dlclose ensures that _fini is called prior to dlclose return.

And that’s it! For the small amount of pain involved in creating an application
that utilizes dynamically loaded shared libraries, it provides a very flexible environ-
ment that ultimately can save on memory use. Note also that it’s not always neces-
sary to make all dynamic functions visible when your application starts. You can
instead make only those that are necessary for normal operation and load other
dynamic libraries as they become necessary.

Chapter 7 Building and Using Libraries 87

The dynamically loaded library API is very simple and is shown here for
completeness:

void *dlopen(const char *filename, int flag);

const char *dlerror(void);

void *dlsym(void *handle, char *symbol);

int dlclose(void *handle);

How a library is made up depends upon what it’s representing. The library should
contain all functions that are necessary for the given problem domain. Functions
that are not specifically associated with the domain should be excluded and poten-
tially included in another library.

UTILITIES

Now take a look at some of the other utilities that are useful when you are creating
static, shared, or dynamic libraries.

file

The file utility tests the file argument for the purposes of identifying what it is.
This utility is very useful in a number of different scenarios, but in this case it pro-
vides you with a small amount of information about the shared object. Take a look
at an interactive example:

$ file /usr/local/lib/libmyrand.so

/usr/local/lib/libmyrand.so: ELF 32-bit LSB shared object,

Intel 80386, version 1 (SYSV), not stripped

$

So, by using file, you see that the shared library is a 32-bit ELF object for the
Intel 80386 processor family. It has been defined as “not stripped,” which simply
means that debugging information is present.

size

The size command provides you with a very simple way to understand the text,
data, and bss section sizes for an object. An example of the size command on your
shared library is shown here:

88 GNU/Linux Application Programming

$ size /usr/local/lib/libmyrand.so

text data bss dec hex filename

2013 264 4 2281 8e9 /usr/local/lib/libmyrand.so

$

nm

To dig into the object, you use the nm command. This commands permits you to
look at the symbols that are available within a given object file. Take a look at a sim-
ple example using grep to filter your results:

$ nm -n /usr/local/lib/libmyrand.so | grep " T "

00000608 T _init

0000074c T initRand

00000784 T getSRand

000007be T getRand

00000844 T _fini

$

In this example, you use nm to print the symbols within the shared library, but
then only emit those with the tag " T " to stdout (those symbols that are part of the
.text section, or code segments). You also use the -n option to sort the output nu-
merically by address, rather than the default, which is alphabetically by symbol name.
This gives you relative address information within the library; if you wanted to know
the specific sizes of these .text sections, you could use the -S option, as follows:

$ nm -n -S /usr/local/lib/libmyrand.so | grep " T "

00000608 T _init

0000074c 00000036 T initRand

00000784 0000003a T getSRand

000007be 00000050 T getRand

00000844 T _fini

$

From this example, you can see that the initRand is located at relative offset
0–74c in the library and its size is 0–36 (decimal 54) bytes. Many other options are
available; the nm manpage provides more detail on this.

objdump

The objdump utility is similar to nm in that it provides the ability to dig in and inspect
the contents of an object. Take a look at some of the specialized functions of
objdump.

Chapter 7 Building and Using Libraries 89

One of the most interesting features of objdump is its ability to disassemble the
object into the native instruction set. Here’s an excerpt of objdump performing this
capability:

$ objdump -disassemble -S /usr/local/lib/libmyrand.so

...

0000074c <initRand>:

74c: 55 push %ebp

74d: 89 e5 mov %esp,%ebp

74f: 53 push %ebx

750: 83 ec 04 sub $0x4,%esp

753: e8 00 00 00 00 call 758 <initRand+0xc>

758: 5b pop %ebx

759: 81 c3 f8 11 00 00 add $0x11f8,%ebx

75f: 83 ec 0c sub $0xc,%esp

762: 6a 00 push $0x0

764: e8 c7 fe ff ff call 630 <_init+0x28>

769: 83 c4 10 add $0x10,%esp

76c: 89 45 f8 mov %eax,0xfffffff8(%ebp)

76f: 83 ec 0c sub $0xc,%esp

772: ff 75 f8 pushl 0xfffffff8(%ebp)

775: e8 d6 fe ff ff call 650 <_init+0x48>

77a: 83 c4 10 add $0x10,%esp

77d: 8b 5d fc mov 0xfffffffc(%ebp),%ebx

780: c9 leave

781: c3 ret

782: 90 nop

783: 90 nop

...

$

In addition to -disassemble (to disassemble to the native instruction set), this
example also specified -S to output interspersed source code. The problem is that
this object is compiled to exclude this information. You can easily fix this as follows,
by adding -g to the compilation process.

$ gcc -c -g -fPIC initapi.c

$ gcc -c -g -fPIC randapi.c

$ gcc -shared initapi.o randapi.o -o libmyrand.so

$ objdump -disassemble -S libmyrand.so

...

90 GNU/Linux Application Programming

00000790 <initRand>:

*

*/

void initRand()

{

790: 55 push %ebp

791: 89 e5 mov %esp,%ebp

793: 53 push %ebx

794: 83 ec 04 sub $0x4,%esp

797: e8 00 00 00 00 call 79c <initRand+0xc>

79c: 5b pop %ebx

79d: 81 c3 fc 11 00 00 add $0x11fc,%ebx

time_t seed;

seed = time(NULL);

7a3: 83 ec 0c sub $0xc,%esp

7a6: 6a 00 push $0x0

7a8: e8 c7 fe ff ff call 674 <_init+0x28>

7ad: 83 c4 10 add $0x10,%esp

7b0: 89 45 f8 mov %eax,0xfffffff8(%ebp)

srand(seed);

7b3: 83 ec 0c sub $0xc,%esp

7b6: ff 75 f8 pushl 0xfffffff8(%ebp)

7b9: e8 d6 fe ff ff call 694 <_init+0x48>

7be: 83 c4 10 add $0x10,%esp

return;

}

7c1: 8b 5d fc mov 0xfffffffc(%ebp),%ebx

7c4: c9 leave

7c5: c3 ret

7c6: 90 nop

7c7: 90 nop

...

$

Having compiled the source code with -g, you now have the ability to under-
stand the C source to machine code mapping.

Numerous other capabilities are provided with objdump. The GNU/Linux man-
page lists the plethora of other options.

ranlib

The ranlib utility is one of the most important utilities when creating static
libraries. This utility creates an index of the contents of the library and stores it in
the library file itself. When this index is present in the library, the linking stage of

Chapter 7 Building and Using Libraries 91

building an image can be sped up considerably. Therefore, the ranlib utility should
be performed whenever a new static library is created. An example of using ranlib
is shown here:

$ ranlib libmyrand.a

$

Note that the same thing can be performed using the ar command with the -s
option, as follows:

$ ar -s libmyrand.a

$

Printing out the archive can be accomplished in either of these options in nm:

$ nm –s libmyrand.a

$ nu –print-armap libmyrand.a

SUMMARY

This chapter explored the creation and use of program libraries. Traditional static
libraries were discussed first, followed by shared libraries, and finally dynamically
loaded libraries. The chapter also investigated source code to demonstrate the
methods for creating libraries using the ar command as well as using libraries with
gcc. Finally, it discussed a number of library-based utilities, including ldd, objdump,
nm, size, and ranlib.

DYNAMIC LIBRARY APIS

#include <dlfcn.h>

void *dlopen(const char *filename, int flag);

const char *dlerror(void);

void *dlsym(void *handle, char *symbol);

int dlclose(void *handle);

92 GNU/Linux Application Programming

93

Building Packages with
automake/autoconf

by Curtis Nottberg

8

INTRODUCTION

The standard GNU make utility eases many of the burdens associated with building
an executable from multiple source files. It enables incremental building of the
source and allows the commands and processes needed to maintain a source pack-
age to be collected in a single location. GNU make is excellent at implementing the
steps needed to build a moderately complex project. However, GNU make starts to
become cumbersome as projects grow in complexity. Examples of factors that cause
Makefile maintenance to become cumbersome are these:

Projects with a large number of files that have varied build requirements
Dependencies on external libraries
A desire to build in a multiplatform environment
Installing built software in multiple environments
Distributing a source package

In This Chapter

make Review
Introduction to the GNU Autotools
Converting a Project to Use Autotools
Quick Introduction to automake
Quick Introduction to autoconf

The solution to these complexities is to move up one level and automatically
generate the appropriate Makefiles to build the project. This allows GNU make to
focus on the things it is good at while still allowing the capability to configure for
the current build environment. The GNU Autotools are an attempt to provide this
next level of build functionality on top of the GNU make utility.

The cross-platform GNU Build System (which is made up of the automake, auto-
conf, and libtool packages) was begun in 1991 by David Mackenzie of the Free
Software Foundation.

A SAMPLE PROJECT

The examples in this chapter show various ways to build a project consisting of four
source files. Two of the source files are used to build a library, and the other files
build an application that uses the library (see Figure 8.1).

94 GNU/Linux Application Programming

FIGURE 8.1 Directory structure of sample project.

A MAKEFILE SOLUTION

Listing 8.1 shows a simple Makefile that builds the library and an application that
uses the library. This Makefile is used to provide a basis for comparing how Auto-
tools would build the same project. Keep in mind that the example considered here
is very simple. The application of automake/autoconf to this project might seem like
more work than payoff, but as the project grows, the payback from using the Auto-
tools increases.

LISTING 8.1 Simple Makefile to Build Example (on the CD-ROM at

./source/ch8/Makefile.simple)

1: VPATH= lib app

2:

3: LIBSRC= lib.c bar.c

4: LIBOBJ= $(LIBSRC:.c=.o)

5:

6: APPSRC= main.c app.c

7: APPOBJ= $(APPSRC:.c=.o)

8:

9: CFLAGS=

10: INCLUDES= -I ./lib

11:

12: all: libexp.a appex

13:

14: %.o:%.c

15: $(CC) -c $(CFLAGS) $(INCLUDES) -o $@ $

16:

17: libexp.a: $(LIBOBJ)

18: $(AR) cru libexp.a $(LIBOBJ)

19:

20: appex: $(APPOBJ) libexp.a

21: $(CC) -o appex $(APPOBJ) -lexp -L .

Line 1 of the listing sets the VPATH variable. The VPATH variable specifies search
paths that are used by the make utility to find the source files for the build rules. The
VPATH capability of make allows the use of a single Makefile to reference the source
files in the lib and app subdirectories. Lines 3 through 7 create source and object
file lists for use by the build rules. Notice that the file list doesn’t include paths be-
cause this is taken care of by the VPATH search variable. Lines 9 and 10 set up the nec-
essary compiler flags to perform the build. Line 12 sets up the default build target
to build both the library and application. Lines 14 and 15 define the rules used to
turn C-source files into object files. Lines 17 and 18 describe how to build the
library. Finally, lines 20 and 21 describe how to build the application.

Chapter 8 Building Packages with automake/autoconf 95

The simplified Makefile is missing a few features that would need to be in-
cluded in a real build system to make it useable: a clean target, dependency track-
ing on included header files, a method for installing the generated binaries, and so
forth. The Autotools implementation provides many of these missing features with
only a little bit of additional work when compared to the effort needed to create the
simplified Makefile.

A SIMPLE IMPLEMENTATION USING AUTOTOOLS

The initial implementation using the Autotools requires the creation of five files to
replace the simple Makefile described in Listing 8.1. Although this seems like a lot
of files to replace a single file, each of the replacement files is generally simpler. Both
the simple Makefile and the Autotool files contain roughly the same information,
but Autotools chooses to distribute the information differently in the project’s
directory structure. Figure 8.2 illustrates the directory structure from Figure 8.1
with the addition of the Autotools files.

96 GNU/Linux Application Programming

FIGURE 8.2 Directory structure of sample project with Autotool files.

The additional files added to support a simple Autotools project are these:

autogen.sh: A shell script to run Autotools to generate the build environment

configure.ac: The input file for the autoconf tool

Makefile.am: The top-level Makefile template

app/Makefile.am: The Makefile template for appexp executable

lib/Makefile.am: The Makefile template for building the libexp.a library

These files describe the intended build products and environment to Auto-
tools. Autotools takes this input and generates a build environment template that
is further configured on the build system to generate the final set of Makefiles. As-
suming that you are developing and building on the same machine, the following
commands should configure and build the sample project:

./autogen.sh

./configure

make

Running the autogen.sh script executes the Autotool utilities to convert the
input files into a build environment template that can be configured on the host
system. Executing the configure script causes the build environment template to be
customized for the build machine. The output of the configure script is a set of
GNU Makefiles that can be used to build the system. Executing the make command
in the root directory causes both the library and application to be built.

An examination of autogen.sh should be the starting point for understanding
how this process works. Listing 8.2 shows a very simple autogen.sh script that just
executes the Autotools utilities. Generally the autogen.sh script in a real project is
much more complicated to first check that the Autotools exist and are of the ap-
propriate version. To find an example of a more complex autogen.sh script, you
should examine this file in the source repositories of your favorite open source
project.

LISTING 8.2 Simple autogen.sh Script (on the CD-ROM at ./source/ch8/autogen.sh)

1: #!/bin/sh

2: # Run this to generate all the initial makefiles, etc.

3:

4: aclocal

5: libtoolize —automake

6: automake -a

7: autoconf

Chapter 8 Building Packages with automake/autoconf 97

Line 1 indicates the shell to use when running this script. Line 4 runs the
aclocal utility. The aclocal utility creates the local environment needed by the
automake and autoconf tools to work. Specifically aclocal makes sure the m4 macro
environment that automake and autoconf use to implement their functionality is set
up appropriately. Line 5 executes the libtoolize utility, which enables the libtool
functionality in automake. The libtool functionality is discussed in this chapter.
Line 6 executes the automake utility, which turns the Makefile.am files into
Makefile.in files. This operation is discussed more in the next section. Line 7 exe-
cutes the autoconf utility that takes the configure.ac input file and turns it into a
pure shell script named configure.

automake

The input to the automake utility is a series of Makefile.am files that describe the
targets to be built and the parameters used to build them. The automake utility
transforms the Makefile.am files into makefile.in files. The Makefile.in file is a
GNU make format file that acts as a template that the configure script transforms
into the final Makefile. automake has built-in support for building binaries and
libraries and with the support of libtool can also be used to build shared libraries.
The sample project required three separate automake files: one in the root directory
and one for each subdirectory. Now it’s time to take a look at the root Makefile.am
to see how automake handles subdirectories (Listing 8.3).

LISTING 8.3 Listing of the Root Makefile.am (on the CD-ROM at

./source/ch8/Makefile.am)

1: SUBDIRS = lib app

The contents of the root Makefile.am simply indicate that all the work for this
project is done in the subdirectories. Line 1 tells the automake utility that it should
descend into the subdirectories and process the Makefile.am files it finds there. The
ordering of directories in the SUBDIRS variable is significant; the subdirectories are
built in the left to right order specified in the subdirectories list. The sample project
uses this to ensure that the lib directory is built before the app directory, a require-
ment of the sample project because the application is dependent on the library
being built first.

Now it’s time to move on to the lib/Makefile.am file that shows automake how
to build the libexp.a library (Listing 8.4).

98 GNU/Linux Application Programming

LISTING 8.4 Listing of lib/Makefile.am (on the CD-ROM at

./source/ch8/lib/Makefile.am)

1: lib_LIBRARIES = libexp.a

2: libexp_a_SOURCES = bar.c lib.c

Line 1 is a list of the static libraries to be built in this directory. In this case the
only library being built is libexp.a. The syntax of line 1 is more complex than it first
appears. The lib_LIBRARIES variable name indicates two pieces of information. The
lib portion indicates that when the library is installed it will be put in the lib
directory. The LIBRARIES portion indicates that the listed targets should be built as
static libraries. Line 2 lists the source files that go into building the libexp.a static
library. Again automake uses the format of the variable name to provide the associ-
ation between both the library that the variable applies to and the content of the
variable. The libexp_a portion of the name indicates that this variable’s value
applies to building libexp.a. The SOURCES portion of the name implies that the
value of this variable is a space-separated list of source files. The app/Makefile.am
file (Listing 8.5) is very similar to the one in the lib directory but includes a few
additional variables to take care of using the libexp.a library that was previously
built in the lib directory.

LISTING 8.5 Listing of app/Makefile.am (on the CD-ROM at

./source/ch8/app/Makefile.am)

1: bin_PROGRAMS = appexp

2: appexp_SOURCES = app.c main.c

3: appexp_LDADD = $(top_builddir)/lib/libexp.a

4: appexp_CPPFLAGS = -I $(top_srcdir)/lib

Line 1 of Listing 8.5 should look similar to line 1 in Listing 8.4 in that it is a list
of things to be built. In this case the bin_PROGRAMS variable name indicates to
automake that the result is installed in the bin directory and listed targets should be
built as executables. The appexp_ prefix on the variable in lines 2 through 4 indicates
that these variables apply to building the appexp executable. Line 2 has the SOURCES
variable that lists the source files that are to be compiled into the appexp executable.
Line 3 specifies the LDADD variable, which are things that are to be included during
linking. In this example, the LDADD variable is used to add the library that was pre-
viously built in the lib directory. The $(top_builddir) is set by the configure script
when it is run and provides a mechanism for Makefiles to reference the build di-
rectories in a relative manner. Line 4 specifies the CPPFLAGS variable that is passed

Chapter 8 Building Packages with automake/autoconf 99

to the preprocessor when it runs. This variable should contain the -I include paths
and the -D defines that would normally be passed to the preprocessor in a Makefile.
In this example it is being used to get access to the library header file contained in
the lib directory. The $(top_srcdir) variable is set by the configure script; it pro-
vides a mechanism for Makefiles to reference source files in a relative manner.

autoconf

The autoconf utility converts the configure.ac input file into a shell script named
configure. The configure script is responsible for collecting information about the
current build system and using the information to transform the Makefile.in
template files into the Makefiles used by the GNU make utility. The configure script
performs the transformation by replacing occurrences of configuration variables in
the Makefile.in template file with values for those variables as determined by the
configure script. The configure.ac input file contains macros that describe the
types of configuration checks the configure script should perform when it is run.
The configure.ac for the sample project illustrates the very simple series of checks
needed to compile C-files and create static libraries (Listing 8.6).

LISTING 8.6 Listing of configure.ac (on the CD-ROM at ./source/ch8/configure.ac)

1: dnl Process this file with autoconf to produce a configure script

2: AC_PREREQ(2.53)

3: AC_INIT(app)

4: AM_INIT_AUTOMAKE(appexp, 0.1.00)

5: AC_PROG_CC

6: AC_PROG_RANLIB

7: AC_OUTPUT(app/Makefile lib/Makefile Makefile)

Line 1 illustrates the comment format used by autoconf. Line 2 is a macro de-
fined by autoconf to ensure that the version of the autoconf utility being used to
create the configure script is new enough. This macro results in a check to make
sure that autoconf utility has a version number equal to or greater than 2.53. If the
version isn’t recent enough, an error is generated, and the configure script is not
generated. Line 3 is a required autoconf macro that must be called before any other
macros are invoked; it gives autoconf a chance to initialize itself and parse its com-
mand-line parameters. The parameter to AC_INIT is a name for the project. Line 4
is the initialization macro for automake. autoconf can be used independently of
automake, but if they are to be used together, then the AM_INIT_AUTOMAKE macro is
required in the project’s configure.ac file. Line 5 and 6 are the first macros that

100 GNU/Linux Application Programming

actually check for tools used during the make process. Line 5 indicates that the
project causes the configure script to find and prepare the Makefiles to use the C
compiler. Line 6 does the checks to find the tools needed to build static libraries.
Line 7 is the other required macro that must exist in a configure.ac file. This macro
indicates the output files that should be generated by the configure script. When
the configure script is ready to generate its output files, it iterates through the files
in the AC_OUTPUT macro and looks for a corresponding file with an .in suffix. It then
performs a substitution step on the .in file to generate the output file.

THE configure SCRIPT

The output of the autoconf utility is a shell script named configure. The sample
configure.ac in Listing 8.7 generates a configure script with approximately 4,000
lines when run through the autoconf utility. Executing the configure script collects
the required configuration information from the executing system and generates
the appropriate Makefiles by performing a substitution step on the Makefile.in files
generated by automake. Listing 8.7 examines the output of running the configure
script generated by the example.

LISTING 8.7 Output from the Sample configure Script

1: checking for a BSD-compatible install... /usr/bin/install -c

2: checking whether build environment is sane... yes

3: checking for gawk... gawk

4: checking whether make sets $(MAKE)... yes

5: checking for gcc... gcc

6: checking for C compiler default output file name... a.exe

7: checking whether the C compiler works... yes

8: checking whether we are cross compiling... no

9: checking for suffix of executables... .exe

10: checking for suffix of object files... o

11: checking whether we are using the GNU C compiler... yes

12: checking whether gcc accepts -g... yes

13: checking for gcc option to accept ANSI C... none needed

14: checking for style of include used by make... GNU

15: checking dependency style of gcc... gcc3

16: checking for ranlib... ranlib

17: configure: creating ./config.status

18: config.status: creating app/Makefile

19: config.status: creating lib/Makefile

20: config.status: creating Makefile

21: config.status: executing depfiles commands

Chapter 8 Building Packages with automake/autoconf 101

Lines 1 through 4 are checks that occur to ensure that the build environment
has the appropriate tools to support the make process. Lines 5 through 15 are checks
generated by the AC_PROG_CC macro that locate and ready the compiler toolchain for
processing C-source code. Line 16 is a check generated by the AC_PROG_RANLIB
macro to ensure that the ranlib utility exists for generating static libraries. Lines 18
through 20 indicate that the substitution step to turn the Makefile.in templates
into the actual Makefiles is occurring.

After the configure script has completed successfully, then all of the Makefiles
needed to build the project should have been successfully created. Typing make in
the root directory at this point should build the project.

THE GENERATED MAKEFILES

The generated Makefiles have a number of nice characteristics that were lacking in
the simple Makefile of Listing 8.1, such as:

Automatic dependency tracking. For example, when a header file is modified,
only the source files that are affected are rebuilt.
A clean target that cleans up all the generated output.
The automated ability to install the generated binaries into the appropriate
system directories for execution.
The automated ability to generate a distribution of the source code as a com-
pressed tar file.

The generated Makefiles have numerous predefined targets that allow the user
to invoke these capabilities. The following list examines the common targets used
in the automake-generated Makefiles:

make: The default target. This causes the project binaries to be built.

make clean: The clean target. This removes all of the generated build files so
that the next call to make rebuilds everything.

make distclean: This target removes all generated files, including those gen-
erated by the configure script. After using this target, the configure script needs
to be run again before another build can take place.

make install: This target moves the generated binaries and supporting files
into the system directory structure. The location of the installation can be con-
trolled with the -enable-prefix parameter that can be passed to the configure
script when it is run.

102 GNU/Linux Application Programming

make dist: This target generates a .tar.gz file that can be used to distribute
the source code and build setup. Included in the tarball is all of the source files,
the makefile.in files, and the configure script.

Just looking at the default targets provided by the standard automake Makefile
should indicate some of the power that exists in using the Autotools to generate the
Makefiles for your project. The initial setup to use the Autotools can be a bit cum-
bersome, but after the infrastructure is in place, then future updates to the files are
very incremental, and the payback is large compared to implementing the same
capabilities by hand in a developer-maintained Makefile.

SUMMARY

This chapter presented the GNU Autotools by illustrating how they can be used to
build a simple project. The example makes little use of the advanced features of
automake and autoconf, but it should provide a good illustration of the big-picture
concepts needed to understand how the Autotools work. The GNU Autotools
provide a wealth of features that are quite useful to larger software projects, and the
effort of integrating them into your project should be expended early on. The
downside of the tools is that they can be somewhat difficult to employ properly, and
the documentation for them is a bit arcane. On balance, the uses of the Autotools
are well worth the effort, but expect to put a little bit of time into getting things
working correctly. One of the best ways to learn about the more advanced usage of
automake and autoconf is to look at the existing implementations used in current
open source projects. The simple example presented in this chapter should provide
the basis needed to examine and learn from the more complex use of the GNU
Autotools found in the larger open source projects.

Chapter 8 Building Packages with automake/autoconf 103

This page intentionally left blank

105

Source Control in
GNU/Linux

9

INTRODUCTION

Software is typically developed as an evolutionary process, and when it’s developed
by a group of programmers, some method is necessary to control access, track
changes, and establish relationships between the elements that make up the soft-
ware. This chapter explores source control systems (also known as software con-
figuration management systems or revision control systems). Numerous options
exist for source control that offer different capabilities while providing the core
functionality that’s needed. This chapter explores these models and a number of the
GNU/Linux approaches that are available.

DEFINING SOURCE CONTROL

Source, or revision, control is the art of managing software through its process of
development. Source control systems come in a variety of forms, but each provides
a set of basic operations. These operations are as follows:

In This Chapter

Source Control Models
CVS Overview
Subversion Overview
GIT Overview

The ability to share source code and other files with one or more developers for
collaboration
The ability to track changes in files
The ability to merge changes between files
The ability to group files together

These are the most basic operations of a source control system, and they are the
core of the abilities. Other capabilities include showing differences in files. As you’ll
soon learn, source control systems implement this functionality in different ways.
Some of these differences are explored in terms of the architectures of the notable
systems.

SOURCE CONTROL PARADIGMS

Source control systems can be categorized in a number of ways, but the two most
useful are the repository architecture and the history model. This section intro-
duces these characteristics and some of the differences in the approaches.

REPOSITORY MODELS

The repository is where source is managed, and it also defines the way that users in-
teract with the repository (the protocol). In general you have two fundamentally
different architectures, the centralized repository and the distributed repository.
This section reviews both, and the hybrid that combines the strengths of both.

Centralized Architecture

The centralized architecture, as the name implies, is one where a central repository
is used in a star architecture with sandboxes feeding it from the periphery. Each de-
veloper (client) creates a sandbox for development and then feeds these changes
upstream to the central repository (server). This is shown in Figure 9.1.

Upstream in this context means that developers each have sandboxes and co-
ordinate their changes through a single repository. Centralized repositories have
the concept of branches to allow multiple developers to coordinate on shared
changes off the tip (head of the repository).

Distributed and Hybrid Architecture

The distributed architecture has not just a single repository but multiple reposito-
ries. Developers can take from a central repository, but then operate independently.
But what differs in this from the centralized architecture is that developers’ sand-
boxes can become repositories in their own right, merging changes from others. In

106 GNU/Linux Application Programming

this way, you have a hierarchy of development sandboxes that all merge upstream
toward one or more repositories (see Figure 9.2).

Chapter 9 Source Control in GNU/Linux 107

FIGURE 9.1 The centralized architecture for source management.

FIGURE 9.2 The distributed architecture for source management.

Note that this hierarchy allows many developers to work on different aspects of
the system from their own repository, merging changes upstream (or downstream)
when needed.

The hybrid architecture mixes the two, allowing a central repository for all
changes, but with many developer repositories that feed into it.

REVISION MODEL

The revision or history architecture defines the way that changes are stored and
managed within the repository, including the way the files change over time. Two
specific architectures are explored here, the snapshot architecture and the change-
set architecture.

Snapshot Architecture

The snapshot architecture is the simplest because no history is required to be main-
tained. In this model, complete changes are stored to files rather than any differ-
ences between them. The snapshot model stores all files in their entirety, so space
is not utilized well, but the model is very fast because little processing is required to
retrieve a particular version.

Change-Set Architecture

The change-set (or delta) architecture stores files based upon their differences. In-
stead of storing a complete file for each version, only the differences of the files are
stored (a revision specifies deltas instead of the entire file). This approach is much
more efficient for space, but is less efficient for performance because processing can
be required to identify a specific version of a file (applying deltas, etc.).

USEFUL SOURCE CONTROL TOOLS

In the open source domain, you find many different options for source manage-
ment. This chapter covers three of the most important: CVS, Subversion, and the
newcomer Git.

CVS

The Concurrent Versions System (CVS) is one of the older source control systems.
Its name came from the goal to develop and collaborate on software concurrently
without worrying about one developer overwriting changes of another. CVS was
created in the mid-1980s by Dick Grune and remains one of the most popular
open source version control systems available. Its heritage comes from the older
Revision Control System (RCS).

108 GNU/Linux Application Programming

This section explores CVS and how to use it to manage a simple project. The
intent is to provide a hands-on introduction to the basic capabilities of CVS and ex-
plore its important capabilities.

From a model perspective, CVS uses a centralized repository and a snapshot
approach to maintain history. CVS is implemented in the C language and is re-
leased under the GPL.

Setting Up a New CVS Repository

Creating a new CVS repository is done very simply with the init command of
CVS. You first define the root of the CVS repository by setting it as an environment
variable (CVSROOT). This could also be done on the command line with the –d
option, but because you will use the repository often, you use an environment vari-
able. In this case, I use my home directory for the repository, but for sharing, you
might want to put this in a shared directory.

$ export CVSROOT=/home/mtj/cvs_repo

$ cvs init

When this command is complete, a new subdirectory is created that contains
another directory (./cvs_repo/CVSROOT). This contains information about the
repository as well as working data (users, notification lists, etc.).

Adding to the Repository

Now that you have your repository, it’s time to add to it. You create a working di-
rectory (/home/mtj/work) and then add a file.

$ mkdir work

$ cd work

Next you create your file (shown in Listing 9.1) with your favorite editor.

LISTING 9.1 File ./work/test.c Ready for CVS Checkin

1: #include <stdio.h>

2:

3: int main()

4: {

5: print("test string.\n");

6:

7: return 0;

8: }

Chapter 9 Source Control in GNU/Linux 109

Checking the file into your repository is done first with the CVS import com-
mand. With this command you enter your working directory (./work) and import
as follows:

$ cvs import –m "my import" my_files mtj start

N my_files/test.c

No conflicts created by this import

$

With the import command, you specify a comment for the import (specified
with the –m option) and then three additional arguments. The first argument is the
module that you want to define (where the files are to be placed). The second
argument is the vendor tag, and the last is the release tag. You can define the last
two tags however you like.

Manipulating Files in the Repository

At this stage, you have a repository created and a new module (my_files) that con-
tains a single file. Now it’s time to check out this repository in another subdirectory
(./work2). We use the checkout CVS command to get the my_files module.

$ mkdir work2 ; cd work2

$ cvs checkout my_files

cvs checkout: Updating my_files

U my_files/test.c

$ ls my_files

CVS test.c

$

Note that from Listing 9.1, if you tried to compile the file, you would end up
with an error (undefined reference) because of the misspelling of printf. You can
correct this mistake and can then view the changes to the repository using the CVS
diff command.

$ cvs diff test.c

Index: test.c

===

RCS file: /home/mtj/cvs_repo/my_files/test.c,v

retrieving revision 1.1.1.1

diff -r1.1.1.1 test.c

5c5

110 GNU/Linux Application Programming

< print("test string.\n");

—-

> printf("test string.\n");

$

At this point, the local sandbox contains the change. The next step is to com-
mit this change to the repository. This is done using the commit command. Note
that you can specify no options for commit, which would affect all files in the direc-
tory (and subdirectory). In the following example, you are currently located in the
./my_files subdirectory.

$ cvs commit

/home/mtj/cvs_repo/my_files/test.c,v <— test.c

new revision: 1.2; previous revision 1.1

$

Note the difference in the revision numbers. Each time a new file is committed,
it receives a new revision number (in this case from 1.1 to 1.2). These revision tags
can be used to identify specific revisions of files; for example, you can check out the
specific revision of a file as follows:

$ cvs checkout –r 1.1 my_files/test.c

U my_files/test.c

$

Merging Changes from the Repository

If you want to bring changes from the repository into your sandbox (for example,
those committed by another developer), you use the CVS update command. This
very simply is performed as follows:

$ cvs update my_files

cvs update: Updating my_files

$

Other Useful Commands

You can also perform diffs on revision of files. In the following example, two revi-
sions of a file are defined, along with the diff command to provide the differences.
Note the greater than and less than symbols in the example that follows. This ex-
ample shows < for revision 1.1 and > for revision 1.2 (how the lines that differ ap-
pear in each revision).

Chapter 9 Source Control in GNU/Linux 111

$ cvs diff –r 1.1 –r 1.2 my_files/test.c

Index: my_files/test.c

===

RCS file: /home/mtj/cvs_repo/my_files/test.c,v

retrieving revision 1.1

retrieving revision 1.2

diff -r1.1 -r1.2

5c5

< print("test string.\n");

—-

> printf("test string.\n");

$

The log command can be used to show the history of a file in the repository.
Given the changes so far, you can view the file’s log as follows:

mtj@camus:~$ cvs log my_files/test.c

RCS file: /home/mtj/cvs_repo/my_files/test.c,v

Working file: my_files/test.c

head: 1.2

branch:

locks: strict

access list:

symbolic names:

start: 1.1.1.1

mtj: 1.1.1

keyword substitution: kv

total revisions: 3; selected revisions: 3

description:

——————————————

revision 1.2

date: 2007-12-30 05:23:16 +0000; author: mtj; state: Exp; lines: +1 -1

Correct printf.

——————————————

revision 1.1

date: 2007-12-30 04:35:59 +0000; author: mtj; state: Exp;

branches: 1.1.1;

Initial revision

——————————————

revision 1.1.1.1

date: 2007-12-30 04:35:59 +0000; author: mtj; state: Exp; lines: +0 -0

my import

===

$

112 GNU/Linux Application Programming

Repository Tagging

Tagging is an important part of source control because it allows you to freeze the
repository with a given name for all time. This allows you to create a version of your
software and later extract that particular set of files to rebuild. You can tag your cur-
rent repository with the following command:

$ cvs rtag –b release_1 my_files

cvs rtag: Tagging my_files

$

This tags the files in the module and does not require a commit to be performed.
The –b option specifies that you are creating a branch (an epoch of the files at the
current time in the repository). Another tagging command (cvs tag) tags the local
repository, and requires a commit of the files to take effect. Later, if you wanted to
retrieve that particular revision of files, you can issue the following command:

$ cvs checkout –r release_1 my_files

U my_files/test.c

$

Note that any changes made to the files at this time would be committed back
to the branch, and not to the head of the repository. This allows a branch to be cre-
ated at any point in time and for changes to be applied only to it. You can see the
current revision of the files using the cvs status command:

$ cvs status my_files/test.c

===

File: test.c Status: Up-to-date

Working revision: 1.2 Sun Dec 30 05:23:16 2007

Repository revision: 1.2 /home/mtj/cvs_repo/my_files/test.c,v

Sticky Tag: release_1 (branch: 1.2.2)

Sticky Date: (none)

Sticky Options: (none)

$

Note the sticky tag for the file that indicates the branch name (release_1). The
status command is a useful way to know which version of files is currently checked
out.

Chapter 9 Source Control in GNU/Linux 113

Removing Files from the Repository

If desired, files can be removed from the repository (though not completely). When
a file (or directory) is removed in CVS, it is placed into the attic, which is a special
directory containing deleted files (they’re never deleted completely). The cvs remove
command is used to remove a file.

$ cvs remove my_files/test.c

$ cvs commit

/home/mtj/cvs_repo/my_files/test.c,v <— test.c

new revision: delete; previous revision: 1.2

$

You need to understand the context in which files are removed. Note in the
preceding example that you have removed a file from your branch (1.2). This
removes the 1.2 file, but all other revisions (the original commit and update for the
misspelled printf) are still present.

CVS Summary

CVS remains one of the most stable and popular choices for source control. It’s
a standard part of most Linux distributions, so you typically find it without any
additional installs. Because CVS is ubiquitous, it’s something you probably find in
a project near you, so it’s worth your time to learn and master.

SUBVERSION

Subversion (or SVN) is a new version control system that was designed to be an
alternative to CVS. In fact, many high-profile open source projects have already
migrated from CVS to SVN (such as the Apache Web server project). In 2007,
Subversion was defined as the leader in standalone software configuration man-
agement tools [Wikipedia:SVN].

As with CVS, this chapter explores SVN for the purposes of creating a reposi-
tory and manipulating files within it.

From a model perspective, SVN uses a centralized repository and a snapshot
and change-set approach to maintain history. SVN is implemented in the C lan-
guage and is released under the Apache software license.

Setting Up a New SVN Repository

To create a new SVN repository, you use the svnadmin command. This is different
from the typical subversion command svn, which you can use for the more com-
mon operations.

114 GNU/Linux Application Programming

Unlike CVS, you need to start the SVN server, which is done very simply as
follows:

$ svnserve –d –r=/home/mtj

In this case, you specify to run as a daemon (in the background) with the –d op-
tion and specify the root level for your repository as a home directory. You’ll prob-
ably want a more suitable place for your repository.

As with CVS, you export an environment variable to represent the location of
the repository.

$ export SVNROOT=/home/mtj/svn_repo

$ svnadmin create ${SVNROOT}

The svnadmin utility is used to create your new repository with the create com-
mand. This utility is special in that it can be used to create repositories, verify them,
build hot copies of the repository, recover from internal issues, dump the contents
of the repository, etc. You can learn about all of the capabilities of the svnadmin util-
ity by using the help command:

$ svnadmin help

general usage: svnadmin SUBCOMMAND REPOS_PATH [ARGS & OPTIONS ...]

Type ‘svnadmin help <subcommand>’ for help on a specific subcommand.

Available subcommands:

crashtest

create

deltify

dump

help (?, h)

hotcopy

list-dblogs

list-unused-dblogs

load

lslocks

lstxns

recover

rmlocks

rmtxns

setlog

verify

$

Chapter 9 Source Control in GNU/Linux 115

When this command is complete, a new subdirectory is created that contains a
variety of other control directories (./svn_repo/*). This contains information
about the repository as well as working data (users, locks, etc.).

Adding to the Repository

As with CVS, you can use the import command to svn to import existing source
into the newly created repository. But here the simple approach is used where you
just add the file to the repository using the add command to svn.

You begin by grabbing the current repository by checking it out. It is empty at
first, but this allows you to add to the repository without using import.

$ svn checkout file:///home/mtj/svn_repo svnwork

Checked out revision 0.

$

In the sandbox (working directory, /home/mtj/svnwork), you add the file
test.c, which is shown in Listing 9.1. After it’s created, we add to the repository
and then commit this change from the sandbox to the central repository:

$ svn add test.c

A test.c

$ svn commit

Adding test.c

Transmitting file data .

Committed revision 1.

$

Manipulating Files in the Repository

At this point, you have a repository created. Now you can correct the mistake in the
source file (the missing f in printf). First, you need to check out the repository into
a new directory and update the source file. After it’s updated, you check in your files
with a new commit.

$ svn checkout file:///home/mtj/svn_repo svntest

A svntest/test.c

$ cd svntest

$ vi test.c

...

$ svn commit

Sending test.c

Transmitting file data .

Committed revision 2.

$

116 GNU/Linux Application Programming

Similar to CVS, you can use svn diff test.c to see the changes to the file be-
fore you check in. You can also use diff with the versions to see our changes. SVN
allows a range of revisions as rev_start:rev_end as demonstrated here:

$ svn diff -r 1:2 test.c

Index: test.c

===

—- test.c (revision 1)

+++ test.c (revision 2)

@@ -2,7 +2,7 @@

int main()

{

- print("test string.\n");

+ printf("test string.\n");

return 0;

}

$

In addition to specifying revision numbers, you can also provide symbolic
arguments to specify other revisions. For example, rather than a version number
you can provide a date, HEAD (which is the tip of the repository), COMMITTED (which
is the last commit), and PREV (which is the version prior to the last committed). For
example, to perform the same action as the last example, you can use COMMITTED and
PREV as follows:

$ svn diff –r COMMITTED:PREV test.c

Merging Changes from the Repository

Merging changes from the repository into your local sandbox is performed with the
update option to the svn command. Any changes that have been committed to the
central repository are merged into your local sandbox. Each file is shown with its
current revision. As shown here, no updates are found, and the file is indicated as
revision 2.

$ svn update

At revision 2.

$

Chapter 9 Source Control in GNU/Linux 117

Other Useful Commands

One interesting command in SVN is revert, which allows you to remove your local
copy and get the last version from the repository. This command is performed
simply as:

$ svn revert test.c

In SVN, you can lock one or more files to guarantee exclusive access. While a
file is locked, no other user can commit (check in) changes. This can be useful in
situations where numerous changes are planned and you want to avoid manual
merging. Locking is performed with the lock option and unlocking with the unlock
option to the svn command.

$ svn lock test.c

‘test.c’ locked by user ‘mtj’.

$ svn unlock test.c

‘test.c’ unlocked.

$

In some cases, developers can tag a repository (discussed shortly) to create a
branch for development. This allows development to occur on a different set of files
(for experimental code or code changes for a specific customer). While on a branch,
the files are tagged with a separate revision number so that they can be uniquely
identified. Branches are very useful for independent development, where a branch
is used to contain experimental or working code. When the branched code is
deemed suitable, the branch can be joined to the tip (or head of the repository).
This is where the merge option comes to play. The merge option merges changes
from two different revisions of source files (similar to the join operation in CVS).
For example:

$ svn merge -r 199:HEAD file:///home/mtj/svn_repo

merges changes to all files tagged with revision 199 with the tip. Note that this op-
eration affects the repository (merges take place in the central repository).

One other difference between CVS and Subversion is that in CVS, revision num-
bers are specific to files, where in Subversion, revision numbers are applied to a
complete change-set.

Another useful command you can use to review which user is responsible for
which set of changes is the blame option. This oddly named option to SVN shows

118 GNU/Linux Application Programming

which users last touched each line of a file. The option also shows what version
number is associated with the file (for example, which changes were introduced by
the last revision). Given the changes to test.c so far, you can view the file as:

$ svn blame test.c

1 mtj #include <stdio.h>

1 mtj

1 mtj int main()

1 mtj {

2 mtj printf("test string.\n");

1 mtj

1 mtj return 0;

1 mtj }

$

Note here the line updated is shown as revision 2 while the remainder of the file
remains with revision 1.

Repository Tagging

One of the key differences between CVS and Subversion is the way that
branches and tags are handled. Subversion has no tag command, but instead the
copy command (which correlates all files together)

Subversion permits a variety of ways to create branches, but the simplest is
using the copy command on the repository as a URL. This is demonstrated as
follows:

$ svn copy –r HEAD file://localhost/home/mtj/svn_repo \

file://localhost/home/mtj/svn_repo/br_1

$

With the branch created, you can check it out by specifying the branch as
follows:

$ svn checkout file://localhost/home/mtj/svn_repo/br_1 svnwork

A svnwork/test.c

Checked out revision 3.

$

You can now check the status of the branch with the log option. With this op-
tion you can see the history of the file, showing (from most recent to least recent)
your branch (A), edit (M), and initial introduction (A) into the repository.

Chapter 9 Source Control in GNU/Linux 119

$ svn log -v svnwork

————————————————————————————————————

r3 | mtj | 2008-01-06 00:18:24 -0700 (Sun, 06 Jan 2008) | 1 line

Changed paths:

A /br_1 (from /:2)

Branched.

————————————————————————————————————

r2 | mtj | 2008-01-05 16:49:52 -0700 (Sat, 05 Jan 2008) | 2 lines

Changed paths:

M /test.c

Updated.

————————————————————————————————————

r1 | mtj | 2008-01-05 16:45:57 -0700 (Sat, 05 Jan 2008) | 2 lines

Changed paths:

A /test.c

Added.

————————————————————————————————————

$

Note that any changes made to this sandbox are committed to the branch and
not to the tip (HEAD). This is important because the branch acts as an independent
sandbox allowing you to make your changes without affecting the tip (which
should be stable).

Removing Files from the Repository

Files or directories (including tags and branches) can be removed from the reposi-
tory with the delete option. This removes assets, but maintains logs to track the
changes. For example, say you want to delete your newly created branch file.

$ svn delete test.c

$ svn commit

If you now remove the svnwork directory and check it out anew, you can see
from the log that the branch version was removed. You can also remove the branch
itself like so:

120 GNU/Linux Application Programming

$ svn checkout file://localhost/home/mtj/svn_repo svnwork

$ svn delete svnwork/br_1

$ svn commit

Now if you use the svn log command on the svnwork/test.c, you find that
only two revisions are known (because the tip and branch are unrelated):

$ svn log -v test.c

————————————————————————————————————

r2 | mtj | 2008-01-05 16:49:52 -0700 (Sat, 05 Jan 2008) | 2 lines

Changed paths:

M /test.c

Updated.

————————————————————————————————————

r1 | mtj | 2008-01-05 16:45:57 -0700 (Sat, 05 Jan 2008) | 2 lines

Changed paths:

A /test.c

Added.

————————————————————————————————————

$

SVN Summary

If you’re starting a new project, SVN should be on the top of your list for source
management systems. It improves upon CVS while retaining the look and feel of
CVS commands and behaviors.

GIT

The Git source control system is one of the newest available, coming right out of
Linux kernel development. Its origin is somewhat controversial, but it was created
to replace the Bitkeeper source control system that was traditionally used to main-
tain Linux kernel source.

Git is interesting because it uses a different architecture than CVS and Subver-
sion. Git uses a decentralized model permitting multiple distributed repositories
(not a single centralized repository with external sandboxes). Git is also change-set
based and uses a file-group model instead of simply tracking individual files.

This section explores Git for simple project management and gives you the
basics for operating your own Git repository.

Chapter 9 Source Control in GNU/Linux 121

Installing Git

Because Git is so new, it’s unlikely that you have the binaries on your system. Here’s
how you can get the latest. If you have APT, then that’s your best bet. The package
name for APT is cogito. If you don’t have APT, then follow the instructions here to
get the Git SCM source package, build, and install.

$ wget http://www.kernel.org/pub/software/scm/git/git-1.5.3.7.tar.gz

$ tar xvfz git-1.5.3.7.tar.gz

$ cd git-1.5.3.7

$./configure

$ make

$ make install

When these steps are successfully completed, the Git tools are installed. Most
Git commands are available through the utility git.

Setting Up a New Git Repository

The init option to the git command is used to create a new repository. The first
step is to define where the Git repository should be stored. The default is the cur-
rent working directory in a new directory named .git. Instead, this example defines
the Git repository as git_repo. Git expects that the root directory is defined in the
GIT_DIR environment variable.

$ export GIT_DIR=/home/mtj/git_repo

$ git init

Initialized empty Git repository in /home/mtj/git_repo/

$

When this command is complete, the new subdirectory is created (git_repo)
that contains a variety of other directories. This contains information about the
repository as well as working data (tags, etc.).

Adding to the Repository

Now you can add to the repository by creating a work tree. The work tree is created
with the clone option to the git command.

$ git clone -l -s git_repo git_work

Initialized empty Git repository in /home/mtj/git_work/.git/

$

122 GNU/Linux Application Programming

Next, you define another environment variable to let Git know where the work
tree resides.

$ export GIT_WORK_TREE=/home/mtj/git_work

To add to the tree, you descend into the work tree subdirectory and add the file
(again, from Listing 9.1).

$ cd git_work

With the new file in the work tree, you add and commit the file to the upstream
repository.

$ git add .

$ git commit

Created initial commit f89844f: Added.

1 files changed, 8 insertions(+), 0 deletions(-)

create mode 100644 test.c

$

Manipulating Files in the Repository

Now you can correct the source file and check it back into the repository. With the
change made, you can check to see how it differs from the tip (HEAD) using the diff
option to the git command. This is issued from the work tree (./git_work). This
lists the entire source file and shows which file represents the repository (a) and
which represents the work tree (b) and then the typical diff format of changed
lines.

$ git diff

diff —git a/test.c b/test.c

index 16e6e96..3c04533 100644

—- a/test.c

+++ b/test.c

@@ -2,7 +2,7 @@

int main()

{

- print("test string.\n");

+ printf("test string.\n");

return 0;

}

$

Chapter 9 Source Control in GNU/Linux 123

To commit the changes, you use the commit option with –a. The –a argument
specifies that all updates should be committed (not just new files, but also updated
and removed files).

$ git commit –a

Created commit 0ca384b: Updated.

1 files changed, 1 insertions(+), 1 deletions(-)

$

You can also review changes with the show command. This shows the files that
were changed along with change information (commit SHA1 hash, author, log,
changed lines, etc.).

$ git show

commit 0ca384bf99436306b43d71646b73e6f3f324f3a4

Author: M. Tim Jones <mtj@camus.tim-jones.localdomain>

Date: Sun Jan 6 16:14:22 2008 -0700

Updated.

diff —git a/test.c b/test.c

index 16e6e96..3c04533 100644

—- a/test.c

+++ b/test.c

@@ -2,7 +2,7 @@

int main()

{

- print("test string.\n");

+ printf("test string.\n");

return 0;

}

$

Merging Changes from the Repository

To merge any changes from another branch, or the tip, you use the merge option of
the git command. This takes changes from that branch and merges them into our
local work tree. The command is issued with a branch name; in the following ex-
ample you merge from the HEAD (tip), and no changes are found.

$ git merge HEAD

Already up-to-date.

$

124 GNU/Linux Application Programming

Other Useful Commands

Git has so many other useful commands that it’s difficult to do it justice here. But
to give you a taste, here are a couple of commands that illustrate the strength of Git
as a source management solution.

First, recall the show command, which shows a variety of information about a
file or files in the repository. You can symbolically address other revisions in the
repository with modifiers. For example, if you issued git show HEAD, you would see
the current HEAD and changes made in the prior revision. You could also modify
HEAD to show the previous set of changes (HEAD’s parent) as follows:

$ git show HEAD^

commit f89844f4238827a25468c5d6d5f2fd27a18d2fb5

Author: M. Tim Jones <mtj@camus.tim-jones.localdomain>

Date: Sun Jan 6 15:46:34 2008 -0700

Added.

diff —git a/test.c b/test.c

new file mode 100644

index 0000000..16e6e96

—- /dev/null

+++ b/test.c

@@ -0,0 +1,8 @@

+#include <stdio.h>

+

+int main()

+{

+ print("test string.\n");

+

+ return 0;

+}

$

This shows the change of the prior revision of HEAD (which happens to be the
initial checkin). You could modify this for HEAD^^, which represents the parent
of HEAD^, but in this case because no further lineage exists, the result would be
unknown.

Git can quickly summarize the changes that exist in your work tree with the
status option. This option tells you which files were added, removed, or changed
as compared to the parent of your work tree. As shown in the following, no changes
are outstanding.

Chapter 9 Source Control in GNU/Linux 125

$ git status

on branch master

nothing to commit (working directory clean)

Repository Tagging

One of Git’s strengths is its tagging capabilities. A tag is created very simply with the
tag option of the git command. Here you tag with the name release_1.

$ git tag release_1

$

This isn’t entirely encouraging, but if you issue the tag command again with-
out any options, you can see the list of tags that currently exist.

$ git tag

release_1

$

The show-branch option can also be used to check the status of the branch.
Note here that you specify the branch that you are interested in.

$ git show-branch release_1

[release_1] Updated.

$

Git also allows tags to be deleted, which is done with the –d option:

$ git tag –d release_1

Deleted tag ‘release_1’

$

Branching is done similarly in Git with the branch option. The following com-
mands create a branch and then show it. Note that the * indicates the current
branch (master), which you change by checking out the branch.

$ git branch my_branch

$ git branch

* master

my_branch

$ git checkout my_branch

Switched to branch "my_branch"

$ git branch

master

* my_branch

126 GNU/Linux Application Programming

You can see from these simple examples that tagging and branching in Git is a
simple operation. That’s the tip of the iceberg; more information is available in the
Git documentation and user’s guide.

Removing Files from the Repository

Removing files or directories from a repository is done with the rm option. This is
done simply as follows:

$ git rm test.c

rm ‘test.c’

$ git commit

Created commit 351c4f6: Deleted.

1 files changed, 0 insertions(+), 8 deletions(-)

delete node 10064 test.c

$

Note that deletions (like updates) do not affect the upstream repository with-
out a commit.

Git Summary

Git is a great new distributed source control system that is seeing adoption outside
of the Linux kernel (for which it was originally designed). The distributed reposi-
tory model is ideal for situations where hierarchical project teams work toward a
master repository. It also offers a great set of options to monitor checkins, which
are hashed for security and traceability. Git is a great choice for new projects that re-
quire greater control and project visibility.

SUMMARY

As with many other technologies, you find no one-size-fits-all in source and revi-
sion management. Centralized repositories (still the most popular) are simple and
efficient to manage, but distributed repositories provide the means to distribute de-
velopment. It’s no surprise that distributed models of source management arise
now because the evolution of open source development has guided them. When
you consider projects such as the Linux kernel, you find the distributed model
works very well. Regardless of the model that you choose, you can no doubt find a
source management system that fits your needs. This chapter presented CVS, Sub-
version, and Git, but many others exist (such as Arch) and are worth your time to
explore.

Chapter 9 Source Control in GNU/Linux 127

REFERENCES

[Wikipedia:SVN] “Subversion (software),” last retrieved on 12/30/2007 at
http://en.wikipedia.org/wiki/Subversion_(software).

RESOURCES

CVS—Concurrent Versions System, last retrieved on 01/06/2008 at http://www.
nongnu.org/cvs/.

Collabnet Subversion Home Site, last retrieved on 01/06/2008 at http://subversion.
tigris.org/project_packages.html.

“Git—Fast Version Control System,” last retrieved on 01/06/2008 at http://
git.or.cz.

128 GNU/Linux Application Programming

http://www.nongnu.org/cvs/
http://www.nongnu.org/cvs/
http://subversion.tigris.org/project_packages.html
http://subversion.tigris.org/project_packages.html
http://git.or.cz
http://en.wikipedia.org/wiki/Subversion_(software)
http://git.or.cz

129

Data Visualization
with Gnuplot

10

INTRODUCTION

GNU/Linux offers a multitude of open-source solutions to visualize data. These not
only transform your data into graphs, plots, or specialized images, but also include
the capabilities to filter and reduce your data to make it more useful. This chapter
explores one of the most popular solutions, Gnuplot.

GNUPLOT

Gnuplot is one of the older visualization programs, but it remains one of the best
and most popular. It uses a shell interface and runs on practically any system you
can think of (such as Linux, VMS, and even the Atari). It’s interactive through a
command-line shell, so you can plot functions or your data in 2D or 3D with a
plethora of different options. Finally, you can find language bindings for a number
of popular languages such as Ruby, Python, and Smalltalk. These bindings allow
you to generate plots from within these languages.

In This Chapter

Gnuplot Installation
An Introduction to the Gnuplot User Interface
Plotting Functions and Data from Files
2D and 3D Plotting
Building Multiplot Graphs

Gnuplot was first released in 1986, and while the name implies that it’s part of
the GNU project, it’s actually released under its own license.

In this chapter, we’ll review the Gnuplot solution and explore some of its ca-
pabilities.

INSTALLING GNUPLOT

Gnuplot can be packaged as a standard utility, but if your distribution doesn’t have
Gnuplot (as indicated by no response to the command which gnuplot), then you
can install it easily. If your distribution supports APT, then Gnuplot can be installed
with the following:

$ sudo apt-get install gnuplot

Otherwise, you can install it from source as shown in Listing 10.1.

LISTING 10.1 Installing the Gnuplot Tool from Source

$ sudo su –

$ cd /usr/local/src

$ wget http://internap.dl.sourceforge.net/sourceforge/gnuplot/

gnuplot-4.2.2.tar.gz

$ tar xvfz gnuplot-4.2.2.tar.gz

$ cd gnuplot-4.2.2

$./configure

$ make

$ make install

$ which gnuplot

/usr/local/bin/gnuplot

$

USER INTERFACE

Now it’s time to get started working with Gnuplot. First, you need to get acquainted
with the Gnuplot user interface shell. When you start Gnuplot, you see the code
shown in Listing 10.2. The prompt gnuplot> indicates that Gnuplot is ready for user
input. You should also note that the terminal type is set to x11, which means that
any plots that you generate are emitted graphically to the screen. You can also redi-
rect plots to files, which is explored later in the chapter.

130 GNU/Linux Application Programming

LISTING 10.2 The Startup Screen for Gnuplot

$ gnuplot

G N U P L O T

Version 4.2 patchlevel 0

last modified March 2007

...

Terminal type set to `x11`

gnuplot>

In addition to the plethora of commands available in Gnuplot, you also have
a large number of variables that you can use to tailor Gnuplot’s operation and
specify plot options. Variables are displayed with the show command and set with
the set command. In the following example, you use the show command with the
terminal variable to find that the terminal is currently set to x11 (the default). You
then set the terminal variable to png (output format) using the set command (see
Listing 10.3).

LISTING 10.3 Setting and Viewing Variables

gnuplot> show terminal

terminal type is x11 0

gnuplot> set terminal png

Terminal type set to 'png'

Options are 'nocrop medium'

gnuplot> set terminal x11

Terminal type set to 'x11'

Options are '0'

gnuplot>

Gnuplot supports a very large number of variables, some of which are explored
in this chapter. You can see all of the available variables using the command show
all. You can remove a variable using the unset command.

From the Gnuplot shell you can get help on any command or option by typing
help. If you know the command that you’re interested in, you can more quickly
find the information you need by typing help <cmd>.

Chapter 10 Data Visualization with Gnuplot 131

SIMPLE PLOTS

Now it’s time to take a look at how to generate some simple plots with Gnuplot,
and explore some of the plotting options along the way. You can create a simple
plot by plotting a function within Gnuplot.

gnuplot> plot sin(x)

This plot is shown in Figure 10.1. Note here that the scale was automatically
defined (the X range was defaulted to -10.0 to 10.0, whereas the Y range was
autoscaled to the range of the data, -1.0 to 1.0).

132 GNU/Linux Application Programming

FIGURE 10.1 A simple function plot in 2D.

The plot lacks some of the basic elements that make it useful, such as a title,
labels on the axis, etc. You can very easily add these to the plot by setting the
variables that represent those plot elements. Listing 10.4 illustrates some of the
variables that modify the plot for the title, ranges, axis labels, and point labels
within the plot (see Listing 10.4).

LISTING 10.4 Increasing the Readability of the Plot

gnuplot> set title "Simple Function Plot"

gnuplot> set xrange [-3.14159:3.14159]

gnuplot> set yrange [-1.1:1.1]

gnuplot> set xlabel "theta"

gnuplot> set ylabel "sin(theta)"

gnuplot> set label "sin(0.0)" at 0.0, 0.0

gunplot> plot sin(x)

The result of Listing 10.4 is the plot shown in Figure 10.2.

Chapter 10 Data Visualization with Gnuplot 133

FIGURE 10.2 Updated 2D plot from Listing 10.4.

Retyping this can be tiresome, so you can script Gnuplot by including this in a
text file and then loading it into Gnuplot. Gnuplot scripts are usually suffixed with
.p, so invoking our script from the file script.p is done as follows:

gnuplot> load 'script.p'

This causes the plot shown in Figure 10.2 to be rendered.

PLOTTING DATA FROM A FILE

In most cases, you want to plot your own data from outside of Gnuplot. This is sim-
ple as well; instead of plotting a function, you plot a filename. For example, you can
start with data collection.

Listing 10.5 provides a simple script that collects data from the /proc filesystem.
This is real-time data that represents kernel activity. In this case, you capture inter-
rupt counts from the /proc/stat file.

LISTING 10.5 Simple Script to Capture Interrupt Counts

#!/bin/bash

rm –f procstat.txt

for ((i=0;i<30;i+=1)); do

cat /proc/stat | grep intr >> procstat.txt

sleep 1

done

exit

The stat file in /proc provides a number of lines of data, so you filter out every-
thing but the line that contains intr. The result is 30 lines of interrupt counts. The
data in procstat.txt appears as follows:

intr 190574 122 6680 0 1 1 0 5 0 3 0 0 0 5221 0 0 128153 ...

intr 190575 122 6681 0 1 1 0 5 0 3 0 0 0 5221 0 0 128153 ...

intr 190590 122 6681 0 1 1 0 5 0 3 0 0 0 5221 0 0 128168 ...

...

The interrupt data contains interrupt counts for each of the interrupts in the
system. The first count (after the intr header) is the total number of interrupts that
have occurred. Each line thereafter is an individual interrupt. To plot the relation-
ship of one interrupt to the total, you can use the plot command that follows. Note
here that instead of a function, you specify the filename of your data in single
quotes. You then specify the data points of interest (second and eighteenth). You
then customize the plot by specifying that it should be linespoints (lines with points
at the data elements) and a smoothed curve. Note also the definition of the plot
element title with the title option.

gnuplot> plot 'procstat.txt' using 2:18 with linespoints \

smooth Bezier title "Interrupt Relationship"

134 GNU/Linux Application Programming

The result is the plot in Figure 10.3.

Chapter 10 Data Visualization with Gnuplot 135

FIGURE 10.3 Sample plot of interrupt data from a file.

In addition to using the Bezier option with smooth, you can also provide csplines,
acsplines, and sbezier. These options, in addition to Bezier, create a continuous
curve between the provided data points.

PLOTTING FUNCTIONS IN 3D

The splot command is used in Gnuplot to generate three-dimensional plots. Be-
cause a 3D plot is made up of three dimensions (a 2D projection), you provide
three values representing the X, Y, and Z coordinates. Gnuplot supports a variety of
formats of 3D plot data (such as the matrix format), but this section explores the
standard case first.

To plot a function with splot, simply provide the X and Y ranges and then the
Z component. As shown in the following, you constrain the range of the X and Y
components to the range -2 to 2. Finally, the Z component is provided as the func-
tion shown.

gnuplot> splot [x=-2:2] [y=-2:2] sin(x) * cos(y)

Gnuplot then does the rest, resulting in the function plot shown in Figure 10.4

136 GNU/Linux Application Programming

FIGURE 10.4 A simple 3D function plot.

Creating 3D plots from a file is also simple once you know the format of the
data. In the simplest form, you can specify data in terms of the X, Y, and Z compo-
nents, as shown in Listing 10.6. Note also here that some lines contain a comment,
or blank space. Gnuplot automatically ignores these to produce a correct plot (but
it makes the format more readable).

LISTING 10.6 Gnuplot Three-Dimensional Data Format

X Y Z

0 0 1

0 1 2

0 2 4

0 3 8

1 0 1

1 1 3

1 2 9

1 3 27

2 0 1

2 1 4

2 2 16

2 3 64

To plot the data in Listing 10.6 (shown in Figure 10.5), you can use the splot
command shown as follows. Note that you tell Gnuplot about the format of the data
with the using option (which establishes the fields of the data to be used for the plot).

gnuplot> splot 'data.txt' using 1:2:3 with linespoints title "3D plot

data"

Chapter 10 Data Visualization with Gnuplot 137

FIGURE 10.5 A simple 3D plot from data (from Listing 10.6).

Note that the data in Listing 10.6 does not need to be in any particular order.
It can be scattered in an arbitrary order.

Finally, a simplified format for the data in Listing 10.6 is shown in Listing 10.7.
This is the matrix format.

LISTING 10.7 The Matrix Format for 3D Plots (data.txt)

1 2 4 8

1 3 9 27

1 4 16 64

To plot the data in this format, you simply need to tell Gnuplot that the data is
in this special format. This is done as follows for the plot shown in Figure 10.6.

gnuplot> splot 'data.txt' matrix with linespoints

138 GNU/Linux Application Programming

FIGURE 10.6 A simple matrix plot.

3D PLOTS WITH CONTOURS

In addition to 3D plots, you can also apply contours to the plots. A contour plot is
a two-dimensional representation of the Z component of a 3D plot onto a 2D
surface. To enable a contour plot you simply enable it with the command set
contour. You also customize the plot to increase the number of contour lines and
demonstrate the isosamples variable. isosamples allows you to control the density
of the grid lines on the 3D plot.

gnuplot> set contour

gnuplot> set isosamples 40

gnuplot> set cntrparam levels 10

gnuplot> splot [x=-4:4] [y=-4:4] sin(x)*cos(y)

The result is shown in Figure 10.7. This can be helpful to see the contour of the
plot, especially if some of the data is hidden or obfuscated.

Chapter 10 Data Visualization with Gnuplot 139

FIGURE 10.7 Incorporating a contour plot onto a 3D plot.

HIDDEN LINE REMOVAL

Hidden line removal can also be applied to plots to make them appear more
realistic. Removing hidden lines simply means that lines that are covered by other
surfaces are not displayed. Enabling hidden line removal is done with the following
command:

gnuplot> set hidden

gnuplot> splot [x=-4:4] [y=-4:4] sin(x)*cos(y)

When this is executed, and the previous plot shown in Figure 10.7 is re-plotted,
Figure 10.8 results.

140 GNU/Linux Application Programming

FIGURE 10.8 Hidden line removal applied to Figure 10.7.

STORING PLOTS TO A FILE

Because you typically generate plots to communicate information with others, the
ability to generate plots into files is necessary. To store a plot to a file you need to
specify the format of the output file and the name of the output file. The output
format is defined using the terminal variable and the output file defined with the
output variable. The example shown in the following code lines emits a graphics file
named plot.png containing the plot in Portable Network Graphics (PNG) format.

gnuplot> set terminal png

Terminal type set to 'png'

Options are 'nocrop medium'

gnuplot> set output "plot.png"

gnuplot> splot [x=-4:4] [y=-4:4] sin(x)*cos(y)

To reset the terminal back to the previous settings, you can issue the command
pop.

gnuplot> set terminal pop

Gnuplot supports a large number of terminal options, including gif, corel,
jpeg, postscript, svg, and many others.

MULTIPLOTS

Gnuplot also supports the feature of multiplots, which is the capability of incorpo-
rating numerous plots onto a single plot image. You have a number of ways to cre-
ate multiplots, but the easiest is using the layout directive. This enables you to
specify the number of plots on the page (rows and columns) and how the plots
should automatically be placed (rows first or columns first). A title can also be ap-
plied for the entire plot here (using the title option).

After the layout is defined, each of the plots can be specified as shown in List-
ing 10.8. After the unset multiplot command is encountered, the plot is displayed.
The resulting plot is shown in Figure 10.9.

Chapter 10 Data Visualization with Gnuplot 141

FIGURE 10.9 Sample four quadrant multiplot (using Listing 10.8).

LISTING 10.8 Generating a Simple Four Quadrant Multiplot (mplot.p)

set multiplot layout 2,2 rowsfirst title "Example Multiplot"

set title "Top Left"

set hidden

set isosamples 30

set xrange [-3:3]

set yrange [-3:3]

splot sin(x*x + y*y) / (x*x + y*y)

set title "Top Right"

set hidden

set isosamples 30

set xrange [-3:3]

set yrange [-3:3]

set pm3d at st

splot sin(x*x + y*y) / (x*x + y*y)

set title "Bottom Left"

set hidden

set isosamples 30

set xrange [-3:3]

set yrange [-3:3]

set pm3d at b

splot sin(x*x + y*y) / (x*x + y*y)

set title "Bottom Right"

set samples 100

set isosamples 100

set xrange [-3:3]

set yrange [-3:3]

set pm3d map

set palette gray

splot sin(x*x + y*y) / (x*x + y*y)

unset multiplot

142 GNU/Linux Application Programming

TOOLS THAT USE GNUPLOT

Gnuplot is so popular that you can find it used as the means for graph visualization
in a number of applications. For example, you can find Gnuplot in the GNU Oc-
tave package (a Matlab-like program for scientific computing) and also in Maxima
(a computer algebra system written in Common Lisp). It’s also used in a number
of other applications because of its flexibility.

SUMMARY

Gnuplot is one of the most popular open-source data visualization applications and
is also one of the oldest. It supports interactive scripting to plot functions and data
in a number of ways as well as a scripted mode that allows you to write scripts and
generate plots either online or into files of various formats. Gnuplot is actively de-
veloped and a major new revision appeared in 2007.

RESOURCES

Gnuplot Demo Plots (useful site demonstrating how to achieve various plotting
results with Gnuplot) at http://gnuplot.sourceforge.net/demo_4.2.

The Gnuplot Home Page at http://www.gnuplot.info.

Chapter 10 Data Visualization with Gnuplot 143

http://www.gnuplot.info
http://gnuplot.sourceforge.net/demo_4.2

This page intentionally left blank

Chapter 11: File Handling in GNU/Linux

Chapter 12: Programming with Pipes

Chapter 13: Introduction to Sockets Programming

Chapter 14: GNU/Linux Process Model

Chapter 15: POSIX Threads (Pthreads) Programming

Chapter 16: IPC with Message Queues

Chapter 17: Synchronization with Semaphores

Chapter 18: Shared Memory Programming

Chapter 19: Advanced File Handling

Chapter 20: Other Application Development Topics

This part of the book reviews a number of topics important to application
development. This includes using the most important elements of GNU/Linux
including various IPC mechanisms, Sockets, and multiprocess and multithreaded
programming.

CHAPTER 11: FILE HANDLING IN GNU/LINUX

The file handling APIs are important in GNU/Linux because they contain patterns
for many other types of I/O, such as sockets and pipes. This chapter demonstrates
the proper use of the file handling APIs using binary, character, and string inter-
faces. Numerous examples illustrate the APIs in their different modes.

Part

III Application Development
Topics

145

CHAPTER 12: PROGRAMMING WITH PIPES

The pipe model of communication is an older aspect of UNIX, but it is still an im-
portant one considering its wide use in shell programming. The pipe model is first
reviewed, with discussion of anonymous and named pipes. The API to create pipes
is discussed along with examples of using pipes for multiprocess communication.
Shell-level creation and use of pipes completes this chapter.

CHAPTER 13: INTRODUCTION TO SOCKETS PROGRAMMING

Network programming using the standard Sockets API is the focus of this chapter.
Each of the API functions is detailed illustrating their use in both client and server
systems. After a discussion of the Sockets programming paradigm and each of the
API functions, other elements of Sockets programming are discussed including
multilanguage aspects.

CHAPTER 14: GNU/LINUX PROCESS MODEL

The GNU/Linux process model refers to the standard multiprocessing environ-
ment. This chapter discusses the fork function (to create child processes) and the
other process-related API functions (such as wait). The topic of signals is also dis-
cussed including the range of signals and their uses. Finally, the GNU/Linux process
commands (such as ps) are detailed.

CHAPTER 15: POSIX THREADS (PTHREADS) PROGRAMMING

Programming with threads using the pthreads library is the topic of this chapter.
The functions in the pthreads library are discussed including thread creation and
destruction, synchronization (with mutexes and condition variables), communica-
tion, and other thread-related topics. Problems in multithreaded applications are
also discussed, such as re-entrancy.

CHAPTER 16: IPC WITH MESSAGE QUEUES

Message queues are a very important paradigm for communication in multiprocess
applications. The model permits one-to-many and many-to-one communication
and a very simple and intuitive API. This chapter details the message queue APIs for
creating, configuring, and then sending and receiving messages. Advanced topics
such as conditional message receipt are also discussed along with user-layer utilities
for message queue inspection.

146 GNU/Linux Application Programming

CHAPTER 17: SYNCHRONIZATION WITH SEMAPHORES

Semaphores in GNU/Linux and the ability to create critical sections are the topics
of this chapter. After a discussion of the problems that semaphores solve, the API
for semaphores is detailed including creation, acquisition, and release and removal.
The advanced features provided by GNU/Linux such as semaphore arrays are dis-
cussed including user-level commands to inspect and remove semaphores.

CHAPTER 18: SHARED MEMORY PROGRAMMING

One of the most important process communication mechanisms available in
GNU/Linux is shared memory. The shared memory APIs allow segments of mem-
ory to be created and then shared between two or more processes. This chapter
details the shared memory APIs for creating, attaching, detaching, and locking and
unlocking shared memory segments.

CHAPTER 19: ADVANCED FILE HANDLING

In Chapter 11, “File Handling,” the basics of file handling in GNU/Linux were
covered. In this chapter, the more advanced topics are explored, including file
typing, traversing directories and filesystems (using a variety of mechanisms), and
also filesystem event notification. For event notification, the inotify approach is
explored, showing how to monitor many types of filesystem events from a user-
space application.

CHAPTER 20: OTHER APPLICATION DEVELOPMENT TOPICS

This final chapter of Part III explores some of the important application develop-
ment topics that were not covered in the preceding chapters. The topics explored
here include command-line parsing with the getopt and getopt_long APIs, time
conversion functions, sysinfo, memory mapping with mmap, and locking and un-
locking memory pages for performance.

Part III Application Development Topics 147

This page intentionally left blank

149

File Handling in GNU/Linux11

INTRODUCTION

This chapter looks at the file handling APIs of GNU/Linux and explores a number
of applications to demonstrate the proper use of the file handling APIs. It looks at
a number of different file handling functions, including character interfaces, string
interfaces, and ASCII-mode and binary interfaces. The emphasis on this chapter is
to discuss the APIs and then employ them in applications to illustrate their use.

FILE HANDLING WITH GNU/LINUX

File handling within GNU/Linux is accomplished through the standard C library.
You can create and manipulate ASCII text or binary files with the same API. You
can append to files or seek within them.

In This Chapter

Understand File Handling APIs in GNU/Linux
Explore the Character Access Mechanisms
Explore the String Access Mechanisms
Investigate Both Sequential and Nonsequential (Random Access)
Methods
Review Alternate APIs and Methods for File Access

This chapter takes a look at the fopen call (to open or create a file), the fwrite
and fread functions (to write to or read from a file), fseek (to position yourself at
a given position in an existing file), the feof call (to test whether you are at the end
of a file while reading), and some other lower level calls (such as open, write, and
read).

The file system in Linux is based on the original Unix File System, Version 7 Unix,
which was released in 1979 from Bell Labs.

FILE HANDLING API EXPLORATION

Now it’s time to get your hands dirty by working through some examples of
GNU/Linux stream file I/O programming.

CREATING A FILE HANDLE

To write an application that performs file handling, you first need to make visible
the file I/O APIs (function prototypes). This is done by simply including the
stdio.h header file, as follows:

#include <stdio.h>

Not doing so results in compiler errors (undeclared symbols). The next step is
to declare the handle to be used in file I/O operations. This is often called a file
pointer and is a transparent structure that should not be accessed by the developer.

FILE *my_fp;

The next sections build on this to illustrate ASCII and binary applications.

OPENING A FILE

Now it’s time to open a file and illustrate the variety of modes that can be used.
Recall that opening a file can also be the mechanism to create a file. This example
investigates this first.

The fopen function is very simple and provides the following API:

FILE *fopen(const char *filename, const char *mode);

150 GNU/Linux Application Programming

You specify the filename that you want to access (or create) through the first
argument (filename) and then the mode you want to use (mode). The result of the
fopen operation is a FILE pointer, which could be NULL, indicating that the operation
failed.

The key to the fopen call is the mode that is provided. Table 11.1 provides an
initial list of access modes.

Chapter 11 File Handling in GNU/Linux 151

Mode Description

r Open an existing file for read

w Open a file for write (create new if a file doesn't exist)

a Open a file for append (create new if a file doesn’t exist)

rw Open a file for read and write (create new if a file doesn’t exist)

TABLE 11.1 Simple File Access Modes

The mode is simply a string that the fopen call uses to determine how to open
(or create) the file. If you wanted to create a new file, you could simply use the fopen
call as follows:

my_fp = fopen("myfile.txt", "w");

The result would be the creation of a new file (or the destruction of the exist-
ing file) in preparation for write operations. If instead you wanted to read from an
existing file, you’d open it as follows:

my_fp = fopen("myfile.txt", "r");

Note that you are simply using a different mode here. The read mode assumes
that the file exists, and if not, a NULL is returned.

In both cases, it is assumed that the file myfile.txt either exists or is created in
the current working directory. The current directory is the directory from which
you invoked your application.

It’s very important that the results of all file I/O operations be checked for suc-
cess. For the fopen call, you simply test the response for NULL. What happens upon
error is ultimately application dependent (you decide). An example of one mecha-
nism is provided in Listing 11.1.

LISTING 11.1 Catching an Error in an fopen Call (on the CD-ROM at

./source/ch11/test.c)

1: #include <stdio.h>

2: #include <errno.h>

3: #include <string.h>

4:

5: #define MYFILE "missing.txt"

6:

7: main()

8: {

9:

10: FILE *fin;

11:

12: /* Try to open the file for read */

13: fin = fopen(MYFILE, "r");

14:

15: /* Check for failure to open */

16: if (fin == (FILE *)NULL) {

17:

18: /* Emit an error message and exit */

19: printf("%s: %s\n", MYFILE, strerror(errno));

20: exit(-1);

21:

22: }

23:

24: /* All was well, close the file */

25: fclose(fin);

26:

27: }

In Listing 11.1, you use a couple of new calls not yet discussed. After trying to
open the file at line 13, you check to see if the new file handle is NULL (zero). If it is,
then you know that either the file is not present or you are not able to access it (you
don’t have proper access to the file). In this case, you emit an error message that
consists of the file that you attempted to open for read and then the error message
that resulted. You capture the error number (integer) with the errno variable. This
is a special variable that is set by system calls to indicate the last error that occurred.
You pass this value to the strerror function, which turns the integer error number
into a string suitable for printing to standard-out. Executing the sample application
results in the following:

152 GNU/Linux Application Programming

$./app

missing.txt: No such file or directory

$

Now it’s time to move on to writing and then reading data from a file.

The errno variable is set to ENOENT if the file does not exist or EACCES if access to the
file was denied because of lack of permissions.

READING AND WRITING DATA

A number of methods exist for both reading and writing data to a file. More options
can be a blessing, but it’s also important to know where to use which mechanism.
For example, you can read or write on a character basis or on a string basis (for
ASCII text only). You can also use a more general API that permits reading and
writing records, which supports both ASCII and binary representations. This chap-
ter looks at each here, but focuses primarily on the latter mechanism.

The standard I/O library presents a buffered interface. This has two very im-
portant properties. First, system reads and writes are in blocks (typically 8KB in
size). Character I/O is simply written to the FILE buffer, where the buffer is written
to the media automatically when it’s full. Second, fflush is necessary, or non-
buffered I/O must be set if the data is being sent to an interactive device such as the
console terminal.

Character Interfaces

The character interfaces are demonstrated in Listings 11.2 and 11.3. Listing 11.2
illustrates character output using fputc and Listing 11.3 illustrates character input
using fgetc. These functions have the following prototypes:

int fputc(int c, FILE *stream);

int fgetc(FILE *stream);

This example generates an output file using fputc and then uses this file as the
input to fgetc. In Listing 11.2, you open the output file at line 11 and then work
your way through your sample string. The simple loop walks through the entire
string until a NULL is detected, at which point you exit and close the file (line 21). At
line 16, you use fputc to emit the character (as an int, per the fputc prototype) as
well as specify your output stream (fout).

Chapter 11 File Handling in GNU/Linux 153

LISTING 11.2 The fputc Character Interface Example (on the CD-ROM at

./source/ch11/charout.c)

1: #include <stdio.h>

2:

3: int main()

4: {

5: int i;

6: FILE *fout;

7: const char string[]={"This\r\nis a test\r\nfile.\r\n\0"};

8:

9: fout = fopen("inpfile.txt", "w");

10:

11: if (fout == (FILE *)NULL) exit(-1);

12:

13: i = 0;

14: while (string[i] != NULL) {

15:

16: fputc((int)string[i], fout);

17: i++;

18:

19: }

20:

21: fclose(fout);

22:

23: return 0;

24: }

The function to read this file using the character interface is shown in Listing
11.3. This function is very similar to the file creation example. You open the file for
read at line 8 and follow with a test at line 10. You then enter a loop to get the char-
acters from the file (lines 12–22). The loop simply reads characters from the file
using fgetc and stops when the special EOF symbol is encountered. This is the
indication that you’ve reached the end of the file. For all characters that are not EOF
(line 16), you emit the character to standard-out using the printf function. Upon
reaching the end of the file, you close it using fclose at line 24.

LISTING 11.3 The fgetc Character Interface Example (on the CD-ROM at

./source/ch11/charin.c)

1: #include <stdio.h>

2:

3: int main()

154 GNU/Linux Application Programming

4: {

5: int c;

6: FILE *fin;

7:

8: fin = fopen("inpfile.txt", "r");

9:

10: if (fin == (FILE *)0) exit(-1);

11:

12: do {

13:

14: c = fgetc(fin);

15:

16: if (c != EOF) {

17:

18: printf("%c", (char)c);

19:

20: }

21:

22: } while (c != EOF);

23:

24: fclose(fin);

25:

26: return 0;

27: }

Executing the applications is illustrated as follows:

$./charout

$./charin

This

is a test

file.

$

The character interfaces are obviously simple, but they are also inefficient and
should be used only if a string-based method cannot be used. We’ll look at this
interface next.

String Interfaces

This section takes a look at four library functions that provide the means to read
and write strings. The first two (fputs and fgets) are simple string interfaces, and
the second two (fprintf and fscanf) are more complex and provide additional
capabilities.

Chapter 11 File Handling in GNU/Linux 155

The fputs and fgets interfaces mirror the previously discussed fputc and fgetc

functions. They provide the means to write and read variable-length strings to files
in a very simple way. Prototypes for the fputs and fgets are defined as:

int fputs(int c, FILE *stream);

char *fgets(char *s, int size, FILE *stream);

First take a look at a sample application that accepts strings from the user (via
standard-input) and then writes them to a file (see Listing 11.4). This sample then
halts the input process after a blank line has been received.

LISTING 11.4 Writing Variable Length Strings to a File (on the CD-ROM at

./source/ch11/strout.c)

1: #include <stdio.h>

2:

3: #define LEN 80

4:

5: int main()

6: {

7: char line[LEN+1];

8: FILE *fout, *fin;

9:

10: fout = fopen("testfile.txt", "w");

11: if (fout == (FILE *)0) exit(-1);

12:

13: fin = fdopen(0, "r");

14:

15: while ((fgets(line, LEN, fin)) != NULL) {

16:

17: fputs(line, fout);

18:

19: }

20:

21: fclose(fout);

22: fclose(fin);

23:

24: return 0;

25: }

The application shown in Listing 11.4 gets a little trickier, so the next paragraphs
walk through this one line by line to cover all of the points. You declare the line string
(used to read user input) at line 7, called oddly enough, line. Next, you declare two
FILE pointers, one for input (called fin) and one for output (called fout).

156 GNU/Linux Application Programming

At line 10, you open the output file using fopen to a new file called testfile.txt.
You check the error status of this line at line 11, exiting if a failure occurs. At line 13,
you use a special function fdopen to associate an existing file descriptor with a
stream. In this case, you associate in the standard-input descriptor with a new stream
called fin (returned by fdopen). Whatever you now type in (standard-in) is routed
to this file stream. Next, you enter a loop that attempts to read from the fin stream
(standard-in) and write this out to the output stream (fout). At line 15, you read
using fgets and check the return with NULL. The NULL appears when you close the de-
scriptor (which is achieved through pressing Ctrl+D at the keyboard). The line read
is then emitted to the output stream using fputs. Finally, when the input stream has
closed, you exit the loop and close the two streams at lines 21 and 22.

Now take a look at another example of the read side, fgets. In this example
(Listing 11.5), you read the contents of the test file using fgets and then printf it
to standard-out.

LISTING 11.5 Reading Variable Length Strings from a File (on the CD-ROM at

./source/ch11/strin.c)

1: #include <stdio.h>

2:

3: #define LEN 80

4:

5: int main()

6: {

7: char line[LEN+1];

8: FILE *fin;

9:

10: fin = fopen("testfile.txt", "r");

11: if (fin == (FILE *)0) exit(-1);

12:

13: while ((fgets(line, LEN, fin)) != NULL) {

14:

15: printf("%s", line);

16:

17: }

18:

19: fclose(fin);

20:

21: return 0;

22: }

Chapter 11 File Handling in GNU/Linux 157

In this example, you open the input file and create a new input stream handle
called fin. You use this at line 13 to read variable-length strings from the file, and
when one is read, you emit it to standard-out via printf at line 15.

This demonstrates writing and reading strings to and from a file, but what if
your data is more structured than simple strings? If your strings are actually made
up of lower level structures (such as integers, floating-point values, or other types),
you can use another method to more easily deal with them. This is the next topic of
discussion.

Consider the problem of reading and writing data that takes a regular form but
consists of various data types (such as C structures). Say that you want to store an
integer item (an id), two floating-point values (2D coordinates), and a string (an
object name). Look first at the application that creates this file (see Listing 11.6).
Note that in this example you ultimately deal with strings, but using the API func-
tions, the ability to translate to the native data types is provided.

LISTING 11.6 Writing Structured Data in ASCII Format (on the CD-ROM at

./source/ch11/strucout.c)

1: #include <stdio.h>

2:

3: #define MAX_LINE 40

4:

5: #define FILENAME "myfile.txt"

6:

7: typedef struct {

8: int id;

9: float x_coord;

10: float y_coord;

11: char name[MAX_LINE+1];

12: } MY_TYPE_T;

13:

14: #define MAX_OBJECTS 3

15:

16: /* Initialize an array of three objects */

17: MY_TYPE_T objects[MAX_OBJECTS]={

18: { 0, 1.5, 8.4, "First-object" },

19: { 1, 9.2, 7.4, "Second-object" },

20: { 2, 4.1, 5.6, "Final-object" }

21: };

22:

23: int main()

24: {

25: int i;

158 GNU/Linux Application Programming

26: FILE *fout;

27:

28: /* Open the output file */

29: fout = fopen(FILENAME, "w");

30: if (fout == (FILE *)0) exit(-1);

31:

32: /* Emit each of the objects, one per line */

33: for (i = 0 ; i < MAX_OBJECTS ; i++) {

34:

35: fprintf(fout, "%d %f %f %s\n",

36: objects[i].id,

37: objects[i].x_coord, objects[i].y_coord,

38: objects[i].name);

39:

40: }

41:

42: fclose(fout);

43:

44: return 0;

45: }

Listing 11.6 illustrates another string method for creating data files. You create
a test structure (lines 7–12) to represent the data that you’re going to write and then
read. You initialize this structure at lines 17–21 with three rows of data. Now you
can turn to the application. This one turns out to be very simple. At lines 29–30,
you open and then check the fout file handle and then perform a for loop to emit
our data to the file. You use the fprintf API function to emit this data. The format
of the fprintf call is to first specify the output file pointer, followed by a format
string, and then zero or more variables to be emitted. The format string mirrors
your data structure. You’re emitting an int (%d), two floating-point values (%f), and
then finally a string (%s). This converts all data to string format and writes it to the
output file. Finally, you close the output file at line 42 with the fclose call.

You could have achieved this with a sprintf call (to create your output string) and
then written this out as follows:

char line[81];

...

snprintf(line, 80, "%d %f %f %s\n",

objects[i].id

objects[i].x_coord, objects[i].y_coord,

objects[i].name);

fputs(line, fout);

Chapter 11 File Handling in GNU/Linux 159

The disadvantage is that local space must be declared for the string being emitted.
This would not be required with a call to fprintf directly (the C library uses its
own space internally).

The prototypes for both the fprintf and sprintf are shown here:

int fprintf(FILE* stream, const char *format, ...);

int sprintf(char *str, const char *format, ...);

From the file created in Listing 11.6, you read this file in Listing 11.7. This
function utilizes the fscanf function to both read and interpret the data. After
opening the input file (lines 21–22), you loop and read the data while the end of file
has not been found. You detect the end of file marker using the feof function at line
25. The fscanf function utilizes the input stream (fin) and the format to be used to
interpret the data. This string is identical to that used to write the data out (see List-
ing 11.6, line 35).

After a line of data has been read, it’s immediately printed to standard-out
using the printf function at lines 32–35. Finally, the input file is closed using the
fclose call at line 39.

LISTING 11.7 Reading Structured Data in ASCII Format (on the CD-ROM at

./source/ch11/strucin.c)

1: #include <stdio.h>

2:

3: #define MAX_LINE 40

4:

5: #define FILENAME "myfile.txt"

6:

7: typedef struct {

8: int id;

9: float x_coord;

10: float y_coord;

11: char name[MAX_LINE+1];

12: } MY_TYPE_T;

13:

14: int main()

15: {

16: int i;

17: FILE *fin;

18: MY_TYPE_T object;

19:

20: /* Open the input file */

160 GNU/Linux Application Programming

21: fin = fopen(FILENAME, "r");

22: if (fin == (FILE *)0) exit(-1);

23:

24: /* Read the records from the file and emit */

25: while (!feof(fin)) {

26:

27: fscanf(fin, "%d %f %f %s\n",

28: &object.id,

29: &object.x_coord, &object.y_coord,

30: object.name);

31:

32: printf("%d %f %f %s\n",

33: object.id,

34: object.x_coord, object.y_coord,

35: object.name);

36:

37: }

38:

39: fclose(fin);

40:

41: return 0;

42: }

You could have achieved this functionality with an sscanf call (to parse our input
string).

char line[81];

...

fgets(fin, 80, line);

sscanf(line, 80, "%d %f %f %s\n",

objects[i].id

objects[i].x_coord, objects[i].y_coord,

objects[i].name);

The disadvantage is that local space must be declared for the parse to be performed
on the input string. This would not be required with a call to fscanf directly.

The fscanf and sscanf function prototypes are both shown here:

int fscanf(FILE *stream, const char *format, ...);

int sscanf(const char *str, const char *format, ...);

Chapter 11 File Handling in GNU/Linux 161

All of the methods discussed thus far require that you are dealing with ASCII
text data. In the next section, you’ll see API functions that permit dealing with
binary data.

For survivability, it’s important to not leave files open over long durations of time.
When I/O is complete, the file should be closed with fclose (or at a minimum,
flushed with fflush). This has the effect of writing any buffered data to the actual
file.

READING AND WRITING BINARY DATA

This section looks at a set of library functions that provides the ability to deal with
both binary and ASCII text data. The fwrite and fread functions provide the abil-
ity to deal not only with the I/O of objects, but also with arrays of objects. The pro-
totypes of the fwrite and fread functions are provided here:

size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);

size_t fwrite(const void *ptr, size_t size,

size_t nmemb, FILE *stream);

Now take a look at a couple of simple examples of fwrite and fread to explore
their use (see Listing 11.8). In this first example, you emit the MY_TYPE_T structure
first encountered in Listing 11.6.

LISTING 11.8 Using fwrite to Emit Structured Data (on the CD-ROM at

./source/ch11/binout.c)

1: #include <stdio.h>

2:

3: #define MAX_LINE 40

4:

5: #define FILENAME "myfile.bin"

6:

7: typedef struct {

8: int id;

9: float x_coord;

10: float y_coord;

11: char name[MAX_LINE+1];

12: } MY_TYPE_T;

13:

14: #define MAX_OBJECTS 3

15:

16: MY_TYPE_T objects[MAX_OBJECTS]={

162 GNU/Linux Application Programming

17: { 0, 1.5, 8.4, "First-object" },

18: { 1, 9.2, 7.4, "Second-object" },

19: { 2, 4.1, 5.6, "Final-object" }

20: };

21:

22: int main()

23: {

24: int i;

25: FILE *fout;

26:

27: /* Open the output file */

28: fout = fopen(FILENAME, "w");

29: if (fout == (FILE *)0) exit(-1);

30:

31: /* Write out the entire object’s structure */

32: fwrite((void *)objects, sizeof(MY_TYPE_T), 3, fout);

33:

34: fclose(fout);

35:

36: return 0;

37: }

What’s interesting to note about Listing 11.8 is that a single fwrite emits the
entire structure. You specify the object that you’re emitting (variable object, passed
as a void pointer) and then the size of a row in this structure (the type MY_TYPE_T)
using the sizeof operator. You then specify the number of elements in the array of
types (3) and finally the output stream to which you want this object to be written.

Take a look now at the invocation of this application (called binout) and a
method for inspecting the contents of the binary file (see Listing 11.9). After exe-
cuting the binout executable, the file myfile.bin is generated. Attempting to use the
more utility to inspect the file results in a blank line. This is because the first char-
acter in the file is a NULL character, which is interpreted by more as the end. Next,
you use the od utility (octal dump) to emit the file without interpreting it. You spec-
ify -x as the option to emit the file in hexadecimal format. (For navigation pur-
poses, the integer id field has been underlined.)

LISTING 11.9 Inspecting the Contents of the Generated Binary File

$./binout

$ more myfile.bin

$ od -x myfile.bin

0000000 0000 0000 0000 3fc0 6666 4106 6946 7372

0000020 2d74 626f 656a 7463 0000 0000 0000 0000

Chapter 11 File Handling in GNU/Linux 163

0000040 0000 0000 0000 0000 0000 0000 0000 0000

0000060 0000 0000 0000 0000 0001 0000 3333 4113

0000100 cccd 40ec 6553 6f63 646e 6f2d 6a62 6365

0000120 0074 0000 0000 0000 0000 0000 0000 0000

0000140 0000 0000 0000 0000 0000 0000 0000 0000

0000160 0002 0000 3333 4083 3333 40b3 6946 616e

0000200 2d6c 626f 656a 7463 0000 0000 0000 0000

0000220 0000 0000 0000 0000 0000 0000 0000 0000

0000240 0000 0000 0000 0000

0000250

$

One important item to note about reading and writing binary data is the issue of
portability and endianness. Consider that you create your binary data on a Pen-
tium system, but the binary file is moved to a PowerPC system to read. The data
will be in the incorrect byte order and therefore essentially corrupt. The Pentium
uses little endian byte order (least significant byte first in memory), whereas the
PowerPC uses big endian (most significant byte first in memory). For portability,
endianness should always be considered when dealing with binary data. Also con-
sider the use of host and network byte swapping functions, as discussed in Chapter
12, “Programming with Pipes.”

Now it’s time to take a look at reading this file using fread, but rather than
reading it sequentially, read it in a nonsequential way (otherwise known as random
access).This example reads the records of the file in reverse order. This requires the
use of two new functions that permit you to seek into a file (fseek) and also rewind
back to the start (rewind):

void rewind(FILE *stream);

int fseek(FILE *stream, long offset, int whence);

The rewind function simply resets the file read pointer back to the start of the
file, whereas the fseek function moves you to a new position given an index. The
whence argument defines whether the position is relative to the start of the file
(SEEK_SET), the current position (SEEK_CUR), or the end of the file (SEEK_END). See
Table 11.2. The lseek function operates like fseek, but instead on a file descriptor.

int lseek(FILE *stream, long offset, int whence);

In this example (Listing 11.10), you open the file using fopen, which automat-
ically sets the read index to the start of the file. Because you want to read the last
record first, you seek into the file using fseek (line 26). The index that you specify

164 GNU/Linux Application Programming

is twice the size of the record size (MY_TYPE_T). This puts you at the first byte of the
third record, which is then read with the fread function at line 28. The read index
is now at the end of the file, so you reset the read position to the top of the file using
the rewind function.

You repeat this process, setting the file read position to the second element at
line 38, and then read again with fread. The final step is reading the first element in
the file. This requires no fseek because after the rewind (at line 48), you are at the
top of the file. You can then fread the first record at line 50.

LISTING 11.10 Using fread and fseek/rewind to Read Structured Data (on the

CD-ROM at ./source/ch11/nonseq.c)

1: #include <stdio.h>

2:

3: #define MAX_LINE 40

4:

5: #define FILENAME "myfile.txt"

6:

7: typedef struct {

8: int id;

9: float x_coord;

10: float y_coord;

11: char name[MAX_LINE+1];

12: } MY_TYPE_T;

13:

14: MY_TYPE_T object;

15:

16: int main()

17: {

18: int i;

19: FILE *fin;

Chapter 11 File Handling in GNU/Linux 165

Name Description

SEEK_SET Moves the file position to the position defined by offset.

SEEK_CUR Moves the file position the number of bytes defined by offset

from the current file position.

SEEK_END Moves the file position to the number of bytes defined by offset

from the end of the file.

TABLE 11.2 Function fseek/lseek whence Arguments

20:

21: /* Open the input file */

22: fin = fopen(FILENAME, "r");

23: if (fin == (FILE *)0) exit(-1);

24:

25: /* Get the last entry */

26: fseek(fin, (2 * sizeof(MY_TYPE_T)), SEEK_SET);

27:

28: fread(&object, sizeof(MY_TYPE_T), 1, fin);

29:

30: printf("%d %f %f %s\n",

31: object.id,

32: object.x_coord, object.y_coord,

33: object.name);

34:

35: /* Get the second to last entry */

36: rewind(fin);

37:

38: fseek(fin, (1 * sizeof(MY_TYPE_T)), SEEK_SET);

39:

40: fread(&object, sizeof(MY_TYPE_T), 1, fin);

41:

42: printf("%d %f %f %s\n",

43: object.id,

44: object.x_coord, object.y_coord,

45: object.name);

46:

47: /* Get the first entry */

48: rewind(fin);

49:

50: fread(&object, sizeof(MY_TYPE_T), 1, fin);

51:

52: printf("%d %f %f %s\n",

53: object.id,

54: object.x_coord, object.y_coord,

55: object.name);

56:

57: fclose(fin);

58:

59: return 0;

60: }

The process of reading the third record is illustrated graphically in Figure 11.1.
It illustrates fopen, fseek, fread, and finally rewind.

166 GNU/Linux Application Programming

The function ftell provides the means to identify the current position. This
function returns the current position as a long type and can be used to pass as the
offset to fseek (with SEEK_SET) to reset to that position. The ftell prototype is pro-
vided here:

long ftell(FILE *stream);

An alternate API exists to ftell and fseek. The fgetpos and fsetpos provide
the same functionality, but in a different form. Rather than an absolute position, an
opaque type is used to represent the position (returned by fgetpos, passed into
fsetpos). The prototypes for these functions are provided here:

int fgetpos(FILE *stream, fpos_t *pos);

int fsetpos(FILE *stream, fops_t *pos);

A sample code snippet of these functions is shown here:

fpos_t file_pos;

...

/* Get desired position */

fgetpos(fin, &file_pos);

...

rewind(fin);

/* Return to desired position */

fsetpos(fin, &file_pos);

Chapter 11 File Handling in GNU/Linux 167

FIGURE 11.1 Nonsequential Reads in a Binary File

It’s recommended to use the fgetpos and fsetpos APIs over the ftell and
fseek methods. Because the ftell and fseek methods don’t abstract the details of
the mechanism, the fgetpos and fsetpos functions are less likely to be deprecated
in the future.

BASE API

The open, read, and write functions can also be used for file I/O. The API differs
somewhat, but this section also looks at how to switch between file and stream
mode with fdopen.

These functions are referred to as the base API because they are the platform from
which the standard I/O library is built.

The open function allows you to open or create a new file. Two variations are
provided, with their APIs listed here:

int open(const char *pathname, int flags);

int open(const char *pathname, int flags, mode_t mode);

The pathname argument defines the file (with path) to be opened or created
(such as temp.txt or /tmp/myfile.txt). The flags argument is one of O_RDONLY,
O_WRONLY, or O_RDWR. One or more of the flags shown in Table 11.3 might also be
OR’d (bitwise OR operation) in, depending on the needs of the open call.

168 GNU/Linux Application Programming

Flag Description

O_CREAT Create the file if it doesn’t exist.

O_EXCL If used with O_CREAT, will return an error if the file already exists;

otherwise the file is created.

O_NOCTTY If the file descriptor refers to a TTY device, this process will not

become the controlling terminal.

O_TRUNC The file will be truncated (if it exists) and the length reset to zero if

write privileges are permitted.

O_APPEND The file pointer is repositioned to the end of the file prior to each

write.

→

TABLE 11.3 Additional Flags for the open Function

The third argument for the second open instance is a mode. This mode defines
the permissions to be used when the file is created (used only with the flag O_CREAT).
Table 11.4 lists the possible symbolic constants that can be OR’d together.

Chapter 11 File Handling in GNU/Linux 169

Flag Description

O_NONBLOCK Opens the file in nonblocking mode. Operations on the file will not

block (such as read, write, and so on).

O_SYNC write functions are blocked until the data is written to the physical

device.

O_NOFOLLOW Fail following symbolic links.

O_DIRECTORY Fail the open if the file being opened is not a directory.

O_DIRECT Attempts to minimize cache effects by doing I/O directly to/from

user space buffers (synchronously as with O_SYNC).

O_ASYNC Requests a signal when data is available on input or output of this

file descriptor.

O_LARGEFILE Request a large filesystem file to be opened on a 32-bit system

whose size cannot be represented in 32 bits.

Constant Use

S_IRWXU User has read/write/execute permissions.

S_IREAD User has read permission.

S_IWRITE User has write permission.

S_IEXEC User has execute permission.

S_IRWXG Group has read/write/execute permissions.

S_IRGRP Group has read permission.

S_IWGRP Group has write permission.

S_IXGRP Group has execute permission.

S_IRWXO Others have read/write/execute permissions.

S_IROTH Others have read permission.

S_IWOTH Others have write permission.

S_IXOTH Others have execute permission.

TABLE 11.4 Mode Arguments for the open System Call

To open a new file in the tmp directory, you could do the following:

int fd;

fd = open("/tmp/newfile.txt", O_CREAT | O_WRONLY);

To instead open an existing file for read, you could open as follows:

int fd;

fd = open("/tmp/newfile.txt", O_RDONLY);

Reading and writing to these files is done very simply with the read and write

API functions:

ssize_t read(int fd, void *buf, size_t count);

ssize_t write(int fd, const void *buf, size_t count);

These are used simply with a buffer and a size to represent the number of bytes
to read or write, such as:

unsigned char buffer[MAX_BUF+1];

int fd, ret;

...

ret = read(fd, (void *)buffer, MAX_BUF);

...

ret = write(fd, (void *)buffer, MAX_BUF);

You’ll see more examples of these in Chapter 12 “Programming with Pipes”
and Chapter 13 “Introduction to Sockets Programming.” What’s interesting here is
that the same set of API functions to read and write data to a file can also be used
for pipes and sockets. This represents a unique aspect of the UNIX-like operating
systems, where many types of devices are represented as files. The result is that a
common API can be used over a broad range of devices.

File and string handling are some of the strengths of the object-oriented scripting
languages. This book explores two such languages (Ruby and Python) in Chapter
26, “Scripting with Ruby,” and Chapter 27, “Scripting with Python.”

Finally, a file descriptor can be attached to a stream by using the fdopen system
call. This call has the following prototype:

FILE *fdopen(int filedes, const char *mode);

170 GNU/Linux Application Programming

Therefore, if you’ve opened a device using the open function call, you can asso-
ciate a stream with it using fdopen and then use stream system calls on the device
(such as fscanf or fprintf). Consider the following example:

FILE *fp;

int fd;

fd = open("/tmp/myfile.txt", O_RDWR);

fp = fdopen(fd, "rw");

After this is done, you can use read/write with the fd descriptor or
fscanf/fprintf with the fp descriptor.

One other useful API to consider is the pread/pwrite API. These functions re-
quire an offset into the file to read or write, but they do not affect the file pointer.
These functions have the following prototype:

ssize_t pread(int filedes, void *buf, size_t nbyte, off_t offset);

ssize_t pwrite(int filedes, void *buf, size_t nbyte, off_t offset);

These functions require that the target be seekable (in other words, regular
files) and used regularly for record I/O in databases.

SUMMARY

In this chapter, the file handling APIs were discussed with examples provided for
each. The character interfaces were first explored (fputc, fgetc), followed by the
string interfaces (fputs, fgets). Some of the more structured methods for generat-
ing and parsing files were then investigated (such as the fprintf and fscanf func-
tions), in addition to some of the other possibilities (sprintf and sscanf). Finally,
the topics of binary files and random (nonsequential) access were discussed, in-
cluding methods for saving and restoring file positions.

FILE HANDLING APIS

FILE *fopen(const char *filename, const char *mode);

FILE *fdopen(int filedes, const char *type);

int fputc(int c, FILE *stream);

int fgetc(FILE *stream);

int fputs(int c, FILE *stream);

char *fgets(char *s, int size, FILE *stream);

int fprintf(FILE* stream, const char *format, ...);

Chapter 11 File Handling in GNU/Linux 171

int sprintf(char *str, const char *format, ...);

int fscanf(FILE *stream, const char *format, ...);

int sscanf(const char *str, const char *format, ...);

void rewind(FILE *stream);

int fseek(FILE *stream, long offset, int whence);

int lseek(in filedes, long offset, int whence);

long ftell(FILE *stream);

int fgetpos(FILE *stream, fpos_t *pos);

int fsetpos(FILE *stream, fops_t *pos);

int fclose(FILE *stream);

int open(const char *pathname, int flags);

int open(const char *pathname, int flags, mode_t mode);

ssize_t read(int fd, void *buf, size_t count);

ssize_t write(int fd, const void *buf, size_t count);

ssize_t pread(int filedes, void *buf, size_t count, off_t offset);

ssize_t pwrite(int filedes, const void *buf,

size_t count, off_t offset);

172 GNU/Linux Application Programming

173

Programming with Pipes12

INTRODUCTION

This chapter explores the GNU/Linux pipes. The pipe model is an older but still
useful mechanism for interprocess communication. It looks at what are known as
half-duplex pipes and also named pipes. Each offers a first-in-first-out (FIFO)
queuing model to permit communication between processes.

THE PIPE MODEL

One way to visualize a pipe is a one-way connector between two entities. For ex-
ample, consider the following GNU/Linux command:

ls -1 | wc -l

In This Chapter

Review of the Pipe Model of IPC
Differences Between Anonymous Pipes and Named Pipes
Creating Anonymous and Named Pipes
Communicating Through Pipes
Command-Line Creation and Use of Pipes

This command creates two processes, one for the ls -1 and another for wc -l.
It then connects the two together by setting the standard-input of the second
process to the standard-output of the first process (see Figure 12.1). This has the ef-
fect of counting the number of files in the current subdirectory.

174 GNU/Linux Application Programming

FIGURE 12.1 Simple pipe example.

This command, as illustrated in Figure 12.1, sets up a pipeline between two
GNU/Linux commands. The ls command is performed, which generates output
that is used as the input to the second command, wc (word count). This is a half-
duplex pipe as communication occurs in one direction. The linkage between the
two commands is facilitated by the GNU/Linux kernel, which takes care of con-
necting the two together. You can achieve this in applications as well, which this
chapter demonstrates shortly.

PIPES AND NAMED PIPES

A pipe, or half-duplex pipe, provides the means for a process to communicate with
one of its ancestral subprocesses (of the anonymous variety). This is because no way
exists in the operating system to locate the pipe (it’s anonymous). Its most common
use is to create a pipe at a parent process and then pass the pipe to the child so that
they can communicate. Note that if full-duplex communication is required, the
Sockets API should be considered instead.

Another type of pipe is called a named pipe. A named pipe works like a regular
pipe but exists in the filesystem so that any process can find it. This means that
processes not of the same ancestry are able to communicate with one another.

The following sections look at both half-duplex or anonymous pipes and
named pipes. The chapter first takes a quick tour of pipes and then follows up with
a more detailed look at the pipe API and GNU/Linux system-level commands that
support pipes programming.

WHIRLWIND TOUR

This section begins with a simple example of the pipe programming model. In this
example, you create a pipe within a process, write a message to it, read the message
back from the pipe, and then emit it (see Listing 12.1).

LISTING 12.1 Simple Pipe Example (on the CD-ROM at ./source/ch12/pipe1.c)

1: #include <unistd.h>

2: #include <stdio.h>

3: #include <string.h>

4:

5: #define MAX_LINE 80

6: #define PIPE_STDIN 0

7: #define PIPE_STDOUT 1

8:

9: int main()

10: {

11: const char *string={"A sample message."};

12: int ret, myPipe[2];

13: char buffer[MAX_LINE+1];

14:

15: /* Create the pipe */

16: ret = pipe(myPipe);

17:

18: if (ret == 0) {

19:

20: /* Write the message into the pipe */

21: write(myPipe[PIPE_STDOUT], string, strlen(string));

22:

23: /* Read the message from the pipe */

24: ret = read(myPipe[PIPE_STDIN], buffer, MAX_LINE);

25:

26: /* Null terminate the string */

27: buffer[ret] = 0;

28:

29: printf("%s\n", buffer);

30:

31: }

32:

33: return 0;

34: }

Chapter 12 Programming with Pipes 175

In Listing 12.1, you create your pipe using the pipe call at line 16. You pass in
a two-element int array that represents your pipe. The pipe is defined as a pair of
separate file descriptors, an input and an output. You can write to one end of the
pipe and read from the other. The pipe API function returns zero on success. Upon
return, the myPipe array contains two new file descriptors representing the input to
the pipe (myPipe[1]) and the output from the pipe (myPipe[0]).

At line 21, you write your message to the pipe using the write function. You
specify the stdout descriptor (from the perspective of the application, not the
pipe). The pipe now contains the message and can be read at line 24 using the read
function. Here again, from the perspective of the application, you use the stdin de-
scriptor to read from the pipe. The read function stores what is read from the pipe
in the buffer variable (argument three of the read function). You terminate it (add
a NULL to the end) so that you can properly emit it at line 29 using printf. The pipe
in this example is illustrated in Figure 12.2.

176 GNU/Linux Application Programming

FIGURE 12.2 Half-duplex pipe example from Listing 12.1.

While this example was entertaining, communicating with yourself could be
performed using any number of mechanisms. The detailed review looks at more
complicated examples that provide communication between processes (both re-
lated and unrelated).

DETAILED REVIEW

While the pipe function is the majority of the pipe model, you need to understand
a few other functions in their applicability toward pipe-based programming. Table
12.1 lists the functions that are detailed in this chapter.

This chapter also looks at some of the other functions that are applicable to
pipe communication, specifically those that can be used to communicate using a
pipe.

Remember that a pipe is nothing more than a pair of file descriptors, and therefore
any functions that operate on file descriptors can be used. This includes but is not
restricted to select, read, write, fcntl, freopen, and such.

pipe

The pipe API function creates a new pipe, represented by an array of two file de-
scriptors. The pipe function has the following prototype:

#include <unistd.h>

int pipe(int fds[2]);

The pipe function returns 0 on success, or -1 on failure, with errno set
appropriately. On successful return, the fds array (which was passed by reference)
is filled with two active file descriptors. The first element in the array is a file
descriptor that can be read by the application, and the second element is a file de-
scriptor that can be written to.

Now take a look at a slightly more complicated example of a pipe in a multi-
process application. In this application (see Listing 12.2), you create a pipe (line 14)
and then fork your process into a parent and a child process (line 16). At the child,
you attempt to read from the input file descriptor of your pipe (line 18), which sus-
pends the process until something is available to read. When something is read, you
terminate the string with a NULL and print out what was read. The parent simply
writes a test string through the pipe using the write file descriptor (array offset 1 of
the pipe structure) and then waits for the child to exit using the wait function.

Note that nothing is spectacular about this application except for the fact that
the child process inherited the file descriptors that were created by the parent (using
the pipe function) and then used them to communicate with one another. Recall
that after the fork function is complete, the processes are independent (except
that the child inherited features of the parent, such as the pipe file descriptors).
Memory is separate, so the pipe method provides you with an interesting model to
communicate between processes.

Chapter 12 Programming with Pipes 177

API Function Use

pipe Create a new anonymous pipe.

dup Create a copy of a file descriptor.

mkfifo Create a named pipe (fifo).

TABLE 12.1 API Functions for Pipe Programming

LISTING 12.2 Illustrating the Pipe Model with Two Processes (on the CD-ROM at

./source/ch12/fpipe.c)

1: #include <stdio.h>

2: #include <unistd.h>

3: #include <string.h>

4: #include <wait.h>

5:

6: #define MAX_LINE 80

7:

8: int main()

9: {

10: int thePipe[2], ret;

11: char buf[MAX_LINE+1];

12: const char *testbuf={"a test string."};

13:

14: if (pipe(thePipe) == 0) {

15:

16: if (fork() == 0) {

17:

18: ret = read(thePipe[0], buf, MAX_LINE);

19: buf[ret] = 0;

20: printf("Child read %s\n", buf);

21:

22: } else {

23:

24: ret = write(thePipe[1], testbuf, strlen(testbuf));

25: ret = wait(NULL);

26:

27: }

28:

29: }

30:

31: return 0;

32: }

Note that so far these simple programs, have not discussed closing the pipe, be-
cause after the process finishes, the resources associated with the pipe are automat-
ically freed. It’s good programming practice, nonetheless, to close the descriptors of
the pipe using the close call, as follows:

ret = pipe(myPipe);
...
close(myPipe[0]);
close(myPipe[1]);

178 GNU/Linux Application Programming

If the write end of the pipe is closed and a process tries to read from the pipe,
a zero is returned. This indicates that the pipe is no longer used and should be
closed. If the read end of the pipe is closed and a process tries to write to it, a signal
is generated. This signal (as discussed in Chapter 13, “Introduction to Sockets Pro-
gramming”) is called SIGPIPE. Applications that write to pipes commonly include
a signal handler to catch just this situation.

dup AND dup2

The dup and dup2 calls are very useful functions that provide the ability to duplicate
a file descriptor. They’re most often used to redirect the stdin, stdout, or stderr of
a process. The function prototypes for dup and dup2 are as follows:

#include <unistd.h>

int dup(int oldfd);

int dup2(int oldfd, int targetfd);

The dup function allows you to duplicate a descriptor. You pass in an existing
descriptor, and it returns a new descriptor that is identical to the first. This means
that both descriptors share the same internal structure. For example, if you perform
an lseek (seek into the file) for one file descriptor, the file position is the same in the
second. Use of the dup function is illustrated in the following code snippet:

int fd1, fd2;

...

fd2 = dup(fd1);

Creating a descriptor prior to the fork call has the same effect as calling dup.
The child process receives a duplicated descriptor, just like it would after calling
dup.

The dup2 function is similar to dup but allows the caller to specify an active de-
scriptor and the id of a target descriptor. Upon successful return of dup2, the new
target descriptor is a duplicate of the first (targetfd = oldfd). Now take a look at a
short code snippet that illustrates dup2:

int oldfd;

oldfd = open("app_log", (O_RDWR | O_CREATE), 0644);

dup2(oldfd, 1);

close(oldfd);

In this example, you open a new file called app_log and receive a file descriptor
called fd1. You call dup2 with oldfd and 1, which has the effect of replacing the file

Chapter 12 Programming with Pipes 179

descriptor identified as 1 (stdout) with oldfd (the newly opened file). Anything
written to stdout now goes instead to the file named app_log. Note that you close
oldfd directly after duplicating it. This doesn’t close your newly opened file, be-
cause file descriptor 1 now references it.

Now take a look at a more complex example. Recall that earlier in the chapter
you investigated pipelining the output of ls -1 to the input of wc -l. Now this
example is explored in the context of a C application (see Listing 12.3).

You begin in Listing 12.3 by creating your pipe (line 9) and then forking the
application into the child (lines 13–16) and parent (lines 20–23). In the child, we
begin by closing the stdout descriptor (line 13). The child here provides the ls -1
functionality and does not write to stdout but instead to the input to your pipe
(redirected using dup). At line 14, you use dup2 to redirect the stdout to your pipe
(pfds[1]). After this is done, you close your input end of the pipe (as it will never
be used). Finally, you use the execlp function to replace the child’s image with that
of the command ls -1. After this command executes, any output that is generated
is sent to the input.

Now take a look at the receiving end of the pipe. The parent plays this role and
follows a very similar pattern. You first close the stdin descriptor at line 20 (be-
cause you will accept nothing from it). Next, you use the dup2 function again (line
21) to make the stdin the output end of the pipe. This is done by making file de-
scriptor 0 (normal stdin) the same as pfds[0]. You close the stdout end of the pipe
(pfds[1]) because you won’t use it here (line 22). Finally, you execlp the command
wc -l, which takes as its input the contents of the pipe (line 23).

Listing 12.3 Pipelining Commands in C (on the CD-ROM at ./source/ch12/dup.c)

1: #include <stdio.h>

2: #include <stdlib.h>

3: #include <unistd.h>

4:

5: int main()

6: {

7: int pfds[2];

8:

9: if (pipe(pfds) == 0) {

10:

11: if (fork() == 0) {

12:

13: close(1);

14: dup2(pfds[1], 1);

15: close(pfds[0]);

16: execlp("ls", "ls", "-1", NULL);

180 GNU/Linux Application Programming

17:

18: } else {

19:

20: close(0);

21: dup2(pfds[0], 0);

22: close(pfds[1]);

23: execlp("wc", "wc", "-l", NULL);

24:

25: }

26:

27: }

28:

29: return 0;

30: }

What’s important to note in this application is that your child process redirects
its output to the input of the pipe, and the parent redirects its input to the output
of the pipe—a very useful technique that is worth remembering.

mkfifo

The mkfifo function is used to create a file in the filesystem that provides FIFO
functionality (otherwise known as a named pipe). Pipes that this chapter has dis-
cussed thus far are anonymous pipes. They’re used exclusively between a process
and its children. Named pipes are visible in the filesystem and therefore can be used
by any (related or unrelated) process. The function prototype for mkfifo is defined
as follows:

#include <sys/types.h>

#include <sys/stat.h>

int mkfifo(const char *pathname, mode_t mode);

The mkfifo command requires two arguments. The first (pathname) is the spe-
cial file in the filesystem that is to be created. The second (mode) represents the
read/write permissions for the FIFO. The mkfifo command returns 0 on success or
-1 on error (with errno filled appropriately). Take a look at an example of creating
a fifo using the mkfifo function.

int ret;

...

ret = mkfifo("/tmp/cmd_pipe", S_IFIFO | 0666);

if (ret == 0) {

// Named pipe successfully created

Chapter 12 Programming with Pipes 181

} else {

// Failed to create named pipe

}

In this example, you create a fifo (named pipe) using the file cmd_pipe in the
/tmp subdirectory. You can then open this file for read or write to communicate
through it. After you open a named pipe, you can read from it using the typical I/O
commands. For example, here’s a snippet reading from the pipe using fgets:

pfp = fopen("/tmp/cmd_pipe", "r");

...

ret = fgets(buffer, MAX_LINE, pfp);

You can write to the pipe for this snippet using:

pfp = fopen("/tmp/cmd_pipe", "w+);

...

ret = fprintf(pfp, "Here’s a test string!\n");

What’s interesting about named pipes, which is explored shortly in the discus-
sion of the mkfifo system command, is that they work in what is known as a ren-
dezvous model. A reader is unable to open the named pipe unless a writer has
actively opened the other end of the pipe. The reader is blocked on the open call
until a writer is present. Despite this limitation, the named pipe can be a useful
mechanism for interprocess communication.

SYSTEM COMMANDS

Now it’s time to take a look at a system command that is related to the pipe model
for IPC. The mkfifo command, just like the mkfifo API function, allows you to cre-
ate a named pipe from the command line.

mkfifo

The mkfifo command is one of two methods for creating a named pipe (fifo spe-
cial file) at the command line. The general use of the mkfifo command is as follows:

mkfifo [options] name

where [options] are -m for mode (permissions) and name is the name of the named
pipe to create (including path if needed). If permissions are not specified, the de-
fault is 0644. Here’s a sample use, creating a named pipe in /tmp called cmd_pipe:

182 GNU/Linux Application Programming

$ mkfifo /tmp/cmd_pipe

You can adjust the options simply by specifying them with the -m option.
Here’s an example setting the permissions to 0644 (but deleting the original first):

$ rm cmd_pipe

$ mkfifo -m 0644 /tmp/cmd_pipe

After the permissions are created, you can communicate through this pipe via
the command line. Consider the following scenario. In one terminal, you attempt
to read from the pipe using the cat command:

$ cat cmd_pipe

Upon typing this command, you are suspended awaiting a writer opening the
pipe. In another terminal, you write to the named pipe using the echo command, as
follows:

$ echo Hi > cmd_pipe

When this command finishes, the reader wakes up and finishes (here’s the
complete reader command sequence again for clarity):

$ cat cmd_pipe

Hi

$

This illustrates that named pipes can be useful not only in C applications, but
also in scripts (or combinations).

Named pipes can also be created with the mknod command (along with many
other types of special files). You can create a named pipe (as with mkfifo before) as
follows:

$ mknod cmd_pipe p

where the named pipe cmd_pipe is created in the current subdirectory (with type as
p for named pipe).

Chapter 12 Programming with Pipes 183

SUMMARY

This chapter was a very quick review of anonymous and named pipes. You reviewed
application and command-line methods for creating pipes and also reviewed typical
I/O mechanisms for communicating through them. You also reviewed the ability
to redirect I/O using the dup and dup2 commands. While useful for pipes, these
commands are useful in many other scenarios as well (wherever a file descriptor is
used, such as a socket or file).

PIPE PROGRAMMING APIS

#include <unistd.h>

int pipe(int filedes[2]);

int dup(int oldfd);

int dup2(int oldfd, int targetfd);

int mkfifo(const char *pathname, mode_t mode);

184 GNU/Linux Application Programming

185

Introduction to Sockets
Programming

13

INTRODUCTION

This chapter takes a quick tour of Sockets programming. It discusses the Sockets
programming paradigm, elements of Sockets applications, and the Sockets API. The
Sockets API allows you to develop applications that communicate over a network.
The network can be a local private network or the public Internet. An important
item to note about Sockets programming is that it’s neither operating system
specific nor language specific. Sockets applications can be written in the Ruby script-
ing language on a GNU/Linux host or in C on an embedded controller. This free-
dom and flexibility are the reasons that the BSD4.4 Sockets API is so popular.

In This Chapter

Understand the Sockets Programming Paradigm
Learn the BSD4.4 Sockets API
See Sample Source for a TCP/IP Server and Client
Explore the Various Capabilities of Sockets (Control, I/O, Notification)
Investigate Socket Patterns That Illustrate Sockets API Use
Explore Other Transport Protocols such as SCTP
Examine Sockets Programming in Other Languages

LAYERED MODEL OF NETWORKING

Sockets programming uses the layered model of packet communication (see Figure
13.1). At the top is the application layer, which is where applications exist (those
that utilize Sockets for communication). Below the application layer you define the
Sockets layer. This isn’t actually a layer, but it is shown here simply to illustrate
where the API is located. The Sockets layer sits on top of the transport layer. The
transport layer provides the transport protocols. Next is the network layer, which
provides among other things routing over the Internet. This layer is occupied by the
Internet Protocol, or IP. Finally, you find the physical layer driver, which provides
the means to introduce packets onto the physical network.

186 GNU/Linux Application Programming

FIGURE 13.1 Layered model of communication.

SOCKETS PROGRAMMING PARADIGM

The Sockets paradigm involves a number of different elements that must be under-
stood to use it properly. This section looks at the Sockets paradigm in a hierarchical
fashion.

At the top of the hierarchy is the host. This is a source or destination node on
a network to or from which packets are sent or received. (Technically, you would
refer to interfaces as the source or destination, because a host might provide mul-
tiple interfaces, but this chapter is going to keep it simple.) The host implements a

set of protocols. These protocols define the manner in which communication oc-
curs. Within each protocol is a set of ports. Each port defines an endpoint (the final
source or destination). See Table 13.1 for a list of these elements (and Figure 13.2
for a graphical view of these relationships).

Chapter 13 Introduction to Sockets Programming 187

Element Description

Host (Interface) Network address (a reachable network node)

Protocol Specific protocol (such as TCP or UDP)

Port Client or server process endpoint

TABLE 13.1 Sockets Programming Element Hierarchy

FIGURE 13.2 Graphical view of host/protocol/port relationship.

HOSTS

Hosts are identified by addresses, and for IP these are called IP addresses. An IPv4
address (of the version 4 class) is defined as a 32-bit address. This address is repre-
sented by four 8-bit values. A sample address is illustrated as follows:

192.168.1.1 or 0xC0A80101

The first value shows the more popular form of IPv4 addresses, which is easily
readable. The second notation is simply the first address in hexadecimal format
(32 bits wide).

PROTOCOL

The protocol specifies the details of communication over the socket. The two most
common protocols used are the Transmission Control Protocol (TCP) and the
User Datagram Protocol (UDP). TCP is a stream-based reliable protocol, and UDP
is a datagram (message)-based protocol that can be unreliable. This chapter pro-
vides additional details of these protocols.

PORT

The port is the endpoint for a given process (interface) for a protocol. This is the
application’s interface to the Socket interface. Ports are unique on a host (not
interface) for a given protocol. Ports are commonly called “bound” when they are
attached to a given socket.

Ports are numbers that are split basically into two ranges. Port numbers below
1024 are reserved for well-known services (called well-known addresses), assigned
by the IETF. Port numbers above 1024 are typically used by applications.

The original intent of service port numbers (such as FTP, HTTP, and DNS) was
that they fall below port number 1024. Of course, the number of services exceeded
that number long ago. Now, many system services occupy the port number space
greater than 1024 (for example, NFS at port number 2049 and X11 at port num-
ber 6000).

ADDRESSING

From this discussion, you can see that a tuple uniquely identifies an endpoint from
all other endpoints on a network. Consider the following tuple:

{ tcp, 192.168.1.1, 4097 }

188 GNU/Linux Application Programming

This defines the endpoint on the host identified by the address 192.168.1.1
with the port 4097 using the TCP protocol.

THE SOCKET

Simply put, a socket is an endpoint of a communications channel between two
applications. An example of this is defined as two tuples:

{ tcp, 192.168.1.1, 4097 }

{ tcp, 10.0.0.1, 5820 }

The first item to note here is that a socket is an association of two endpoints
that share the same protocol. The IP addresses are different here, but they don’t
have to be. You can communicate via sockets in the same host. The port numbers
are also different here, but they can be the same unless they exist on the same host.
Port numbers assigned by the TCP/IP stack are called ephemeral ports. This rela-
tionship is shown visually in Figure 13.3.

Chapter 13 Introduction to Sockets Programming 189

FIGURE 13.3 Visualization of a socket between two hosts.

CLIENT/SERVER MODEL

In most Sockets applications, you have a server (responds to requests and provides
responses) and a client (makes requests to the server). The Sockets API (which you
explore in the next section) provides commands that are specific to clients and to
servers. Figure 13.4 illustrates two simple applications that implement a client and
a server.

190 GNU/Linux Application Programming

FIGURE 13.4 Client/server symmetry in Sockets applications.

The first step in a Sockets application is the creation of a socket. The socket is
the communication endpoint that is created by the socket call. Note that in the
sample flow (see Figure 13.4) both the server and client perform this step.

The server requires a bit more setup as part of registering a service to the host.
The bind call binds an address and port to the server so that it’s known. Letting the
system choose the port can result in a service that can be difficult to find. If you
choose the port, you know what it is. After you’ve bound the port, you call the
listen function for the server. This makes the server accessible (puts it in the
listen mode).

You establish the socket next, using connect at the client and accept at the
server. The connect call starts what’s known as the three-way handshake, with the
purpose of setting up a connection between the client and server. At the server, the
accept call creates a new server-side client socket. After accept finishes, a new
socket connection exists between the client and server, and data flow can occur.

In the data transfer phase, you have an established socket through which
communication can occur. Both the client and server can send and recv data
asynchronously.

Finally, you can sever the connection between the client and server using the
close call. This can occur asynchronously, but upon one endpoint closing the socket,
the other side automatically receives an indication of the closure.

SAMPLE APPLICATION

Now that you have a basic understanding of Sockets, you can look at a sample ap-
plication that illustrates some of the functions available in the Sockets API. This
section looks at the Sockets API from the perspective of two applications, a client
and server, that implement the Daytime protocol. This protocol server is ASCII
based and simply emits the current date and time when requested by a client. The
client connects to the server and emits what is read. This implements the basic flow
shown previously in Figure 13.2.

DAYTIME SERVER

Take a look at a C language server that implements the Daytime protocol. Recall
that the Daytime server simply emits the current date and time in ASCII string for-
mat through the socket to the client. Upon emitting the data, the socket is closed,
and the server awaits a new client connection. Now that you understand the con-
cept behind Daytime protocol server, it’s time to look at the actual implementation
(see Listing 13.1).

LISTING 13.1 Daytime Server Written in the C Language (on the CD-ROM at

./source/ch13/dayserv.c)

1: #include <sys/socket.h>

2: #include <arpa/inet.h>

3: #include <stdio.h>

4: #include <time.h>

5: #include <string.h>

6: #include <unistd.h>

7:

Chapter 13 Introduction to Sockets Programming 191

8: #define MAX_BUFFER 128

9: #define DAYTIME_SERVER_PORT 13

10:

11: int main (void)

12: {

13: int serverFd, connectionFd;

14: struct sockaddr_in servaddr;

15: char timebuffer[MAX_BUFFER+1];

16: time_t currentTime;

17:

18: serverFd = socket(AF_INET, SOCK_STREAM, 0);

19:

20: memset(&servaddr, 0, sizeof(servaddr));

21: servaddr.sin_family = AF_INET;

22: servaddr.sin_addr.s_addr = htonl(INADDR_ANY);

23: servaddr.sin_port = htons(DAYTIME_SERVER_PORT);

24:

25: bind(serverFd,

26: (struct sockaddr *)&servaddr, sizeof(servaddr));

27:

28: listen(serverFd, 5);

29:

30: while (1) {

31:

32: connectionFd = accept(serverFd,

33: (struct sockaddr *)NULL, NULL);

34:

35: if (connectionFd >= 0) {

36:

37: currentTime = time(NULL);

38: snprintf(timebuffer, MAX_BUFFER,

39: "%s\n", ctime(¤tTime));

40:

41: write(connectionFd, timebuffer, strlen(timebuffer));

42: close(connectionFd);

43:

44: }

45:

46: }

47:

48: }

192 GNU/Linux Application Programming

Lines 1–6 include the header files for necessary types, symbolic, and function
APIs. This includes not only the socket interfaces, but also time.h, which provides
an interface to retrieve the current time. You specify the maximum size of the
buffer that you operate upon using the symbolic constant MAX_BUFFER at line 8. The
next symbolic constant at line 9, DAYTIME_SERVER_PORT, defines the port number to
which you attach this socket server. This enables you to define the well-known port
for the Daytime protocol (13).

You declare the main function at line 11, and then a series of variables are cre-
ated in lines 13–16. You create two Socket identifiers (line 13), a socket address
structure (line 14), a buffer to hold the string time (line 15), and the GNU/Linux
time representation structure (line 16).

The first step in any Sockets program is to create the socket using the socket
function (line 18). You specify that you’re creating an IP socket (using the AF_INET
domain) using a reliable stream protocol type (SOCK_STREAM). The zero as the third
argument specifies to use the default protocol of the stream type, which is TCP.

Now that you have your socket, you bind an address and a port to it (lines
20–26). At line 20, you initialize the address structure by setting all elements to
zero. You specify the socket domain again with AF_INET (it’s an IPv4 socket). The
s_addr element specifies an address, which in this case is the address from which
you accept incoming socket connections. The special symbol INADDR_ANY says that
you accept incoming connections from any available interface on the host. You
then define the port to use, your prior symbolic constant DAYTIME_SERVER_PORT. The
htonl (host-to-network-long) and htons (host-to-network-short) take care of en-
suring that the values provided are in the proper byte order for network packets.
The final step is using the bind function to bind the address structure previously
created with your socket. The socket is now bound with the address, which identi-
fies it in the network stack namespace.

The Internet operates in big endian, otherwise known as network byte order. Hosts
operate in host byte order, which, depending upon architecture, can be either big
or little endian. For example, the PowerPC architecture is big endian, and the
Intel x86 architecture is little endian. This is a small performance advantage to big
endian architectures because they need not perform any byte-swapping to change
from host byte order to network byte order (they’re already the same).

Before a client can connect to the socket, you must call the listen function
(line 28). This tells the protocol stack that you’re ready to accept connections (a
maximum of five pending connections, per the argument to listen).

Chapter 13 Introduction to Sockets Programming 193

You enter an infinite loop at lines 30–46 to accept client connections and pro-
vide them the current time data. At lines 32–33, you call the accept function with
your socket (serverFd) to accept a new client connection. When a client connects
to you, the network stack creates a new socket representing the end of the connec-
tion and returns this socket from the accept function. With this new client socket
(connectionFd), you can communicate with the peer client. Note that the existing
server socket is untouched, allowing other connections to be received over it.

At line 35, you check the return socket to see if it’s valid (otherwise, an error has
occurred, and you ignore this client socket). If valid, you grab the current time at lines
37–39. You use the GNU/Linux time function to get the current time (the number of
seconds that have elapsed from January 1, 1970). Passing this value to function ctime
converts it into a human-readable format, which is used by sprintf to construct a
response string. You send this to the peer client using the connectionFd socket using
the write function. You pass your socket descriptor, the string to write (timebuffer),
and its length. Finally, you close your client socket using the close function, which
ends communication with that particular peer.

The loop then continues back to line 32, awaiting a new client connection with
the accept function. When a new client connects, the process starts all over again.

From GNU/Linux, you can compile this application using GCC and execute it
as follows (filename server.c):

[root@mtjones]$ gcc -o server server.c -Wall

[root@mtjones]$./server

When executing socket applications that bind to well-known ports (those under
1024), you must start from root. Otherwise, the application fails with the inability
to bind to the reserved port number.

You can now test this server very simply using the Telnet application available
in GNU/Linux. As shown, you Telnet to the local host (identified by localhost) and
port 13 (the port you registered previously in the server). The Telnet client connects
to the server and then prints out what was sent to it (the time is shown in bold).

$ telnet localhost 13

Trying 127.0.0.1...

Connected to localhost.

Escape character is ‘^]’.

Sat Jan 17 13:33:57 2004

Connection closed by foreign host.

[root@mtjones]$

194 GNU/Linux Application Programming

The final item to note is that after the time is received, you see the message
reported to you from Telnet: “Connection closed by foreign host.” Recall from the
server source in Listing 13.1 that after the write has completed (sending the time to
the client), the socket close is immediately performed. The Telnet application is
reporting this event to you so that you know the socket is no longer active. You can
reproduce Telnet’s operation with a socket client; this is investigated next.

DAYTIME CLIENT

The Daytime protocol client is shown in Listing 13.2. This section avoids discussion
of the source preliminaries and goes directly to the Sockets aspect of the applica-
tion. As in the server, the first step in building a Sockets application is the creation
of a socket (of the TCP variety using SOCK_STREAM) using the socket function (at
line 16).

Recall in the server application that you build an address structure (servaddr)
that is then bound to the socket representing the service. In the client, you also
build an address structure, but in this case it’s to define to whom you’re connect-
ing (Listing 13.2, lines 18–21). Note the similarities here between the server address
structure creation (shown in Listing 13.1). The only difference is that the interface
address is specified here in the client as localhost, where in the server you specify
the wildcard to accept connections from any available interface.

Now that you have your socket and an address structure initialized with your
destination, you can connect your socket to the server. This is done with the
connect function shown in lines 23–24. In the connect function, you pass the socket
descriptor (connectionFd), your address structure (servaddr), and its size. When
this function returns, either you have connected to the server or an error has
occurred. To minimize code size, the error check is omitted here, but the error code
should be checked upon return from connect to ensure that the socket is truly
connected.

Now that you are connected to the server, you perform a socket read function.
This allows you to read any data that has been sent to you. Given the Daytime pro-
tocol, you know as a client that the server immediately sends you the current date
and time. Therefore, you immediately read from the socket and store the contents
into timebuffer. This is then null-terminated, and the result printed to standard-
out. If you read from the socket and no characters are received (or an error occurs,
indicated by a -1 return), then you know that the server has closed the connection,
and you exit gracefully. The next step is closure of your half of the socket, shown at
line 34 using the close function.

Chapter 13 Introduction to Sockets Programming 195

LISTING 13.2 Daytime Client Written in the C Language (on the CD-ROM at

./source/ch13/daycli.c)

1: #include <sys/socket.h>

2: #include <arpa/inet.h>

3: #include <stdio.h>

4: #include <unistd.h>

5: #include <time.h>

6:

7: #define MAX_BUFFER 128

8: #define DAYTIME_SERVER_PORT 13

9:

10: int main ()

11: {

12: int connectionFd, in, index = 0.limit = MAX_BUFFER;

13: struct sockaddr_in servaddr;

14: char timebuffer[MAX_BUFFER+1];

15:

16: connectionFd = socket(AF_INET, SOCK_STREAM, 0);

17:

18: memset(&servaddr, 0, sizeof(servaddr));

19: servaddr.sin_family = AF_INET;

20: servaddr.sin_port = htons(DAYTIME_SERVER_PORT);

21: servaddr.sin_addr.s_addr = inet_addr("127.0.0.1");

22:

23: connect(connectionFd,

24: (struct sockaddr *)&servaddr, sizeof(servaddr));

25:

26: while ((in=read(connectionFd, &timebuffer[index], limit))

> 0) {

27: index += in;

28: limit -= in;

29: }

30:

31: timebuffer[index] = 0;

32: printf("\n%s\n", timebuffer);

33:

34: close(connectionFd);

35:

36: return(0);

37: }

196 GNU/Linux Application Programming

SOCKETS API SUMMARY

The networking API for C provides a mixed set of functions for the development of
client and server applications. Some functions are used by only server-side sockets,
whereas others are used solely by client-side sockets (most are available to both).

CREATING AND DESTROYING SOCKETS

You need to create a socket as the first step of any Sockets-based application. The
socket function provides the following prototype:

int socket(int domain, int type, int protocol);

The socket object is represented as a simple integer and is returned by the
socket function. Three parameters must be passed to define the type of socket to be
created. Right now, you are interested primarily in stream (TCP) and datagram
(UDP) sockets, but many other types of sockets can be created. In addition to
stream and datagram, a raw socket is also illustrated by the following code snippets:

myStreamSocket = socket(AF_INET, SOCK_STREAM, 0);

myDgramSocket = socket(AF_INET, SOCK_DGRAM, 0);

myRawSocket = socket(AF_INET, SOCK_RAW, IPPROTO_RAW);

The AF_INET symbolic constant indicates that you are using the IPv4 Internet
protocol. After this, the second parameter (type) defines the semantics of commu-
nication. For stream communication (using TCP), you use the SOCK_STREAM type,
and for datagram communication (using UDP), you specify SOCK_DGRAM. The third
parameter can define a particular protocol to use, but only the types exist for stream
and datagram, so this third parameter is left as zero in those cases.

When you’re finished with a socket, you must close it. The close prototype is
defined as:

int close(sock);

After close is called, no further data can be received through the socket. Any
data queued for transmission is given some amount of time to be sent before the
connection physically closes.

Note in these examples that the read and write calls are used identically to the file
I/O examples shown in Chapter 11, “File Handling in GNU/Linux.” One of the
interesting features of UNIX (and GNU/Linux) is that many types of devices are
represented as files. After a socket is open, you can treat it just like a file or pipe (for
read, write, accept, and so on).

Chapter 13 Introduction to Sockets Programming 197

SOCKET ADDRESSES

For socket communication over the Internet (domain AF_INET), you use the sock-
addr_in structure for naming purposes.

struct sockaddr_in {

int16_t sin_family;

uint16_t sin_port;

struct in_addr sin_addr;

char sin_zero[8];

};

struct in_addr {

uint32_t s_addr;

};

For Internet communication, you use AF_INET solely for sin_family. Field
sin_port defines your specified port number in network byte order. Therefore, you
must use htons to load the port and ntohs to read it from this structure. Field
sin_addr is, through s_addr, a 32-bit field that represents an IPv4 Internet address.
Recall that IPv4 addresses are 4-byte addresses. Often the sin_addr is set to
INADDR_ANY, which is the wildcard. When you’re accepting connections (server
socket), this wildcard says you accept connections from any available interface on
the host. For client sockets, this is commonly left blank. For a client, if you set
sin_addr to the IP address of a local interface, this restricts outgoing connections to
that interface.

Now take look at a quick example of addressing for both a client and a server.
First, in this example you create the socket address (later to be bound to your server
socket) that permits incoming connections on any interface and port 48000.

int servsock;

struct sockaddr_in servaddr;

servsock = socket(AF_INET, SOCK_STREAM, 0);

memset(&servaddr, 0, sizeof(servaddr));

servaddr.sin_family = AF_INET;

servaddr.sin_port = htons(48000);

servaddr.sin_addr.s_addr = inet_addr(INADDR_ANY);

Next, you create a socket address that permits a client socket to connect to your
previously created server socket.

198 GNU/Linux Application Programming

int clisock;

struct sockaddr_in servaddr;

clisock = socket(AF_INET, SOCK_STREAM, 0);

memset(&servaddr, 0, sizeof(servaddr));

servaddr.sin_family = AF_INET;

servaddr.sin_port = htons(48000);

servaddr.sin_addr.s_addr = inet_addr("192.168.1.1");

Note the similarities between these two code segments. The difference, as you
see later, is that the server uses the address to bind to itself as an advertisement. The
client uses this information to define to whom it wants to connect.

SOCKET PRIMITIVES

In this section, you look at a number of other important server-side socket control
primitives.

bind

The bind function provides a local naming capability to a socket. This can be used
to name either client or server sockets, but it is used most often in the server case.
The bind function is provided by the following prototype:

int bind(int sock, struct sockaddr *addr, int addrLen);

The socket to be named is provided by the sock argument, and the address
structure previously defined is defined by addr. Note that the structure here differs
from the address structure discussed previously. The bind function can be used
with a variety of different protocols, but when you are using a socket created with
AF_INET, you must use the sockaddr_in. Therefore, as shown in the following ex-
ample, you cast your sockaddr_in structure as sockaddr.

err = bind(servsock, (struct sockaddr *)&servaddr,

sizeof(servaddr));

Using the address structure created in the server example in the previous ad-
dress section, you bind the name defined by servaddr to our server socket servsock.

Recall that a client application can also call bind to name the client socket. This
isn’t used often, because the Sockets API dynamically assigns a port to us.

Chapter 13 Introduction to Sockets Programming 199

listen

Before a server socket can accept incoming client connections, it must call the
listen function to declare this willingness. The listen function is provided by the
following function prototype:

int listen(int sock, int backlog);

The sock argument represents the previously created server socket, and the
backlog argument represents the number of outstanding client connections that
might be queued. Within GNU/Linux, the backlog parameter (post 2.2 kernel
version) represents the number of established connections pending on accept for
the application layer protocol. Other operating systems might treat this differently.

accept

The accept call is the final call made by servers to accept incoming client connections.
Before accept can be called, the server socket must be created, a name must be bound
to it, and listen must be called. The accept function returns a socket descriptor for
a client connection and is provided by the following function prototype:

int accept(int sock, struct sockaddr *addr, int *addrLen);

In practice, two examples of accept are commonly seen. The first represents the
case in which you need to know who connected to you. This requires the creation
of an address structure that is not initialized.

struct sockaddr_in cliaddr;

int cliLen;

cliLen = sizeof(struct sockaddr_in);

clisock = accept(servsock, (struct sockaddr *)cliaddr, &cliLen);

The call to accept blocks until a client connection is available. Upon return, the
clisock return value contains the value of the new client socket, and cliaddr rep-
resents the address for the client peer (host address and port number).

The alternate example is commonly found when the server application isn’t in-
terested in the client information. This one typically appears as follows:

cliSock = accept(servsock, (struct sockaddr *)NULL, NULL);

In this case, NULL is passed for the address structure and length. The accept
function then ignores these parameters.

200 GNU/Linux Application Programming

connect

The connect function is used by client Sockets applications to connect to a server.
Clients must have created a socket and then defined an address structure contain-
ing the host and port number to which they want to connect. The connect function
is provided by the following function prototype:

int connect(int sock, (struct sockaddr *)servaddr, int addrLen);

The sock argument represents the client socket, created previously with the
Sockets API function. The servaddr structure is the server peer to which you want
to connect (as illustrated previously in the “Socket Addresses” section of this chap-
ter). Finally, you must pass in the length of your servaddr structure so that connect
knows you are passing in a sockaddr_in structure. The following code shows a com-
plete example of connect:

int clisock;

struct sockaddr_in servaddr;

clisock = socket(AF_INET, SOCK_STREAM, 0);

memset(&servaddr, 0, sizeof(servaddr));

servaddr.sin_family = AF_INET;

servaddr.sin_port = htons(48000);

servaddr.sin_addr.s_addr = inet_addr("192.168.1.1");

connect(clisock, (struct sockaddr_in *)&servaddr, sizeof(servaddr));

The connect function blocks until either an error occurs or the three-way hand-
shake with the server finishes. Any error is returned by the connect function.

Sockets I/O

A variety of API functions exist to read data from a socket or write data to a socket.
Two of the API functions (recv, send) are used exclusively by sockets that are con-
nected (such as stream sockets), whereas an alternative pair (recvfrom, sendto) is
used exclusively by sockets that are unconnected (such as datagram sockets).

Connected Socket Functions

The send and recv functions are used to send a message to the peer socket endpoint
and to receive a message from the peer socket endpoint. These functions have the
following prototypes:

int send(int sock, const void *msg, int len, unsigned int flags);

int recv(int sock, void *buf, int len, unsigned int flags);

Chapter 13 Introduction to Sockets Programming 201

The send function takes as its first argument the socket descriptor from which
to send the msg. The msg is defined as a (const void *) because the object referenced
by msg is not altered by the send function. The number of bytes to be sent in msg is
contained by the len argument. Finally, a flags argument can alter the behavior of
the send call. An example of sending a string through a previously created stream
socket is shown as follows:

strcpy(buf, "Hello\n");

send(sock, (void *)buf, strlen(buf), 0);

In this example, your character array is initialized by the strcpy function. This
buffer is then sent through sock to the peer endpoint, with a length defined by the
string length function, strlen. To see flags use, take a look at one side effect of the
send call. When send is called, it can block until all of the data contained within buf
has been placed on the socket’s send queue. If not enough space is available to do
this, the send function blocks until space is available. If you want to avoid this
blocking behavior and instead want the send call to simply return if sufficient space
is available, you can set the MSG_DONTWAIT flag, such as follows:

send(sock, (void *)buf, strlen(buf), MSG_DONTWAIT);

The return value from send represents either an error (less than 0) or the num-
ber of bytes that were queued to be sent. Completion of the send function does not
imply that the data was actually transmitted to the host, only that it is queued on
the socket’s send queue waiting to be transferred.

The recv function mirrors the send function in terms of an argument list. In-
stead of sending the data pointed to be msg, the recv function fills the buf argument
with the bytes read from the socket. You must define the size of the buffer so that
the network protocol stack doesn’t overwrite the buffer, which is defined by the
len argument. Finally, you can alter the behavior of the read call using the flags
argument. The value returned by the recv function is the number of bytes now
contained in the msg buffer, or -1 on error. An example of the recv function is as
follows:

#define MAX_BUFFER_SIZE 50

char buffer[MAX_BUFFER_SIZE+1];

...

numBytes = recv(sock, buffer, MAX_BUFFER_SIZE, 0);

At completion of this example, numBytes contains the number of bytes that are
contained within the buffer argument.

202 GNU/Linux Application Programming

You can peek at the data that’s available to read by using the MSG_PEEK flag. This
performs a read, but it doesn’t consume the data at the socket. This requires an-
other recv to actually consume the available data. An example of this type of read
is illustrated as follows:

numBytes = recv(sock, buffer, MAX_BUFFER_SIZE, MSG_PEEK);

This call requires an extra copy (the first to peek at the data, and the second to
actually read and consume it). More often than not, this behavior is handled in-
stead at the application layer by actually reading the data and then determining
what action to take.

Unconnected Socket Functions

The sendto and recvfrom functions are used to send a message to the peer socket
endpoint and receive a message from the peer socket endpoint. These functions
have the following prototypes:

int sendto(int sock, const void *msg, int len,

unsigned int flags,

const struct sockaddr *to, int tolen);

int recvfrom(int sock, void *buf, int len,

unsigned int flags,

struct sockaddr *from, int *fromlen);

The sendto function is used by an unconnected socket to send a datagram to
a destination defined by an initialized address structure. The sendto function is
similar to the previously discussed send function, except that the recipient is
defined by the to structure. An example of the sendto function is shown in the
following code:

struct sockaddr_in destaddr;

int sock;

char *buf;

...

memset(&destaddr, 0, sizeof(destaddr));

destaddr.sin_family = AF_INET;

destaddr.sin_port = htons(581);

destaddr.sin_addr.s_addr = inet_addr("192.168.1.1");

sendto(sock, buf, strlen(buf), 0,

(struct sockaddr *)&destaddr, sizeof(destaddr));

Chapter 13 Introduction to Sockets Programming 203

In this example, the datagram (contained with buf) is sent to an application on
host 192.168.1.1, port number 581. The destaddr structure defines the intended
recipient for the datagram.

As with the send function, the number of characters queued for transmission is
returned, or -1 if an error occurs.

The recvfrom function provides the ability for an unconnected socket to receive
datagrams. The recvfrom function is again similar to the recv function, but an ad-
dress structure and length are provided. The address structure is used to return the
sender of the datagram to the function caller. This information can be used with the
sendto function to return a response datagram to the original sender.

An example of the recvfrom function is shown in the following code:

#define MAX_LEN 100

struct sockaddr_in fromaddr;

int sock, len, fromlen;

char buf[MAX_LEN+1];

...

fromlen = sizeof(fromaddr);

len = recvfrom(sock, buf, MAX_LEN, 0,

(struct sockaddr *)&fromaddr, &fromlen);

This blocking call returns when either an error occurs (represented by a -1
return) or a datagram is received (return value of 0 or greater). The datagram is
contained within buf and has a length of len. The fromaddr contains the datagram
sender, specifically the host address and port number of the originating application.

Socket Options

Socket options permit an application to change some of the modifiable behaviors
of sockets and the functions that manipulate them. For example, an application can
modify the sizes of the send or receive socket buffers or the size of the maximum
segment used by the TCP layer for a given socket.

The functions for setting or retrieving options for a given socket are provided
by the following function prototypes:

int getsockopt(int sock, int level, int optname,

void *optval, socklen_t *optlen);

int setsockopt(int sock, int level, int optname,

const void *optval, socklen_t optlen);

First, you define the socket of interest using the sock argument. Next, you must
define the level of the socket option that is being applied. The level argument can
be SOL_SOCKET for socket-layer options, IPPROTO_IP for IP layer options, and

204 GNU/Linux Application Programming

IPPROTO_TCP for TCP layer options. The specific option within the level is applied
using the optname argument. Arguments optval and optlen define the specifics of
the value of the option. optval is used to get or set the option value, and optlen de-
fines the length of the option. This slightly complicated structure is used because
structures can be used to define options.

Now take a look at an example for both setting and retrieving an option. In the
first example, you retrieve the size of the send buffer for a socket.

int sock, size, len;

...

getsockopt(sock, SOL_SOCKET, SO_SNDBUF, (void *)&size,

(socklen_t *)&len);

printf("Send buffer size is &d\n", size);

Now take a look at a slightly more complicated example. In this case, you’re
going to set the linger option. Socket linger allows you to change the behavior of
a stream socket when the socket is closed and data is remaining to be sent. After
close is called, any data remaining attempts to be sent for some amount of time. If
after some duration the data cannot be sent, then the data to be sent is abandoned.
The time after the close when the data is removed from the send queue is defined
as the linger time. This can be set using a special structure called linger, as shown
in the following example:

struct linger ling;

int sock;

...

ling.l_onoff = 1; /* Enable */

ling.l_linger = 10; /* 10 seconds */

setsockopt(sock, SOL_SOCKET, SO_LINGER,

(void *)&ling, sizeof(struct linger));

After this call is performed, the socket waits 10 seconds after the socket close
before aborting the send.

OTHER MISCELLANEOUS FUNCTIONS

Now it’s time to look at a few miscellaneous functions from the Sockets API and the
capabilities they provide. The three function prototypes discussed in this section are
shown in the following code:

Chapter 13 Introduction to Sockets Programming 205

struct hostent *gethostbyname(const char *name);

int getsockname(int sock, struct sockaddr *name, socklen_t

*namelen);

int getpeername(int sock, struct sockaddr *name, socklen_t

*namelen);

Function gethostbyname provides the means to resolve a host and domain
name (otherwise known as a fully qualified domain name, or FQDN) to an IP
address. For example, the FQDN of www.microsoft.com might resolve to the IP
address 207.46.249.27. Converting an FQDN to an IP address is important because
all of the Sockets API functions work with number IP addresses (32-bit addresses)
rather than FQDNs. An example of the gethostbyname function is shown next:

struct hostent *hptr;

hptr = gethostbyname("www.microsoft.com");

if (hptr == NULL) // can’t resolve...

else {

printf("Binary address is %x\n", hptr-> h_addr_list[0]);

}

Function gethostbyname returns a pointer to a structure that represents the nu-
meric IP address for the FQDN (hptr->h_addr_list[0]). Otherwise, gethostbyname
returns a NULL, which means that the FQDN could not be resolved by the local re-
solver. This call blocks while the local resolver communicates with the configured
DNS servers.

Function getsockname permits an application to retrieve information about the
local socket endpoint. This function, for example, can identify the dynamically as-
signed ephemeral port number for the local socket. An example of its use is shown
in the following code:

int sock;

struct sockaddr localaddr;

int laddrlen;

// Socket for sock created and connected.

...

getsockname(sock, (struct sockaddr_in *)&localaddr, &laddrlen);

printf("local port is %d\n", ntohs(localaddr.sin_port));

The reciprocal function of getsockname is getpeername. This permits you to
gather addressing information about the connected peer socket. An example, sim-
ilar to the getsockname example, is shown in the following code:

206 GNU/Linux Application Programming

www.microsoft.com

int sock;

struct sockaddr remaddr;

int raddrlen;

// Socket for sock created and connected.

...

getpeername(sock, (struct sockaddr_in *)&remaddr, &raddrlen);

printf("remote port is %d\n", ntohs(remaddr.sin_port));

In both examples, the address can also be extracted using the sin_addr field of
the sockaddr structure.

OTHER TRANSPORT PROTOCOLS

While TCP and UDP are by far the most popular transport layer protocols, others
are useful and might be the next big thing in the transport layer. The most impor-
tant is called the Stream Control Transmission Protocol (SCTP). SCTP is a new
protocol, but instead of reinventing the wheel, SCTP instead combines the best
features of the TCP and UDP protocols. This section explores the SCTP protocol
and the advantages that it brings.

FEATURES OF SCTP

Recall that the advantage of TCP is that it’s a reliable protocol that guarantees
ordered delivery of data while managing congestion in a network. UDP, on the
other hand, is a message-oriented protocol that guarantees framing of data (what’s
sent is what is received in terms of segment sizes), but guarantees no ordered de-
livery nor manages congestion in the network.

SCTP combines the reliability of TCP with the message-framing of UDP. SCTP
also adds a number of additional features such as multi-homing and multi-streaming.
It also includes a number of other features that are explored in the sections that
follow.

Multi-homing

One of the two most novel features of SCTP is called multi-homing. Multi-homing
allows for higher availability through connection failure. Recall that connections
exist between two network interfaces and are static. SCTP’s multi-homing feature
provides for associations not between network interfaces but between hosts (con-
taining multiple interfaces). This allows a connection to migrate from one network
interface to another on the same host. A common architecture is for each network
interface to traverse different networks so that if a network or interface fails, the
other can be used for connection migration (see Figure 13.5).

Chapter 13 Introduction to Sockets Programming 207

Multi-Streaming

Multi-streaming is the other major novel feature of SCTP. Recall that TCP sockets
are commonly referred to as stream sockets because data is treated as a stream of
octets. TCP also includes urgent data, which is treated separately from the normal
TCP stream and is used to communicate high-priority events. Instead of urgent
data, SCTP includes the concept of multiple streams within a single SCTP socket.
Each stream within the socket is independently addressable, allowing independent
streams of data to be communicated between the two peers. This can be very use-
ful in applications like FTP, where two sockets are normally created (one for com-
mands and the other for high-speed data).

Figure 13.6 provides a simple illustration of this concept. Within a single con-
nection (or in SCTP, where it’s known as an association), two different streams are
created. This allows the streams to operate independently of one another. For ex-
ample, one connection can be used for occasional commands and the other used
for data.

208 GNU/Linux Application Programming

FIGURE 13.5 Multi-homing uses multiple interfaces.

Other SCTP Features

SCTP also includes a number of other features. One other important feature is im-
plementing message framing (as is done with UDP). This allows SCTP to imple-
ment byte-streams like TCP and message framing like UDP. Framing simply means
that when the writer puts 3 bytes into the socket followed by another 3 bytes, the
peer reads 3 bytes and on a subsequent call another 3 bytes. Recall that in a TCP
stream, 6 bytes would likely be read at the peer.

Finally, SCTP allows for unordered delivery of data. Data in UDP is delivered
in order, but in SCTP this behavior can be configured.

SCTP provides other features such as connection initiation protection (to pro-
tect against denial-of-service attacks) and graceful shutdown (to remove TCP’s
half-close state). With such a great set of useful features, SCTP is worth a look.

MULTILANGUAGE PERSPECTIVES

This chapter has focused on the Sockets API from the perspective of the C language,
but the Sockets API is available for any worthwhile language.

Consider first the Ruby language. Ruby is an object-oriented scripting language
that is growing in popularity. It’s simple and clean and useful in many domains.
One domain that demonstrates the simplicity of the language is in network appli-
cation development.

Chapter 13 Introduction to Sockets Programming 209

FIGURE 13.6 Multi-streaming in a single SCTP association.

The Daytime protocol server is shown in Listing 13.3. Ruby provides numerous
classes for networking development; the one illustrated here supports TCP server
sockets (TCPserver). At line 4, you create your server socket and bind it to the Day-
time protocol server (identified by the string "daytime"). At line 12, you await an
incoming connection using the accept method. When one arrives, you emit the
current time to the client at line 19 using the write method. Finally, the socket is
closed at line 23 using the close method.

LISTING 13.3 Daytime Protocol Server in the Ruby Language (on the CD-ROM at

./source/ch13/dayserv.rb)

1: require 'Socket'

2:

3: # Create a new TCP Server using port 13

4: servsock = TCPserver::new("daytime")

5:

6: # Debug data — emit the server socket info

7: print("server address : ", servsock.addr::join(":"),"\n")

8:

9: while true

10:

11: # Await a connection from a client socket

12: clisock = servsock::accept

13:

14: # Emit some debugging data on the peer

15: print("accepted ", clisock.peeraddr::join(":"),"\n")

16: print(clisock, " is accepted\n")

17:

18: # Emit the time through the socket to the client

19: clisock.write(Time::new)

20: clisock.write("\n")

21:

22: # Close the client connection

23: clisock.close

24:

25: end

The Sockets API is also useful in other types of languages, such as functional
ones. The scheme language is Lisp-like in syntax, but it easily integrates the func-
tionality of the Sockets API.

Listing 13.4 illustrates the Daytime protocol client in the scheme language.
Lines 2 and 3 define two global constants used in the client. At line 5, you create the
stream-client procedure. You create the socket at lines 6 and 7 of the stream type

210 GNU/Linux Application Programming

using the socket-connect procedure. You provide the previously defined host and
port values to identify to whom you should connect. This is bound to the sock vari-
able using the let expression. Having a connected socket, you read from the socket
at line 8 using another let expression. The return value of read-string is bound to
result, which is then printed at line 9 using write-string. You emit a newline at line
10 and then close the socket using the close-socket procedure at line 11. The client
is started at line 16 by calling the defined procedure stream-client.

LISTING 13.4 Daytime Protocol Client in the Scheme Language (on the CD-ROM at

./source/ch13/daycli.scm)

1: ; Define a couple of server constants

2: (define host "localhost")

3: (define port 13)

4:

5: (define (stream-client)

6: (let ((sock (socket-connect protocol-family/internet

7: socket-type/stream host port)))

8: (let ((result (read-string 100 (socket:inport sock))))

9: (write-string result)

10: (newline)

11: (close-socket sock))))

12:

13: ;

14: ; Invoke the stream client

15: ;

16: (stream-client)

Space permitting, you could explore Sockets applications in a multitude of
other applications (such as Python, Perl, C++, Java, and Tcl) [Jones03]. The key is
that sockets aren’t just a C language construct, but are useful in many languages.

SUMMARY

This chapter provided a quick tour of Sockets programming in C. It investigated
the Sockets programming paradigm, covering the basic elements of networking
such as hosts, interfaces, protocols, and ports. The Sockets API was explored in a
sample server and client in C and then in detail looking at the functions of the API.
In addition to the typical TCP and UDP sockets, SCTP was also explored. Finally,
the use of the Sockets API was discussed from a multilanguage perspective, illus-
trating its applicability to non-C language scenarios.

Chapter 13 Introduction to Sockets Programming 211

SOCKETS PROGRAMMING APIS

#include <sys/types.h>

#include <sys/socket.h>

#include <unistd.h>

int socket(int domain, int type, int protocol);

int bind(int sock, struct sockaddr *addr, int addrLen);

int listen(int sock, int backlog);

int accept(int sock, struct sockaddr *addr, int *addrLen);

int connect(int sock, (struct sockaddr *)servaddr, int addrLen);

int send(int sock, const void *msg, int len, unsigned int flags);

int recv(int sock, void *buf, int len, unsigned int flags);

int sendto(int sock, const void *msg, int len,

unsigned int flags,

const struct sockaddr *to, int tolen);

int recvfrom(int sock, void *buf, int len,

unsigned int flags,

struct sockaddr *from, int *fromlen);

int getsockopt(int sock, int level, int optname,

void *optval, socklen_t *optlen);

int setsockopt(int sock, int level, int optname,

const void *optval, socklen_t optlen);

int close(int sock);

struct sockaddr_in {

int16_t sin_family;

uint16_t sin_port;

struct in_addr sin_addr;

char sin_zero[8];

};

struct in_addr {

uint32_t s_addr;

};

#include <netdb.h>

struct hostent *gethostbyname(const char *name);

int getsockname(int sock, struct sockaddr *name,

socklen_t *namelen);

int getpeername(int sock, struct sockaddr *name,

socklen_t *namelen);

struct hostent {

char *h_name;

212 GNU/Linux Application Programming

char **h_aliases;

int h_addrtype;

int h_length;

char **h_addr_list;

}

#define h_addr h_addr_list[0]

REFERENCES

[Jones03] BSD Sockets Programming from a Multilanguage Perspective, M. Tim
Jones, Charles River Media, 2003.

RESOURCES

The Ruby Language at http://www.ruby-lang.org/en/.
scsh—The Scheme Shell at http://www.scsh.net.
Stevens, W. Richard, Unix Network Programming—Networking APIs: Sockets and

XTI Volume 1, Prentice Hall PTR, 1998.
Stewart, Randall R., and Xie, Qiaobing, Stream Control Transmission Protocol

(SCTP): A Reference Guide, Addison-Wesley Professional, 2002.

Chapter 13 Introduction to Sockets Programming 213

http://www.ruby-lang.org/en/
http://www.scsh.net

This page intentionally left blank

215

GNU/Linux Process Model14

INTRODUCTION

This chapter introduces the GNU/Linux process model. It defines elements of a
process, how processes communicate with each other, and how to control and
monitor them. First, the chapter addresses a quick review of fundamental APIs and
then follows up with a more detailed review, complete with sample applications
that illustrate each technique.

GNU/LINUX PROCESSES

GNU/Linux presents two fundamental types of processes. These are kernel threads
and user processes. The focus here is on user processes (those created by fork and
clone). Kernel threads are created within the kernel context via the kernel_thread()
function.

In This Chapter

Creating Processes with fork()
Review of Process-Related API Functions
Raising and Catching Signals
Available Signals and Their Uses
GNU/Linux Process-Related Commands

When a subprocess is created (via fork), a new child task is created with a copy
of the memory used by the original parent task. This memory is separate between
the two processes. Any variables present when the fork takes place are available to
the child. But after the fork completes, any changes that the parent makes to a vari-
able are not seen by the child. This is important to consider when using the fork
API function.

When a new task is created, the memory space used by the parent isn’t actually
copied to the child. Instead, both the parent and child reference the same memory
space, with the memory pages marked as copy-on-write. When any of the processes
attempt to write to the memory, a new set of memory pages is created for the
process that is private to it alone. In this way, creating a new process is an efficient
mechanism, with copying of the memory space deferred until writes take place. In
the default case, the child process inherits open file descriptors, the memory image,
and CPU state (such as the PC and assorted registers).

Certain elements are not copied from the parent and instead are created specif-
ically for the child. The following sections take a look at examples of these. What’s
important to understand at this stage is that a process can create subprocesses
(known as children) and generally control them.

WHIRLWIND TOUR OF PROCESS APIS

As defined previously, you can create a new process with the fork or clone API
function. But in fact, you create a new process every time you execute a command
or start a program. Consider the simple program shown in Listing 14.1.

LISTING 14.1 First Process Example (on the CD-ROM at ./source/ch14/process.c)

1: #include <stdio.h>

2: #include <unistd.h>

3: #include <sys/types.h>

4:

5: int main()

6: {

7: pid_t myPid;

8: pid_t myParentPid;

9: gid_t myGid;

10: uid_t myUid;

11:

12: myPid = getpid();

216 GNU/Linux Application Programming

13: myParentPid = getppid();

14: myGid = getgid();

15: myUid = getuid();

16:

17: printf(“my process id is %d\n”, myPid);

18:

19: printf(“my parent’s process id is %d\n”, myParentPid);

20:

21: printf(“my group id is %d\n”, myGid);

22:

23: printf(“my user id is %d\n”, myUid);

24:

25: return 0;

26: }

Every process in GNU/Linux has a unique identifier called a process ID (or
pid). Every process also has a parent (except for the init process). In Listing 14.1,
you use the getpid() function to get the current process ID and the getppid() func-
tion to retrieve the process’s parent ID. Then you grab the group ID and the user
ID using getuid() and getgid().

If you were to compile and then execute this application, you would see the
following:

$./process

my process id is 10932

my parent’s process id is 10795

my group id is 500

my user id is 500

$

You see the process ID is 10932, and the parent is 10795 (our bash shell). If you
execute the application again, you see the following:

$./process

my process id is 10933

my parent’s process id is 10795

my group id is 500

my user id is 500

$

Note that your process ID has changed, but all other values have remained the
same. This is expected, because the only thing you’ve done is create a new process
that performs its I/O and then exits. Each time a new process is created, a new
process ID is allocated to it.

Chapter 14 GNU/Linux Process Model 217

CREATING A SUBPROCESS WITH fork

Now it’s time to move on to the real topic of this chapter, creating new processes
within a given process. The fork API function is the most common method to
achieve this.

The fork call is an oddity when you consider what is actually occurring. When
the fork API function returns, the split occurs, and the return value from fork
identifies in which context the process is running. Consider the following code
snippet:

pid_t pid;

...

pid = fork();

if (pid > 0) {

/* Parent context, child is pid */

} else if (pid == 0) {

/* Child context */

} else {

/* Parent context, error occurred, no child created */

}

You see here three possibilities from the return of the fork call. When the
return value of fork is greater than zero, then you’re in the parent context and the
value represents the process ID of the child. When the return value is zero, then
you’re in the child process’s context. Finally, any other value (less than zero) rep-
resents an error and is performed within the context of the parent.

Now it’s time to look at a sample application of fork (shown in Listing 14.2).
This working example illustrates the fork call, identifying the contexts. At line 11,
you call fork to split your process into parent and child. Both the parent and child
emit some text to standard-out so you can see each execution. Note that a shared
variable (role) is updated by both parent and child and emitted at line 45.

LISTING 14.2 Working Example of the fork Call (on the CD-ROM at

./source/ch14/smplfork.c)

1: #include <sys/types.h>

2: #include <unistd.h>

3: #include <errno.h>

4:

5: int main()

6: {

7: pid_t ret;

8: int status, i;

218 GNU/Linux Application Programming

9: int role = -1;

10:

11: ret = fork();

12:

13: if (ret > 0) {

14:

15: printf(“Parent: This is the parent process (pid %d)\n”,

16: getpid());

17:

18: for (i = 0 ; i < 10 ; i++) {

19: printf(“Parent: At count %d\n”, i);

20: sleep(1);

21: }

22:

23: ret = wait(&status);

24:

25: role = 0;

26:

27: } else if (ret == 0) {

28:

29: printf(“Child: This is the child process (pid %d)\n”,

30: getpid());

31:

32: for (i = 0 ; i < 10 ; i++) {

33: printf(“Child: At count %d\n”, i);

34: sleep(1);

35: }

36:

37: role = 1;

38:

39: } else {

40:

41: printf(“Parent: Error trying to fork() (%d)\n”, errno);

42:

43: }

44:

45: printf(“%s: Exiting...\n”,

46: ((role == 0) ? “Parent” : “Child”));

47:

48: return 0;

49: }

The output of the application shown in Listing 14.2 is shown in the following
snippet. You see that the child is started and in this case immediately emits some out-

Chapter 14 GNU/Linux Process Model 219

put (its process ID and the first count line). The parent and the child then switch off
from the GNU/Linux scheduler, each sleeping for one second and emitting a new count.

./smplfork

Child: This is the child process (pid 11024)

Child: At count 0

Parent: This is the parent process (pid 11023)

Parent: At count 0

Parent: At count 1

Child: At count 1

Parent: At count 2

Child: At count 2

Parent: At count 3

Child: At count 3

Parent: At count 4

Child: At count 4

Parent: At count 5

Child: At count 5

Child: Exiting...

Parent: Exiting...

#

At the end, you see the role variable used to emit the role of the process (par-
ent or child). In this case, whereas the role variable was shared between the two
processes, after the write occurs, the memory is split, and each process has its own
variable, independent of the other. How this occurs is really unimportant. What’s
important to note is that each process has a copy of its own set of variables.

SYNCHRONIZING WITH THE CREATOR PROCESS

One element of Listing 14.2 was ignored, but this section now digs into it. At line
23, the wait function was called within the context of the parent. The wait function
suspends the parent until the child exits. If the wait function is not called by the
parent and the child exits, the child becomes what is known as a “zombie” process
(neither alive nor dead). It can be problematic to have these processes lying around
because of the resources that they waste, so handling child exit is necessary. Note
that if the parent exits first, the children that have been spawned are inherited by
the init process.

Another way to avoid zombie processes is to tell the parent to ignore child exit signals
when they occur. This can be achieved using the signal API function, which is
explored in the next section, “Catching a Signal.” In any case, after the child has
stopped, any system resources that were used by the process are immediately released.

220 GNU/Linux Application Programming

The first two methods that this chapter discusses for synchronizing the exit of
a child process are the wait and waitpid API functions. The waitpid API function
provides greater control over the wait process; however, for now, this section looks
exclusively at the wait API function.

The wait function suspends the caller (in this case, the parent) awaiting the
exit of the child. After the child exits, the integer value reference (passed to wait)
is filled in with the particular exit status. Sample use of the wait function, includ-
ing parsing of the successful status code, is shown in the following code snippet:

int status;

pid_t pid;

...

pid = wait(&status);

if (WIFEXITED(status)) {

printf(“Process %d exited normally\n”, pid);

}

The wait function can set other potential status values, which are investigated
in the “wait” section later in this chapter.

CATCHING A SIGNAL

A signal is fundamentally an asynchronous callback for processes in GNU/Linux.
You can register to receive a signal when an event occurs for a process or register to
ignore signals when a default action exists. GNU/Linux supports a variety of signals,
which are covered later in this chapter. Signals are an important topic here in process
management because they allow processes to communicate with one another.

To catch a signal, you provide a signal handler for the process (a kind of callback
function) and the signal that we’re interested in for this particular callback. You can
now look at an example of registering for a signal. In this example, you register for
the SIGINT signal. This particular signal identifies that a Ctrl+C was received.

The main program in Listing 14.3 (lines 14–24) begins with registering your
callback function (also known as the signal handler). You use the signal API func-
tion to register your handler (at line 17). You specify first the signal of interest and
then the handler function that reacts to the signal. At line 21, you pause, which sus-
pends the process until a signal is received.

The signal handler is shown at Listing 14.3 at lines 6–12. You simply emit a
message to stdout and then flush it to ensure that it has been emitted. You return
from your signal handler, which allows your main function to continue from the
pause call and exit.

Chapter 14 GNU/Linux Process Model 221

LISTING 14.3 Registering for Catching a Signal (on the CD-ROM at

./source/ch14/sigcatch.c)

1: #include <stdio.h>

2: #include <sys/types.h>

3: #include <signal.h>

4: #include <unistd.h>

5:

6: void catch_ctlc(int sig_num)

7: {

8: printf(“Caught Control-C\n”);

9: fflush(stdout);

10:

11: return;

12: }

13:

14: int main()

15: {

16:

17: signal(SIGINT, catch_ctlc);

18:

19: printf(“Go ahead, make my day.\n”);

20:

21: pause();

22:

23: return 0;

24: }

RAISING A SIGNAL

The previous example illustrated a process receiving a signal. You can also have a
process send a signal to another process using the kill API function. The kill API
function takes a process ID (to whom the signal is to be sent) and the signal to send.

Take a look at a simple example of two processes communicating via a signal.
This example uses the classic parent/child process creation via fork (see Listing
14.4).

At lines 8–13, you declare your signal handler. This handler is very simple, as
shown, and simply emits some text to stdout indicating that the signal was received,
in addition to the process context (identified by the process ID).

The main (lines 15–61) is a simple parent/child fork example. The parent con-
text (starting at line 25) installs the signal handler and then pauses (awaiting the re-
ceipt of a signal). It then continues by awaiting the exit of the child process.

222 GNU/Linux Application Programming

The child context (starting at line 39) sleeps for one second (allowing the par-
ent context to execute and install its signal handler) and then raises a signal. Note
that you use the kill API function (line 47) to direct the signal to the parent process
ID (via getppid). The signal you use is SIGUSR1, which is a user-definable signal.
After the signal has been raised, the child sleeps another two seconds and then exits.

LISTING 14.4 Raising a Signal from a Child to a Parent Process (on the CD-ROM at

./source/ch14/raise.c)

1: #include <stdio.h>

2: #include <sys/types.h>

3: #include <sys/wait.h>

4: #include <unistd.h>

5: #include <signal.h>

6: #include <errno.h>

7:

8: void usr1_handler(int sig_num)

9: {

10:

11: printf(“Parent (%d) got the SIGUSR1\n”, getpid());

12:

13: }

14:

15: int main()

16: {

17: pid_t ret;

18: int status;

19: int role = -1;

20:

21: ret = fork();

22:

23: if (ret > 0) { /* Parent Context */

24:

25: printf(“Parent: This is the parent process (pid %d)\n”,

26: getpid());

27:

28: signal(SIGUSR1, usr1_handler);

29:

30: role = 0;

31:

32: pause();

33:

34: printf(“Parent: Awaiting child exit\n”);

Chapter 14 GNU/Linux Process Model 223

35: ret = wait(&status);

36:

37: } else if (ret == 0) { /* Child Context */

38:

39: printf(“Child: This is the child process (pid %d)\n”,

40: getpid());

41:

42: role = 1;

43:

44: sleep(1);

45:

46: printf(“Child: Sending SIGUSR1 to pid %d\n”,

getppid());

47: kill(getppid(), SIGUSR1);

48:

49: sleep(2);

50:

51: } else { /* Parent Context — Error */

52:

53: printf(“Parent: Error trying to fork() (%d)\n”,

errno);

54:

55: }

56:

57: printf(“%s: Exiting...\n”,

58: ((role == 0) ? “Parent” : “Child”));

59:

60: return 0;

61: }

While this example is probably self-explanatory, looking at its output can be
beneficial to understanding exactly what’s going on. The output for the application
shown in Listing 14.4 is as follows:

$./raise

Child: This is the child process (pid 14960)

Parent: This is the parent process (pid 14959)

Child: Sending SIGUSR1 to pid 14959

Parent (14959) got the SIGUSR1

Parent: Awaiting child exit

Child: Exiting...

Parent: Exiting...

$

224 GNU/Linux Application Programming

You can see that the child performs its first printf first (the fork gave control
of the CPU to the child first). The child then sleeps, allowing the parent to perform
its first printf, install the signal handler, and then pause awaiting a signal. Now that
the parent has suspended, the child can then execute again (after the one-second
sleep has finished). It emits its message, indicating that the signal is being raised,
and then raises the signal using the kill API function. The parent then performs
the printf within the signal handler (in the context of the parent process as shown
by the process ID) and then suspends again awaiting child exit via the wait API
function. The child process can then execute again, and after the two-second sleep
has finished, it exits, releasing the parent from the wait call so that it, too, can exit.

It’s fairly simple to understand, but it’s a powerful mechanism for coordination
and synchronization between processes. The entire thread is shown graphically in
Figure 14.1. This illustrates the coordination points that exist within your applica-
tion (shown as dashed horizontal lines from the child to the parent).

Chapter 14 GNU/Linux Process Model 225

FIGURE 14.1 Graphical illustration of Listing 14.4.

If you’re raising a signal to yourself (the same process), you can also use the raise
API function. This takes the signal to be raised but no process ID argument (be-
cause it’s automatically getpid).

TRADITIONAL PROCESS API

Now that you’ve looked at a number of different API functions that relate to the
GNU/Linux process model, you can now dig further into these functions (and oth-
ers) and explore them in greater detail. Table 14.1 provides a list of the functions
that are explored in the remainder of this section, including their uses.

226 GNU/Linux Application Programming

API Function Use

fork Create a new child process.

wait Suspend execution until a child process exits.

waitpid Suspend execution until a specific child process exits.

signal Install a new signal handler.

pause Suspend execution until a signal is caught.

kill Raise a signal to a specified process.

raise Raise a signal to the current process.

exec Replace the current process image with a new process image.

exit Cause normal program termination of the current process.

TABLE 14.1 Traditional Process and Related APIs

The remainder of this chapter addresses each of these functions in detail, illus-
trated in sample applications.

fork

The fork API function provides the means to create a new child subprocess from an
existing parent process. The new child process is identical to the parent process in
almost every way. Some differences include the process ID (a new ID for the child)
and that the parent process ID is set to the parent. File locks and signals that are
pending to the parent are not inherited by the child process. The prototype for the
fork function is defined as follows:

pid_t fork(void);

The fork API function takes no arguments and returns a pid (process identi-
fier). The fork call has a unique structure in that the return value identifies the con-
text in which the process is running. If the return value is zero, then the current
process is the newly created child process. If the return value is greater than zero,
then the current process is the parent, and the return value represents the process
ID of the child. This is illustrated in the following snippet:

#include <sys/types.h>

#include <unistd.h>

#include <errno.h>

...

pid_t ret;

ret = fork();

if (ret > 0) {

/* Parent Process */

printf(“My pid is %d and my child’s is %d\n”,

getpid(), ret);

} else if (ret == 0) {

/* Child Process */

printf(“My pid is %d and my parent’s is %d\n”,

getpid(), getppid());

} else {

/* Parent Process — error */

printf(“An error occurred in the fork (%d)\n”, errno);

}

Within the fork() call, the process is duplicated, and then control is returned
to the unique process (parent and child). If the return value of fork is less than zero,
then an error has occurred. The errno value represents either EAGAIN or ENOMEM.
Both errors arise from a lack of available memory.

The fork API function is very efficient in GNU/Linux because of its unique im-
plementation. Rather than copy the page tables for the memory when the fork
takes place, the parent and child share the same page tables but are not permitted
to write to them. When a write takes place to one of the shared page tables, the page
table is copied for the writing process so that it has its own copy. This is called copy-
on-write in GNU/Linux and permits the fork to take place very quickly. Only as
writes occur to the shared data memory does the segregation of the page tables take
place.

wait

The purpose of the wait API function is to suspend the calling process until a child
process (created by this process) exits or until a signal is delivered. If the parent isn’t

Chapter 14 GNU/Linux Process Model 227

currently waiting on the child to exit, the child exits, and the child process becomes
a zombie process.

The wait function provides an asynchronous mechanism as well. If the child
process exits before the parent has had a chance to call wait, then the child becomes
a zombie. However, it is then freed after wait is called. The wait function, in this
case, returns immediately.

The prototype for the wait function is defined as follows:

pid_t wait(int *status);

The wait function returns the pid value of the child that exited, or –1 if an error
occurred. The status variable (whose reference is passed into wait as its only argu-
ment) returns status information about the child exit. This variable can be evalu-
ated using a number of macros. These macros are listed in Table 14.2.

228 GNU/Linux Application Programming

Macro Description

WIFEXITED Nonzero if the child exited normally

WEXITSTATUS Returns the exit status of the child

WIFSIGNALED Returns true if child exited because of a signal that wasn’t

caught by the child

WTERMSIG Returns the signal number that caused the child to exit

(relevant only if WIFSIGNALED is true)

TABLE 14.2 Macro Functions to Evaluate wait Status

The general form of the status evaluation macro is demonstrated in the fol-
lowing code snippet:

pid = wait(&status);

if (WIFEXITED(status)) {

printf(“Child exited normally with status %d\n”,

WEXITSTATUS(status));

} else if (WIFSIGNALED(status)) {

printf(“Child exited by signal with status %d\n”,

WTERMSIG(status));

}

In some cases, you’re not interested in the exit status of your child processes.
In the signal API function discussion, you can see a way to ignore this status so that
wait does not need to be called by the parent to avoid child zombie processes.

waitpid

Whereas the wait API function suspends the parent until a child exits (any child),
the waitpid API function suspends until a specific child exits. The waitpid function
provides some other capabilities, which are explored here. The waitpid function
prototype is defined as follows:

pid_t waitpid(pid_t pid, int *status, int options);

The return value for waitpid is the process identifier for the child that exited.
The return value can also be zero if the options argument is set to WNOHANG and no
child process has exited (returns immediately).

The arguments to waitpid are a pid value, a reference to a return status, and a
set of options. The pid value can be a child process ID or other values that provide
different behaviors. Table 14.3 lists the possible pid values for waitpid.

Chapter 14 GNU/Linux Process Model 229

Value Description

> 0 Suspend until the child identified by the pid value has exited

0 Suspend until any child exits whose group ID matches that of the

calling process

–1 Suspend until any child exits (identical to the wait function)

< –1 Suspend until any child exits whose group ID is equal to the

absolute value of the pid argument

TABLE 14.3 pid Arguments for waitpid

The status argument for waitpid is identical to the wait function, except that
two new status macros are possible (see Table 14.4). These macros are seen only if
the WUNTRACED option is specified.

Macro Description

WIFSTOPPED Returns true if the child process is currently stopped

WSTOPSIG Returns the signal that caused the child to stop (relevant only if

WIFSTOPPED was nonzero)

TABLE 14.4 Extended Macro Functions for waitpid

The final argument to waitpid is the options argument. Two options are avail-
able: WNOHANG and WUNTRACED. WNOHANG, as discussed, avoids suspension of the parent

process and returns only if a child has exited. The WUNTRACED option returns for chil-
dren that have been stopped and not yet reported.

Now it’s time to take a look at some examples of the waitpid function. In the
first code snippet, you fork off a new child process and then await it explicitly
(rather than as with the wait method that waits for any child).

pid_t child_pid, ret;

int status;

...

child_pid = fork();

if (child_pid == 0) {

// Child process...

} else if (child_pid > 0) {

ret = waitpid(child_pid, &status, 0);

/* Note ret should equal child_pid on success */

if (WIFEXITED(status)) {

printf(“Child exited normally with status %d\n”,

WEXITSTATUS(status));

}

}

In this example, you fork off your child and then use waitpid with the child’s
process ID. Note here that you can use the status macro functions that were defined
with wait (as demonstrated with WIFEXITED). If you don’t want to wait for the child,
you can specify WNOHANG as an option. This requires you to call waitpid periodically
to handle the child exit:

ret = waitpid(child_pid, &status, WNOHANG);

The following line awaits a child process exiting the defined group. Note that
you negate the group ID in the call to waitpid. Also notable is passing NULL as the
status reference. In this case, you’re not interested in getting the child’s exit status.
In any case, the return value is the process ID for the child process that exited.

pid_t group_id;

...

ret = waitpid(-group_id, NULL, 0);

signal

The signal API function allows you to install a signal handler for a process. The sig-
nal handler passed to the signal API function has the following form:

void signal_handler(int signal_number);

230 GNU/Linux Application Programming

After it is installed, the function is called for the process when the particular
signal is raised to the process. The prototype for the signal API function is defined
as follows:

sighandler_t signal(int signum, sighandler_t handler);

where the sighandler_t typedef is as follows:

typedef void (*sighandler_t)(int);

The signal function returns the previous signal handler that was installed,
which allows the new handler to chain the older handlers together (if necessary).

A process can install handlers to catch signals, and it can also define that signals
should be ignored (SIG_IGN). To ignore a signal for a process, the following code
snippet can be used:

signal(SIGCHLD, SIG_IGN);

After this particular code is executed, it is not necessary for a parent process to
wait for the child to exit using wait or waitpid.

Signal handlers for a process can be of three different types. They can be ig-
nored (via SIG_IGN), the default handler for the particular signal type (SIG_DFL), or
a user-defined handler (installed via signal).

A large number of signals exist for GNU/Linux. They are provided in Tables
14.5–14.8 with their meanings. The signals are split into four groups, based upon
default action for the signal.

Chapter 14 GNU/Linux Process Model 231

Signal Description

SIGHUP Hang up—commonly used to restart a task

SIGINT Interrupt from the keyboard

SIGKILL Kill signal

SIGUSR1 User-defined signal

SIGUSR2 User-defined signal

SIGPIPE Broken pipe (no reader for write)

SIGALRM Timer signal (from API function alarm)

SIGTERM Termination signal

SIGPROF Profiling timer expired

TABLE 14.5 GNU/Linux Signals That Default to Terminate

232 GNU/Linux Application Programming

Signal Description

SIGCHLD Child stopped or terminated

SIGCLD Same as SIGCHLD

SIGURG Urgent data on a socket

TABLE 14.6 GNU/Linux Signals That Default to Ignore

Signal Description

SIGSTOP Stop process

SIGTSTP Stop initiated from TTY

SIGTTIN Background process has TTY input

SIGTTOU Background process has TTY output

TABLE 14.7 GNU/Linux Signals That Default to Stop

Signal Description

SIGQUIT quit signal from keyboard

SIGILL Illegal instruction encountered

SIGTRAP Trace or breakpoint trap

SIGABRT Abort signal (from API function abort)

SIGIOT IOT trap, same as SIGABRT

SIGBUS Bus error (invalid memory access)

SIGFPE Floating-point exception

SIGSEGV Segment violation (invalid memory access)

TABLE 14.8 GNU/Linux Signals That Default to Core Dump

The first group (terminate) lists the signals whose default action is to terminate
the process. The second group (ignore) lists the signals for which the default action
is to ignore the signal. The third group (stop) stops the process (suspends rather
than terminates). Finally, the fourth group (core) lists those signals whose action is
to both terminate the process and perform a core dump (generate a core dump
file).

It’s important to note that the SIGSTOP and SIGKILL signals cannot be ignored or
caught by the application. One other signal not categorized in the preceding infor-
mation is the SIGCONT signal, which is used to continue a process if it was previously
stopped.

GNU/Linux also supports 32 real-time signals (of POSIX 1003.1-2001). The
signals are numbered from 32 (SIGRTMIN) up to 63 (SIGRTMAX) and can be sent using
the sigqueue API function. The receiving process must use sigaction to install the
signal handler (discussed later in this chapter) to collect other data provided in this
signaling mechanism.

Now it’s time to look at a simple application that installs a signal handler at the
parent, which is inherited by the child (see Listing 14.5). In this listing, you first
declare a signal handler (lines 8–13) that is installed by the parent prior to the fork
(at line 21). Installing the handler prior to the fork means that the child inherits this
signal handler as well.

After the fork (at line 23), the parent and child context emit an identification
string to stdout and then call the pause API function (which suspends each process
until a signal is received). When a signal is received, the signal handler prints out
the context in which it caught the signal (via getpid) and then either exits (child
process) or awaits the exit of the child (parent process).

LISTING 14.5 Signal Demonstration with a Parent and Child Process (on the CD-ROM at

./source/ch14/sigtest.c)

1: #include <stdio.h>

2: #include <sys/types.h>

3: #include <sys/wait.h>

4: #include <unistd.h>

5: #include <signal.h>

6: #include <errno.h>

7:

8: void usr1_handler(int sig_num)

9: {

10:

11: printf(“Process (%d) got the SIGUSR1\n”, getpid());

12:

13: }

14:

15: int main()

16: {

17: pid_t ret;

18: int status;

Chapter 14 GNU/Linux Process Model 233

19: int role = -1;

20:

21: signal(SIGUSR1, usr1_handler);

22:

23: ret = fork();

24:

25: if (ret > 0) { /* Parent Context */

26:

27: printf(“Parent: This is the parent process (pid %d)\n”,

28: getpid());

29:

30: role = 0;

31:

32: pause();

33:

34: printf(“Parent: Awaiting child exit\n”);

35: ret = wait(&status);

36:

37: } else if (ret == 0) { /* Child Context */

38:

39: printf(“Child: This is the child process (pid %d)\n”,

40: getpid());

41:

42: role = 1;

43:

44: pause();

45:

46: } else { /* Parent Context — Error */

47:

48: printf(“Parent: Error trying to fork() (%d)\n”,

errno);

49:

50: }

51:

52: printf(“%s: Exiting...\n”,

53: ((role == 0) ? “Parent” : “Child”));

54:

55: return 0;

56: }

Now consider the sample output for this application to better understand what
happens. Note that neither the parent nor the child raises any signals to each other.
This example takes care of sending the signal at the command line, using the kill
command.

234 GNU/Linux Application Programming

./sigtest &

[1] 20152

Child: This is the child process (pid 20153)

Parent: This is the parent process (pid 20152)

kill -10 20152

Process (20152) got the SIGUSR1

Parent: Awaiting child exit

kill -10 20153

Process (20153) got the SIGUSR1

Child: Exiting...

Parent: Exiting...

#

You begin by running the application (called sigtest) and placing it in the
background (via the & symbol). You see the expected outputs from the child and
parent processes identifying that the fork has occurred and that both processes are
now active and awaiting signals at the respective pause calls. You use the kill com-
mand with the signal of interest (–10, or SIGUSR1) and the process identifier to
which to send the signal. In this case, you send the first SIGUSR1 to the parent
process (20152). The parent immediately identifies receipt of the signal via the sig-
nal handler, but note that it executes within the context of the parent process (as
identified by the process ID of 20152). The parent then returns from the pause
function and awaits the exit of the child via the wait function. You then send an-
other SIGUSR1 signal to the child using the kill command. In this case, you direct
the kill command to the child by its process ID (20153). The child also indicates
receipt of the signal by the signal handler and in its own context. The child then
exits and permits the parent to return from the wait function and exit also.

Despite the simplicity of the signals mechanism, it can be a powerful method to
communicate with processes in an asynchronous fashion.

pause

The pause function suspends the calling process until a signal is received. After the
signal is received, the calling process returns from the pause function, permitting
it to continue. The prototype for the pause API function is as follows:

int pause(void);

If the process has installed a signal handler for the signal that was caught, then
the pause function returns after the signal handler has been called and returns.

Chapter 14 GNU/Linux Process Model 235

kill

The kill API function raises a signal to a process or set of processes. A return of
zero indicates that the signal was successfully sent, otherwise –1 is returned. The
kill function prototype is as follows:

int kill(pid_t pid, int sig_num);

The sig_num argument represents the signal to send. The pid argument can be
a variety of different values (as shown in Table 14.9).

236 GNU/Linux Application Programming

pid Description

0 Signal sent to the process defined by pid

0 Signal sent to all processes within the process group

1 Signal sent to all processes (except for the init process)

–1 Signal sent to all processes within the process group defined

by the absolute value of pid

TABLE 14.9 Values of pid Argument for kill Function

Some simple examples of the kill function follow. You can send a signal to
yourself using the following code snippet:

kill(getpid(), SIGHUP);

The process group enables you to collect a set of processes together that can be
signaled together as a group. API functions such as getpgrp (get process group) and
setpgrp (set process group) can be used to read and set the process group identifier.
You can send a signal to all processes within a defined process group as follows:

kill(0, SIGUSR1);

or to another process group as follows:

pid_t group;

...

kill(-group, SIGUSR1);

You can also mimic the behavior of sending to the current process group by
identifying the group and then passing the negative of this value to signal:

pid_t group = getpgrp();

...

kill(-group, SIGUSR1);

Finally, you can send a signal to all processes (except for init) using the –1 pid
identifier. This, of course, requires that you have permission to do this.

kill(-1, SIGUSR1);

raise

The raise API function can be used to send a specific signal to the current process
(the process context in which the raise function is called). The prototype for the
raise function is as follows:

int raise(int sig_num);

The raise function is a constrained version of the kill API function that tar-
gets only the current process (getpid()).

exec VARIANTS

The fork API function provided a mechanism to split an application into separate
parent and child processes, sharing the same code but potentially serving different
roles. The exec family of functions replaces the current process image altogether.

The exec function starts a new program, replacing the current process, while re-
taining the current pid.

The prototypes for the variants of exec are provided here:

int execl(const char *path, const char *arg, ...);

int execlp(const char *path, const char *arg, ...);

int execle(const char *path, const char *arg, ...,

char * const envp[]);

int execv(const char *path, char *const argv[]);

int execvp(const char *file, char *const argv[]);

int execve(const char *filename, char *const argv[],

char *const envp[]);

Chapter 14 GNU/Linux Process Model 237

One of the notable differences between these functions is that one set takes a list
of parameters (arg0, arg1, and so on) and the other takes an argv array. The path ar-
gument specifies the program to run, and the remaining parameters specify the ar-
guments to pass to the program.

The exec commands permit the current process context to be replaced with the
program (or command) specified as the first argument. Take a look at a quick ex-
ample of execcl to achieve this:

execl(“/bin/ls”, “ls”, “-la”, NULL);

This command replaces the current process with the ls image (list directory).
You specify the command to execute as the first argument (including its path). The
second argument is the command again (recall that arg0 of the main program call
is the name of the program). The third argument is an option that you pass to ls,
and finally, you identify the end of your list with a NULL. Invoking an application
that performs this command results in an ls -la.

The important item to note here is that the current process context is replaced
by the command requested via execl. Therefore, when the preceding command is
successfully executed, it never returns.

One additional item to note is that execl includes the absolute path to the
command. If you choose to execute execlp instead, the full path is not required be-
cause the parent’s PATH definition is used to find the command.

One interesting example of execlp is its use in creating a simple shell (on top of
an existing shell). You support only simple commands within this shell (those that
take no arguments). See Listing 14.6 for an example.

LISTING 14.6 Simple Shell Interpreter Using execlp (on the CD-ROM at

./source/ch14/simpshell.c)

1: #include <sys/types.h>

2: #include <sys/wait.h>

3: #include <unistd.h>

4: #include <stdio.h>

5: #include <stdlib.h>

6: #include <string.h>

7:

8: #define MAX_LINE 80

9:

10: int main()

11: {

12: int status;

13: pid_t childpid;

238 GNU/Linux Application Programming

14: char cmd[MAX_LINE+1];

15: char *sret;

16:

17: while (1) {

18:

19: printf(“mysh>”);

20:

21: sret = fgets(cmd, sizeof(cmd), stdin);

22:

23: if (sret == NULL) exit(-1);

24:

25: cmd[strlen(cmd)-1] = 0;

26:

27: if (!strncmp(cmd, “bye”, 3)) exit(0);

28:

29: childpid = fork();

30:

31: if (childpid == 0) {

32:

33: execlp(cmd, cmd, NULL);

34:

35: } else if (childpid > 0) {

36:

37: waitpid(childpid, &status, 0);

38:

39: }

40:

41: printf(“\n”);

42:

43: }

44:

45: return 0;

46: }

This shell interpreter is built around the simple parent/child fork application.
The parent forks off the child (at line 29) and then awaits completion. The child
takes the command read from the user (at line 21) and executes this using execlp
(line 33). You simply specify the command as the command to execute and also
include it for arg0 (second argument). The NULL terminates the argument list; in
this case no arguments are passed for the command. The child process never
returns, but its exit status is recognized by the parent at the waitpid function
(line 37).

Chapter 14 GNU/Linux Process Model 239

As the user types in commands, they are executed via execlp. Typing in the
command bye causes the application to exit.

Because no arguments are passed to the command (via execlp), the user can
type in only commands and no arguments. Any arguments that are provided are
simply ignored by the interpreter.

A sample execution of this application is shown here:

$./simpshell

mysh>date

Sat Apr 24 13:47:48 MDT 2004

mysh>ls

simpshell simpshell.c

mysh>bye

$

You can see that after executing the shell, the prompt is displayed, indicating
that commands can be entered. The date command is entered first, which provides
the current date and time. Next, you do an ls, which gives the contents of the cur-
rent directory. Finally, you exit the shell using the bye internal command.

Now take a look at one final exec variant as a way to explore the argument and
environment aspects of a process. The execve variant allows an application to pro-
vide a command with a list of command-line arguments (as a vector) as well as an
environment for the new process (as a vector of environment variables). Now take
a look back at the execve prototype:

int execve(const char *filename, char *const argv[],

char *const envp[]);

The filename argument is the program to execute, which must be a binary ex-
ecutable or a script that includes the #! interpreter spec at the top of the file. The
argv argument is an array of arguments for the command, with the first argument
being the command itself (the same as with the filename argument). Finally, the
envp argument is an array of key/value strings containing environment variables.
Consider the following simple example that retrieves the environment variables
through the main function (on the CD-ROM at ./source/ch14/sigenv.c):

#include <stdio.h>

#include <unistd.h>

int main(int argc, char *argv[], char *envp[])

{

int ret;

char *args[]={ “ls”, “-la”, NULL };

240 GNU/Linux Application Programming

ret = execve(“/bin/ls”, args, envp);

fprintf(stderr, “execve failed\n”);

return 0;

}

The first item to note in this example is the main function definition. You use a
variant that passes in a third parameter that lists the environment for the process.
This can also be gathered by the program using the special environ variable, which
has the following definition:

extern char *environ[];

POSIX systems do not support the envp argument to main, so it’s best to use the en-
viron variable.

You specify your argument vector (args), which contains your command name
and arguments, terminated by a NULL. This is provided as the argument vector to
execve, along with the environment (passed in through the main function). This
particular example simply performs an ls operation (by replacing the process with
the ls command). Note also that you provide the -la option.

You can also specify your own environment similar to the args vector. For ex-
ample, the following specifies a new environment for the process:

char *envp[] = { “PATH=/bin”, “FOO=99”, NULL };

...

ret = execve(command, args, envp);

The envp variable provides the set of variables that define the environment for
the newly created process.

alarm

The alarm API function can be very useful to time out other functions. The alarm
function works by raising a SIGALRM signal after the number of seconds passed to
alarm has expired. The function prototype for alarm is as follows:

unsigned int alarm(unsigned int secs);

The user passes in the number of seconds to wait before sending the SIGALRM
signal. The alarm function returns zero if no alarm was previously scheduled;
otherwise, it returns the number of seconds pending on the previous alarm.

Chapter 14 GNU/Linux Process Model 241

Here’s an example of alarm to kill the current process if the user isn’t able to
enter a password in a reasonable amount of time (see Listing 14.7). At line 18, you
install your signal handler for the SIGALRM signal. The signal handler is for the wakeup
function (lines 6–9), which simply raises the SIGKILL signal. This terminates the
application. You then emit the message to enter the password within three seconds
and try to read the password from the keyboard (stdin). If the read call succeeds,
you disable the alarm (by calling alarm with an argument of zero). The else portion
of the test (line 30) checks the user password and continue. If the alarm times out, a
SIGALRM is generated, resulting in a SIGKILL signal, which terminates the program.

LISTING 14.7 Sample Use of alarm and Signal Capture (on the CD-ROM at

./source/ch14/alarm.c)

1: #include <stdio.h>

2: #include <unistd.h>

3: #include <signal.h>

4: #include <string.h>

5:

6: void wakeup(int sig_num)

7: {

8: raise(SIGKILL);

9: }

10:

11: #define MAX_BUFFER 80

12:

13: int main()

14: {

15: char buffer[MAX_BUFFER+1];

16: int ret;

17:

18: signal(SIGALRM, wakeup);

19:

20: printf(“You have 3 seconds to enter the password\n”);

21:

22: alarm(3);

23:

24: ret = read(0, buffer, MAX_BUFFER);

25:

26: alarm(0);

27:

28: if (ret == -1) {

29:

242 GNU/Linux Application Programming

30: } else {

31:

32: buffer[strlen(buffer)-1] = 0;

33: printf(“User entered %s\n”, buffer);

34:

35: }

36:

37: }

exit

The exit API function terminates the calling process. The argument passed to exit
is returned to the parent process as the status of the parent’s wait or waitpid call.
The function prototype for exit is as follows:

void exit(int status);

The process calling exit also raises a SIGCHLD to the parent process and frees the
resources allocated by the process (such as open file descriptors). If the process has
registered a function with atexit or on_exit, these are called (in the reverse order
to their registration).

This call is very important because it indicates success or failure to the shell en-
vironment. Scripts that rely on a program’s exit status can behave improperly if the
application does not provide an adequate status. This call provides that linkage to
the scripting environment. Returning zero to the script indicates a TRUE or SUCCESS
indication.

POSIX SIGNALS

Before this discussion of process-related functions ends, you need to take a quick
look at the POSIX signal APIs. The POSIX-compliant signals were introduced first
in BSD and provide a portable API over the use of the signal API function. Have a
look at a multiprocess application that uses the sigaction function to install a sig-
nal handler. The sigaction API function has the following prototype:

#include <signal.h>

int sigaction(int signum,

const struct sigaction *act,

struct sigaction *oldact);

signum is the signal for which you’re installing the handler, act specifies the
action to take for signum, and oldact is used to store the previous action. The
sigaction structure contains a number of elements that can be configured:

Chapter 14 GNU/Linux Process Model 243

struct sigaction {

void (*sa_handler)(int);

void (*sa_sigaction)(int, siginfo_t *, void *);

sigset_t sa_mask;

int sa_flags;

};

The sa_handler is a traditional signal handler that accepts a single argument
(and int represents the signal). The sa_sigaction is a more refined version of a sig-
nal handler. The first int argument is the signal, and the third void* argument is a
context variable (provided by the user). The second argument (siginfo_t) is a spe-
cial structure that provides more detailed information about the signal that was
generated:

siginfo_t {

int si_signo; /* Signal number */

int si_errno; /* Errno value */

int si_code; /* Signal code */

pid_t si_pid; /* Pid of signal sending process */

uid_t si_uid; /* User id of signal sending process */

int si_status; /* Exit value or signal */

clock_t si_utime; /* User time consumed */

clock_t si_stime; /* System time consumed */

sigval_t si_value /* Signal value */

int si_int; /* POSIX.1b signal */

void * si_ptr /* POSIX.1b signal */

void * si_addr /* Memory location which caused fault */

int si_band; /* Band Event */

int si_fd; /* File Descriptor */

}

One of the interesting items to note from siginfo_t is that with this API, you
can identify the source of the signal (si_pid). The si_code field can be used to iden-
tify how the signal was raised. For example, if its value is SI_USER, then it was raised
by a kill, raise, or sigsend API function. If its value is SI_KERNEL, then it was raised
by the kernel. SI_TIMER indicates that a timer expired and resulted in the signal
generation.

The si_signo, si_errno, and si_code are set for all signals. The si_addr field
(indicating the memory location where the fault occurred) is set for SIGILL, SIGFPE,
SIGSEGV, and SIGBUS. The sigaction main page identifies which fields are relevant
for which signals.

244 GNU/Linux Application Programming

The sa_flags argument of sigaction allows a modification of the behavior of
the sigaction function. For example, if you provide SA_SIGINFO, then the sigaction
uses the sa_sigaction field to identify the signal handler instead of sa_handler. Flag
SA_ONESHOT can be used to restore the signal handler to the prior state after the sig-
nal handler has been called once. The SA_NOMASK (or SA_NODEFER) flag can be used to
not inhibit the reception of the signal while in the signal handler (use with care).

A sample function is provided in Listing 14.8. The only real difference you see
here from other examples is that sigaction is used at line 49 to install your signal
handler. You create a sigaction structure at line 42, then initialize it with your
function at line 48, and also identify that you’re using the new sigaction handler
via the SA_SIGINFO flag at line 47. When your signal finally fires (at line 34 in the
parent process), your signal handler emits the originating process ID at line 12
(using the si_pid field of the siginfo reference).

LISTING 14.8 Simple Application Illustrating sigaction for Signal Installation (on the

CD-ROM at ./source/ch14/posixsig.c)

1: #include <sys/types.h>

2: #include <sys/wait.h>

3: #include <signal.h>

4: #include <stdio.h>

5: #include <unistd.h>

6: #include <errno.h>

7:

8: static int stopChild = 0;

9:

10: void sigHandler(int sig, siginfo_t *siginfo, void *ignore)

11: {

12: printf(“Got SIGUSR1 from %d\n”, siginfo->si_pid);

13: stopChild=1;

14:

15: return;

16: }

17:

18: int main()

19: {

20: pid_t ret;

21: int status;

22: int role = -1;

23:

24: ret = fork();

25:

Chapter 14 GNU/Linux Process Model 245

26: if (ret > 0) {

27:

28: printf(“Parent: This is the parent process (pid %d)\n”,

29: getpid());

30:

31: /* Let the child init */

32: sleep(1);

33:

34: kill(ret, SIGUSR1);

35:

36: ret = wait(&status);

37:

38: role = 0;

39:

40: } else if (ret == 0) {

41:

42: struct sigaction act;

43:

44: printf(“Child: This is the child process (pid %d)\n”,

45: getpid());

46:

47: act.sa_flags = SA_SIGINFO;

48: act.sa_sigaction = sigHandler;

49: sigaction(SIGUSR1, &act, 0);

50:

51: printf(“Child Waiting...\n”);

52: while (!stopChild);

53:

54: role = 1;

55:

56: } else {

57:

58: printf(“Parent: Error trying to fork() (%d)\n”, errno);

59:

60: }

61:

62: printf(“%s: Exiting...\n”,

63: ((role == 0) ? “Parent” : “Child”));

64:

65: return 0;

66: }

246 GNU/Linux Application Programming

The sigaction function provides a more advanced mechanism for signal han-
dling, in addition to greater portability. For this reason, sigaction should be used
over signal.

SYSTEM COMMANDS

This section takes a look at a few of the GNU/Linux commands that work with the
previously mentioned API functions. It looks at commands that permit you to in-
spect the process list and send a signal to a process or to an entire process group.

ps

The ps command provides a snapshot in time of the current set of processes active
on a given system. The ps command takes a large variety of options; this section ex-
plores a few.

In the simplest form, you can type ps at the keyboard to see a subset of the
processes that are active:

$ ps

PID TTY TIME CMD

22001 pts/0 00:00:00 bash

22186 pts/0 00:00:00 ps

$

First, you see your bash session (your own process) and your ps command
process (every command in GNU/Linux is executed within its own subprocess).
You can see all of the processes running using the -a option (this list is shortened
for brevity):

$ ps -a

PID TTY TIME CMD

1 ? 00:00:05 init

2 ? 00:00:00 keventd

3 ? 00:00:00 kapmd

4 ? 00:00:00 ksoftirqd_CPU0

...

22001 pts/0 00:00:00 bash

22074 ? 00:00:00 sendmail

22189 pts/0 00:00:00 ps

$

Chapter 14 GNU/Linux Process Model 247

In this example, you see a number of other processes including the mother of
all processes (init, process ID 1) and assorted kernel threads. If you want to see
only those processes that are associated with your user, you can accomplish this
with the —User option:

$ ps —User mtj

PID TTY TIME CMD

22000 ? 00:00:00 sshd

22001 pts/0 00:00:00 bash

22190 pts/0 00:00:00 ps

$

Another very useful option is -H, which tells you the process hierarchy. In the
next example, you request all processes for user mtj but then also request their
hierarchy (parent/child relationships):

$ ps —User mtj -H

PID TTY TIME CMD

22000 ? 00:00:00 sshd

22001 pts/0 00:00:00 bash

22206 pts/0 00:00:00 ps

#

Here you see that the base process is an sshd session (because you are con-
nected to this server via the secure shell). This is the parent of the bash session,
which in turn is the parent of the ps command that you just executed.

The ps command can be very useful, especially when you’re interested in find-
ing your process identifiers to kill a process or send it a signal.

top

The top command is related to ps, but top runs in real time and lists the activity of
the processes for the given CPU. In addition to the process list, you can also see sta-
tistics about the CPU (number of processes, number of zombies, memory used,
and so on). You’re obviously in need of a memory upgrade here (only 4 MB free).
This sample list has again been shortened for brevity.

19:27:49 up 79 days, 10:04, 2 users, load average: 0.00, 0.00, 0.00

47 processes: 44 sleeping, 3 running, 0 zombie, 0 stopped

CPU states: 0.0% user 0.1% system 0.0% nice 0.0% iowait 99.8% idle

Mem: 124984k av, 120892k used, 4092k free, 0k shrd, 52572k buff

79408k actv, 4k in_d, 860k in_c

248 GNU/Linux Application Programming

Swap: 257032k av, 5208k used, 251824k free 37452k

cached

PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME CPU COMMAND

22226 mtj 15 0 1132 1132 868 R 0.1 0.9 0:00 0 top

1 root 15 0 100 76 52 S 0.0 0.0 0:05 0 init

2 root 15 0 0 0 0 SW 0.0 0.0 0:00 0 keventd

3 root 15 0 0 0 0 RW 0.0 0.0 0:00 0 kapmd

4 root 34 19 0 0 0 SWN 0.0 0.0 0:00 0 ksoftirqd_

CPU0

...

1708 root 15 0 196 4 0 S 0.0 0.0 0:00 0 login

1709 root 15 0 284 4 0 S 0.0 0.0 0:00 0 bash

22001 mtj 15 0 1512 1512 1148 S 0.0 1.2 0:00 0 bash

The rate of sampling can also be adjusted for top, in addition to a number of
other options (see the top man page for more details).

kill

The kill command, like the kill API function, allows you to send a signal to a
process. You can also use it to list the signals that are relevant for the given proces-
sor architecture. For example, if you want to see the signals that are available for the
given processor, you use the -l option:

kill -l

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL

5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE

9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2

13) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD

18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN

22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ

26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO

30) SIGPWR 31) SIGSYS 33) SIGRTMIN 34) SIGRTMIN+1

35) SIGRTMIN+2 36) SIGRTMIN+3 37) SIGRTMIN+4 38) SIGRTMIN+5

39) SIGRTMIN+6 40) SIGRTMIN+7 41) SIGRTMIN+8 42) SIGRTMIN+9

43) SIGRTMIN+10 44) SIGRTMIN+11 45) SIGRTMIN+12 46) SIGRTMIN+13

47) SIGRTMIN+14 48) SIGRTMIN+15 49) SIGRTMAX-14 50) SIGRTMAX-13

51) SIGRTMAX-12 52) SIGRTMAX-11 53) SIGRTMAX-10 54) SIGRTMAX-9

55) SIGRTMAX-8 56) SIGRTMAX-7 57) SIGRTMAX-6 58) SIGRTMAX-5

59) SIGRTMAX-4 60) SIGRTMAX-3 61) SIGRTMAX-2 62) SIGRTMAX-1

63) SIGRTMAX

#

Chapter 14 GNU/Linux Process Model 249

For a running process, you can send a signal as follows. In this example, you
send the SIGSTOP signal to the process identified by the process ID 23000.

kill -s SIGSTOP 23000

This places the process in the STOPPED state (not running). You can start the
process up again by giving it the SIGCONT signal, as follows:

kill -s SIGCONT 23000

Like the kill API function, you can signal an entire process group by provid-
ing a pid of 0. Similarly, all processes within the process group can be sent a signal
by sending the negative of the process group.

SUMMARY

This chapter explored the traditional process API provided in GNU/Linux. You in-
vestigated process creation with fork, validating the status return of fork, and var-
ious process-related API functions such as getpid (get process ID) and getppid (get
parent process ID). The chapter then looked at process support functions such as
wait and waitpid and the signal mechanism that permits processes to communicate
with one another. Finally, you looked at a number of GNU/Linux commands that
enable you to review active processes and also the commands to signal them.

PROC FILESYSTEM

The /proc filesystem is the root source of information about the processes within a
GNU/Linux system. Within /proc, you’ll find a set of directories with numbered
filenames. These numbers represent the process IDs (pids) of active processes
within the system. The root-level view of /proc is provided in the following:

ls /proc

1 4 5671 7225 9780 crypto kcore stat

10 4307 6 7255 9783 devices key-users swaps

19110 4524 6265 7265 9786 diskstats kmsg sys

2 5 6387 7360 9787 dma loadavg sysrq-

trigger

2132 5009 6416 8134 9788 driver locks sysvipc

21747 5015 6446 9 9789 execdomains mdstat tty

250 GNU/Linux Application Programming

21748 5312 6671 94 9790 fb meminfo uptime

21749 5313 6672 95 9791 filesystems misc version

21751 5340 6673 9650 9795 fs modules vmstat

2232 5341 6674 9684 9797 ide mounts zoneinfo

24065 5342 6675 9688 acpi interrupts mtrr

2623 5343 683 9689 buddyinfo iomem net

3 5344 6994 9714 bus ioports partitions

32618 5560 7 9715 cmdline irq self

3651 5670 7224 9773 cpuinfo kallsyms slabinfo

#

Each pid directory presents a hierarchy of information about that process
including the command line that started it, a symlink to the root filesystem (which
can be different from the current root if the executable was chrooted), a symlink
to the directory (current working directory) where the process was started, and
others. The following is a look at a pid directory hierarchy:

ls /proc/1

attr cpuset exe mem oom_score smaps status

auxv cwd fd mounts root stat task

cmdline environ maps oom_adj seccomp statm wchan

#

Recall that pid 1 is the first process to execute and is always the init process.
You can view this from the status file that contains basic information about the
process including its state, memory usage, signal masks, etc.

cat status

Name: init

State: S (sleeping)

SleepAVG: 88%

Tgid: 1

Pid: 1

PPid: 0

TracerPid: 0

Uid: 0 0 0 0

Gid: 0 0 0 0

FDSize: 32

Groups:

...

#

Chapter 14 GNU/Linux Process Model 251

The /proc filesystem also contains a large number of other nonprocess-specific
elements, some of which can be written to change the behavior of the overall oper-
ating system. Many utilities use information from the /proc filesystem to present
data to the user (for example, the ps command uses /proc to get its process list).

REFERENCES

GNU/Linux signal and sigaction man pages.

API SUMMARY

#include <sys/types.h>

#include <unistd.h>

#include <sys/wait.h>

#include <signal.h>

pid_t fork(void);

pid_t wait(int *status);

pid_t waitpid(pid_t pid, int *status, int options);

sighandler_t signal(int signum, sighandler_t handler);

int pause(void);

int kill(pid_t pid, int sig_num);

int raise(int sig_num);

int execl(const char *path, const char *arg, ...);

int execlp(const char *path, const char *arg, ...);

int execle(const char *path, const char *arg, ...,

char * const envp[]);

int execv(const char *path, char *const argv[]);

int execvp(const char *file, char *const argv[]);

int execve(const char *filename, char *const argv[],

char *const envp[]);

unsigned int alarm(unsigned int secs);

void exit(int status);

int sigaction(int signum,

const struct sigaction *act,

struct sigaction *oldact);

252 GNU/Linux Application Programming

253

POSIX Threads (pthreads)
Programming

15

INTRODUCTION

Multithreaded applications are a useful paradigm for system development because
they offer many facilities not available to traditional GNU/Linux processes. This
chapter explores pthreads programming and the functionality provided by the
pthreads API.

The 2.4 GNU/Linux kernel POSIX thread library was based upon the Linux-
Threads implementation (introduced in 1996), which was built on the existing
GNU/Linux process model. The 2.6 kernel utilizes the new Native POSIX Thread
Library, or NPTL (introduced in 2002), which is a higher performance imple-
mentation with numerous advantages over the older component. For example,
NPTL provides real thread groups (within a process), compared to one thread per
process in the prior model. This chapter outlines those differences when they are
useful to know.

In This Chapter

Threads and Processes
Creating Threads
Synchronizing Threads
Communicating Between Threads
POSIX Signals API
Threaded Application Development Topics

To know which pthreads library is being used, issue the following command:

$ getconf GNU_LIBPTHREAD_VERSION

This provides either LinuxThreads or NPTL, each with a version number.

WHAT’S A THREAD?

To define a thread, you need to look back at Linux processes to understand their
makeup. Both processes and threads have control flows and can run concurrently,
but they differ in some very distinct ways. Threads, for example, share data, where
processes explicitly don’t. When a process is forked (recall from Chapter 13,
“Introduction to Sockets Programming”), a new process is created with its own
globals and stack (see Figure 15.1). When a thread is created, the only new element
created is a stack that is unique for the thread (see Figure 15.2). The code and
global data are common between the threads. This is advantageous, but the shared
nature of threads can also be problematic. This chapter investigates this later.

254 GNU/Linux Application Programming

FIGURE 15.1 Forking a new process.

A GNU/Linux process can create and manage numerous threads. Each thread
is identified by a thread identifier that is unique for every thread in a system. Each
thread also has its own stack (as shown in Figure 15.2) and also a unique context
(program counter, save registers, and so forth). But because the data space is shared
by threads, they share more than just user data. For example, file descriptors for
open files or sockets are shared also. Therefore, when a multithreaded application
uses a socket or file, the access to the resource must be protected against multiple
accesses. This chapter looks at methods for achieving that.

Chapter 15 POSIX Threads (Pthreads) Programming 255

FIGURE 15.2 Creating a new thread.

While writing multithreaded applications can be easier in some ways than tradi-
tional process-based applications, you do encounter problems you need to under-
stand. The shared data aspect of threads is probably the most difficult to design
around, but it is also powerful and can lead to simpler applications with higher
performance. The key is to strongly consider shared data while developing threaded
applications. Another important consideration is that serious multithreaded ap-
plication development needs to utilize the 2.6 kernel rather than the 2.4 kernel
(given the new NPTL threads implementation).

THREAD FUNCTION BASICS

The APIs discussed thus far follow a fairly uniform model of returning –1 when an
error occurs, with the actual error value in the errno process variable. The threads
API returns 0 on success but a positive value to indicate an error.

THE pthreads API

While the pthreads API is comprehensive, it’s quite easy to understand and use.
This section explores the pthreads API, looking at the basics of thread creation
through the specialized communication and synchronization methods that are
available.

All multithreaded programs must make the pthread function prototypes and
symbols available for use. This is accomplished by including the pthread standard
header, as follows:

#include <pthread.h>

The examples that follow are written for brevity, and in some cases, return values
are not checked. To avoid debugging surprises, you are strongly encouraged to
check all system call return values and never assume that a function is successful.

THREAD BASICS

All multithreaded applications must create threads and ultimately destroy them.
This is provided in two functions by the pthreads API:

int pthread_create(pthread_t *thread,

pthread_attr_t *attr,

void *(*start_routine)(void *), void *arg);

int pthread_exit(void *retval);

The pthread_create function permits the creation of a new thread, whereas
pthread_exit allows a thread to terminate itself. You also have a function to permit
one thread to terminate another, but that is investigated later.

To create a new thread, you call pthread_create and associate your pthread_t
object with a function (start_routine). This function represents the top level code
that is executed within the thread. You can optionally provide a set of attributes via
pthread_attr_t (via pthread_attr_init). Finally, the fourth argument (arg) is an
optional argument that is passed to the thread upon creation.

256 GNU/Linux Application Programming

Now it’s time to take a look at a short example of thread creation (see Listing
15.1). In the main function, you first create a pthread_t object at line 10. This object
represents your new thread. You call pthread_create at line 12 and provide the
pthread_t object (which is filled in by the pthread_create function) in addition to
your function that contains the code for the thread (argument 3, myThread). A zero
return indicates successful creation of the thread.

LISTING 15.1 Creating a Thread with pthread_create (on the CD-ROM at

./source/ch15/ptcreate.c)

1: #include <pthread.h>

2: #include <stdlib.h>

3: #include <stdio.h>

4: #include <string.h>

5: #include <errno.h>

6:

7: int main()

8: {

9: int ret;

10: pthread_t mythread;

11:

12: ret = pthread_create(&mythread, NULL, myThread, NULL);

13:

14: if (ret != 0) {

15: printf("Can’t create pthread (%s)\n", strerror(

errno));

16: exit(-1);

17: }

18:

19: return 0;

20: }

The pthread_create function returns zero if successful; otherwise, a nonzero
value is returned. Now it’s time to take a look at the thread function itself,
which also demonstrates the pthread_exit function (see Listing 15.2). The thread
simply emits a message to stdout that it ran and then terminated at line 6 with
pthread_exit.

LISTING 15.2 Terminating a Thread with pthread_exit (on the CD-ROM at

./source/ch15/ptcreate.c)

1: void *myThread(void *arg)

2: {

Chapter 15 POSIX Threads (Pthreads) Programming 257

3: printf("Thread ran!\n");

4:

5: /* Terminate the thread */

6: pthread_exit(NULL);

7: }

This thread didn’t use the void pointer argument, but this could be used to
provide the thread with a specific personality, passed in at creation (see the fourth
argument of line 12 in Listing 15.1). The argument can represent a scalar value
or a structure containing a variety of elements. The exit value presented to
pthread_exit must not be of local scope; otherwise, it won’t exist after the thread is
destroyed. The pthread_exit function does not return.

The startup cost for new threads is minimal in the new NPTL implementation,
compared to the older LinuxThreads. In addition to significant improvements and
optimizations in the NPTL, the allocation of thread memory structures is im-
proved (thread data structures and thread local storage are now provided on the
local thread stack).

THREAD MANAGEMENT

Before digging into thread synchronization and coordination, it’s time to look at a
couple of miscellaneous thread functions that can be of use. The first is the
pthread_self function, which can be used by a thread to retrieve its unique identi-
fier. Recall in pthread_create that a pthread_t object reference is passed in as the first
argument. This permits the thread creator to know the identifier for the thread just
created. The thread itself can also retrieve this identifier by calling pthread_self.

pthread_t pthread_self(void);

Consider the updated thread function in Listing 15.3, which illustrates retriev-
ing the pthread_t handle. At line 5, you call pthread_self to grab the handle and
then emit it to stdout at line 7 (converting it to an int).

LISTING 15.3 Retrieving the pthread_t Handle with pthread_self (on the CD-ROM at

./source/ch15/ptcreate.c)

1: void *myThread(void *arg)

2: {

3: pthread_t pt;

4:

258 GNU/Linux Application Programming

5: pt = pthread_self();

6:

7: printf("Thread %x ran!\n", (int)pt);

8:

9: pthread_exit(NULL);

10: }

Most applications require some type of initialization, but with threaded appli-
cations, the job can be difficult. The pthread_once function allows a developer to
create an initialization routine that is invoked for a multithreaded application only
once (even though multiple threads might attempt to invoke it).

The pthread_once function requires two objects: a pthread_once_t object (that
has been preinitialized with pthread_once_init) and an initialization function.
Consider the partial example in Listing 15.4. The first thread to call pthread_once
invokes the initialization function (initialize_app), but subsequent calls to
pthread_once result in no calls to initialize_app.

LISTING 15.4 Providing a Single-Use Initialization Function with pthread_once

1: #include <pthread.h>

2:

3: pthread_once_t my_init_mutex = pthread_once_init;

4:

5: void initialize_app(void)

6: {

7: /* Single-time init here */

8: }

9:

10: void *myThread(void *arg)

11: {

12: ...

13:

14: pthread_once(&my_init_mutex, initialize_app);

15:

16: ...

17: }

The number of threads in LinuxThreads was a compile-time option (1000),
whereas NPTL supports a dynamic number of threads. NPTL can support up to
2 billion threads on an IA-32 system [Drepper and Molnar03].

Chapter 15 POSIX Threads (Pthreads) Programming 259

THREAD SYNCHRONIZATION

The ability to synchronize threads is an important aspect of multithreaded appli-
cation development. This chapter looks at a number of methods, but first you need
to take a look at the most basic method, the ability for the creator thread to wait for
the created thread to finish (otherwise known as a join). This activity is provided
by the pthread_join API function. When called, the pthread_join call suspends
the calling thread until a join is complete. When the join is done, the caller receives
the joined thread’s termination status as the return from pthread_join. The
pthread_join function (somewhat equivalent to the wait function for processes)
has the following prototype:

int pthread_join(pthread_t th, void **thread_return);

The th argument is the thread to which you want to join. This argument is
returned from pthread_create or passed via the thread itself via pthread_self. The
thread_return can be NULL, which means you do not capture the return status of the
thread. Otherwise, the return value from the thread is stored in thread_return.

A thread is automatically joinable when using the default attributes of
pthread_create. If the attribute for the thread is defined as detached, then the
thread can’t be joined (because it’s detached from the creating thread).

To join with a thread, you must have the thread’s identifier, which is retrieved
from the pthread_create function. Take a look at a complete example (see Listing
15.5).

In this example, you permit the creation of five distinct threads by calling
pthread_create within a loop (lines 18–23) and storing the resulting thread identi-
fiers in a pthread_t array (line 16). After the threads are created, you begin the join
process, again in a loop (lines 25–32). The pthread_join returns zero on success,
and upon success, the status variable is emitted (note that this value is returned at
line 8 within the thread itself).

LISTING 15.5 Joining Threads with pthread_join (on the CD-ROM at

./source/ch15/ptjoin.c)

1: #include <pthread.h>

2: #include <stdio.h>

3:

4: void *myThread(void *arg)

5: {

260 GNU/Linux Application Programming

6: printf("Thread %d started\n", (int)arg);

7:

8: pthread_exit(arg);

9: }

10:

11: #define MAX_THREADS 5

12:

13: int main()

14: {

15: int ret, i, status;

16: pthread_t threadIds[MAX_THREADS];

17:

18: for (i = 0 ; i < MAX_THREADS ; i++) {

19: ret = pthread_create(&threadIds[i], NULL, myThread,

(void *)i);

20: if (ret != 0) {

21: printf("Error creating thread %d\n",

(int)threadIds[i]);

22: }

23: }

24:

25: for (i = 0 ; i < MAX_THREADS ; i++) {

26: ret = pthread_join(threadIds[i], (void **)&status);

27: if (ret != 0) {

28: printf("Error joining thread %d\n",

(int)threadIds[i]);

29: } else {

30: printf("Status = %d\n", status);

31: }

32: }

33:

34: return 0;

35: }

The pthread_join function suspends the caller until the requested thread has
been joined. In many cases, you simply don’t care about the thread after it’s created.
In these cases, you can identify this by detaching the thread. The creator or the
thread itself can detach itself. You can also specify that the thread is detached when
you create the thread (as part of the attributes). After a thread is detached, it can
never be joined. The pthread_detach function has the following prototype:

int pthread_detach(pthread_t th);

Chapter 15 POSIX Threads (Pthreads) Programming 261

Now take a look at the process of detaching the thread within the thread itself
(see Listing 15.6). Recall that a thread can identify its own identifier by calling
thread_self.

LISTING 15.6 Detaching a Thread from Within with pthread_detach

1: void *myThread(void *arg)

2: {

3: printf("Thread %d started\n", (int)arg);

4:

5: pthread_detach(pthread_self());

6:

7: pthread_exit(arg);

8: }

At line 5, you simply call pthread_detach, specifying the thread identifier by
calling pthread_self. When this thread exits, all resources are immediately freed (as
it’s detached and will never be joined by another thread). The pthread_detach func-
tion returns zero on success, nonzero if an error occurs.

GNU/Linux automatically places a newly created thread into the joinable state.
This is not the case in other implementations, which can default to detached.

THREAD MUTEXES

A mutex is a variable that permits threads to implement critical sections. These
sections enforce exclusive access to variables by threads, which if left unprotected
result in data corruption. This topic is discussed in detail in Chapter 17, “Synchro-
nization with Semaphores.”

This section starts by reviewing the mutex API, and then illustrates the problem
being solved. To create a mutex, you simply declare a variable that represents your
mutex and initializes it with a special symbolic constant. The mutex is of type
pthread_mutex_t and is demonstrated as follows:

pthread_mutex_t myMutex = PTHREAD_MUTEX_INITIALIZER

As shown here, the initialization makes this mutex a fast mutex. The mutex ini-
tializer can actually be of one of three types, as shown in Table 15.1.

262 GNU/Linux Application Programming

The recursive mutex is a special mutex that allows the mutex to be locked sev-
eral times (without blocking), as long as it’s locked by the same thread. Even
though the mutex can be locked multiple times without blocking, the thread must
unlock the mutex the same number of times that it was locked. The error-checking
mutex can be used to help find errors when debugging. Note that the _NP suffix for
recursive and error-checking mutexes indicates that they are not portable.

Now that you have a mutex, you can lock and unlock it to create your critical
section. This is done with the pthread_mutex_lock and pthread_mutex_unlock API
functions. Another function called pthread_mutex_trylock can be used to try to
lock a mutex, but it won’t block if the mutex is already locked. Finally, you can de-
stroy an existing mutex using pthread_mutex_destroy. These have the prototype as
follows:

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

All functions return zero on success or a nonzero error code. All errors returned
from pthread_mutex_lock and pthread_mutex_unlock are assertable (not recover-
able). Therefore, you use the return of these functions to abort your program.

Locking a thread is the means by which you enter a critical section. After your
mutex is locked, you can safely enter the section without having to worry about
data corruption or multiple access. To exit your critical section, you unlock the
semaphore and you’re done. The following code snippet illustrates a simple critical
section:

pthread_mutex_t cntr_mutex = PTHREAD_MUTEX_INITIALIZER;

...

assert(pthread_mutex_lock(&cntr_mutex) == 0);

/* Critical Section */

Chapter 15 POSIX Threads (Pthreads) Programming 263

Type Description

PTHREAD_MUTEX_INITIALIZER Fast mutex

PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP Recursive mutex

PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP Error-checking mutex

TABLE 15.1 Mutex Initializers

/* Increment protected counter */

counter++;

/* Critical Section */

assert(pthread_mutex_unlock(&cntr_mutex) == 0);

A critical section is a section of code that can be executed by at most one process at
a time. The critical section exists to protect shared resources from multiple access.

The pthread_mutex_trylock operates under the assumption that if you can’t
lock your mutex, you should do something else instead of blocking on the
pthread_mutex_lock call. This call is demonstrated as follows:

ret = pthread_mutex_trylock(&cntr_mutex);

if (ret == EBUSY) {

/* Couldn’t lock, do something else */

} else if (ret == EINVAL) {

/* Critical error */

assert(0);

} else {

/* Critical Section */

ret = thread_mutex_unlock(&cntr_mutex);

}

Finally, to destroy your mutex, you simply provide it to the pthread_mutex_
destroy function. The pthread_mutex_destroy function succeeds only if no thread
currently has the mutex locked. If the mutex is locked, the function fails and returns
the EBUSY error code. The pthread_mutex_destroy call is demonstrated with the
following snippet:

ret = pthread_mutex_destroy(&cntr_mutex);

if (ret == EBUSY) {

/* Mutex is locked, can’t destroy */

} else {

/* Mutex was destroyed */

}

Now take a look at an example that ties these functions together to illustrate
why mutexes are important in multithreaded applications. In this example, you
build on the previous applications that provide a basic infrastructure for task cre-
ation and joining. Consider the example in Listing 15.7. At line 4, you create your
mutex and initialize it as a fast mutex. In your thread, your job is to increment the
protVariable counter some number of times. This occurs for each thread (here you

264 GNU/Linux Application Programming

create 10), so you need to protect the variable from multiple access. You place the
variable increment within a critical section by first locking the mutex and then,
after incrementing the protected variable, unlocking it. This ensures that each task
has sole access to the resource when the increment is performed and protects
it from corruption. Finally, at line 52, you destroy your mutex using the pthread_
mutex_destroy API function.

LISTING 15.7 Protecting a Variable in a Critical Section with Mutexes (on the CD-ROM

at ./source/ch15/ptmutex.c)

1: #include <pthread.h>

2: #include <stdio.h>

3:

4: pthread_mutex_t cntr_mutex = PTHREAD_MUTEX_INITIALIZER;

5:

6: long protVariable = 0L;

7:

8: void *myThread(void *arg)

9: {

10: int i, ret;

11:

12: for (i = 0 ; i < 10000 ; i++) {

13:

14: ret = pthread_mutex_lock(&cntr_mutex);

15:

16: assert(ret == 0);

17:

18: protVariable++;

19:

20: ret = pthread_mutex_unlock(&cntr_mutex);

21:

22: assert(ret == 0);

23:

24: }

25:

26: pthread_exit(NULL);

27: }

28:

29: #define MAX_THREADS 10

30:

31: int main()

32: {

33: int ret, i;

Chapter 15 POSIX Threads (Pthreads) Programming 265

34: pthread_t threadIds[MAX_THREADS];

35:

36: for (i = 0 ; i < MAX_THREADS ; i++) {

37: ret = pthread_create(&threadIds[i], NULL, myThread,

NULL);

38: if (ret != 0) {

39: printf("Error creating thread %d\n",

(int)threadIds[i]);

40: }

41: }

42:

43: for (i = 0 ; i < MAX_THREADS ; i++) {

44: ret = pthread_join(threadIds[i], NULL);

45: if (ret != 0) {

46: printf("Error joining thread %d\n",

(int)threadIds[i]);

47: }

48: }

49:

50: printf("The protected variable value is %ld\n",

protVariable);

51:

52: ret = pthread_mutex_destroy(&cntr_mutex);

53:

54: if (ret != 0) {

55: printf(“Couldn’t destroy the mutex\n”);

56: }

57:

58: return 0;

59: }

When using mutexes, it’s important to minimize the amount of work done in
the critical section to what really needs to be done. Because other threads block
until a mutex is unlocked, minimizing the critical section time can lead to better
performance.

THREAD CONDITION VARIABLES

Now that you have mutexes out of the way, you can explore condition variables. A
condition variable is a special thread construct that allows a thread to wake up an-
other thread based upon a condition. Whereas mutexes provide a simple form of
synchronization (based upon the lock status of the mutex), condition variables are

266 GNU/Linux Application Programming

a means for one thread to wait for an event and another to signal it that the event
has occurred. An event can mean anything here. A thread blocks on a mutex but
can wait on any condition variable. Think of them as wait queues, which is exactly
what the implementation does in GNU/Linux.

Consider this problem of a thread awaiting a particular condition being met. If
you use only mutexes, the thread has to poll to acquire the mutex, check the con-
dition, and then release the mutex if no work is found to do (the condition isn’t
met). That kind of busy looping can lead to poorly performing applications and
needs to be avoided.

The pthreads API provides a number of functions supporting condition vari-
ables. These functions provide condition variable creation, waiting, signaling, and
destruction. The condition variable API functions are presented as follows:

int pthread_cond_wait(pthread_cond_t *cond,

pthread_mutex_t *mutex);

int pthread_cond_timedwait(pthread_cond_t *cond,

pthread_mutex_t *mutex,

const struct timespec *abstime);

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);

int pthread_cond_destroy(pthread_cond_t *cond);

To create a condition variable, you simply create a variable of type pthread_
cond_t. You initialize this by setting it to PTHREAD_COND_INITIALIZER (similar to
mutex creation and initialization). This is demonstrated as follows:

pthread_cond_t recoveryCond = PTHREAD_COND_INITIALIZER;

Condition variables require the existence of a mutex that is associated with
them, which you create as you learned previously:

pthread_mutex_t recoveryMutex = PTHREAD_MUTEX_INITIALIZER;

Now take a look at a thread awaiting a condition. In this example, say you have
a thread whose job is to warn of overload conditions. Work comes in on a queue,
with an accompanying counter identifying the amount of work to do. When the
amount of work exceeds a certain value (MAX_NORMAL_WORKLOAD), then your thread
wakes up and performs a recovery. Your fault thread for synchronizing with the
alert thread is illustrated as follows:

Chapter 15 POSIX Threads (Pthreads) Programming 267

/* Fault Recovery Thread Loop */

while (1) {

assert(pthread_mutex_lock(&recoveryMutex) == 0);

while (workload < MAX_NORMAL_WORKLOAD) {

pthread_cond_wait(&recoveryCond, &recoveryMutex);

}

/*————————*/

/* Recovery Code. */

/*————————*/

assert(pthread_mutex_unlock(&recoveryMutex) == 0);

}

This is the standard pattern when dealing with condition variables. You start by
locking the mutex, entering pthread_cond_wait, and upon waking up from your
condition, unlocking the mutex. The mutex must be locked first because upon
entry to pthread_cond_wait, the mutex is automatically unlocked. When you return
from pthread_cond_wait, the mutex has been reacquired, meaning that you need to
unlock it afterward. The mutex is necessary here to handle race conditions that exist
in this call sequence. To ensure that your condition is met, you loop around the
pthread_cond_wait, and if the condition is not satisfied (in this case, your workload
is normal), then you reenter the pthread_cond_wait call. Note that because the
mutex is locked upon return from pthread_cond_wait, you don’t need to call
pthread_mutex_lock here.

Now take a look at the signal code. This is considerably simpler than that code
necessary to wait for the condition. Two possibilities exist for signaling: sending a
single signal or broadcasting to all waiting threads.

The first case is signaling one thread. In either case, you first lock the mutex be-
fore calling the signal function and then unlock when you’re done. To signal one
thread, you call the pthread_cond_signal function, as follows:

pthread_mutex_lock(&recoveryMutex);

pthread_cond_signal(&recoveryCond);

pthread_mutex_unlock(&recovery_Mutex);

After the mutex is unlocked, exactly one thread is signaled and allowed to exe-
cute. Each function returns zero on success or an error code. If your architecture
supports multiple threads for recovery, you can instead use the pthread_cond_
broadcast. This function wakes up all threads currently awaiting the condition.
This is demonstrated as follows:

pthread_mutex_lock(&recoveryMutex);

pthread_cond_broadcast(&recoveryCond);

pthread_mutex_unlock(&recovery_Mutex);

268 GNU/Linux Application Programming

After the mutex is unlocked, the series of threads is then permitted to perform
recovery (though one by one because they’re dependent upon the mutex).

The pthreads API also supports a version of timed-wait for a condition vari-
able. This function, pthread_cond_timedwait, allows the caller to specify an absolute
time representing when to give up and return to the caller. The return value is
ETIMEDOUT, to indicate that the function returned because of a timeout rather than
because of a successful return. The following code snippet illustrates its use:

struct timeval currentTime;

struct timespec expireTime;

int ret;

...

assert(pthread_mutex_lock(&recoveryMutex) == 0);

gettimeofday(¤tTime);

expireTime.tv_sec = currentTime.tv_sec + 1;

expireTime.tv_nsec = currentTime.tv_usec * 1000;

ret = 0;

while ((workload < MAX_NORMAL_WORKLOAD) && (ret != ETIMEDOUT) {

ret = pthread_cond_timedwait(&recoveryCond, &recoveryMutex,

&expireTime);

}

if (ret == ETIMEDOUT) {

/* Timeout — perform timeout processing */

} else {

/* Condition met — perform condition recovery processing */

}

assert(pthread_mutex_unlock(&recoveryMutex) == 0);

The first item to note is the generation of a timeout. You use the gettimeofday
function to get the current time and then add one second to it in the timespec
structure. This is passed to pthread_cond_timedwait to identify the time at which
you desire a timeout if the condition has not been met. In this case, which is very
similar to the standard pthread_cond_wait example, you check in your loop that the
pthread_cond_timedwait function has not returned ETIMEDOUT. If it has, you exit
your loop and then check again to perform timeout processing. Otherwise, you
perform your standard condition processing (recovery for this example) and then
reacquire the mutex.

The final function to note here is pthread_cond_destroy. You simply pass the
condition variable to the function, as follows:

pthread_mutex_destroy(&recoveryCond);

Chapter 15 POSIX Threads (Pthreads) Programming 269

It’s important to note that in the GNU/Linux implementation no resources are
actually attached to the condition variable, so this function simply checks to see if
any threads are currently pending on the condition variable.

Now it’s time to look at a complete example that brings together all of the ele-
ments just discussed for condition variables. This example illustrates condition
variables in the context of producers and consumers. You create a producer thread
that creates work and then N consumer threads that operate on the (simulated)
work.

The first listing (Listing 15.8) shows the main program. This listing is similar to
the previous examples of creating and then joining threads, with a few changes. You
create two types of threads in this listing. At lines 18–21, you create a number of
consumer threads, and at line 24, you create a single producer thread. You will take
a look at these shortly. After creation of the last thread, you join the producer
thread (resulting in a suspend of the main application until it has completed). You
then wait for the work to complete (as identified by a simple counter, workCount).
You want to allow the consumer threads to complete their work, so you wait until
this variable is zero, indicating that all work is consumed.

The block of code at lines 33–36 shows joins for the consumer threads, with
one interesting change. In this example, the consumer threads never quit, so you
cancel them here using the pthread_cancel function. This function has the follow-
ing prototype:

int pthread_cancel(pthread_t thread);

This permits you to terminate another thread when you’re done with it. In this
example, you have produced the work that you need the consumers to work on, so
you cancel each thread in turn (line 34). Finally, you destroy your condition vari-
able and mutex at lines 37 and 38, respectively.

LISTING 15.8 Producer/Consumer Example Initialization and main (on the CD-ROM at

./source/ch15/ptcond.c)

1: #include <pthread.h>

2: #include <stdio.h>

3:

4: pthread_mutex_t cond_mutex = PTHREAD_MUTEX_INITIALIZER;

5: pthread_cond_t condition = PTHREAD_COND_INITIALIZER;

6:

7: int workCount = 0;

8:

9: #define MAX_CONSUMERS 10

10:

270 GNU/Linux Application Programming

11: int main()

12: {

13: int i;

14: pthread_t consumers[MAX_CONSUMERS];

15: pthread_t producer;

16:

17: /* Spawn the consumer thread */

18: for (i = 0 ; i < MAX_CONSUMERS ; i++) {

19: pthread_create(&consumers[i], NULL,

20: consumerThread, NULL);

21: }

22:

23: /* Spawn the single producer thread */

24: pthread_create(&producer, NULL,

25: producerThread, NULL);

26:

27: /* Wait for the producer thread */

28: pthread_join(producer, NULL);

29:

30: while ((workCount > 0));

31:

32: /* Cancel and join the consumer threads */

33: for (i = 0 ; i < MAX_CONSUMERS ; i++) {

34: pthread_cancel(consumers[i]);

35: }

36:

37: pthread_mutex_destroy(&cond_mutex);

38: pthread_cond_destroy(&condition);

39:

40: return 0;

41: }

Next, you can take a look at the producer thread function (Listing 15.9). The
purpose of the producer thread is to produce work, simulated by incrementing the
workCount variable. A nonzero workCount indicates that work is available to do. You
loop for a number of times to create work, as is shown at lines 8–22. As shown in
the condition variable sample, you first lock your mutex at line 10 and then create
work to do (increment workCount). You then notify the awaiting consumer
(worker) threads at line 14 using the pthread_cond_broadcast function. This noti-
fies any awaiting consumer threads that work is now available to do. Next, at line
15, you unlock the mutex, allowing the consumer threads to lock the mutex and
perform their work.

Chapter 15 POSIX Threads (Pthreads) Programming 271

At lines 20–22, you simply do some busy work to allow the kernel to schedule
another task (thereby avoiding synchronous behavior, for illustration purposes).

When all of the work has been produced, you permit the producer thread to
exit (which is joined in the main function at line 28 of Listing 15.8).

LISTING 15.9 Producer Thread Example for Condition Variables (on the CD-ROM at

./source/ch15/ptcond.c)

1: void *producerThread(void *arg)

2: {

3: int i, j, ret;

4: double result=0.0;

5:

6: printf(“Producer started\n”);

7:

8: for (i = 0 ; i < 30 ; i++) {

9:

10: ret = pthread_mutex_lock(&cond_mutex);

11: if (ret == 0) {

12: printf(“Producer: Creating work (%d)\n”, workCount);

13: workCount++;

14: pthread_cond_broadcast(&condition);

15: pthread_mutex_unlock(&cond_mutex);

16: } else {

17: assert(0);

18: }

19:

20: for (j = 0 ; j < 60000 ; j++) {

21: result = result + (double)random();

22: }

23:

24: }

25:

26: printf(“Producer finished\n”);

27:

28: pthread_exit(NULL);

29: }

Now it’s time to look at the consumer thread (see Listing 15.10). Your first task
is to detach yourself (line 5), because you won’t ever join with the creating thread.
Then you go into your work loop (lines 9–22) to process the workload. You first
lock the condition mutex at line 11 and then wait for the condition to occur at line
12. You then check to make sure that the condition is true (that work exists to do)

272 GNU/Linux Application Programming

at line 14. Note that because you’re broadcasting to threads, you might not have
work to do for every thread, so you test before you assume that work is available.

After you’ve completed your work (in this case, simply decrementing the work
count at line 15), you release the mutex at line 19 and wait again for work at line 11.
Note that because you cancel your thread, you never see the printf at line 23, nor
do you exit the thread at line 25. The pthread_cancel function terminates the
thread so that the thread does not terminate normally.

LISTING 15.10 Consumer Thread Example for Condition Variables (on the CD-ROM at

./source/ch15/ptcond.c)

1: void *consumerThread(void *arg)

2: {

3: int ret;

4:

5: pthread_detach(pthread_self());

6:

7: printf(“Consumer %x: Started\n”, pthread_self());

8:

9: while(1) {

10:

11: assert(pthread_mutex_lock(&cond_mutex) == 0);

12: assert(pthread_cond_wait(&condition, &cond_mutex)

== 0);

13:

14: if (workCount) {

15: workCount—;

16: printf(“Consumer %x: Performed work (%d)\n”,

17: pthread_self(), workCount);

18: }

19: assert(pthread_mutex_unlock(&cond_mutex) == 0);

20:

21: }

22:

23: printf(“Consumer %x: Finished\n”, pthread_self());

24:

25: pthread_exit(NULL);

26: }

Now take a look at this application in action. For brevity, this example shows
only the first 30 lines emitted, but this gives you a good indication of how the ap-
plication behaves (see Listing 15.11). You can see the consumer threads starting up,
the producer starting, and then work being created and consumed in turn.

Chapter 15 POSIX Threads (Pthreads) Programming 273

LISTING 15.11 Application Output for Condition Variable Application

$./ptcond

Consumer 4082cd40: Started

Consumer 4102ccc0: Started

Consumer 4182cc40: Started

Consumer 42932bc0: Started

Consumer 43132b40: Started

Consumer 43932ac0: Started

Consumer 44132a40: Started

Consumer 449329c0: Started

Consumer 45132940: Started

Consumer 459328c0: Started

Producer started

Producer: Creating work (0)

Producer: Creating work (1)

Consumer 4082cd40: Performed work (1)

Consumer 4102ccc0: Performed work (0)

Producer: Creating work (0)

Consumer 4082cd40: Performed work (0)

Producer: Creating work (0)

Producer: Creating work (1)

Producer: Creating work (2)

Producer: Creating work (3)

Producer: Creating work (4)

Producer: Creating work (5)

Consumer 4082cd40: Performed work (5)

Consumer 4102ccc0: Performed work (4)

Consumer 4182cc40: Performed work (3)

Consumer 42932bc0: Performed work (2)

Consumer 43132b40: Performed work (1)

Consumer 43932ac0: Performed work (0)

Producer: Creating work (0)

The design of multithreaded applications follows a small number of patterns (or
models). The master/servant model is common where a single master doles out
work to a collection of servants. The pipeline model splits work up into stages where
one or more threads make up each of the work phases.

BUILDING THREADED APPLICATIONS

Building pthread-based applications is very simple. All that’s necessary is to specify
the pthreads library during compilation as follows:

274 GNU/Linux Application Programming

gcc -pthread threadapp.c -o threadapp –lpthread

This links your application with the pthread library, making the pthread func-
tions available for use. Note also that you specify the -pthread option, which adds
support for multithreading to the application (such as re-entrancy). The option
also ensures that certain global system variables (such as errno) are provided on a
per-thread basis.

One topic that’s important to discuss in multithreaded applications is that of
re-entrancy. Consider two threads, each of which uses the strtok function. This
function uses an internal buffer for token processing of a string. This internal buffer
can be used by only one user at a time, which is fine in the process world (forked
processes), but in the thread world runs into problems. If each thread attempts to
call strtok, then the internal buffer is corrupted, leading to undesirable (and un-
predictable) behavior. To fix this, rather than using an internal buffer, you can use
a thread-supplied buffer instead. This is exactly what happens with the thread-safe
version of strtok, called strtok_r. The suffix _r indicates that the function is
thread-safe.

SUMMARY

Multithreaded application development is a powerful model for the development
of high-performance software systems. GNU/Linux provides the POSIX pthreads
API for a standard and portable programming model. This chapter explored the
standard thread creation, termination, and synchronization functions. This in-
cludes the basic synchronization using a join, but also more advanced coordination
using mutexes and condition variables. Finally, building pthread applications was
investigated, along with some of the pitfalls (such as re-entrancy) and how to deal
with them. The GNU/Linux 2.6 kernel (using NPTL) provides a closer POSIX im-
plementation and more efficient IPC and kernel support than the prior Linux-
Threads version provided.

REFERENCES

[Drepper and Molnar03] Drepper, Ulrich and Molnar, Ingo. (2003) The Native
POSIX Thread Library for Linux. Red Hat, Inc.

Chapter 15 POSIX Threads (Pthreads) Programming 275

API SUMMARY

#include <pthread.h>

int pthread_create(pthread_t *thread,

pthread_attr_t *attr,

void *(*start_routine)(void *), void *arg);

int pthread_exit(void *retval);

pthread_t pthread_self(void);

int pthread_join(pthread_t th, void **thread_return);

int pthread_detach(pthread_t th);

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

int pthread_cond_wait(pthread_cond_t *cond,

pthread_mutex_t *mutex);

int pthread_cond_timedwait(pthread_cond_t *cond,

pthread_mutex_t *mutex,

const struct timespec *abstime);

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);

int pthread_cancel(pthread_t thread);

276 GNU/Linux Application Programming

277

IPC with Message Queues16

INTRODUCTION

The topic of interprocess communication is an important one because it allows you
the ability to build systems out of numerous communicating asynchronous
processes. This is beneficial because you can naturally segment the functionality of
a large system into a number of distinct elements. Because GNU/Linux processes
utilize independent memory spaces, a function in one process cannot call another
in a different process. Message queues provide one means to permit communica-
tion and coordination between processes. This chapter reviews the message queue
model (which conforms to the SystemV UNIX model), as well as explores some
sample code that utilizes the message queue API.

In This Chapter

Introduction to Message Queues
Creating and Configuring Message Queues
Creating Messages Suitable for Message Queues
Sending and Receiving Messages
Adjusting Message Queue Behavior
The ipcs Utility

QUICK OVERVIEW OF MESSAGE QUEUES

This chapter begins by taking a whirlwind tour of the POSIX-compliant message
queue API. You will take a look at code examples that illustrate creating a message
queue, configuring its size, sending and receiving a message, and then removing the
message queue. After you have had a taste of the message queue API, you can dive
in deeper in the following sections.

Using the message queue API requires that the function prototypes and sym-
bols be available to the application. This is done by including the msg.h header file
as follows:

#include <sys/msg.h>

You first introduce a common header file that defines some common informa-
tion needed for the writer and reader of the message (see Listing 16.1). You define
your system-wide queue ID (111) at line 3. This isn’t the best way to define the queue,
but later on you will see a way to define a unique system ID. Lines 5–10 define your
message type, with the required long type at the head of the structure (line 6).

LISTING 16.1 Common Header File Used by the Sample Applications (on the CD-ROM

at ./source/ch16/common.h)

1: #define MAX_LINE 80

2:

3: #define MY_MQ_ID 111

4:

5: typedef struct {

6: long type; // Msg Type (> 0)

7: float fval; // User Message

8: unsigned int uival; // User Message

9: char strval[MAX_LINE+1]; // User Message

10: } MY_TYPE_T;

CREATING A MESSAGE QUEUE

To create a message queue, you use the msgget API function. This function takes a
message queue ID (a unique identifier, or key, within a given host) and another
argument identifying the message flags. The flags in the queue create example (see
Listing 16.2) specify that a queue is to be created (IPC_CREAT) as well as the access per-
missions of the message queue (read/write permission for system, user, and group).

The result of the msgget function is a handle, which is similar to a file descriptor,
pointing to the message queue with the particular ID.

278 GNU/Linux Application Programming

LISTING 16.2 Creating a Message Queue with msgget (on the CD-ROM at

./source/ch16/mqcreate.c)

1: #include <stdio.h>

2: #include <sys/msg.h>

3: #include "common.h"

4:

5: int main()

6: {

7: int msgid;

8:

9: /* Create the message queue with the id MY_MQ_ID */

10: msgid = msgget(MY_MQ_ID, 0666 | IPC_CREAT);

11:

12: if (msgid >= 0) {

13:

14: printf("Created a Message Queue %d\n", msgid);

15:

16: }

17:

18: return 0;

19: }

Upon creating the message queue at line 10 (in Listing 16.2), you get a return
integer that represents a handle for the message queue. This message queue ID can
be used in subsequent message queue calls to send or receive messages.

CONFIGURING A MESSAGE QUEUE

When you create a message queue, some of the details of the process that created
the queue are automatically stored with it (for permissions) as well as a default
queue size in bytes (16 KB). You can adjust this size using the msgctl API function.
Listing 16.3 illustrates reading the defaults for the message queue, adjusting the
queue size, and then configuring the queue with the new set.

LISTING 16.3 Configuring a Message Queue with msgctl (on the CD-ROM at

./source/ch16/mqconf.c)

1: #include <stdio.h>

2: #include <sys/msg.h>

3: #include "common.h"

4:

5: int main()

6: {

Chapter 16 IPC with Message Queues 279

7: int msgid, ret;

8: struct msqid_ds buf;

9:

10: /* Get the message queue for the id MY_MQ_ID */

11: msgid = msgget(MY_MQ_ID, 0);

12:

13: /* Check successful completion of msgget */

14: if (msgid >= 0) {

15:

16: ret = msgctl(msgid, IPC_STAT, &buf);

17:

18: buf.msg_qbytes = 4096;

19:

20: ret = msgctl(msgid, IPC_SET, &buf);

21:

22: if (ret == 0) {

23:

24: printf("Size successfully changed for queue

%d.\n", msgid);

25:

26: }

27:

28: }

29:

30: return 0;

31: }

First, at line 11, you get the message queue ID using msgget. Note that the
second argument here is zero because you’re not creating the message queue, just
retrieving its ID. You use this at line 16 to get the current queue data structure using
the IPC_STAT command and your local buffer (for which the function fills in the
defaults). You adjust the queue size at line 18 (by modifying the msg_qbytes field of
the structure) and then write it back at line 20 using the msgctl API function with
the IPC_SET command. You can also modify the user or group ID of the message
queue or its mode. This chapter discusses these capabilities in more detail later.

WRITING A MESSAGE TO A MESSAGE QUEUE

Now take a look at actually sending a message through a message queue. A message
within the context of a message queue has only one constraint. The object that’s
being sent must include a long variable at its head that defines the message type.
This is discussed more later in the chapter, but it’s simply a way to differentiate

280 GNU/Linux Application Programming

messages that have been loaded onto a queue (and also how those messages can be
read from the queue). The general structure for a message is as follows:

typedef struct {

long type;

char message[80];

} MSG_TYPE_T;

In this example (MSG_TYPE_T), you have your required long at the head of the mes-
sage, followed by the user-defined message (in this case, a string of 80 characters).

To send a message to a message queue (see Listing 16.4), you use the msgsnd API
function. Following a similar pattern to the previous examples, you first identify the
message queue ID using the msgget API function (line 11). After this is known, you
can send a message to it. Next, you initialize your message at lines 16–19. This
includes specifying the mandatory type (must be greater than zero), a floating-
point value (fval) and unsigned int value (uival), and a character string (strval).
To send this message, you call the msgsnd API function. The arguments for this
function are the message queue ID (qid), your message (a reference to myObject),
the size of the message you’re sending (the size of MY_TYPE_T), and finally a set of
message flags (for now, 0, but you’ll investigate more later in the chapter).

LISTING 16.4 Sending a Message with msgsnd (on the CD-ROM at

./source/ch16/mqsend.c)

1: #include <sys/msg.h>

2: #include <stdio.h>

3: #include "common.h"

4:

5: int main()

6: {

7: MY_TYPE_T myObject;

8: int qid, ret;

9:

10: /* Get the queue ID for the existing queue */

11: qid = msgget(MY_MQ_ID, 0);

12:

13: if (qid >= 0) {

14:

15: /* Create our message with a message queue type of 1 */

16: myObject.type = 1L;

17: myObject.fval = 128.256;

18: myObject.uival = 512;

Chapter 16 IPC with Message Queues 281

19: strncpy(myObject.strval, "This is a test.\n",

MAX_LINE);

20:

21: /* Send the message to the queue defined by the queue

ID */

22: ret = msgsnd(qid, (struct msgbuf *)&myObject,

23: sizeof(MY_TYPE_T), 0);

24:

25: if (ret != -1) {

26:

27: printf("Message successfully sent to queue %d\n",

qid);

28:

29: }

30:

31: }

32:

33: return 0;

34: }

That’s it! This message is now held in the message queue, and at any point in
the future, it can be read (and consumed) by the same or a different process.

READING A MESSAGE FROM A MESSAGE QUEUE

Now that you have a message in your message queue, you can look at reading that
message and displaying its contents (see Listing 16.5). You retrieve the ID of the
message queue using msgget at line 12 and then use this as the target queue from
which to read using the msgrcv API function at lines 16–17. The arguments to
msgrcv are first the message queue ID (qid), the message buffer into which your
message is to be copied (myObject), the size of the object (sizeof(MY_TYPE_T)), the
message type that you want to read (1), and the message flags (0). Note that when
you sent your message (in Listing 16.4), you specified our message type as 1. You
use this same value here to read the message from the queue. Had you used another
value, the message would not have been read. More on this subject in the “msgrcv”
section later in this chapter.

LISTING 16.5 Reading a Message with msgrcv (on the CD-ROM at

./source/ch16/mqrecv.c)

1: #include <sys/msg.h>

2: #include <stdio.h>

282 GNU/Linux Application Programming

3: #include "common.h"

4:

5: int main()

6: {

7: MY_TYPE_T myObject;

8: int qid, ret;

9:

10: qid = msgget(MY_MQ_ID, 0);

11:

12: if (qid >= 0) {

13:

14: ret = msgrcv(qid, (struct msgbuf *)&myObject,

15: sizeof(MY_TYPE_T), 1, 0);

16:

17: if (ret != -1) {

18:

19: printf("Message Type: %ld\n", myObject.type);

20: printf("Float Value: %f\n", myObject.fval);

21: printf("Uint Value: %d\n", myObject.uival);

22: printf("String Value: %s\n", myObject.strval);

23:

24: }

25:

26: }

27:

28: return 0;

29: }

The final step in your application in Listing 16.5 is to emit the message read
from the message queue. You use your object type to access the fields in the struc-
ture and simply emit them with printf.

REMOVING A MESSAGE QUEUE

As a final step, take a look at how you can remove a message queue (and any mes-
sages that might be held on it). You use the msgctl API function for this purpose
with the command of IPC_RMID. This is illustrated in Listing 16.6.

LISTING 16.6 Removing a Message Queue with msgctl (on the CD-ROM at

./source/ch16/mqdel.c)

1: #include <stdio.h>

2: #include <sys/msg.h>

3: #include "common.h"

Chapter 16 IPC with Message Queues 283

4:

5: int main()

6: {

7: int msgid, ret;

8:

9: msgid = msgget(MY_MQ_ID, 0);

10:

11: if (msgid >= 0) {

12:

13: /* Remove the message queue */

14: ret = msgctl(msgid, IPC_RMID, NULL);

15:

16: if (ret != -1) {

17:

18: printf("Queue %d successfully removed.\n", msgid);

19:

20: }

21:

22: }

23:

24: return 0;

25: }

In Listing 16.6, you first identify the message queue ID using msgget and then
use this with msgctl to remove the message queue. Any messages that happen to be
on the message queue when msgctl is called are immediately removed.

That does it for our whirlwind tour. The next section digs deeper into the mes-
sage queue API and looks at some of the behaviors of the commands that weren’t
covered already.

THE MESSAGE QUEUE API

Now it’s time to dig into the message queue API and investigate each of the func-
tions in more detail. For a quick review, Table 16.1 provides the API functions and
their purposes.

Figure 16.1 graphically illustrates the message queue API functions and their
relationship in the process.

The next sections address these functions in detail, identifying each of the uses
with descriptive examples.

284 GNU/Linux Application Programming

msgget

The msgget API function serves two basic roles: to create a message queue or to get the
identifier of a message queue that already exists. The result of the msgget function
(unless an error occurs) is the message queue identifier (used by all other message
queue API functions). The prototype for the msgget function is defined as follows:

int msgget(key_t key, int msgflag);

Chapter 16 IPC with Message Queues 285

API Function Uses

msgget Create a new message queue.

Get a message queue ID.

msgsnd Send a message to a message queue.

msgrcv Receive a message from a message queue.

msgctl Get the info about a message queue.

Set the info for a message queue.

Remove a message queue.

TABLE 16.1 Message Queue API Functions and Uses

FIGURE 16.1 Message queue API functions.

The key argument defines a system-wide identifier that uniquely identifies a
message queue. key must be a nonzero value or the special symbol IPC_PRIVATE. The
IPC_PRIVATE variable simply tells the msgget function that no key is provided and to
simply make one up. The problem with this is that no other process can then find
the message queue, but for local message queues (private queues), this method
works fine.

The msgflag argument allows the user to specify two distinct parameters: a
command and an optional set of access permissions. Permissions replicate those
found as modes for the file creation functions (see Table 16.2). The command can
take three forms. The first is simply IPC_CREAT, which instructs msgget to create a
new message queue (or return the ID for the queue if it already exists). The second
includes two commands (IPC_CREAT | IPC_EXCL), which request that the message
queue be created, but if it already exists, the API function should fail and return an
error response (EEXIST). The third possible command argument is simply 0. This
form tells msgget that the message queue identifier for an existing queue is being
requested.

286 GNU/Linux Application Programming

Symbol Value Meaning

S_IRUSR 0400 User has read permission.

S_IWUSR 0200 User has write permission.

S_IRGRP 0040 Group has read permission.

S_IWGRP 0020 Group has write permission.

S_IROTH 0004 Other has read permission.

S_IWOTH 0002 Other has write permission.

TABLE 16.2 Message Queue Permissions for the msgget msgflag Argument

Now it’s time to take a look at a few examples of the msgget function to create
message queues or access existing ones. Assume in the following code snippets that
msgid is an int value (int msgid). You can start by creating a private queue (no key
is provided).

msgid = msgget(IPC_PRIVATE, IPC_CREAT | 0666);

If the msgget API function fails, -1 is returned with the actual error value pro-
vided within the process’s errno variable.

Now say that you want to create a message queue with a key value of 0x111.
You also want to know if the queue already exists, so you use the IPC_EXCL in this
example:

// Create a new message queue

msgid = msgget(0x111, IPC_CREAT | IPC_EXCL | 0666);

if (msgid == -1) {

printf("Queue already exists...\n");

} else {

printf("Queue created...\n");

}

An interesting question you’ve probably asked yourself now is how can you co-
ordinate the creation of queues using IDs that might not be unique? What happens
if someone already used the 0x111 key? Luckily, you have a way to create keys in a
system-wide fashion that ensures uniqueness. The ftok system function provides
the means to create system-wide unique keys using a file in the filesystem and a
number. As the file (and its path) is by default unique in the filesystem, a unique
key can be created easily. Take a look at an example of using ftok to create a unique
key. Assume that the file with path /home/mtj/queues/myqueue exists.

key_t myKey;

int msgid;

// Create a key based upon the defined path and number

myKey = ftok("/home/mtj/queues/myqueue", 0);

msgid = msgget(myKey, IPC_CREAT | 0666);

This creates a key for this path and number. Each time ftok is called with this
path and number, the same key is generated. Therefore, it provides a useful way to
generate a key based upon a file in the filesystem.

One last example is getting the message queue ID of an existing message queue.
The only difference in this example is that you provide no command, only the key:

msgid = msgget(0x111, 0);

if (msgid == -1) {

printf("Queue doesn’t exist...\n");

}

The msgflags (second argument to msgget) is zero in this case, which indicates
to this API function that an existing message queue is being sought.

Chapter 16 IPC with Message Queues 287

One final note on message queues relates to the default settings that are given
to a message queue when it is created. The configuration of the message queue is
noted in the parameters shown in Table 16.3. Note that you have no way to change
these defaults within msgget. In the next section, you take look at some of the para-
meters that can be changed and their effects.

288 GNU/Linux Application Programming

Parameter Default Value

msg_perm.cuid Effective user ID of the calling process (creator)

msg_perm.uid Effective user ID of the calling process (owner)

msg_perm.cgid Effective group ID of the calling process (creator)

msg_perm.gid Effective group ID of the calling process (owner)

msg_perm.mode Permissions (lower 9 bits of msgflag)

msg_qnum 0 (Number of messages in the queue)

msg_lspid 0 (Process ID of last msgsnd)

msg_lrpid 0 (Process ID of last msgrcv)

msg_stime 0 (last msgsnd time)

msg_rtime 0 (Last msgrcv time)

msg_ctime Current time (last change time)

msg_qbytes Queue size in bytes (system limit)—(16 KB)

TABLE 16.3 Message Queue Configuration and Defaults in msgget

The user can override the msg_perm.uid, msg_perm.gid, msg_perm.mode, and
msg_qbytes directly. More on this topic in the next section.

msgctl

The msgctl API function provides three distinct features for message queues. The
first is the ability to read the current set of message queue defaults (via the IPC_STAT
command). The second is the ability to modify a subset of the defaults (via
IPC_SET). Finally, the ability to remove a message queue is provided (via IPC_RMID).
The msgctl prototype function is defined as follows:

#include <sys/msg.h>

int msgctl(int msgid, int cmd, struct msqid_ds *buf);

You can start by looking at msgctl as a means to remove a message queue from
the system. This is the simplest use of msgctl and can be demonstrated very easily.
To remove a message queue, you need only the message queue identifier that is
returned by msgctl.

Whereas a system-wide unique key is required to create a message queue, only the
message queue ID (returned from msgget) is required to configure a queue, send a
message from a queue, receive a message from a queue, or remove a queue.

Now take a look at an example of message queue removal using msgctl. When-
ever the shared resource is no longer needed, the application should remove it. You
first get the message queue identifier using msgget and then use this ID in your call
to msgctl.

int msgid, ret;

...

msgid = msgget(QUEUE_KEY, 0);

if (msgid != -1) {

ret = msgctl(msgid, IPC_RMID, NULL);

if (ret == 0) {

// queue was successfully removed.

}

}

If any processes are currently blocked on a msgsnd or msgrcv API function, those
functions return with an error (-1) with the errno process variable set to EIDRM. The
process performing the IPC_RMID must have adequate permissions to remove the
message queue. If permissions do not allow the removal, an error return is gener-
ated with an errno variable set to EPERM.

Now take a look at IPC_STAT (read configuration) and IPC_SET (write configu-
ration) commands together for msgctl. In the previous section, you identified the
range of parameters that make up the configuration and status parameters. Now it’s
time to look at which of the parameters can be directly manipulated or used by the
application developer. Table 16.4 lists the parameters that can be updated after a
message queue has been created.

Changing these parameters is a very simple process. The process should be that
the application first reads the current set of parameters (via IPC_STAT) and then
modifies the parameters of interest before writing them back out (via IPC_SET). See
Listing 16.7 for an illustration of this process.

Chapter 16 IPC with Message Queues 289

LISTING 16.7 Setting All Possible Options in msgctl (on the CD-ROM at

./source/ch16/mqrdset.c)

1: #include <stdio.h>

2: #include <sys/msg.h>

3: #include <unistd.h>

4: #include <sys/types.h>

5: #include <errno.h>

6: #include "common.h"

7:

8: int main()

9: {

10: int msgid, ret;

11: struct msqid_ds buf;

12:

13: /* Get the message queue for the id MY_MQ_ID */

14: msgid = msgget(MY_MQ_ID, 0);

15:

16: /* Check successful completion of msgget */

17: if (msgid >= 0) {

18:

19: ret = msgctl(msgid, IPC_STAT, &buf);

20:

21: buf.msg_perm.uid = geteuid();

22: buf.msg_perm.gid = getegid();

23: buf.msg_perm.mode = 0644;

24: buf.msg_qbytes = 4096;

25:

26: ret = msgctl(msgid, IPC_SET, &buf);

27:

28: if (ret == 0) {

29:

290 GNU/Linux Application Programming

Parameter Description

msg_perm.uid Message queue user owner

msg_perm.gid Message queue group owner

msg_perm.mode Permissions (see Table 16.2)

msg_qbytes Size of message queue in bytes

TABLE 16.4 Message Queue Parameters That Can Be Updated

30: printf("Parameters successfully changed.\n");

31:

32: } else {

33:

34: printf("Error %d\n", errno);

35:

36: }

37:

38: }

39:

40: return 0;

41: }

At line 14, you get your message queue identifier, and then you use this at line
19 to retrieve the current set of parameters. At line 21, you set the msg_perm.uid
(effective user ID) with the current effective user ID using the geteuid() function.
Similarly, you set the msg_perm.gid (effective group ID) using the getegid() func-
tion at line 22. At line 23 you set the mode, and at line 24 you set the maximum
queue size (in bytes). In this case you set it to 4 KB. You now take this structure and
set the parameters for the current message queue using the msgctl API function.
This is done with the IPC_SET command in msgctl.

When setting the msg_perm.mode (permissions), you need to know that this is tra-
ditionally defined as an octal value. Note at line 23 of Listing 16.7 that a leading
zero is shown, indicating that the value is octal. If, for example, a decimal value of
666 were provided instead of octal 0666, permissions would be invalid, and there-
fore undesirable behavior would result. For this reason, it can be beneficial to use
the symbols as shown in Table 16.2.

You can also use the msgctl API function to identify certain message queue-
specific parameters, such as the number of messages currently on the message queue.
Listing 16.8 illustrates the collection and printing of the accessible parameters.

LISTING 16.8 Reading Current Message Queue Settings (on the CD-ROM at

./source/ch16/mqstats.c)

1: #include <stdio.h>

2: #include <sys/msg.h>

3: #include <unistd.h>

4: #include <sys/types.h>

5: #include <time.h>

6: #include "common.h"

7:

Chapter 16 IPC with Message Queues 291

8: int main()

9: {

10: int msgid, ret;

11: struct msqid_ds buf;

12:

13: /* Get the message queue for the id MY_MQ_ID */

14: msgid = msgget(MY_MQ_ID, 0);

15:

16: /* Check successful completion of msgget */

17: if (msgid >= 0) {

18:

19: ret = msgctl(msgid, IPC_STAT, &buf);

20:

21: if (ret == 0) {

22:

23: printf("Number of messages queued: %ld\n",

24: buf.msg_qnum);

25: printf("Number of bytes on queue : %ld\n",

26: buf.msg_cbytes);

27: printf("Limit of bytes on queue : %ld\n",

28: buf.msg_qbytes);

29:

30: printf("Last message writer (pid): %d\n",

31: buf.msg_lspid);

32: printf("Last message reader (pid): %d\n”,

33: buf.msg_lrpid);

34:

35: printf(“Last change time : %s”,

36: ctime(&buf.msg_ctime));

37:

38: if (buf.msg_stime) {

39: printf("Last msgsnd time : %s”,

40: ctime(&buf.msg_stime));

41: }

42: if (buf.msg_rtime) {

43: printf("Last msgrcv time : %s”,

44: ctime(&buf.msg_rtime));

45: }

46:

47: }

48:

49: }

50:

51: return 0;

52: }

292 GNU/Linux Application Programming

Listing 16.8 begins as most other message queue examples, with the collection
of the message queue ID from msgget. After you have your ID, you use this to
collect the message queue structure using msgctl and the command IPC_STAT. You
pass in a reference to the msqid_ds structure, which is filled in by the msgctl API
function. You then emit the information collected in lines 23–45.

At lines 23–24, you emit the number of messages that are currently enqueued
on the message queue (msg_qnum). The current total number of bytes that are
enqueued is identified by msg_cbytes (lines 25–26), and the maximum number of
bytes that can be enqueued is defined by msg_qbytes (lines 27–28).

You can also identify the last reader and writer process IDs (lines 30–33). These
refer to the effective process ID of the calling process that called msgrcv or
msgsnd.

The msg_ctime element refers to the last time the message queue was changed
(or when it was created). It’s in standard time_t format, so you pass msg_ctime to
ctime to grab the ASCII text version of the calendar date and time. You do the same
for msg_stime (last msgsnd time) and msg_rtime (last msgrcv time). Note that in the
case of msg_stime and msg_rtime, you emit the string dates only if their values are
nonzero. If the values are zero, no msgrcv or msgsnd API functions have been called.

msgsnd

The msgsnd API function allows a process to send a message to a queue. As you saw
in the introduction, the message is purely user-defined except that the first element
in the message must be a long word for the type field. The function prototype for
the msgsnd function is defined as follows:

int msgsnd(int msgid, struct msgbuf *msgp, size_t msgsz,

int msgflg);

The msgid argument is the message queue ID (returned from the msgget func-
tion). The msgbuf represents the message to be sent; at a minimum it is a long value
representing the message type. The msgsz argument identifies the size of the msgbuf
passed in to msgsend, in bytes. Finally, the msgflag argument allows you to alter the
behavior of the msgsnd API function.

The msgsnd function has some default behavior that you should consider. If
insufficient room exists on the message queue to write the message, the process is
blocked until sufficient room exists. Otherwise, if room exists, the call succeeds
immediately with a zero return to the caller.

Because you have already looked at some of the standard uses of msgsnd, here’s
your chance to look at some of the more specialized cases. The blocking behavior
is desirable in most cases because it can be the most efficient. In some cases, you

Chapter 16 IPC with Message Queues 293

might want to try to send a message, and if you’re unable (because of the insuffi-
cient space on the message queue), do something else. Take a look at this example
in the following code snippet:

ret = msgsnd(msgid, (struct msgbuf *)&myMessage,

sizeof(myMessage), IPC_NOWAIT);

if (ret == 0) {

// Message was successfully enqueued

} else {

if (errno == EAGAIN) {

// Insufficient space, do something else...

}

}

The IPC_NOWAIT symbol (passed in as the msgflags) tells the msgsnd API function
that if insufficient space exists, don’t block but instead return immediately. You
know this because an error was returned (indicated by the -1 return value), and the
errno variable was set to EAGAIN. Otherwise, with a zero return, the message was
successfully enqueued on the message queue for the receiver.

While a message queue should not be deleted as long as processes pend on
msgsnd, a special error return surfaces when this occurs. If a process is currently
blocked on a msgsnd and the message queue is deleted, then a -1 value is returned
with an errno value set to EIDRM.

One final item to note on msgsnd involves the parameters that are modified
when the msgsnd API call finishes. Table 16.3 lists the entire structure, but the items
modified after successful completion of the msgsnd API function are listed in Table
16.5.

294 GNU/Linux Application Programming

Parameter Update

msg_lspid Set to the process ID of the process that called msgsnd

msg_qnum Incremented by one

msg_stime Set to the current time

TABLE 16.5 Structure Updates after Successful msgsnd Completion

Note that the msg_stime is the time that the message was enqueued and not the
time that the msgsnd API function was called. This can be important if the msgsnd
function blocks (because of a full message queue).

msgrcv

Now you can focus on the last function in the message queue API. The msgrcv API
function provides the means to read a message from the queue. The user provides
a message buffer (filled in within msgrcv) and the message type of interest. The
function prototype for msgrcv is defined as follows:

ssize_t msgrcv(int msgid, struct msgbuf *msgp, size_t msgsz,

long msgtyp, int msgflg);

The arguments passed to msgrcv include the msgid (message queue identifier
received from msgget), a reference to a message buffer (msgp), the size of the buffer
(msgsz), the message type of interest (msgtyp), and finally a set of flags (msgflag).
The first three arguments are self-explanatory, so this section concentrates on the
latter two: msgtyp and msgflag.

The msgtyp argument (message type) specifies to msgrcv the messages to be
received. Each message within the queue contains a message type. The msgtyp
argument to msgrcv defines that only those types of messages are sought. If no mes-
sages of that type are found, the calling process blocks until a message of the desired
type is enqueued. Otherwise, the first message of the given type is returned to the
caller. The caller could provide a zero as the msgtyp, which tells msgrcv to ignore the
message type and return the first message on the queue. One exception to the mes-
sage type request is discussed with msgflg.

The msgflg argument allows the caller to alter the default behavior of the msgrcv
API function. As with msgsnd, you can instruct msgrcv not to block if no messages
are waiting on the queue. This is done also with the IPC_NOWAIT flag. the previous
paragraph discussed the use of msgtyp with a zero and nonzero value, but what if
you were interested in any flag except a certain one? This can be accomplished by
setting msgtyp with the undesired message type and setting the flag MSG_EXCEPT
within msgflg. Finally, the use of flag MSG_NOERROR instructs msgrcv to ignore the size
check of the incoming message and the available buffer passed from the user and
simply truncate the message if the user buffer isn’t large enough. All of the options
for msgtyp are described in Table 16.6, and options for msgflg are shown in Table
16.7.

Chapter 16 IPC with Message Queues 295

When a message is read from the queue, the internal structure representing the
queue is automatically updated as shown in Table 16.8.

296 GNU/Linux Application Programming

msgtyp Description

0 Read the first message available on the queue.

>0 If the msgflg MSG_EXCEPT is set, read the first message on the

queue not equal to the msgtyp. Otherwise, if MSG_EXCEPT is not

set, read the first message on the queue with the defined msgtyp.

<0 The first message on the queue that is less than or equal to the

absolute value of msgtyp is returned.

TABLE 16.6 msgtyp Arguments for msgrcv

Flag Description

IPC_NOWAIT Return immediately if no messages awaiting are of the given

msgtyp (no blocking).

MSG_EXCEPT Return first message available other than msgtyp.

MSG_NOERROR Truncate the message if user buffer isn’t of sufficient size.

TABLE 16.7 msgflg Arguments for msgrcv

Parameter Update

msg_lrpid Set to the process ID of process calling msgrcv

msg_qnum Decremented by one

msg_rtime Set to the current time

TABLE 16.8 Structure Updates after Successful msgsnd Completion

Note that msg_rtime is the time that the message was dequeued and not the time
that the msgrcv API function was called. This can be important if the msgrcv func-
tion blocks (because of an empty message queue).

Now take a look at some examples to illustrate msgrcv and the use of msgtyp and
msgflg options. The most common use of msgrcv is to read the next available mes-
sage from the queue:

ret = msgrcv(msgid, (struct msgbuf *)&buf, sizeof(buf), 0, 0);

if (ret != -1) {

printf("Message of type %ld received\n", *(long *)&buf);

}

Note that you check specifically for a return value that’s not -1. You do this
because msgrcv actually returns the number of bytes read. If the return is -1, errno
contains the error that occurred.

If you desire not to block on the call, you can do this very simply as follows:

ret = msgrcv(msgid, (struct msgbuf *)&buf, sizeof(buf),

0, IPC_NOWAIT);

if (ret != -1) {

printf("Message of type %ld received\n", *(long *)&buf);

} else if (errno == EAGAIN) {

printf("Message unavailable\n");

}

With the presence of an error return from msgrcv and errno set to EAGAIN, it’s
understood that no messages are available for read. This isn’t actually an error, just
an indication that no messages are available in the nonblocking scenario.

Message queues permit multiple writers and readers to the same queue. These
could be the same process, but very likely each is a different process. Say that you
have a process that manages only a certain type of message. You identify this par-
ticular message by its message type. In the next example, you see a snippet from a
process whose job it is to manage only messages of type 5.

ret = msgrcv(msgid, (struct msgbuf *)&buf, sizeof(buf), 5, 0);

Any message sent of type 5 is received by the process executing this code snip-
pet. To manage all other message types (other than 5), you can use the MSG_EXCEPT
flag to receive these. Take for example:

ret = msgrcv(msgid, (struct msgbuf *)&buf, sizeof(buf),

5, MSG_EXCEPT);

Chapter 16 IPC with Message Queues 297

Any message received on the queue other than type 5 is read using this line. If
only messages of type 5 are available, this function blocks until a message not of
type 5 is enqueued.

One final note on msgrcv is what happens if a process is blocked on a queue that
is removed. The removal is permitted to occur, and the process blocked on the
queue receives an error return with the errno set to EIDRM (as with blocked msgsnd
calls). It’s therefore important to fully recognize the error returns that are possible.

USER UTILITIES

GNU/Linux provides the ipcs command to explore IPC assets from the command
line. The ipcs utility provides information on message queues as well as semaphores
and shared memory segments. This section looks at its use for message queues.

The general form of the ipcs utility for message queues is as follows:

ipcs -q

This presents all of the message queues that are visible to the process. You can
start by creating a message queue (as was done in Listing 16.1):

./mqcreate

Created a Message Queue 819200

ipcs -q

——— Message Queues ————

key msqid owner perms used-bytes messages

0x0000006f 819200 mtj 666 0 0

You see the newly created queue (key 0x6f, or decimal 111). If you send a
message to the message queue (such as was illustrated with Listing 16.4), you see the
following:

./mqsend

Message successfully sent to queue 819200

ipcs -q

——— Message Queues ————

key msqid owner perms used-bytes messages

0x0000006f 819200 mtj 666 96 1

298 GNU/Linux Application Programming

You see now that a message is contained on the queue that occupies 96 bytes.
You can also take a deeper look at the queue by specifying the message queue ID.
This is done with ipcs using the -i option:

ipcs -q -i 819200

Message Queue msqid=819200

uid=500 gid=500 cuid=500 cgid=500 mode=0666

cbytes=96 qbytes=16384 qnum=1 lspid=22309 lrpid=0

send_time=Sat Mar 27 18:59:34 2004

rcv_time=Not set

change_time=Sat Mar 27 18:58:43 2004

You’re now able to review the structure representing the message queue (as de-
fined in Table 16.3). The ipcs utility can be very useful to view snapshots of mes-
sage queues for application debugging.

You can also delete queues from the command line using the ipcrm command.
To delete your previously created message queue, you simply use the ipcrm com-
mand as follows:

$ ipcrm -q 819200

$

As with the message queue API functions, you pass the message queue ID as the
indicator of the message queue to remove.

SUMMARY

This chapter introduced the message queue API and its application of interprocess
communication. It began with a whirlwind tour of the API and then detailed each
of the functions, including the behavioral modifiers (msgflg arguments). Finally, it
reviewed the ipcs utility and demonstrated its use as a debugging tool as well as the
ipcrm command for removing message queues from the command line.

Chapter 16 IPC with Message Queues 299

MESSAGE QUEUE APIS

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

int msgget(key_t key, int msgflg);

int msgctl(int msgid, int cmd, struct msqid_ds *buf);

int msgsnd(int msgid, structu msgbuf *msgp, size_t msgsz,

int msgflg);

size_t msgrcv(int msgid, struct msgbuf *msgp, size_t msgsz,

long msgtyp, int msgflg);

300 GNU/Linux Application Programming

301

Synchronization with
Semaphores

17

INTRODUCTION

This chapter explores the topic of semaphores. GNU/Linux provides both binary
and counting semaphores using the same POSIX-compliant API function set. It
also investigates semaphores in GNU/Linux and their similarities with some of the
other interprocess communication (IPC) mechanisms.

SEMAPHORE THEORY

First you need to go through a quick review of semaphore theory. A semaphore is
nothing more than a variable that is protected. It provides a means to restrict access
to a resource that is shared amongst two or more processes. Two operations are
permitted, commonly called acquire and release. The acquire operation allows a
process to take the semaphore, and if it has already been acquired, then the process

In This Chapter

Introduction to GNU/Linux Semaphores
Discussion of Binary and Counting Semaphores
Creating and Configuring Semaphores
Acquiring and Releasing Semaphores
Single Semaphores or Semaphore Arrays
The ipcs and ipcrm Utilities for Semaphores

blocks until it’s available. If a process has the semaphore, it can release it, which
allows other processes to acquire it. The process of releasing a semaphore auto-
matically wakes up the next process awaiting it on the acquire operation. Consider
the simple example in Figure 17.1.

302 GNU/Linux Application Programming

FIGURE 17.1 Simple binary semaphore example with two processes.

As shown in Figure 17.1, two processes are both vying for the single sema-
phore. Process A performs the acquire first and, therefore, is provided with the
semaphore. The period in which the semaphore is owned by the process is com-
monly called a critical section. The critical section can be performed by only one
process—hence the need for the coordination provided by the semaphore. While
process A has the semaphore, process B is not permitted to perform its critical
section.

Note that while process A is in its critical section, process B attempts to acquire
the semaphore. As the semaphore has already been acquired by process A, process
B is placed into a blocked state. When process A finally releases the semaphore, it
is then granted to process B, which is allowed to enter its critical section. process B
at a later time releases the semaphore, making it available for acquisition.

Semaphores commonly represent a point of synchronization in a system. For
example, a semaphore can represent access to a shared resource. Only when the
process has access to the semaphore can it access the shared resources. This ensures
that only one process has access to the shared resource at a time, thus providing
coordination between two or more users of the resource.

Semaphores were invented by Edsger Dijkstra for the T.H.E. operating system.
Originally, the semaphore operations were defined as P and V. The P stands for the
Dutch proberen, or to test, and the V for verhogen, or to increment.

Edsger Dijkstra used the train analogy to illustrate the critical section. Imagine
two parallel train tracks that for a short duration merge into a single track. The
single track is the shared resource and is also the critical section. The semaphore
ensures that only one train is permitted on the shared track at a time. Not having
the semaphore can have disastrous results on two trains trying to use the shared
track at the same time. The effect on software is just as treacherous.

TYPES OF SEMAPHORES

Semaphores come in two basic varieties. The first are binary semaphores, as illus-
trated in Figure 17.1. The binary semaphore represents a single resource; therefore,
when one process has acquired it, others are blocked until it is released.

The other style is the counting semaphore, which is used to represent shared re-
sources in quantities greater than one. Consider a pool of buffers. A counting sema-
phore can represent the entire set of buffers by setting its value to the number of
buffers available. Each time a process requires a buffer, it acquires the semaphore,
which decrements its value. When the semaphore value reaches zero, processes are
blocked until the value becomes nonzero. When a semaphore is released, the sema-
phore value is increased, thus permitting other processes to acquire a semaphore (and
associated buffer). This is the one use for a counting semaphore (see Figure 17.2).

In the counting semaphore example, each process requires two resources
before being able to perform its desired activities. In this example, the value of the
counting semaphore is 3, which means that only one process is permitted to fully
operate at a time. Process A acquires its two resources first, which means that
process B blocks until process A releases at least one of its resources.

Chapter 17 Synchronization with Semaphores 303

QUICK OVERVIEW OF GNU/LINUX SEMAPHORES

This chapter’s discussion begins with a whirlwind tour of the GNU/Linux semaphore
API. This section looks at code examples illustrating each of the API capabilities such
as creating a new semaphore, finding a semaphore, acquiring a semaphore, releasing
a semaphore, configuring a semaphore, and removing a semaphore. After you’ve fin-
ished the quick overview, you can dig deeper into the semaphore API.

Semaphores in GNU/Linux are actually semaphore arrays. A single semaphore can
represent an array of 64 semaphores. This unique feature of GNU/Linux permits
atomic operations over numerous semaphores at the same time. In the early
discussions of GNU/Linux semaphores in this chapter, you explore single sema-
phore uses. In the detailed discussions that follow, you look at the more complex
semaphore array examples.

304 GNU/Linux Application Programming

FIGURE 17.2 Counting semaphore example with two processes.

Using the semaphore API requires that the function prototypes and symbols be
available to the application. This is done by including the following three header
files:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

CREATING A SEMAPHORE

To create a semaphore (or get an existing semaphore), you use the semget API
function. This function takes a semaphore key, a semaphore count, and a set of
flags. The count represents the number of semaphores in the set. In this case, you
specify the need for one semaphore. The semaphore flags, argument 3 as shown in
Listing 17.1, specify that the semaphore is to be created (IPC_CREAT). You also spec-
ify the read/write permissions to use (in this case 0666 for read/write for the user,
group, and system in octal). An important item to consider is that when a sema-
phore is created, its value is zero. This suits for this example, but this chapter in-
vestigates later how to initialize the semaphore’s value.

Listing 17.1 demonstrates creating a semaphore. In the following examples,
you use the key MY_SEM_ID to represent your globally unique semaphore. At line 10,
you use the semget with your semaphore key, semaphore set count, and command
(with read/write permissions).

LISTING 17.1 Creating a Semaphore with semget (on the CD-ROM at

./source/ch17/semcreate.c)

1: #include <stdio.h>

2: #include <sys/sem.h>

3: #include "common.h"

4:

5: int main()

6: {

7: int semid;

8:

9: /* Create the semaphore with the id MY_SEM_ID */

10: semid = semget(MY_SEM_ID, 1, 0666 | IPC_CREAT);

11:

12: if (semid >= 0) {

13:

14: printf("semcreate: Created a semaphore %d\n", semid);

15:

16: }

17:

Chapter 17 Synchronization with Semaphores 305

18: return 0;

19: }

Upon completion of this simple application, a new globally available sema-
phore would be available with a key identified by MY_SEM_ID. Any process in the
system could use this semaphore.

GETTING AND RELEASING A SEMAPHORE

Now take a look at an application that attempts to acquire an existing semaphore
and also another application that releases it. Recall that your previously created
semaphore (in Listing 17.1) was initialized with a value of zero. This is identical to
a binary semaphore already having been acquired.

Listing 17.2 illustrates an application acquiring your semaphore. The GNU/
Linux semaphore API is a little more complicated than many semaphore APIs, but
it is POSIX compliant and, therefore, important for porting to other UNIX-like
operating systems.

LISTING 17.2 Getting a Semaphore with semop

1: #include <stdio.h>

2: #include <sys/sem.h>

3: #include <stdlib.h>

4: #include "common.h"

5:

6: int main()

7: {

8: int semid;

9: struct sembuf sb;

10:

11: /* Get the semaphore with the id MY_SEM_ID */

12: semid = semget(MY_SEM_ID, 1, 0);

13:

14: if (semid >= 0) {

15:

16: sb.sem_num = 0;

17: sb.sem_op = -1;

18: sb.sem_flg = 0;

19:

20: printf("semacq: Attempting to acquire semaphore

%d\n", semid);

21:

306 GNU/Linux Application Programming

22: /* Acquire the semaphore */

23: if (semop(semid, &sb, 1) == -1) {

24:

25: printf("semacq: semop failed.\n");

26: exit(-1);

27:

28: }

29:

30: printf("semacq: Semaphore acquired %d\n", semid);

31:

32: }

33:

34: return 0;

35: }

You begin by identifying the semaphore identifier with semget at line 12. If this
is successful, you build your semaphore operations structure (identified by the
sembuf structure). This structure contains the semaphore number, the operation to
be applied to the semaphore, and a set of operation flags. Because you have only
one semaphore, you use the semaphore number zero to identify it. To acquire the
semaphore, you specify an operation of -1. This subtracts one from the semaphore,
but only if it’s greater than zero to begin with. If the semaphore is already zero, the
operation (and the process) blocks until the semaphore value is incremented.

With the sembuf created (variable sb), you use this with the API function semop
to acquire the semaphore. You specify the semaphore identifier, your sembuf struc-
ture, and then the number of sembufs that were passed in (in this case, one). This
implies that you can provide an array of sembufs, which is investigated later in the
chapter. As long as the semaphore operation can finish (semaphore value is
nonzero), then it returns with success (a non –1 value). This means that the process
performing the semop has acquired the semaphore.

Now it’s time to look at a release example. This example demonstrates the
semop API function from the perspective of releasing the semaphore (see Listing
17.3).

In many cases, the release follows the acquire in the same process. This usage allows
synchronization between two processes. The first process attempts to acquire the
semaphore and then blocks when it’s not available. The second process, knowing
that another process is sitting blocked on the semaphore, releases it, allowing the
process to continue. This provides a lock-step operation between the processes and
is practical and useful.

Chapter 17 Synchronization with Semaphores 307

LISTING 17.3 Releasing a Semaphore with semop (on the CD-ROM at

./source/ch17/semrel.c)

1: #include <stdio.h>

2: #include <sys/sem.h>

3: #include <stdlib.h>

4: #include "common.h"

5:

6: int main()

7: {

8: int semid;

9: struct sembuf sb;

10:

11: /* Get the semaphore with the id MY_SEM_ID */

12: semid = semget(MY_SEM_ID, 1, 0);

13:

14: if (semid >= 0) {

15:

16: printf("semrel: Releasing semaphore %d\n", semid);

17:

18: sb.sem_num = 0;

19: sb.sem_op = 1;

20: sb.sem_flg = 0;

21:

22: /* Release the semaphore */

23: if (semop(semid, &sb, 1) == -1) {

24:

25: printf("semrel: semop failed.\n");

26: exit(-1);

27:

28: }

29:

30: printf("semrel: Semaphore released %d\n", semid);

31:

32: }

33:

34: return 0;

35: }

At line 12 of Listing 17.3, you first identify the semaphore of interest using the
semget API function. Having your semaphore identifier, you build your sembuf
structure to release the semaphore at line 23 using the semop API function. In this
example, your sem_op element is 1 (compared to the –1 in Listing 17.2). In this

308 GNU/Linux Application Programming

example, you are releasing the semaphore, which means that you’re making it
nonzero (and thus available).

It’s important to note the symmetry the sembuf uses in Listings 17.2 and 17.3. To
acquire the semaphore, you subtract 1 from its value. To release the semaphore,
you add 1 to its value. When the semaphore’s value is zero, it’s unavailable, forc-
ing any processing attempting to acquire it to block. An initial value of 1 for the
semaphore defines it as a binary semaphore. If the semaphore value is greater than
zero, it can be considered a counting semaphore.

Now take a look at a sample application of each of the functions discussed thus
far. Listing 17.4 illustrates execution of Listing 17.1, semcreate, Listing 17.2, semacq,
and Listing 17.3, semrel.

LISTING 17.4 Execution of the Sample Semaphore Applications

1: # ./semcreate

2: semcreate: Created a semaphore 1376259

3: # ./semacq &

4: [1] 12189

5: semacq: Attempting to acquire semaphore 1376259

6: # ./semrel

7: semrel: Releasing semaphore 1376259

8: semrel: Semaphore released 1376259

9: # semacq: Semaphore acquired 1376259

10:

11: [1]+ Done ./semacq

12: #

At line 1, you create the semaphore. You emit the identifier associated with this
semaphore, 1376259 (which is shown at line 2). Next, at line 3, you perform the
semacq application, which acquires the semaphore. You run this in the background
(identified by the trailing & symbol) because this application immediately blocks
because the semaphore is unavailable. At line 4, you see the creation of the new sub-
process (where [1] represents the number of subprocesses and 12189 is its process
ID, or pid). The semacq application prints out its message, indicating that it’s at-
tempting to acquire the semaphore, but then it blocks. You then execute the sem-
rel application to release the semaphore (line 6). You see two messages from this
application; the first at line 7 indicates that it is about to release the semaphore, and
then at line 8, you see that it was successful. Immediately thereafter, you see the
semacq application acquires the newly released semaphore, given its output at line 9.

Chapter 17 Synchronization with Semaphores 309

Finally, at line 11, you see the semacq application subprocess finish. Because it is
unblocked (based upon the presence of its desired semaphore), the semacq’s main
function reached its return, and thus the process finished.

CONFIGURING A SEMAPHORE

While a number of elements can be configured for a semaphore, this section looks
specifically at reading and writing the value of the semaphore (the current count).

The first example, Listing 17.5, demonstrates reading the current value of the
semaphore. You achieve this using the semctl API function.

LISTING 17.5 Retrieving the Current Semaphore Count (on the CD-ROM at

./source/ch17/semcrd.c)

1: #include <stdio.h>

2: #include <sys/sem.h>

3: #include <stdlib.h>

4: #include "common.h"

5:

6: int main()

7: {

8: int semid, cnt;

9:

10: /* Get the semaphore with the id MY_SEM_ID */

11: semid = semget(MY_SEM_ID, 1, 0);

12:

13: if (semid >= 0) {

14:

15: /* Read the current semaphore count */

16: cnt = semctl(semid, 0, GETVAL);

17:

18: if (cnt != -1) {

19:

20: printf("semcrd: current semaphore count %d.\n", cnt);

21:

22: }

23:

24: }

25:

26: return 0;

27: }

310 GNU/Linux Application Programming

Reading the semaphore count is performed at line 16. You specify the sema-
phore identifier, the index of the semaphore (0), and the command (GETVAL). Note
that the semaphore is identified by an index because it can possibly represent an
array of semaphores (rather than one). The return value from this command is ei-
ther –1 for error or the count of the semaphore.

You can configure a semaphore with a count using a similar mechanism (as
shown in Listing 17.6).

LISTING 17.6 Setting the Current Semaphore Count

1: #include <stdio.h>

2: #include <sys/sem.h>

3: #include <stdlib.h>

4: #include "common.h"

5:

6: int main()

7: {

8: int semid, ret;

9:

10: /* Get the semaphore with the id MY_SEM_ID */

11: semid = semget(MY_SEM_ID, 1, 0);

12:

13: if (semid >= 0) {

14:

15: /* Read the current semaphore count */

16: ret = semctl(semid, 0, SETVAL, 6);

17:

18: if (ret != -1) {

19:

20: printf("semcrd: semaphore count updated.\n");

21:

22: }

23:

24: }

25:

26: return 0;

27: }

As with retrieving the current semaphore value, you can set this value using the
semctl API function. The difference here is that along with the semaphore identi-
fier (semid) and semaphore index (0), you specify the set command (SETVAL) and a
value. In this example (line 16 of Listing 17.6), you are setting the semaphore value

Chapter 17 Synchronization with Semaphores 311

to 6. Setting the value to 6, as shown here, changes the binary semaphore to a count-
ing semaphore. This means that six semaphore acquires are permitted before an
acquiring process blocks.

REMOVING A SEMAPHORE

Removing a semaphore is also performed through the semctl API function. After
retrieving the semaphore identifier (line 10 in Listing 17.7), you remove the sema-
phore using the semctl API function and the IPC_RMID command (at line 14).

LISTING 17.7 Removing a Semaphore

1: #include <stdio.h>

2: #include <sys/sem.h>

3: #include "common.h"

4:

5: int main()

6: {

7: int semid, ret;

8:

9: /* Get the semaphore with the id MY_SEM_ID */

10: semid = semget(MY_SEM_ID, 1, 0);

11:

12: if (semid >= 0) {

13:

14: ret = semctl(semid, 0, IPC_RMID);

15:

16: if (ret != -1) {

17:

18: printf("Semaphore %d removed.\n", semid);

19:

20: }

21:

22: }

23:

24: return 0;

25: }

As you can probably see, the semaphore API probably is not the simplest that
you’ve used before.

That’s it for the whirlwind tour; next the chapter explores the semaphore API
in greater detail and looks at some of its other capabilities.

312 GNU/Linux Application Programming

THE SEMAPHORE API

As noted before, the semaphore API handles not only the case of managing a sin-
gle semaphore, but also groups (or arrays) of semaphores. This section investigates
the use of those groups of semaphores. As a quick review, Table 17.1 shows the API
functions and describes their uses. The following discussion continues to use the
term semaphore, but note this can refer instead to a semaphore array.

Chapter 17 Synchronization with Semaphores 313

API Function Uses

semget Create a new semaphore.

Get an existing semaphore.

semop Acquire or release a semaphore.

semctl Get info about a semaphore.

Set info about a semaphore.

Remove a semaphore.

TABLE 17.1 Semaphore API Functions and Their Uses

The following sections address each of these functions using both simple ex-
amples (a single semaphore) and the more complex uses (semaphore arrays).

semget

The semget API function serves two fundamental roles. Its first use is in the creation
of new semaphores. The second use is identifying an existing semaphore. In both
cases, the response from semget is a semaphore identifier (a simple integer value
representing the semaphore). The prototype for the semget API function is defined
as follows:

int semget(key_t key, int nsems, int semflg);

The key argument specifies a system-wide identifier that uniquely identifies
this semaphore. The key must be nonzero or the special symbol IPC_PRIVATE. The
IPC_PRIVATE variable tells semget that no key is provided and to simply make one
up. Because no key exists, other processes have no way to know about this sema-
phore. Therefore, it’s a private semaphore for this particular process.

You can create a single semaphore (with an nsems value of 1) or multiple sem-
aphores. If you’re using semget to get an existing semaphore, this value can simply
be zero.

Finally, the semflg argument allows you to alter the behavior of the semget API
function. The semflg argument can take on three basic forms, depending upon
what you desire. In the first form, you want to create a new semaphore. In this case,
the semflg argument must be the IPC_CREAT value OR’d with the permissions (see
Table 17.2). The second form also provides for semaphore creation, but with the
constraint that if the semaphore already exists, an error is generated. This second
form requires the semflg argument to be set to IPC_CREAT | IPC_EXCL along with the
permissions. If the second form is used and the semaphore already exists, the call
fails (–1 return) with errno set to EEXIST. The third form takes a zero for semflg and
identifies that an existing semaphore is being requested.

314 GNU/Linux Application Programming

Symbol Value Meaning

S_IRUSR 0400 User has read permission.

S_IWUSR 0200 User has write permission.

S_IRGRP 0040 Group has read permission.

S_IWGRP 0020 Group has write permission.

S_IROTH 0004 Other has read permission.

S_IWOTH 0002 Other has write permission.

TABLE 17.2 Semaphore Permissions for the semget semflg Argument

Now it’s time to look at a few examples of semget, used in each of the three
scenarios defined earlier in this section. In the examples that follow, assume semid
is an int value, and mySem is of type key_t. In the first example, you create a new
semaphore (or access an existing one) of the private type.

semid = semget(IPC_PRIVATE, 1, IPC_CREAT | 0666);

After the semget call completes, the semaphore identifier is stored in semid.
Otherwise, if an error occurs, a –1 is returned. Note that in this example (using
IPC_PRIVATE), semid is all you have to identify this semaphore. If semid is somehow
lost, you have no way to find this semaphore again.

In the next example, you create a semaphore using a system-wide unique key
value (0x222). You also indicate that if the semaphore already exists, you don’t sim-
ply get its value, but instead fail the call. Recall that this is provided by the IPC_EXCL
command, as follows:

// Create a new semaphore

semid = semget(0x222, 1, IPC_CREAT | IPC_EXCL | 0666);

if (semid == -1) {

printf("Semaphore already exists, or error\n");

} else {

printf("Semaphore created (id %d)\n”, semid);

}

If you don’t want to rely on the fact that 0x222 might not be unique in your
system, you can use the ftok system function. This function provides the means to
create a new unique key in the system. It does this by using a known file in the
filesystem and an integer number. The file in the filesystem is unique by default
(considering its path). Therefore, by using the unique file (and integer), it’s an easy
task to then create a unique system-wide value. Take a look at an example of the use
of ftok to create a unique key value. Assume for this example that your file and path
are defined as /home/mtj/semaphores/mysem.

key_t mySem;

int semid;

// Create a key based upon the defined path and number

myKey = ftok("/home/mtj/semaphores/mysem", 0);

semid = semget(myKey, 1, IPC_CREAT | IPC_EXCL | 0666);

Note that each time ftok is called with those parameters, the same key is gen-
erated (which is why this method works at all!). As long as each process that needs
access to the semaphore knows about the file and number, the key can be recalcu-
lated and then used to identify the semaphore.

In the examples discussed thus far, you’ve created a single semaphore. You can
create an array of semaphores by simply specifying an nsems value greater than one,
such as the following:

semarrayid = semget(myKey, 10, IPC_CREAT | 0666);

The result is a semaphore array created that consists of 10 semaphores. The
return value (semarrayid) represents the entire set of semaphores. You get a chance
to see how individual semaphores can be addressed in the semctl and semop discus-
sions later in the chapter.

Chapter 17 Synchronization with Semaphores 315

In this last example of semget, you simply get the semaphore identifier of an ex-
isting semaphore. In this example, you specify the key value and no command:

semid = semget(0x222, 0, 0);

if (semid == -1) {

printf("Semaphore does not exist...\n");

}

One final note on semaphores is that, just as is the case with message queues, a
set of defaults is provided to the semaphore as it’s created. The parameters that are
defined are shown in Table 17.3. Later on in the discussion of semctl, you can see
how some of the parameters can be changed.

316 GNU/Linux Application Programming

Parameter Default Value

sem_perm.cuid Effective user ID of the calling process (creator)

sem_perm.uid Effective user ID of the calling process (owner)

sem_perm.cgid Effective group ID of the calling process (creator)

sem_perm.gid Effective group ID of the calling process (owner)

sem_perm.mode Permissions (lower 9 bits of semflg)

sem_nsems Set to the value of nsems

sem_otime Set to zero (last semop time)

sem_ctime Set to the current time (create time)

TABLE 17.3 Semaphore Internal Values

The process can override some of these parameters. You get to explore this later
in the discussion of semctl.

semctl

The semctl API function provides a number of control operations on semaphores
or semaphore arrays. Examples of functionality range from setting the value of the
semaphore (as shown in Listing 17.6) to removing a semaphore or semaphore array
(see Listing 17.7). You get a chance to see these and other examples in this section.

The function prototype for the semctl call is as follows:

int semctl(int semid, int semnum, int cmd, ...);

The first argument defines the semaphore identifier, the second defines the
semaphore number of interest, the third defines the command to be applied, and
then potentially another argument (usually defined as a union). The operations
that can be performed are shown in Table 17.4.

Chapter 17 Synchronization with Semaphores 317

Command Description Fourth Argument

GETVAL Return the semaphore value.

SETVAL Set the semaphore value. int

GETPID Return the process ID that last operated

on the semaphore (semop).

GETNCNT Return the number of processes int

awaiting the defined semaphore to

increase in value.

GETZCNT Return the number of processes int

awaiting the defined semaphore to

become zero.

GETALL Return the value of each semaphore u_short*

in a semaphore array.

SETALL Set the value of each semaphore in a u_short*

semaphore array.

IPC_STAT Return the effective user, group, and struct semid_ds*

permissions for a semaphore.

IPC_SET Set the effective user, group, and struct semid_ds*

permissions for a semaphore.

IPC_RMID Remove the semaphore or

semaphore array.

TABLE 17.4 Operations That Can Be Performed Using semctl

Now it’s time to look at some examples of each of these operations in semctl,
focusing on semaphore array examples where applicable. The first example illus-
trates the setting of a semaphore value and then returning its value. In this example,
you first set the value of the semaphore to 10 (using the command SETVAL) and then
read it back out using GETVAL. Note that the semnum argument (argument 2) defines an
individual semaphore. Later on, you can take look at the semaphore array case
with GETALL and SETALL.

int semid, ret, value;

...

/* Set the semaphore to 10 */

ret = semctl(semid, 0, SETVAL, 10);

...

/* Read the semaphore value (return value) */

value = semctl(semid, 0, GETVAL);

The GETPID command allows you to identify the last process that performed a
semop on the semaphore. The process identifier is the return value, and argument 4
is not used in this case.

int semid, pid;

...

pid = semctl(semid, 0, GETPID);

If no semop has been performed on the semaphore, the return value is zero.
To identify the number of semaphores that are currently awaiting a semaphore

to increase in value, you can use the GETNCNT command. You can also identify the
number of processes that are awaiting the semaphore value to become zero using
GETZCNT. Both of these commands are illustrated in the following for the sema-
phore numbered zero:

int semid, count;

/* How many processes are awaiting this semaphore to increase */

count = semctl(semid, 0, GETNCNT);

/* How many processes are awaiting this semaphore to become zero */

count = semctl(semid, 0, GETZCNT);

Now it’s time to take a look at an example of some semaphore array operations.
Listing 17.8 illustrates both the SETVAL and GETVAL commands with semctl.

In this example, you create a semaphore array of 10 semaphores. The creation
of the semaphore array is performed at lines 20–21 using the semget API function.
Note that because you’re going to create and remove the semaphore array within
this same function, you use no key and instead use the IPC_PRIVATE key. The
MAX_SEMAPHORES symbol defines the number of semaphores that you are going to
create, and finally you specify that you are creating the semaphore array
(IPC_CREAT) with the standard permissions.

Next, you initialize the semaphore value array (lines 26–30). While this is not
a traditional example, you initialize each semaphore to one plus its semnum (so sem-
aphore zero has a value of one, semaphore one has a value of two, and so on). You
do this so that you can inspect the value array later and know what you’re looking

318 GNU/Linux Application Programming

at. At line 33, you set the arg.array parameter to the address of the array
(sem_array). Note that you’re using the semun union, which defines some com-
monly used types for semaphores. In this case, you use the unsigned short field to
represent an array of semaphore values.

At line 36, you use the semctl API function and the SETALL command to set the
semaphore values. You provide the semaphore identifier semnum as zero (unused in
this case), the SETALL command, and finally the semun union. Upon return of this
API function, the semaphore array identified by semid has the values as defined in
sem_array.

Next, you explore the GETALL command, which retrieves the array of values for
the semaphore array. You first set your arg.array to a new array (just to avoid
reusing the existing array that has the contents that you are looking for), at line 41.
At line 44, you call semctl again with the semid, zero for semnum (unused here,
again), the GETALL command, and the semun union.

To illustrate what you have read, you next loop through the sem_read_array
and emit each value for each semaphore index within the semaphore array (lines
49–53).

While GETALL allows you to retrieve the entire semaphore array in one call, you
can perform the same action using the GETVAL command, calling semctl for each
semaphore of the array. This is illustrated at lines 56–62. This also applies to using
the SETVAL command to mimic the SETALL behavior.

Finally, at line 65, you use the semctl API function with the IPC_RMID command
to remove the semaphore array.

LISTING 17.8 Creating and Manipulating Semaphore Arrays (on the CD-ROM at

./source/ch17/semall.c)

1: #include <stdio.h>

2: #include <sys/types.h>

3: #include <sys/sem.h>

4: #include <errno.h>

5:

6: #define MAX_SEMAPHORES 10

7:

8: int main()

9: {

10: int i, ret, semid;

11: unsigned short sem_array[MAX_SEMAPHORES];

12: unsigned short sem_read_array[MAX_SEMAPHORES];

13:

14: union semun {

15: int val;

Chapter 17 Synchronization with Semaphores 319

16: struct semid_ds *buf;

17: unsigned short *array;

18: } arg;

19:

20: semid = semget(IPC_PRIVATE, MAX_SEMAPHORES,

21: IPC_CREAT | 0666);

22:

23: if (semid != -1) {

24:

25: /* Initialize the sem_array */

26: for (i = 0 ; i < MAX_SEMAPHORES ; i++) {

27:

28: sem_array[i] = (unsigned short)(i+1);

29:

30: }

31:

32: /* Update the arg union with the sem_array address */

33: arg.array = sem_array;

34:

35: /* Set the values of the semaphore-array */

36: ret = semctl(semid, 0, SETALL, arg);

37:

38: if (ret == -1) printf("SETALL failed (%d)\n", errno);

39:

40: /* Update the arg union with another array for read */

41: arg.array = sem_read_array;

42:

43: /* Read the values of the semaphore array */

44: ret = semctl(semid, 0, GETALL, arg);

45:

46: if (ret == -1) printf("GETALL failed (%d)\n", errno);

47:

48: /* print the sem_read_array */

49: for (i = 0 ; i < MAX_SEMAPHORES ; i++) {

50:

51: printf("Semaphore %d, value %d\n", i,

sem_read_array[i]);

52:

53: }

54:

55: /* Use GETVAL in a similar manner */

56: for (i = 0 ; i < MAX_SEMAPHORES ; i++) {

57:

58: ret = semctl(semid, i, GETVAL);

59:

320 GNU/Linux Application Programming

60: printf("Semaphore %d, value %d\n", i, ret);

61:

62: }

63:

64: /* Delete the semaphore */

65: ret = semctl(semid, 0, IPC_RMID);

66:

67: } else {

68:

69: printf("Could not allocate semaphore (%d)\n", errno);

70:

71: }

72:

73: return 0;

74: }

Executing this application (called semall) produces the output shown in List-
ing 17.9. Not surprisingly, the GETVAL emits identical output as that shown for the
GETALL.

LISTING 17.9 Output from the semall Application Shown in Listing 17.8

./semall

Semaphore 0, value 1

Semaphore 1, value 2

Semaphore 2, value 3

Semaphore 3, value 4

Semaphore 4, value 5

Semaphore 5, value 6

Semaphore 6, value 7

Semaphore 7, value 8

Semaphore 8, value 9

Semaphore 9, value 10

Semaphore 0, value 1

Semaphore 1, value 2

Semaphore 2, value 3

Semaphore 3, value 4

Semaphore 4, value 5

Semaphore 5, value 6

Semaphore 6, value 7

Semaphore 7, value 8

Semaphore 8, value 9

Semaphore 9, value 10

#

Chapter 17 Synchronization with Semaphores 321

The IPC_STAT command retrieves the current information about a semaphore
or semaphore array. The data is retrieved into a structure called semid_ds and con-
tains a variety of parameters. The application that reads this information is shown
in Listing 17.10. You read the semaphore information at line 23 using the semctl
API function and the IPC_STAT command. The information captured is then emit-
ted at lines 27–49.

LISTING 17.10 Reading Semaphore Information Using IPC_STAT (on the CD-ROM at

./source/ch17/semstat.c)

1: #include <stdio.h>

2: #include <sys/sem.h>

3: #include <time.h>

4: #include "common.h"

5:

6: int main()

7: {

8: int semid, ret;

9: struct semid_ds sembuf;

10:

11: union semun {

12: int val;

13: struct semid_ds *buf;

14: unsigned short *array;

15: } arg;

16:

17: /* Get the semaphore with the id MY_SEM_ID */

18: semid = semget(MY_SEM_ID, 1, 0);

19:

20: if (semid >= 0) {

21:

22: arg.buf = &sembuf;

23: ret = semctl(semid, 0, IPC_STAT, arg);

24:

25: if (ret != -1) {

26:

27: if (sembuf.sem_otime) {

28: printf("Last semop time %s",

29: ctime(&sembuf.sem_otime));

30: }

31:

322 GNU/Linux Application Programming

32: printf("Last change time %s",

33: ctime(&sembuf.sem_ctime));

34:

35: printf("Number of semaphores %ld\n”,

36: sembuf.sem_nsems);

37:

38: printf("Owner’s user id %d\n",

39: sembuf.sem_perm.uid);

40: printf("Owner’s group id %d\n",

41: sembuf.sem_perm.gid);

42:

43: printf("Creator’s user id %d\n",

44: sembuf.sem_perm.cuid);

45: printf("Creator’s group id %d\n",

46: sembuf.sem_perm.cgid);

47:

48: printf("Permissions 0%o\n",

49: sembuf.sem_perm.mode);

50:

51: }

52:

53: }

54:

55: return 0;

56: }

Three of the fields shown can be updated through another call to semctl using
the IPC_SET call. The three updateable parameters are the effective user ID
(sem_perm.uid), the effective group ID (sem_perm.gid), and the permissions
(sem_perm.mode). The following code snippet illustrates modifying the permissions:

/* First, read the semaphore information */

arg.buf = &sembuf;

ret = semctl(semid, 0, IPC_STAT, arg);

/* Next, update the permissions */

sembuf.sem_perm.mode = 0644;

/* Finally, update the semaphore information */

ret = semctl(semid, 0, IPC_SET, arg);

After the IPC_SET semctl has completed, the last change time (sem_ctime) is up-
dated to the current time.

Chapter 17 Synchronization with Semaphores 323

Finally, the IPC_RMID command permits you to remove a semaphore or sema-
phore array. A code snippet demonstrating this process is shown in the following:

int semid;

...

semid = semget(the_key, NUM_SEMAPHORES, 0);

ret = semctl(semid, 0, IPC_RMID);

Note that if any processes are currently blocked on the semaphore, they are im-
mediately unblocked with an error return and errno is set to EIDRM.

semop

The semop API function provides the means to acquire and release a semaphore or
semaphore array. The basic operations provided by semop are to decrement a sem-
aphore (acquire one or more semaphores) or to increment a semaphore (release
one or more semaphores). The API for the semop function is defined as follows:

int semop(int semid, struct sembuf *sops, unsigned int nsops);

The semop takes three parameters: a semaphore identifier (semid), a sembuf
structure, and the number of semaphore operations to be performed (nsops). The
semaphore structure defines the semaphore number of interest, the operation to
perform, and a flag word that can be used to alter the behavior of the operation.
The sembuf structure is shown as follows:

struct sembuf {

unsigned short sem_num;

short sem_op;

short sem_flg;

};

As you can imagine, the sembuf array can produce very complex semaphore
interactions. You can acquire one semaphore and release another in a single semop
operation.

Take a look at a simple application that acquires 10 semaphores in one opera-
tion. This application is shown in Listing 17.11.

An important difference to notice here is that rather than specify a single
sembuf structure (as you did in single semaphore operations), you specify an array
of sembufs (line 9). You identify your semaphore array at line 12; note again that
you specify the number of semaphores (nsems, or number of semaphores, as argu-
ment 2). You build out your sembuf array as acquires (with a sem_op of –1) and also

324 GNU/Linux Application Programming

initialize the sem_num field with the semaphore number. This specifies that you want
to acquire each of the semaphores in the array. If one or more aren’t available, the
operation blocks until all semaphores can be acquired.

At line 26, you perform the semop API function to acquire the semaphores.
Upon acquisition (or error), the semop function returns to the application. As long
as the return value is not –1, you have successfully acquired the semaphore array.
Note that you can specify –2 for each sem_op, which requires that two counts of the
semaphore are needed for successful acquisition.

LISTING 17.11 Acquiring an Array of Semaphores Using semop (on the CD-ROM at

./source/ch17/semaacq.c)

1: #include <stdio.h>

2: #include <sys/sem.h>

3: #include <stdlib.h>

4: #include "common.h"

5:

6: int main()

7: {

8: int semid, i;

9: struct sembuf sb[10];

10:

11: /* Get the semaphore with the id MY_SEM_ID */

12: semid = semget(MY_SEMARRAY_ID, 10, 0);

13:

14: if (semid >= 0) {

15:

16: for (i = 0 ; i < 10 ; i++) {

17: sb[i].sem_num = i;

18: sb[i].sem_op = -1;

19: sb[i].sem_flg = 0;

20: }

21:

22: printf("semaacq: Attempting to acquire semaphore %d\n",

23: semid);

24:

25: /* Acquire the semaphores */

26: if (semop(semid, &sb[0], 10) == -1) {

27:

28: printf("semaacq: semop failed.\n");

29: exit(-1);

30:

31: }

Chapter 17 Synchronization with Semaphores 325

32:

33: printf("semaacq: Semaphore acquired %d\n", semid);

34:

35: }

36:

37: return 0;

38: }

Next, take a look at the semaphore release operation. This includes only the
changes from Listing 17.11, as otherwise they are very similar (on the CD-ROM at
./source/ch17/semarel.c). In fact, the only difference is the sembuf initialization:

for (i = 0 ; i < 10 ; i++) {

sb[i].sem_num = i;

sb[i].sem_op = 1;

sb[i].sem_flg = 0;

}

In this example, you increment the semaphore (release) instead of decrement-
ing it (as was done in Listing 17.11).

The sem_flg within the sembuf structure permits you to alter the behavior of the
semop API function. Two flags are possible, as shown in Table 17.5.

326 GNU/Linux Application Programming

Flag Purpose

SEM_UNDO Undo the semaphore operation if the process exits.

IPC_NOWAIT Return immediately if the semaphore operation cannot be

performed (if the process would block) and return an errno

of EAGAIN.

TABLE 17.5 Semaphore Flag Options (sembuf.sem_flg)

Another useful operation that can be performed on semaphores is the wait-
for-zero operation. In this case, the process is blocked until the semaphore value
becomes zero. This operation is performed by simply setting the sem_op field to
zero, as follows:

struct sembuf sb;

...

sb.sem_num = 0; // semaphore 0

sb.sem_op = 0; // wait for zero

sb.sem_flg = 0; // no flags

...

As with previous semops, setting sem_flg with IPC_NOWAIT causes semop to return
immediately if the operation blocks with an errno of EAGAIN.

Finally, if the semaphore is removed while a process is blocked on it (via a
semop operation), the process becomes immediately unblocked and an errno value
is returned as EIDRM.

USER UTILITIES

GNU/Linux provides the ipcs command to explore semaphores from the com-
mand line. The ipcs utility provides information on a variety of resources; this sec-
tion explores its use for investigating semaphores.

The general form of the ipcs utility for semaphores is as follows:

ipcs -s

This presents all the semaphores that are visible to the calling process. Take a
look at an example where you create a semaphore (as was done in Listing 17.1):

./semcreate

semcreate: Created a semaphore 1769475

ipcs -s

——— Semaphore Arrays ————

key semid owner perms nsems

0x0000006f 1769475 mtj 666 1

#

Here, you see your newly created semaphore (key 0x6f). You can get extended
information about the semaphore using the -i option. This allows you to specify a
specific semaphore ID, for example:

Chapter 17 Synchronization with Semaphores 327

ipcs -s -i 1769475

Semaphore Array semid=1769475

uid=500 gid=500 cuid=500 cgid=500

mode=0666, access_perms=0666

nsems = 1

otime = Not set

ctime = Fri Apr 9 17:50:01 2004

semnum value ncount zcount pid

0 0 0 0 0

#

Here you see your semaphore in greater detail. You see the owner and creator
process and group IDs, permissions, number of semaphores (nsems), last semop
time, last change time, and the details of the semaphore itself (semnum through pid).
The value represents the actual value of the semaphore (zero after creation). If you
were to perform the release operation (see Listing 17.3) and then perform this com-
mand again, you would then see this:

./semrel

semrel: Releasing semaphore 1769475

semrel: Semaphore released 1769475

ipcs -s -i 1769475

Semaphore Array semid=1769475

uid=500 gid=500 cuid=500 cgid=500

mode=0666, access_perms=0666

nsems = 1

otime = Fri Apr 9 17:54:44 2004

ctime = Fri Apr 9 17:50:01 2004

semnum value ncount zcount pid

0 1 0 0 20494

#

Note here that your value has increased (based upon the semaphore release),
and other information (such as otime and pid) has been updated given a semaphore
operation having been performed.

You can also delete semaphores from the command line using the ipcrm
command. To delete your previously created semaphore, you simply use the ipcrm
command as follows:

328 GNU/Linux Application Programming

ipcrm -s 1769475

[mtj@camus ch17]$ ipcs -s

——— Semaphore Arrays ————

key semid owner perms nsems

#

As with the semop and semctl API functions, the ipcrm command uses the sem-
aphore identifier to specify the semaphore to be removed.

SUMMARY

This chapter introduced the semaphore API and its application of interprocess
coordination and synchronization. It began with a whirlwind tour of the API and
then followed with a detailed description of each command including examples of
each. Finally, the chapter reviewed the ipcs and ipcrm commands and demon-
strated their debugging and semaphore management capabilities.

SEMAPHORE APIS

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

int semget(key_t key, int nsems, int semflg);

int semop(int semid, struct sembuf *sops, unsigned int nsops);

int semctl(int semid, int semnum, int cmd, ...);

Chapter 17 Synchronization with Semaphores 329

This page intentionally left blank

331

Shared Memory
Programming

18

INTRODUCTION

Shared memory APIs are the final topic of interprocess communication (IPC) that
this book details. Shared memory allows two or more processes to share a chunk of
memory (mapped to each of the process’s individual address spaces) so that each
can communicate with all others. Shared memory goes even further, as you will see
in this chapter.

Recall from Chapter 13, “Introduction to Sockets Programming,” that the
 address spaces for parent and child processes are independent. The parent process
can create a chunk of memory (such as declaring an array), but after the fork
 completes, the parent and child see different memory. In GNU/Linux, all processes
have unique virtual address spaces, but the shared memory application program-
ming interface (API) permits a process to attach to a common (shared) address
 segment.

With all this power comes some complexity. For example, when processes
share memory segments, they must also provide a means to coordinate access to
them.

In This Chapter

Introduction to Shared Memory
Creating and Configuring Shared Memory Segments
Using and Protecting Shared Memory Segments
Locking and Unlocking Shared Segments
Using the ipcs and ipcrm Utilities

This is commonly provided via a semaphore (by the developer), which can be
contained within the shared memory segment itself. This chapter looks at this
 specific technique.

If shared memory segments have this disadvantage, why not use an existing IPC
mechanism that has built-in coordination, such as message queues? The answer
also lies in the simplicity of shared memory. When you use a message queue, one
process writes a message to a queue, which involves a copy from the user’s address
space to the kernel space. When another user reads from the message queue,
 another copy is performed from the kernel’s address space to the new user’s address
space. The benefit of shared memory is that you minimize copying in its entirety.
The segment is shared between the two processes in their own address spaces, so
bulk copies of data are not necessary.

Because processes share the memory segment in each of their address spaces, copies
are minimized in sharing data. For this reason, shared memory can be the fastest
form of IPC available within GNU/Linux.

QUICK OVERVIEW OF SHARED MEMORY

This section takes a quick look at the shared memory APIs. Later, the next section
digs into the API further. First, however, this section looks at code snippets to create
a shared memory segment, get an identifier for an existing one, configure a
 segment, attach, and detach, and it also gives some examples of processes using
them.

Using the shared memory API requires the function prototypes and symbols to
be available to the application. This is done by including the following (at the top
of the C source file):

#include <sys/ipc.h>

#include <sys/shm.h>

CREATING A SHARED MEMORY SEGMENT

To create a shared memory segment, you use the shmget API function. Using
shmget, you specify a unique shared memory ID, the size of the segment, and finally
a set of flags (see Listing 18.1). The flags argument, as you saw with message
queues and semaphores, includes both access permissions and a command to cre-
ate the segment (IPC_CREAT).

332 GNU/Linux Application Programming

LISTING 18.1 Creating a Shared Memory Segment with shmget (on the CD-ROM at

./source/ch18/shmcreate.c)

1: #include <stdio.h>

2: #include <sys/shm.h>

3: #include "common.h"

4:

5: int main()

6: {

7: int shmid;

8:

9: /* Create the shared memory segment using MY_SHM_ID */

10: shmid = shmget(MY_SHM_ID, 4096, 0666 | IPC_CREAT);

11:

12: if (shmid >= 0) {

13:

14: printf("Created a shared memory segment %d\n", shmid);

15:

16: }

17:

18: return 0;

19: }

At line 10 in Listing 18.1, you create a new shared memory segment that’s 4 KB
in size. The size specified must be evenly divisible by the page size of the architec-
ture in question (typically 4 KB). The return value of shmget (stored in shmid) can
be used in subsequent calls to configure or attach to the segment.

To identify the page size on a given system, simply call the getpagesize function.
This returns the number of bytes contained within a system page.

#include <unistd.h>

int getpagesize(void);

GETTING INFORMATION ON A SHARED MEMORY SEGMENT

You can also get information about a shared memory segment and even set some
parameters. The shmctl API function provides a number of capabilities. Here, you
take a look at retrieving information about a shared memory segment.

In Listing 18.2, you first get the shared memory identifier for the segment using
the shmget API function. After you have this, you can call shmctl to grab the cur-
rent stats. To shmctl you pass the identifier for the shared memory segment, the
command to grab stats (IPC_STAT), and finally a buffer in which the data is written.

Chapter 18 Shared Memory Programming 333

This buffer is a structure of type shmid_ds. You will look more at this structure in
the “shmctl” section later in this chapter. Upon successful return of shmctl, identi-
fied by a zero return, you emit your data of interest. Here, you emit the size of the
shared memory segment (shm_segsz) and the number of attaches that have been
performed on the segment (shm_nattch).

LISTING 18.2 Retrieving Information about a Shared Memory Segment

(on the CD-ROM at ./source/ch18/shmszget.c)

1: #include <stdio.h>

2: #include <sys/shm.h>

3: #include <errno.h>

4: #include "common.h"

5:

6: int main()

7: {

8: int shmid, ret;

9: struct shmid_ds shmds;

10:

11: /* Get the shared memory segment using MY_SHM_ID */

12: shmid = shmget(MY_SHM_ID, 0, 0);

13:

14: if (shmid >= 0) {

15:

16: ret = shmctl(shmid, IPC_STAT, &shmds);

17:

18: if (ret == 0) {

19:

20: printf("Size of memory segment is %d\n", shmds.shm_segsz

);

21: printf("Number of attaches %d\n", (int)shmds.shm_nattch);

22:

23: } else {

24:

25: printf("shmctl failed (%d)\n", errno);

26:

27: }

28:

29: } else {

30:

31: printf("Shared memory segment not found.\n");

32:

33: }

334 GNU/Linux Application Programming

34:

35: return 0;

36: }

ATTACHING AND DETACHING A SHARED MEMORY SEGMENT

To use your shared memory, you must attach to it. Attaching to a shared memory
segment maps the shared memory into your process’s memory space. To attach to
the segment, you use the shmat API function. This returns a pointer to the segment
in the process’s address space. This address can then be used by the process like any
other memory reference. You detach from the memory segment using the shmdt
API function.

In Listing 18.3, a simple application is shown to attach to and detach from a
shared memory segment. You first get the shared memory identifier using shmget
(at line 12). At line 16, you attach to the segment using shmat. You specify your
identifier and an address (where you want to place it in your address space) and an
options word (0). After checking, if this was successful (the return of a nonzero ad-
dress from shmat), you detach from the segment at line 23 using shmdt.

LISTING 18.3 Attaching to and Detaching from a Shared Memory Segment (on the CD-

ROM at ./source/ch18/shmattch.c)

1: #include <stdio.h>

2: #include <sys/shm.h>

3: #include <errno.h>

4: #include "common.h"

5:

6: int main()

7: {

8: int shmid, ret;

9: void *mem;

10:

11: /* Get the shared memory segment using MY_SHM_ID */

12: shmid = shmget(MY_SHM_ID, 0, 0);

13:

14: if (shmid >= 0) {

15:

16: mem = shmat(shmid, (const void *)0, 0);

17:

18: if ((int)mem != -1) {

19:

20: printf("Shared memory was attached in our "

Chapter 18 Shared Memory Programming 335

21: "address space at %p\n", mem);

22:

23: ret = shmdt(mem);

24:

25: if (ret == 0) {

26:

27: printf("Successfully detached memory\n");

28:

29: } else {

30:

31: printf("Memory detached Failed (%d)\n", errno);

32:

33: }

34:

35: } else {

36:

37: printf("shmat failed (%d)\n", errno);

38:

39: }

40:

41: } else {

42:

43: printf("Shared memory segment not found.\n");

44:

45: }

46:

47: return 0;

48: }

USING A SHARED MEMORY SEGMENT

Now take a look at two processes that use a shared memory segment. For brevity,
this example passes on the error checking. First you take a look at the write exam-
ple. In Listing 18.4, you see a short example that uses the strcpy standard library
function to write to the shared memory segment. Because the segment is just a
block of memory, you cast it from a void pointer to a character pointer in order to
write to it (avoiding compiler warnings) at line 16. It’s important to note that a
shared memory segment is nothing more than a block of memory, and anything
you would expect to do with a memory reference is possible with the shared mem-
ory block.

336 GNU/Linux Application Programming

LISTING 18.4 Writing to a Shared Memory Segment (on the CD-ROM at

./source/ch18/shmwrite.c)

1: #include <stdio.h>

2: #include <sys/shm.h>

3: #include <string.h>

4: #include "common.h"

5:

6: int main()

7: {

8: int shmid, ret;

9: void *mem;

10:

11: /* Get the shared memory segment using MY_SHM_ID */

12: shmid = shmget(MY_SHM_ID, 0, 0);

13:

14: mem = shmat(shmid, (const void *)0, 0);

15:

16: strcpy((char *)mem, "This is a test string.\n");

17:

18: ret = shmdt(mem);

19:

20: return 0;

21: }

Now take a look at a read example. In Listing 18.5, you see a similar application
to Listing 18.4. In this particular case, you read from the block of memory by using
the printf call. In Listing 18.4 (the write application), you copied a string into the
block with the strcpy function. Now in Listing 18.5, you emit that same string
using printf. Note that the first process attaches to the memory, writes the string,
and then detaches and exits. The next process attaches and reads from the memory.
Any number of processes can read or write to this memory, which is one of the
basic problems. Some solutions for this problem are investigated in the section
“Using a Shared Memory Segment” later in this chapter.

LISTING 18.5 Reading from a Shared Memory Segment (on the CD-ROM at

./source/ch18/shmread.c)

1: #include <stdio.h>

2: #include <sys/shm.h>

3: #include <string.h>

4: #include "common.h"

5:

6: int main()

Chapter 18 Shared Memory Programming 337

7: {

8: int shmid, ret;

9: void *mem;

10:

11: /* Get the shared memory segment using MY_SHM_ID */

12: shmid = shmget(MY_SHM_ID, 0, 0);

13:

14: mem = shmat(shmid, (const void *)0, 0);

15:

16: printf(“%s", (char *)mem);

17:

18: ret = shmdt(mem);

19:

20: return 0;

21: }

REMOVING A SHARED MEMORY SEGMENT

To permanently remove a shared memory segment, you use the shmctl API func-
tion. You use a special command with shmctl called IPC_RMID to remove the seg-
ment (much as is done with message queues and semaphores). Listing 18.6
illustrates the segment removal.

LISTING 18.6 Removing a Shared Memory Segment (on the CD-ROM at

./source/ch18/shmdel.c)

1: #include <stdio.h>

2: #include <sys/shm.h>

3: #include <errno.h>

4: #include "common.h"

5:

6: int main()

7: {

8: int shmid, ret;

9:

10: /* Create the shared memory segment using MY_SHM_ID */

11: shmid = shmget(MY_SHM_ID, 0, 0);

12:

13: if (shmid >= 0) {

14:

15: ret = shmctl(shmid, IPC_RMID, 0);

16:

17: if (ret == 0) {

18:

19: printf("Shared memory segment removed\n");

338 GNU/Linux Application Programming

20:

21: } else {

22:

23: printf("shmctl failed (%d)\n", errno);

24:

25: }

26:

27: } else {

28:

29: printf("Shared memory segment not found.\n");

30:

31: }

32:

33: return 0;

34: }

After the shared memory segment identifier is found (line 11), you call shmctl
with the IPC_RMID argument at line 15.

That completes the quick tour of the shared memory API. The next section digs
deeper into the APIs and looks at some of the more detailed aspects.

SHARED MEMORY APIS

Now that the quick review is finished, you can start your deeper look into the APIs
by looking at Table 18.1, which provides the shared memory API functions, along
with their basic uses.

Chapter 18 Shared Memory Programming 339

API Function Uses

shmget Create a new shared memory segment.

Get the identifier for an existing shared memory segment.

shmctl Get info on a shared memory segment.

Set certain info on a shared memory segment.

Remove a shared memory segment.

shmat Attach to a shared memory segment.

shmdt Detach from a shared memory segment.

TABLE 18.1 Shared Memory API Functions and Uses

The next sections address these API functions in detail, identifying each of their
uses with sample source.

shmget

The shmget API function (like semget and msqget) is a multirole function. First, it
can be used to create a new shared memory segment, and second, it can be used to
get the ID of an existing shared memory segment. The result of the shmget API
function (in either role) is a shared memory segment identifier that is to be used in
all other shared memory functions. The prototype for the shmget function is de-
fined as follows:

#include <sys/ipc.h>

#include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflag);

The key argument specifies a system-wide identifier that uniquely identifies the
shared memory segment. The key must be a nonzero value or the special symbol
IPC_PRIVATE. The IPC_PRIVATE argument defines that you are creating a private
 segment (one that has no system-wide name). No other processes can find this
 segment, but it can be useful to create segments that are used only within a process
or process group (where the return key can be communicated).

The size argument identifies the size of the shared memory segment to create.
When you are interested in an existing shared memory segment, you leave this ar-
gument as zero (as it’s not used by the function in the segment the segment “create”
case). As a minimum, the size must be PAGE_SIZE (or 4 KB). The size should also be
evenly divisible by PAGE_SIZE, as the segment allocated is in PAGE_SIZE chunks. The
maximum size is implementation dependent, but typically is 4 MB.

The shmflag argument permits the specification of two separate parameters.
These are a command and an optional set of access permissions. The command
portion can take one of three forms. The first is to create a new shared memory seg-
ment, where the shmflag is equal to the IPC_CREAT symbol. This returns the identi-
fier for a new segment or an identifier for an existing segment (if it already exists).
If you want to create the segment and fail if the segment already exists, then you can
use the IPC_CREAT with the IPC_EXCL symbol (second form). If (IPC_CREAT |

IPC_EXCL) is used and the shared segment already exists, then an error status is
 returned, and errno is set to EEXIST. The final form simply requests an existing
shared memory segment. In this case, you specify a value of zero for the command
argument.

When you are creating a new shared memory segment, each of the read/write
access permissions can be used except for the execute permissions. These permis-
sions are shown in Table 18.2.

340 GNU/Linux Application Programming

Chapter 18 Shared Memory Programming 341

Now it’s time to take a look at a few examples of the shmget function to create
new shared memory segments or to access existing ones.

In this first example, you create a new private shared memory segment of size
4 KB. Note that because you’re using IPC_PRIVATE, you are assured of creating a new
segment as no unique key is provided. You also specify full read and write permis-
sion to all (system, group, and user).

shmid = shmget(IPC_PRIVATE, 4096, IPC_CREAT | 0666);

If the shmget API function fails, a –1 is returned (as shmid) with the actual error
specified in the special errno variable (for this particular process).

Now take a look at the creation of a memory segment, with an error return if
the segment already exists. In this example, your system-wide identifier (key) is
0x123, and you request a 64 KB segment.

shmid = shmget(0x123, (64 * 1024), (IPC_CREAT | IPC_EXCL | 0666)

);

if (shmid == -1) {

printf("shmget failed (%d)\n", errno);

}

Here you use the IPC_CREAT with IPC_EXCL to ensure that the segment doesn’t
exist. If you get a -1 return from shmget, an error occurred (such as the segment
 already exists).

Creating system-wide keys with ftok was discussed in Chapter 16, “IPC with
Message Queues,” and Chapter 17, “Synchronization with Semaphores.” Please
refer to those chapters for a detailed discussion of file-based key creation.

Symbol Value Meaning

S_IRUSR 0400 User read permission

S_IWUSR 0200 User write permission

S_IRGRP 0040 Group read permission

S_IWGRP 0020 Group write permission

S_IROTH 0004 Other read permission

S_IWOTH 0002 Other write permission

TABLE 18.2 Shared Memory Segment Permissions for shmget msgflag Argument

Finally, take a look at a simple example of finding the shared memory identi-
fier for an existing segment.

shmid = shmget(0x123, 0, 0);

if (shmid != -1) {

// Found our shared memory segment

}

Here you specify only the system-wide key; segment size and flags are both
zero (as you are getting the segment, not creating it).

A final point to discuss with shared memory segments creation is the initial-
ization of the shared memory data structure that is contained within the kernel. The
shared memory structure is shown in Listing 18.7.

LISTING 18.7 The Shared Memory Structure (shmid_ds)

struct shmid_ds {

struct ipc_perm shm_perm /* Access permissions */

int shm_segsz; /* Segment size (in bytes) */

time_t shm_atime; /* Last attach time (shmat) */

time_t shm_dtime; /* Last detach time (shmdt) */

time_t shm_ctime; /* Last change time (shmctl) */

unsigned short shm_cpid; /* Pid of segment creator */

unsigned short shm_lpid; /* Pid of last segment user */

short shm_nattch; /* Number of current attaches */

};

struct ipc_perm {

key_t __key;

unsigned short uid;

unsigned short gid;

unsigned short cuid;

unsigned short cgid;

unsigned short mode;

unsigned short pad1;

unsigned short __seq;

unsigned short pad2;

unsigned long int __unused1;

unsigned long int __unused2;

};

Upon creation of a new shared memory segment, the shm_perm structure is ini-
tialized with the key and creator’s user ID and group ID. Other initializations are
shown in Table 18.3.

342 GNU/Linux Application Programming

Chapter 18 Shared Memory Programming 343

Field Initialization

shm_segsz Segment size provided to shmget

shm_atime 0

shm_dtime 0

shm_ctime Current time

shm_cpid Calling process’s pid

shm_lpid 0

shm_nattch 0

shm_perm.cuid Creator’s process user ID

shm_perm.gid Creator’s process group ID

TABLE 18.3 Shared Memory Data Structure init on Creation

You will return to these elements shortly when you read about the control as-
pects of shared memory segments.

shmctl

The shmctl API function provides three separate functions. The first is to read
the current shared memory structure (as defined at Listing 18.7) using the IPC_
STAT command. The second is to write the shared memory structure using the
IPC_SET command. Finally, a shared memory segment can be removed using the
IPC_RMID command. The shmctl function prototype is shown as follows:

#include <sys/ipc.h>

#include <sys/shm.h>

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

You begin by removing a shared memory segment. To remove a segment, you
first must have the shared memory identifier. You then pass this identifier, along
with the command IPC_RMID, to shmctl, as follows:

int shmid, ret;

...

shmid = shmget(SHM_KEY, 0, 0);

if (shmid != -1) {

ret = shmctl(shmid, IPC_RMID, 0);

if (ret == 0) {

// shared memory segment successfully removed.

}

}

If no processes are currently attached to the shared memory segment, then the
segment is removed. If processes are currently attached to the shared memory seg-
ment, then the segment is marked for deletion but not yet deleted. This means that
only after the last process detaches from the segment is the segment removed. After
the segment is marked for deletion, no processes can attach to the segment. Any at-
tempt to attach results in an error return with errno set to EIDRM.

Internally, after the shared memory segment is removed, its key is changed to
IPC_PRIVATE. This disallows any new process from finding the segment.

Next, take a look at the IPC_STAT command that can be used within shmctl to
gather information about a shared memory segment. In Listing 18.7, you saw a
number of parameters that define a shared memory segment. This structure can be
read via the IPC_STAT command, as shown in Listing 18.8.

LISTING 18.8 Shared Memory Data Structure Elements Accessible Through shmctl (on

the CD-ROM at ./source/ch18/shmstat.c)

1: #include <stdio.h>

2: #include <sys/shm.h>

3: #include <errno.h>

4: #include <time.h>

5: #include "common.h"

6:

7: int main()

8: {

9: int shmid, ret;

10: struct shmid_ds shmds;

11:

12: /* Create the shared memory segment using MY_SHM_ID */

13: shmid = shmget(MY_SHM_ID, 0, 0);

14:

15: if (shmid >= 0) {

16:

17: ret = shmctl(shmid, IPC_STAT, &shmds);

18:

19: if (ret == 0) {

20:

21: printf("Size of memory segment is %d\n",

344 GNU/Linux Application Programming

22: shmds.shm_segsz);

23: printf("Number of attaches %d\n",

24: (int)shmds.shm_nattch);

25: printf("Create time %s",

26: ctime(&shmds.shm_ctime));

27: if (shmds.shm_atime) {

28: printf("Last attach time %s",

29: ctime(&shmds.shm_atime));

30: }

31: if (shmds.shm_dtime) {

32: printf("Last detach time %s",

33: ctime(&shmds.shm_dtime));

34: }

35: printf("Segment creation user %d\n",

36: shmds.shm_cpid);

37: if (shmds.shm_lpid) {

38: printf("Last segment user %d\n",

39: shmds.shm_lpid);

40: }

41: printf("Access permissions 0%o\n",

42: shmds.shm_perm.mode);

43:

44: } else {

45:

46: printf("shmctl failed (%d)\n", errno);

47:

48: }

49:

50: } else {

51:

52: printf("Shared memory segment not found.\n");

53:

54: }

55:

56: return 0;

57: }

Listing 18.8 is rather self-explanatory. After getting your shared memory iden-
tifier at line 13, you use shmctl to grab the shared memory structure at line 17.
Upon success of shmctl, you emit the various accessible data elements using printf.
Note that at lines 27 and 31, you check that the time values are nonzero. If you find
no attaches or detaches, the value is zero, and therefore you have no reason to con-
vert it to a string time.

Chapter 18 Shared Memory Programming 345

346 GNU/Linux Application Programming

The final command available with shmctl is IPC_SET. This permits the caller to
update certain elements of the shared memory segment data structure. These ele-
ments are shown in Table 18.4.

Field Description

shm_perm.uid Owner process effective user ID

shm_perm.gid Owner process effective group ID

shm_flags Access permissions

shm_ctime Takes the current time of shmctl.IPC_SET action

TABLE 18.4 Shared Memory Data Structure Writeable Elements

The following code snippet illustrates setting new permissions (see Listing
18.9). It’s important that the shared memory data structure be read first to get the
current set of parameters.

LISTING 18.9 Changing Access Permissions in a Shared Memory Segment (on the

CD-ROM at ./source/ch18/shmset.c)

1: #include <stdio.h>

2: #include <sys/shm.h>

3: #include <errno.h>

4: #include <time.h>

5: #include "common.h"

6:

7: int main()

8: {

9: int shmid, ret;

10: struct shmid_ds shmds;

11:

12: /* Create the shared memory segment using MY_SHM_ID */

13: shmid = shmget(MY_SHM_ID, 0, 0);

14:

15: if (shmid >= 0) {

16:

17: ret = shmctl(shmid, IPC_STAT, &shmds);

18:

19: if (ret == 0) {

20:

21: printf("old permissions were 0%o\n",shmds.shm_perm.mode);

22:

23: shmds.shm_perm.mode = 0444;

24:

25: ret = shmctl(shmid, IPC_SET, &shmds);

26:

27: ret = shmctl(shmid, IPC_STAT, &shmds);

28:

29: printf("new permissions are 0%o\n", shmds.shm_perm.mode);

30:

31: } else {

32:

33: printf("shmctl failed (%d)\n", errno);

34:

35: }

36:

37: } else {

38:

39: printf("Shared memory segment not found.\n");

40:

41: }

42:

43: return 0;

44: }

In Listing 18.9, you grab the current data structure for the memory segment at
line 17 and then change the mode at line 23. You write this back to the segment’s
data structure at line 25 using the IPC_SET command, and then you read it back out
at line 27. Not very exciting, but the key to remember is to read the structure first.
Otherwise, the effective user and group IDs are going to be incorrect, leading to
anomalous behavior.

One final topic for shared memory control that differs from message queues
and semaphores is the ability to lock down segments so that they’re not candidates
for swapping out of memory. This can be a performance benefit, because rather
than the segment being swapped out to the filesystem, it stays in memory and is
therefore available to applications without having to swap it back in. Therefore, this
mechanism is very useful from a performance standpoint. The shmctl API function
provides the means both to lock down a segment and also to unlock.

The following examples illustrate the lock and unlock of a shared memory
 segment:

int shmid;

...

shmid = shmget(MY_SHM_ID, 0, 0);

ret = shmctl(shmid, SHM_LOCK, 0);

Chapter 18 Shared Memory Programming 347

if (ret == 0) {

printf("Shared Memory Segment Locked down.\n");

}

Unlocking the segment is very similar. Rather than specify SHM_LOCK, you in-
stead use the SHM_UNLOCK symbolic, as follows:

ret = shmctl(shmid, SHM_UNLOCK, 0);

As before, a zero return indicates success of the shmctl call. Only a superuser
can perform this particular command via shmctl.

shmat

After the shared memory segment has been created, a process must attach to it to
make it available within its address space. This is provided by the shmat API func-
tion. Its prototype is defined as follows:

#include <sys/types.h>

#include <sys/shm.h>

void *shmat(int shmid, const void *shmaddr, int shmflag);

The shmat function takes the shared memory segment identifier (returned by
shmget), an address where the process wants to insert this segment in the process’s
address space (a desired address), and a set of flags. The desired address (shmaddr)
is rounded down if the SHM_RND flag is set within shmflags. This option is rarely used
because the process needs to have explicit knowledge of the available address re-
gions within the process’s address space. This method also is not entirely portable.
To have the shmat API function automatically place the region within the process’s
address space, you pass a (const void *)NULL argument.

You can also specify the SHM_READONLY within shmflags to enforce a read-only
policy on the segment for this particular process. This process must first have read
permission on the segment. If SHM_READONLY is not specified, it is assumed that the
segment is being mapped for both read and write. No write-only flag exists.

The return value from shmat is the address in which the shared memory seg-
ment is mapped into this process. A quick example of shmat is shown here:

int shmid;

void *myAddr;

/* Get the id for an existing shared memory segment */

shmid = shmget(MY_SHM_SEGMENT, 0, 0);

/* Map the segment into our space */

myAddr = shmat(shmid, 0, 0);

348 GNU/Linux Application Programming

if ((int)myAddr != -1) {

// Attach failed.

} else {

// Attach succeeded.

}

Upon completion, myAddr contains an address in which the segment is attached
or -1, indicating that the segment failed to be attached. The return address can then
be utilized by the process just like any other address.

The local address into which the shared memory segment is mapped might be dif-
ferent for every process that attaches to it. Therefore, no process should assume that
because another mapped at a given address, it is available at the same local
 address.

Upon successful completion of the shmat call, the shared memory data struc-
ture is updated as follows: the shm_atime field is updated with the current time (last
attach time), shm_lpid is updated with the effective process ID for the calling
process, and the shm_nattch field is incremented by 1 (the number of processes
currently attached to the segment).

When a processes exits, its shared memory segments are automatically de-
tached. Despite this, you should detach from your segments using shmdt rather
than relying on GNU/Linux to do this for you. Also, when a process forks into a
parent and child, the child inherits any shared memory segments that were created
previously by the parent.

shmdt

The shmdt API function detaches an attached shared memory segment from a
process. When a process no longer needs access to the memory, this function frees
it and also unmaps the memory mapped into the process’s local address space that
was occupied by this segment. The function prototype for the shmdt function is as
follows:

#include <sys/types.h>

#include <sys/shm.h>

int shmdt(const void *shmaddr);

The caller provides the address that was provided by shmat (as its return value).
A return value of zero indicates a successful detach of the segment. Consider the fol-
lowing code snippet as a demonstration of the shmdt call:

Chapter 18 Shared Memory Programming 349

int shmid;

void *myAddr;

/* Get the id for an existing shared memory segment */

shmid = shmget(MY_SHM_SEGMENT, 0, 0);

/* Map the segment into our space */

myAddr = shmat(shmid, 0, 0);

...

/* Detach (unmap) the segment */

ret = shmdt(myAddr);

if (ret == 0) {

/* Segment detached */

}

Upon successful detach, the shared memory structure is updated as follows: the
shm_dtime field is updated with the current time (of the shmdt call), the shm_lpid
is updated with the process ID of the process calling shmdt, and finally, the shm_
nattach field is decremented by 1.

The address region mapped by the shared memory segment is unavailable to
the process and results in a segment violation if an access is attempted.

If the segment had been previously marked for deletion (via a prior call to
shmctl with the command of IPC_RMID) and the number of current attaches is zero,
then the segment is removed.

USING A SHARED MEMORY SEGMENT

Shared memory can be a powerful mechanism for communication and coordination
between processes. With this power comes some complexity. Because shared mem-
ory is a resource that’s available to all processes that attach to it, you must coordinate
access to it. One mechanism is to simply add a semaphore to the shared memory
 segment. If the segment represents multiple contexts, multiple semaphores can be
created, each coordinating its respective access to a portion of the segment.

Take a look at a simple example of coordinating access to a shared memory seg-
ment. Listing 18.10 illustrates a simple application that provides for creating, using,
and removing a shared memory segment. As we have already covered the creation
and removal aspects in detail (lines 31–58 for create and lines 137–158 for remove),
the use scenario (lines 59–111) is what we focus on here.

This block (which represents your shared memory block) is typdef’d at lines
11–15. This contains your shared structure (string), a counter (as the index to
your string), and your semaphore to coordinate access. Note that this is loaded into
your shared structure at line 48.

350 GNU/Linux Application Programming

The use scenario begins by grabbing the user character passed as the second
 argument from the command line. This is the character you place into the buffer on
each pass. You invoke this process twice with different characters to see each access
to the shared structure in a synchronized way. After getting the shared memory key
(via shmget at line 69), you attach to the segment at line 72. The return value is the
address of your shared block, which you cast to your block type (MY_BLOCK_TYPE).
You then loop through a count of 2500, each iteration acquiring the semaphore,
loading your character into the string array of the shared memory segment (your
critical section), and then releasing the semaphore.

LISTING 18.10 Shared Memory Example Using Semaphore Coordination (on the

CD-ROM at ./source/ch18/shmexpl.c)

1: #include <stdio.h>

2: #include <sys/shm.h>

3: #include <sys/sem.h>

4: #include <string.h>

5: #include <stdlib.h>

6: #include <unistd.h>

7: #include "common.h"

8:

9: #define MAX_STRING 5000

10:

11: typedef struct {

12: int semID;

13: int counter;

14: char string[MAX_STRING+1];

15: } MY_BLOCK_T;

16:

17:

18: int main(int argc, char *argv[])

19: {

20: int shmid, ret, i;

21: MY_BLOCK_T *block;

22: struct sembuf sb;

23: char user;

24:

25: /* Make sure there's a command */

26: if (argc >= 2) {

27:

28: /* Create the shared memory segment and init it

29: * with the semaphore

30: */

Chapter 18 Shared Memory Programming 351

31: if (!strncmp(argv[1], "create", 6)) {

32:

33: /* Create the shared memory segment and semaphore */

34:

35: printf("Creating the shared memory segment\n");

36:

37: /* Create the shared memory segment */

38: shmid = shmget(MY_SHM_ID,

39: sizeof(MY_BLOCK_T), (IPC_CREAT | 0666));

40:

41: /* Attach to the segment */

42: block = (MY_BLOCK_T *)shmat(shmid, (const void *)0, 0);

43:

44: /* Initialize our write pointer */

45: block->counter = 0;

46:

47: /* Create the semaphore */

48: block->semID = semget(MY_SEM_ID, 1, (IPC_CREAT | 0666));

49:

50: /* Increment the semaphore */

51: sb.sem_num = 0;

52: sb.sem_op = 1;

53: sb.sem_flg = 0;

54: semop(block->semID, &sb, 1);

55:

56: /* Now, detach from the segment */

57: shmdt((void *)block);

58:

59: } else if (!strncmp(argv[1], "use", 3)) {

60:

61: /* Use the segment */

62:

63: /* Must specify also a letter (to write to the buffer) */

64: if (argc < 3) exit(-1);

65:

66: user = (char)argv[2][0];

67:

68: /* Grab the shared memory segment */

69: shmid = shmget(MY_SHM_ID, 0, 0);

70:

71: /* Attach to it */

72: block = (MY_BLOCK_T *)shmat(shmid, (const void *)0, 0);

73:

352 GNU/Linux Application Programming

74: for (i = 0 ; i < 2500 ; i++) {

75:

76: /* Give up the CPU temporarily */

77: sleep(0);

78:

79: /* Grab the semaphore */

80: sb.sem_num = 0;

81: sb.sem_op = -1;

82: sb.sem_flg = 0;

83: if (semop(block->semID, &sb, 1) != -1) {

84:

85: /* Write our letter to the segment buffer

86: * (only if we have the semaphore). This

87: * is our critical section.

88: */

89: block->string[block->counter++] = user;

90:

91: /* Release the semaphore */

92: sb.sem_num = 0;

93: sb.sem_op = 1;

94: sb.sem_flg = 0;

95: if (semop(block->semID, &sb, 1) == -1) {

96:

97: printf("Failed to release the semaphore\n");

98:

99: }'

100:

101: } else {

102:

103: printf("Failed to acquire the semaphore\n");

104:

105: }

106:

107: }

108:

109: /* We're done, unmap the shared memory segment. */

110: ret = shmdt((void *)block);

111:

112: } else if (!strncmp(argv[1], "read", 6)) {

113:

114: /* Here, we'll read the buffer in the shared segment */

115:

116: shmid = shmget(MY_SHM_ID, 0, 0);

117:

Chapter 18 Shared Memory Programming 353

354 GNU/Linux Application Programming

118: if (shmid != -1) {

119:

120: block = (MY_BLOCK_T *)shmat(shmid, (const void *)0, 0);

121:

122: /* Terminate the buffer */

123: block->string[block->counter+1] = 0;

124:

125: printf("%s\n", block->string);

126:

127: printf("length %d\n", block->counter);

128:

129: ret = shmdt((void *)block);

130:

131: } else {

132:

133: printf("Unable to read segment.\n");

134:

135: }

136:

137: } else if (!strncmp(argv[1], "remove", 6)) {

138:

139: shmid = shmget(MY_SHM_ID, 0, 0);

140:

142: if (shmid != -1) {

143:

144: block = (MY_BLOCK_T *)shmat(shmid, (const void *)0, 0);

145:

146: /* Remove the semaphore */

147: ret = semctl(block->semID, 0, IPC_RMID);

148:

149: /* Remove the shared segment */

150: ret = shmctl(shmid, IPC_RMID, 0);

151:

152: if (ret == 0) {

153:

154: printf("Successfully removed the segment.\n");

155:

156: }

157:

158: }

159:

160: } else {

161:

162: printf("Unknown command %s\n", argv[1]);

163:

164: }

165:

166: }

167:

168: return 0;

169: }

The key point of Listing 18.10 is that reading or writing from memory in a shared
memory segment must be protected by a semaphore. Other structures can be rep-
resented in a shared segment, such as a message queue. The queue doesn’t require
any protection because it’s protected internally.

Now take a look at a sample run of the application shown in Listing 18.10. You
create your shared memory segment and then execute your use scenarios one after
another (quickly). Note that you specify two different characters to differentiate
which process had control for that position in the string. After the “use” process is
complete, you use the read command to emit the string (a snippet is shown here).

$./shmexpl create

Creating the shared memory segment

$./shmexpl use a &

$./shmexpl use b &

[1] 18254

[2] 18255

[1]+ Done

[2]+ Done

$./shmexpl read

aaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbaaabbb...

length 5000

$./shmexpl remove

Successfully removed the segment.

$

Note that in some cases, you can see an entire string of a’s and then all the b’s.
It all comes down to executing the use cases quickly enough so that they each com-
pete for the shared resource.

Chapter 18 Shared Memory Programming 355

USER UTILITIES

GNU/Linux provides the ipcs command to explore IPC assets from the command
line (including shared memory segments that are visible to the user). The ipcs util-
ity provides information on shared memory segments as well as message queues
and semaphores. You get a chance to investigate its use for shared memory seg-
ments here.

The general form of the ipcs utility for shared memory segments is as follows:

$ ipcs -m

This presents all of the shared memory segments that are visible to the process.
For an example, you can start by creating a shared memory segment (as was shown
previously in Listing 18.1):

$./shmcreate

Created a shared memory segment 163840

[mtj@camus ch18]$ ipcs -m

——— Shared Memory Segments ————

key shmid owner perms bytes nattch status

0x000003e7 163840 mtj 666 4096 0

$

You see here a new shared memory segment being available (0x3e7 = 999). Its
size is 4,096 bytes, and you can see currently no attaches to this segment (nattch =
0). If you want to dig into this segment deeper, you can specify this shared memory
segment specifically to ipcs. This is done with ipcs using the -i option:

$ ipcs -m -i 163840

Shared memory Segment shmid=163840

uid=500 gid=500 cuid=500 cgid=500

mode=0666 access_perms=0666

bytes=4096 lpid=0 cpid=15558 nattch=0

att_time=Not set

det_time=Not set

change_time=Thu May 20 11:44:44 2004

$

You now see some more detailed information, including the attach, detach, and
change times; last process ID; created process ID; and so on.

356 GNU/Linux Application Programming

Finally, you can remove the shared memory segment using the ipcrm com-
mand. To remove your previously created shared memory segment, you simply
provide the shared memory identifier, as follows:

$ ipcrm -m 163840

$

SUMMARY

This chapter introduced shared memory in GNU/Linux and the APIs that control
its use. It first introduced the shared memory APIs as a quick review and then pro-
vided a more detailed view of the APIs. Because shared memory segments can be
shared by multiple asynchronous processes, the chapter illustrated the protection of
a shared memory segment with a semaphore. Finally, it reviewed the ipcs utility
and demonstrated its use as a debugging tool, as well as the ipcrm utility for re-
moving shared memory segments from the command line.

REFERENCES

GNU/Linux shmget, shmop man pages

SHARED MEMORY APIS

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflag);

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

void *shmat(int shmid, const void *shmaddr, int shmflag);

int shmdt(const void *shmaddr);

Chapter 18 Shared Memory Programming 357

This page intentionally left blank

359

Advanced File Handling19

INTRODUCTION

This chapter continues where Chapter 11, “File Handling in GNU/Linux,” left off
and explores some of the more advanced features of file handling. This includes a
discussion of file types and their testing, special files, directory traversal, file system
mapping, and many other operations.

TESTING FILE TYPES

You can start with the simple task of determining a file’s type. The type is the
 classification of the file (for example, whether it’s a regular file, symbolic link, or
one of the many special files). The GNU C library provides a number of functions
that provide this classification, but first you need to retrieve status information of
the file for the test using the stat command.

The stat command returns a number of different data elements about
a file. This section focuses on the file type, and then some of the other elements are
covered in the next section.

In This Chapter

Review of File Types and Attributes
File System Traversal
File Mapping
File Event Notification
Buffering and Syncing

360 GNU/Linux Application Programming

With the stat information, you use the st_mode field in particular to determine
the file type. This field is a coding of the file type, but the GNU C library provides
a set of macros that can be used to test for a given file type (returns 1 if the file is of
the defined type, otherwise 0). These are shown in Table 19.1.

Macro Description (Returns 1 If the File Is of That Type)

S_ISREG Regular file

S_ISDIR Directory

S_ISCHR Special character file

S_ISBLK Special block file

S_ISLNK Symbolic link

S_ISFIFO Special FIFO file

S_ISSOCK Socket

TABLE 19.1 File Test Macros for stat

To use stat, you call it with a buffer that represents a structure of the informa-
tion to be captured. Listing 19.1 provides a simple application that uses the file-
name provided as the argument and then uses stat and the file test macros to
determine the file type.

LISTING 19.1 Using the File Test Macros to Determine the File Type (on the CD-ROM at

./source/ch19/ftype.c)

1: int main(int argc, char *argv[])

2: {

3: struct stat statbuf;

4:

5: /* Check to see if a filename was provided */

6: if (argc < 2) {

7: printf(“specify a file to test\n”);

8: return 1;

9: }

10:

11: /* Obtain stat information on the file */

12: if (stat(argv[1], &statbuf) == -1) {

13: printf(“Can’t stat file\n”);

14: return 1;

15: }

16:

17: printf(“%s “, argv[1]);

18:

19: /* Determine the file type from the st_mode */

20: if (S_ISDIR(statbuf.st_mode)) {

21: printf(“is a directory\n”);

22: } else if (S_ISCHR(statbuf.st_mode)) {

23: printf(“is a character special file\n”);

24: } else if (S_ISBLK(statbuf.st_mode)) {

25: printf(“is a block special file\n”);

26: } else if (S_ISREG(statbuf.st_mode)) {

27: printf(“is a regular file\n”);

28: } else if (S_ISFIFO(statbuf.st_mode)) {

29: printf(“is a FIFO special file\n”);

30: } else if (S_ISSOCK(statbuf.st_mode)) {

31: printf(“is a socket\n”);

32: } else {

33: printf(“is unknown\n”);

34: }

35:

36: return 0;

37: }

Using this application is demonstrated in the following with a variety of file
types:

$./ftype ..

.. is a directory

$./ftype /dev/mem

/dev/mem is a character special file

$./ftype /dev/fd0

a block special file

$./ftype /etc/resolv.conf

/etc/resolv.conf is a regular file

$

The stat command provides much more than just the file type through
st_mode. The next section takes a look at some of the other attributes that are
 returned through stat.

Chapter 19 Advanced File Handling 361

OTHER stat INFORMATION

The stat command provides a wealth of information about a file, including its
size, owner, group, last modified time, and more. Listing 19.2 provides a simple
program that implements the emission of the previously mentioned data elements,
making use of other helper functions to convert the raw data into human-readable
strings. In particular, the strftime function takes a time structure (standard time
format) and converts it into a string. This function offers a large number of options
and output formats.

LISTING 19.2 Using the stat Command to Capture File Data (on the CD-ROM at

./software/ch19/ftype2.c)

1: #include <stdio.h>

2: #include <sys/types.h>

3: #include <sys/stat.h>

4: #include <pwd.h>

5: #include <grp.h>

6: #include <time.h>

7: #include <langinfo.h>

8:

9: int main(int argc, char *argv[])

10: {

11: struct stat statbuf;

12: struct passwd *pwd;

13: struct group *grp;

14: struct tm *tm;

15: char tmstr[257];

16:

17: /* Check to see if a filename was provided */

18: if (argc < 2) {

19: printf(“specify a file to test\n”);

20: return 1;

21: }

22:

23: /* Obtain stat information on the file */

24: if (stat(argv[1], &statbuf) == -1) {

25: printf(“Can’t stat file\n”);

26: return 1;

27: }

28:

29: printf(“File Size : %-d\n”, statbuf.st_size);

30:

31: pwd = getpwuid(statbuf.st_uid);

362 GNU/Linux Application Programming

32: if (pwd) printf(“File Owner: %s\n”, pwd->pw_name);

33:

34: grp = getgrgid(statbuf.st_gid);

35: if (grp) printf(“File Group: %s\n”, grp->gr_name);

36:

37: tm = localtime(&statbuf.st_mtime);

38: strftime(tmstr, sizeof(tmstr), nl_langinfo(D_T_FMT), tm);

39: printf(“File Date : %s\n”, tmstr);

40:

41: return 0;

42: }

Executing the new stat application (called ftype2) produces the following for
the passwd file:

$./ftype /etc/passwd

File Size : 1337

File Owner: root

File Group: root

File Date : Sun Jan 6 19:44:50 2008

$

The same information can be retrieved with the fstat command, although this
command operates on a file descriptor instead of a filename.

DETERMINING THE CURRENT WORKING DIRECTORY

You can learn the name of the current working directory, including the full path,
with the getcwd command. Another function called pathconf enables you to deter-
mine the size of buffer necessary to pass to getcwd. This process is demonstrated in
Listing 19.3. After the maximum path length is known, a buffer is allocated with
malloc and then passed to getcwd to return the current working directory. After this
is emitted to stdout, the buffer is freed.

LISTING 19.3 Getting the Current Working Directory with getcwd (on the CD-ROM at

./software/ch19/gcwd.c)

1: #include <stdio.h>

2: #include <unistd.h>

3: #include <stdlib.h>

4:

5: int main()

6: {

Chapter 19 Advanced File Handling 363

7: char *pathname;

8: long maxbufsize;

9:

10: maxbufsize = pathconf(“.”, _PC_PATH_MAX);

11: if (maxbufsize == -1) return 1;

12:

13: pathname = (char *)malloc(maxbufsize);

14:

15: (void)getcwd(pathname, (size_t)maxbufsize);

16:

17: printf(“%s\n”, pathname);

18:

19: free(pathname);

20:

21: return 0;

22: }

ENUMERATING DIRECTORIES

GNU/Linux provides variety of directory manipulation functions that are useful for
enumerating a directory or an entire filesystem. Similar to operating on a file, you
must first open the directory and then read its contents. In this case, the contents
of the directory are the files themselves (which can be other directories).

To open a directory, you use the opendir API function. This returns a directory
stream (a reference of type DIR). After the stream is opened, it can be read with the
readdir function. Each call to readdir returns a directory entry or NULL if the enu-
meration is complete. When the directory stream is no longer needed, it should be
closed with closedir.

The following simple application (Listing 19.4) illustrates using the API func-
tions discussed so far (opendir, readdir, closedir). In this example, you enumerate
a directory (specified on the command line) and emit the stdout only those direc-
tory entries that refer to regular files.

LISTING 19.4 Enumerating a Directory with readdir (on the CD-ROM at

./software/ch19/dirlist.c)

1: #include <stdio.h>

2: #include <sys/types.h>

3: #include <sys/stat.h>

4: #include <dirent.h>

5:

6: int main(int argc, char *argv[])

364 GNU/Linux Application Programming

7: {

8: DIR *dirp;

9: struct stat statbuf;

10: struct dirent *dp;

11:

12: if (argc < 2) return 1;

13:

14: if (stat(argv[1], &statbuf) == -1) return 1;

15:

16: if (!S_ISDIR(statbuf.st_mode)) return 1;

17:

18: dirp = opendir(argv[1]);

19:

20: while ((dp = readdir(dirp)) != NULL) {

21:

22: if (stat(dp->d_name, &statbuf) == -1) continue;

23: if (!S_ISREG(statbuf.st_mode)) continue;

24:

25: printf(“%s\n”, dp->d_name);

26:

27: }

28:

29: closedir(dirp);

30:

31: return 0;

32: }

During enumeration, you can remember a position in the directory stream
using telldir, and then return to this later with a call to seekdir. To return to the
beginning of the stream, you use rewinddir.

Another operation for walking a directory is called ftw (which is an acronym
for “file tree walk”). With this API function, you provide a directory to start the
walk and then a function that is called for each file or directory found during the
walk.

For each file that’s encountered during the walk, a callback function is called
and passed the filename, the stat structure, and a flag word that indicates the type
of file (FTW_D for a directory, FTW_F for a file, FTW_SL for a symbolic link, FTW_NS for
a file that couldn’t be stat’ed, and FTW_DNR for a directory that could not be read).

An example of the use of ftw is shown in Listing 19.5. The fncheck function is
the callback function called for each file encountered. The main function takes the
argument passed as the starting directory to walk. This is provided to the ftw func-
tion along with the callback function and the ndirs argument. This argument

Chapter 19 Advanced File Handling 365

 defines the number of directory streams that can be simultaneously open (better
performance results with a larger number streams).

LISTING 19.5 Walking a Directory with ftw (on the CD-ROM at

./software/ch19/dwalk.c)

1: #include <stdio.h>

2: #include <ftw.h>

3:

4: int fncheck(const char *file, const struct stat *sb, int flag)

5: {

6: if (flag == FTW_F)

7: printf(“File %s (%d)\n”, file, (int)sb->st_size);

8: else if (flag == FTW_D)

9: printf(“Directory %s\n”, file);

10:

11: return 0;

12: }

13:

14: int main(int argc, char *argv[])

15: {

16: if (argc < 2) return 1;

17:

18: ftw(argv[1], fncheck, 1);

19:

20: return 0;

21: }

The final enumeration technique that this section explores is called globbing.
The glob API function allows you to specify a regular expression representing the
files to be returned. The results are stored in a glob buffer, which can be enumer-
ated when the function completes. An example of the glob API function is provided
in Listing 19.6. The first argument is the pattern (in this case files that end .c or .h).
The second argument is one or more flags (for example GLOB_APPEND can be speci-
fied to append a new glob to a previous invocation). The third argument is an error
function that is called when a directory is attempted to be opened but fails. Finally,
the results are stored in the glob buffer (which entails internal allocation of mem-
ory). For this reason, you have to free this buffer with globfree when it’s no longer
needed.

This simple program (Listing 19.6) results in a printout of files that end in .c
or .h in the current directory.

366 GNU/Linux Application Programming

LISTING 19.6 Demonstrating the glob API Function (on the CD-ROM at

./software/ch19/globtest.c)

1: #include <stdio.h>

2: #include <glob.h>

3:

4: int main()

5: {

6: glob_t globbuf;

7: int err, i;

8:

9: err = glob(“*.[ch]”, 0, NULL, &globbuf);

10:

11: if (err == 0) {

12:

13: for (i = 0 ; i < globbuf.gl_pathc ; i++) {

14:

15: printf(“%s\n”, globbuf.gl_pathv[i]);

16:

17: }

18:

19: globfree(&globbuf);

20:

21: }

22:

23: return 0;

24: }

GNU/Linux (the GNU C Library) provides a number of options for enumer-
ating a subdirectory, whether you want to view all files, files based upon a regular
expression, or through a callback means for each file.

FILE EVENT NOTIFICATION WITH inotify

One of the new features in the 2.6 kernel provides support for notification of
filesystem events. This new mechanism is called inotify, which refers to the fact
that it provides for notification of inode events. This capability of the kernel has
been used in a variety of applications, the most visible being the Beagle search util-
ity. Beagle uses inotify to automatically notify of changes to the filesystem to per-
form indexing. The alternative is to periodically scan the filesystem for changes,
which is very inefficient.

What’s interesting about inotify is that it uses the file-based mechanisms to
provide for notification about filesystem events. For example, when monitoring is

Chapter 19 Advanced File Handling 367

requested, events are provided to the user-space application through a file descrip-
tor. The inotify API provides system calls that wrap these mechanisms. It’s time to
take a look at this capability in more detail.

NOTIFICATION PROCESS

The basic flow of inotify is first to provide a monitoring point. This can be a file or
a directory. If a directory is provided (which could be an entire filesystem), then all
elements of that directory are candidates for event monitoring. After a watchpoint
has been defined, you can read from a file descriptor to receive events.

inotify Events

An event (whose structure is shown in Listing 19.7) provides an event type (mask),
the name of the file affected (if applicable), and other elements.

LISTING 19.7 The inotify_event Structure

struct inotify_event

{

int wd; /* Watch descriptor. */

uint32_t mask; /* Watch mask. */

uint32_t cookie; /* Cookie to sync two events. */

uint32_t len; /* Length (with NULs) of name. */

char name __flexarr; /* Name. */

};

The mask field shown in Listing 19.7 is the event tag that indicates the type of
operation that was performed (and is being notified). The current list of events is
provided in Table 19.2.

368 GNU/Linux Application Programming

Event Name Value Description

IN_ACCESS 0x00000001 File was accessed.

IN_MODIFY 0x00000002 File was modified.

IN_ATTRIB 0x00000004 Attributes were changed.

IN_CLOSE_WRITE 0x00000008 File was closed (writeable).

IN_CLOSE_NOWRITE 0x00000010 File was closed (non-writeable).

IN_CLOSE 0x00000018 File was closed (both).

→

TABLE 19.2 Events Supported in the Current Version of inotify

Chapter 19 Advanced File Handling 369

Simple inotify-Based Application

Now it’s time to take a look at a simple application that registers for events on a
user-defined file and emits those events in a human-readable fashion. To begin you
initialize inotify (which creates an instance of inotify for your application). This
call to inotify_init returns a file descriptor that serves as your means to receive
events from the kernel. You also register a watchpoint and then monitor the file
(covered later). The main function is provided in Listing 19.8.

LISTING 19.8 The main Function for Your inotify Application (on the CD-ROM at

./software/ch19/dirwatch.c)

1: #include <stdio.h>

2: #include <sys/inotify.h>

3: #include <errno.h>

4:

5: int main(int argc, char *argv[])

6: {

7: int ifd, err;

8:

9: int register_watchpoint(int fd, char *dir);

10: int watch(int fd);

11:

Event Name Value Description

IN_OPEN 0x00000020 File was opened.

IN_MOVED_FROM 0x00000040 File was moved (from “name”).

IN_MOVE_TO 0x00000080 File was moved (to “name”).

IN_MOVE 0x000000C0 File was moved (either).

IN_CREATE 0x00000100 File was created.

IN_DELETE 0x00000200 File was deleted.

IN_DELETE_SELF 0x00000400 The file watchpoint was deleted.

IN_MOVE_SELF 0x00000800 The file watchpoint was moved.

IN_UNMOUNT 0x00002000 The filesystem containing file was

unmounted.

IN_Q_OVERFLOW 0x00004000 Event queue overflow.

IN_ISDIR 0x40000000 Event file refers to a directory.

IN_ALL_EVENTS 0x00000FFF All events.

12: if (argc < 2) return -1;

13:

14: ifd = inotify_init();

15:

16: if (ifd < 0) {

17: printf(“can’t init inotify (%d)\n”, errno);

18: return -1;

19: }

20:

21: err = register_watchpoint(ifd, argv[1]);

22: if (err < 0) {

23: printf(“can’t add watch (%d)\n”, errno);

24: return -1;

25: }

26:

27: watch(ifd);

28:

29: close(ifd);

30:

31: return 0;

32: }

Note that because events are posted from the kernel through a file descriptor,
you can use the traditional mechanisms on that descriptor such as select to identify
when an event is available (rather than sitting on the file).

Next, you have a look at the registration function (register_watchpoint). This
function, shown in Listing 19.9, uses the inotify_add_watch API function to regis-
ter for one or more events. As shown here, you specify the file descriptor (returned
from inotify_init), the file to monitor (which was grabbed as the command-line
argument), and then the event mask. Here you specify all events with the
IN_ALL_EVENTS symbolic constant.

LISTING 19.9 Registering for an inotify Event (on the CD-ROM at

./software/ch19/dirwatch.c)

1: int register_watchpoint(int fd, char *dir)

2: {

3: int err;

4:

5: err = inotify_add_watch(fd, dir, IN_ALL_EVENTS);

6:

7: return err;

8: }

370 GNU/Linux Application Programming

Now that you’ve registered for events, they queue to your file descriptor. The
watch function is used as your monitoring loop (as called from main and shown in
Listing 19.10). In this function you declare a buffer for your incoming events
(which can be multiple per invocation) and then enter your monitoring loop. You
can call the read system call to wait for events (as this call blocks until an event is
 received). When this returns, you do some quick sanity checking and then walk
through each event that’s contained in the buffer. This event is emitted with a call
to emit_event. Because events can vary in size (considering a variable length file-
name), you increment the index by the size of the event and the size of the accom-
panying file name (if present). The filename is indicated by a nonzero len field
within the event structure. When all events have been emitted, you start again by
sitting on the read function.

LISTING 19.10 The Event Monitoring Loop (on the CD-ROM at

./software/ch19/dirwatch.c)

1: #define MAX_EVENTS 256

2:

3: #define BUFFER_SIZE (MAX_EVENTS * sizeof(struct inotify_event))

4:

5: int watch(int fd)

6: {

7: char ev_buffer[BUFFER_SIZE];

8: struct inotify_event *ievent;

9: int len, i;

10:

11: void emit_event(struct inotify_event *ievent);

12:

13: while (1) {

14:

15: len = read(fd, ev_buffer, BUFFER_SIZE);

16:

17: if (len < 0) {

18: if (errno == EINTR) continue;

19: }

20:

21: i = 0;

22: while (i < len) {

23:

24: ievent = (struct inotify_event *)&ev_buffer[i];

25:

26: emit_event(ievent);

27:

Chapter 19 Advanced File Handling 371

28: i += sizeof(struct inotify_event) + ievent->len;

29:

30: }

31:

32: }

33:

34: return 0;

35: }

The final function, emit_event (shown in Listing 19.11), parses the event struc-
ture and emits the information to stdout. First, you check to see if a string is pro-
vided, and if so, you emit this first. This name refers to the filename that was
affected (directory or regular file). You then test each of the event tags to see which
is present and then emit this to stdout.

LISTING 19.11 Parsing and Emitting the event Structure (on the CD-ROM at

./software/ch19/dirwatch.c)

1: void emit_event(struct inotify_event *ievent)

2: {

3: if (ievent->len) printf(“[%s] “, ievent->name);

4:

5: if (ievent->mask & IN_ACCESS) printf(“Accessed\n”);

6: if (ievent->mask & IN_MODIFY) printf(“Modified\n”);

7: if (ievent->mask & IN_ATTRIB) printf(“Attributes Changed\n”);

8: if (ievent->mask & IN_CLOSE_WRITE) printf(“Closed

(writeable)\n”);

9: if (ievent->mask & IN_CLOSE_NOWRITE) printf(“Closed

(unwriteable)\n”);

10: if (ievent->mask & IN_OPEN) printf(“Opened\n”);

11: if (ievent->mask & IN_MOVED_FROM) printf(“File moved from\n”);

12: if (ievent->mask & IN_MOVED_TO) printf(“File moved to\n”);

13: if (ievent->mask & IN_CREATE) printf(“Subfile created\n”);

14: if (ievent->mask & IN_DELETE) printf(“Subfile deleted\n”);

15: if (ievent->mask & IN_DELETE_SELF) printf(“Self deleted\n”);

16: if (ievent->mask & IN_MOVE_SELF) printf(“Self moved\n”);

17:

18: return;

19: }

Now take a look at an example use of this application on a simple directory (see
Listing 19.12). Because this is performed in two different shells, the following ex-
ample shows one shell as flush and the other shell as indented. On the left is the
shell activity and on the right (indented) is the output of your inotify application.

372 GNU/Linux Application Programming

You begin by creating the test directory (called itest) and then in another shell
starting your inotify application (called dirwatch), specifying the directory to be
monitored. You then perform a number of file operations and emit the resulting
output by dirwatch. In the end, the directory itself is removed, which is detected
and reported. At this point, no further monitoring can take place (so ideally the
 application should exit).

LISTING 19.12 Sample Output from the inotify Application

$ mkdir itest

$./dirwatch /home/mtj/itest

$ touch itest/newfile

[newfile] Subfile created

[newfile] Opened

[newfile] Attributes Changed

[newfile] Closed (writeable)

$ ls itest

newfile

Opened

Closed (unwriteable)

$ mv itest/newfile itest/newerfile

[newfile] File moved from

[newerfile] File moved to

$ rm itest/newerfile

[newerfile] Subfile deleted

$ rmdir itest

Self deleted

With an API that is clean and simple to understand, the inotify event system
is a great way to monitor filesystem events and to keep track of what’s going on in
the filesystem.

Chapter 19 Advanced File Handling 373

REMOVING FILES FROM THE FILESYSTEM

To remove a file from a filesystem, you have a number of API functions available,
but one is recommended because of its ability to work on either files or directories.
The remove function removes a file, whether it is a regular file or directory. If the file
to be removed is a regular file, then remove acts like unlink, but if the file is a direc-
tory, then remove acts like rmdir.

In Listing 19.13 you create a file in the filesystem using the mkstemp function.
This returns a unique filename given a template provided by the caller (as shown,
the X characters are returned with a unique signature). After this file is created, it is
promptly closed and then deleted with the remove function.

LISTING 19.13 Creating and Removing a File with mkstemp and remove (on the

CD-ROM at ./software/ch19/rmtest.c)

1: #include <stdio.h>

2: #include <stdlib.h>

3:

4: int main()

5: {

6: FILE *fp;

7: char filename[L_tmpnam+1] = “fileXXXXXX”;

8: int err;

9:

10: err = mkstemp(filename);

11:

2: fp = fopen(filename, “w”);

13: if (fp != NULL) {

14:

15: fclose(fp);

16:

17: err = remove(filename);

18:

19: if (!err) printf(“%s removed\n”, filename);

20:

21: }

22:

23: return 0;

24: }

SYNCHRONIZING DATA

Older UNIX system users no doubt recall the sync command for synchronizing
data to the disk. The sync command forces changed blocks that are buffered in the

374 GNU/Linux Application Programming

kernel out to the disk. Normally, changed blocks are cached in the buffer cache
within the kernel that makes them faster to retrieve if they’re needed again. Peri-
odically, these blocks are written out to the disk. This process also works for reads,
where read data is cached within the buffer cache (making it faster for retrieval). A
kernel process controls when read data is removed from the cache or when write
data is pushed to the disk.

The GNU C Library provides three API functions for synchronizing data, de-
pending upon your particular need: sync, fsync, and fdatasync. In most systems,
fsync and fdatasync are equivalent.

The sync function (which can also be invoked at the command line) causes all
pending writes to be scheduled for write on their intended mediums. This means
that the write to the device might not be completed when the call returns, but is
scheduled for write. Its prototype is as follows:

void sync(void);

If you’re really just interested in a particular file descriptor, you can use the
fsync API function. This function has the added bonus that it does not return until
the data is on its intended medium. So if you’re more interested in making sure that
the data gets to the external device than you are in just scheduling it for write,
fsync is your call. Its prototype is as follows:

int fsync(int filedes);

Note that fsync might return an error if an issue occurred (such as EIO, if a fail-
ure occurred while reading or writing to the device).

SUMMARY

In addition to providing a rich and expressive file system interface, GNU/Linux
provides a number of advanced features for file testing, directory traversal, and
even event notification of filesystem changes. This chapter provided a quick sum-
mary of some of the more interesting filesystem features.

ADVANCED FILE HANDLING APIS

#include <sys/stat.h>

int stat(const char *restrict path,

struct stat *restrict buf);

Chapter 19 Advanced File Handling 375

int fstat(int filedes, struct stat *buf);

#include <pwd.h>

struct passwd *getpwuid(uid_t uid);

#include <grp.h>

struct group *getgrgid(gid_t gid);

#include <time.h>
#include <langinfo.h>

size_t strftime(char *restric s, size_t maxsize,
const char *restrict format,
const struct tm *restrict timeptr);

char *nl_langinfo(nl_item item);

#include <unistd.h>

long pathconf(const char *path, int name);

char *getcwd(char *buf, size_t size);

#include <dirent.h>

DIR *opendir(const char *dirname);

struct dirent *readdir(DIR *dirp);

int closedir(DIR *dirp);

long telldir(DIR *dirp);

void seekdir(DIR *dirp, long loc);

void rewinddir(DIR *dirp);

#include <ftw.h>

376 GNU/Linux Application Programming

int ftw(const char *path, int (*fn)(const char *,
const struct stat *ptr, int flag),

int ndirs);

#include <glob.h>

int glob(const char *restrict pattern, int flags,
int (*errfunc)(const char *epath, int errno),
glob_t *restrict pglob);

void globfree(glob_t *pglob);

#include <sys/inotify.h>

int inotify_init(void);

int inotify_add_watch(int fd, const char *name,
uint32_t mask);

int inotify_rm_watch(int fd, uint32_t wd);

#include <stdio.h>

int remove(const char *path);

int mkstemp(char *template);

#include <unistd.h>

int unlink(const char *path);

int rmdir(const char *path);

#include <unistd.h>

void sync(void);

int fsync(int filedes);

int fdatasync(int filedes);

Chapter 19 Advanced File Handling 377

This page intentionally left blank

379

Other Application
Development Topics

20

In This Chapter

Parsing Command-Line Options with getopt and getopt_long

Time Conversion Functions
Gathering System-Level Information with sysinfo
Mapping Physical Memory with mmap
Locking and Unlocking Memory Pages for Performance
Linux Error Reporting

INTRODUCTION

So far, a large number of topics relating to some of the more useful GNU/Linux
 service APIs have been discussed. This chapter now looks at a number of miscella-
neous core APIs that complete the exploration of GNU/Linux application develop-
ment. This includes the getopt function to parse command-line options, time and
time conversion functions, physical memory mapping functions, and memory
locking for high-performance applications.

The C language provides the means to pass command-line arguments into a pro-
gram as it begins execution. The C main function can accept two arguments, argv
and argc. The argc argument defines the number of arguments that were passed
in, whereas argv is a character pointer array (vector), containing an element per
argument. For example, argv[0] is a character pointer to the first argument (the
program name), and argv[argc-1] points to the last argument.

380 GNU/Linux Application Programming

PARSING COMMAND-LINE OPTIONS WITH getopt AND getopt_long

The getopt function provides a simplified API for extracting command-line argu-
ments and their options from the command line (which conforms to the POSIX
standard for format and argument passing style). Most arguments take the follow-
ing form:

<application> -f <f-arg>

where -f is a command-line option and <f-arg> is the option for -f. Function
getopt can also handle much more complex argument arrangements, as you see in
this section.

The function prototype for the getopt function is provided as:

#include <unistd.h>

int getopt(int argc, char * const argv[], const char *optstring);

extern char *optarg;

extern int optopt, optind;

The getopt function takes three arguments; the first two are the argc and argv

arguments that are received through main. The third argument, optstring, repre-
sents the options specification. This consists of the options that you accept for the
application. The option string has a special form. You define the characters that you
accept as your options, and for each option that has an argument, you follow it with
a :. Consider the following sample option string:

"abc:d"

This parses options such as -a, -b, -d, and also -c <arg>. You could also provide
a double colon, such as "abc::d", which tells getopt that c uses an optional argu-
ment.

The getopt function returns an int that represents the character option. With
this, three external variables are also provided as part of the getopt API. These are
optarg, optopt, and optind. The optarg variable points to an option argument and
is used to extract the option when one is expected. The optopt variable specifies the
option that is currently being processed. The return value of getopt represents the
variable. When getopt is finished parsing (returns -1), the optind variable repre-
sents the index of those arguments on the command line that were not parsed. For
example, if a set of arguments is provided on the command line without any "-"
option designators, then these arguments can be retrieved via the optind argument
(you will see an example of this shortly).

The application developer must ensure that all options required for the application
are specified. The getopt function provides the parsing aspect of command-line
 arguments, but the application must determine whether the options specified are
accurate.

Now take a look at an example of getopt that demonstrates the features that
have been touched upon (see Listing 20.1). At line 8 you call getopt to get the next
option. Note that you call it until you get a -1 return, and it iterates through all of
the options that are available. If getopt returns -1, you exit the loop (to line 36).

At line 10, you start at the switch construct to test the returns. If the 'h' char-
acter is returned (line 12–14) you handle the Help option. At line 16, you handle the
verbose option, which has an argument. Because you expect an integer argument
after -v, you grab it using the optarg variable, passing it to atoi to convert it to an
integer (line 17).

At line 20, you grab the -f argument (representing the filename). Because you
are looking for a string argument, you can use optarg directly (line 21). At line 29,
you test for any unrecognized options for which getopt returns '?'. You emit the
actual option found with optopt (line 29).

Finally, at lines 38–42, you emit any options found that were not parsed using
the optind variable. The getopt internally moves the nonoption arguments to the
end of the argv argument list. Therefore, you can walk from optind to argc to find
these.

LISTING 20.1 Example Use of getopt (on the CD-ROM at ./source/ch20/opttest.c)

1: #include <unistd.h>

2: #include <stdio.h>

3:

4: int main(int argc, char *argv[])

5: {

6: int c;

7:

8: while ((c = getopt(argc, argv, "hv:f:d")) != -1) {

9:

10: switch(c) {

11:

12: case 'h':

13: printf("Help menu.\n");

14: break;

15:

16: case 'v':

17: printf("Verbose level = %d\n", atoi(optarg));

Chapter 20 Other Application Development Topics 381

18: break;

19:

20: case 'f':

21: printf("Filename is = %s\n", optarg);

22: break;

23:

24: case 'd':

25: printf("Debug mode\n");

26: break;

27:

28: case '?':

29: printf("Unrecognized option encountered -%c\n", optopt);

30:

31: default:

32: exit(-1);

33:

34: }

35:

36: }

37:

38: for (c = optind ; c < argc ; c++) {

39:

40: printf("Non option %s\n", argv[c]);

41:

42: }

43:

44:

45: /*

46: * Option parsing complete...

47: */

48:

49: return 0;

50: }

Many new applications support not only short option arguments (such as -a)
but also longer options (such as —command=start). The getopt_long function pro-
vides the application developer with the ability to parse both types of option argu-
ments. The getopt_long function has the prototype:

#include <getopt.h<

int getopt_long(int argc, char * const argv[],

const char *optsring,

const struct option *longopts, int *longindex

);

382 GNU/Linux Application Programming

The first three arguments (argc, argv, and opstring) mirror the getopt func-
tion. What differs for getopt_long are the final two arguments: longopts and
longindex. The longopts argument is a structure that defines the set of long argu-
ments you want to be parsed. This structure is defined as follows:

struct option {

const char *name;

int has_arg;

int *flag;

int val;

};

where name is the name of the long option (such as command) and has_arg represents
the argument that might follow the option (0 for no argument, 1 for a required op-
tion, and 2 for an optional argument). The flag reference determines how the re-
turn value is provided. If flag is not NULL, the return value is provided by the fourth
argument, val; otherwise, the return value is returned by getopt_long.

Now take a look at an example of getopt_long. In this example, the application
accepts the following arguments:

—start

—stop

—command <command>

As you will see, the getopt_long function is a perfect example of the use of a
data structure to simplify the job of coding (see Listing 20.2).

The first item to note is that for the getopt_long function, you must include
getopt.h (rather than unistd.h, as was done for getopt). The option data structure
is defined at lines 4–9. At line 5, you define the element for the —start option. You
define the name start, specify that it has no options, and then define the character
that getopt_long returns after this option is found ('s'). The —stop option is de-
fined similarly (but returns 't' on recognition). The —command option identifies a
required argument to follow (as defined by required_argument) and returns 'c'
when found on the command line.

At lines 16 and 17, you see the call to getopt_long, which specifies the option
string ('stc:') and the options structure (longopts). The return value, like function
getopt, is -1 for no further options or a single character (as defined in the options
structure).

When —start is encountered, an 's' is returned and handled at lines 21–23.
The —stop option is found, a 't' is returned and handled at lines 25–27. When
—command is parsed, getopt_long returns 'c', and you emit the command option at

Chapter 20 Other Application Development Topics 383

line 30 using the optarg variable. Finally, you identify unrecognized options at lines
33–36 when '?' is returned from getopt_long (or an unknown option).

LISTING 20.2 Simple Example of getopt_long to Parse Command-Line Options (on

the CD-ROM at ./source/ch20/optlong.c)

1: #include <stdio.h<

2: #include <getopt.h<

3:

4: static struct option longopts[] = {

5: { "start", no_argument, NULL, 's' },

6: { "stop", no_argument, NULL, 't' },

7: { "command", required_argument, NULL, 'c' },

8: { NULL, 0, NULL, 0 }

9: };

10:

11:

12: int main(int argc, char *argv[])

13: {

14: int c;

15:

16: while ((c = getopt_long(argc, argv, "stc:",

17: longopts, NULL)) != -1) {

18:

19: switch(c) {

20:

21: case 's':

22: printf("Start!\n");

23: break;

24:

25: case 't':

26: printf("Stop!\n");

27: break;

28:

29: case 'c':

30: printf("Command %s!\n", optarg);

31: break;

32:

33: case '?':

34: default:

35: printf("Unknown option\n");

36: break;

37:

384 GNU/Linux Application Programming

38: }

39:

40: }

41:

42: return 0;

43: }

Any application that requires command-line configurability can benefit from
getopt or getopt_long.

TIME API

GNU/Linux provides a wide variety of functions to deal with time (as in time of
day). Time is commonly represented by the tm structure, which is identified as:

struct tm {

int tm_sec; /* seconds (0..59) */

int tm_min; /* minutes (0..59) */

int tm_hour; /* hours (0..23) */

int tm_mday; /* day of the month (1..31) */

int tm_mon; /* month (1..12) */

int tm_year; /* year (200x) */

int tm_wday; /* day of the week (0..6, 0 = Monday */

int tm_yday; /* day in the year (1..366) */

int tm_isdst; /* daylight savings time (0, 1, -1) */

};

A simplified representation is defined as the time_t structure, which simply
represents the time in seconds (since the epoch 00:00:00 UTC, January 1, 1970).
The time functions that this section reviews are these:

#include <time.h<

time_t time(time_t *t);

struct tm *localtime(const time_t *timep);

struct tm *gmtime(const time_t *timep);

char *asctime(const struct tm *tm);

char *ctime(const time_t *timepDay);

time_t mktime(struct tm *tm);

Grabbing the current time can be done with the time function, as follows:

time_t currentTime;

currentTime = time(NULL);

Chapter 20 Other Application Development Topics 385

where NULL is passed to return the local time from the time function. The time can
also be loaded into a variable by passing a time_t reference to the function:

time_t currentTime;

(void)time(¤tTime);

With this time stored, you can now convert it into the tm structure using the
localtime function. Putting it together with time, you get:

time_t currentTime;

struct tm *tm_time;

currentTime = time(NULL);

tm_time = localtime(¤tTime);

printf("%02d:%02d:%02d\n",

tm_time-<tm_hour, tm_time-<tm_min, tm_time-<tm_sec);

Converting time to an ASCII string is easily provided using the asctime or ctime
function. The ctime function takes a time_t reference, whereas asctime takes a tm
structure, as follows:

time_t currentTime;

struct tm *tm_time;

currentTime = time(NULL);

printf("%s\n", ctime(¤tTime));

tm_time = localtime(¤tTime);

printf("%s\n", asctime(tm_time));

The gmtime function breaks down a time_t variable into a tm structure, but in
Coordinated Universal Time (UTC). This is the same as GMT (Greenwich Mean
Time). The gmtime function is illustrated as follows:

tm_time = gmtime(¤tTime);

Finally, the mktime function converts the tm structure into the time_t format. It
is demonstrated as follows:

tm_time = gmtime(¤tTime);

The entire set of functions is illustrated in the simple application shown in
Listing 20.3.

386 GNU/Linux Application Programming

LISTING 20.3 Demonstration of Time Conversion Functions (on the CD-ROM at

./source/ch20/time.c)

1: #include <time.h<

2: #include <stdio.h<

3:

4: int main()

5: {

6: time_t currentTime;

7: struct tm *tm_time;

8:

9: currentTime = time(NULL);

10: tm_time = localtime(¤tTime);

11:

12: printf("from localtime %02d:%02d:%02d\n",

13: tm_time-<tm_hour, tm_time-<tm_min, tm_time-<tm_sec);

14:

15: printf("from ctime %s\n", ctime(¤tTime));

16:

17: printf("from asctime/localtime %s\n", asctime(tm_time));

18:

19: tm_time = gmtime(¤tTime);

20:

21: printf("from gmtime %02d:%02d:%02d\n",

22: tm_time-<tm_hour, tm_time-<tm_min, tm_time-<tm_sec);

23:

24: printf("from asctime/gmtime %s\n", asctime(tm_time));

25:

26: currentTime = mktime(tm_time);

27:

28: printf("from ctime/mktime %s\n", ctime(¤tTime));

29:

30: return 0;

31: }

Executing this application yields the following result:

$./time

from localtime 22:53:02

from ctime Tue Jun 1 22:53:02 2004

from asctime/localtime Tue Jun 1 22:53:02 2004

Chapter 20 Other Application Development Topics 387

from gmtime 04:53:02

from asctime/gmtime Wed Jun 2 04:53:02 2004

from ctime/mktime Wed Jun 2 05:53:02 2004

$

GATHERING SYSTEM INFORMATION WITH sysinfo

The sysinfo command allows an application to gather high-level information
about a system, some of it very useful. The API for the sysinfo command is as
 follows:

int sysinfo(struct sysinfo *info);

The sysinfo command returns zero on success and fills the sysinfo structure as
defined by Table 20.1. Note that all sizes are provided in the units defined by
mem_unit.

388 GNU/Linux Application Programming

Element Description

uptime The current uptime of this system in seconds

loads[0] System load average for 1 minute

loads[1] System load average for 5 minutes

loads[2] System load average for 15 minutes

totalram Total usable main memory

freeram Available main memory

sharedram Amount of memory that’s shared

bufferram Amount of memory used by buffers

totalswap Total swap space

freeswap Free swap space

procs Number of currently active processes

totalhigh Total amount of high memory

freehigh Free amount of high memory

mem_unit Memory unit size in bytes

TABLE 20.1 Elements and Meaning for struct sysinfo

Gathering the system information is very simple, as illustrated in Listing 20.4.
Note that uptime has been further decomposed to provide a more meaningful rep-
resentation (line 16–25).

LISTING 20.4 Sample Use of sysinfo Function (on the CD-ROM at

./source/ch20/sysinfo.c)

1: #include <sys/sysinfo.h<

2: #include <stdio.h<

3:

4: int main()

5: {

6: struct sysinfo info;

7: int ret;

8: int days, hours, minutes, seconds;

9:

10: ret = sysinfo(&info);

11:

12: if (ret == 0) {

13:

14: printf("Uptime is %ld\n", info.uptime);

15:

16: days = info.uptime / (24 * 60 * 60);

17: info.uptime -= (days * (24 * 60 * 60));

18: hours = info.uptime / (60 * 60);

19: info.uptime -= (hours * (60 * 60));

20: minutes = info.uptime / 60;

21: info.uptime -= (minutes * 60);

22: seconds = info.uptime;

23:

24: printf("Uptime %d Days %d Hours %d Minutes %d Seconds\n",

25: days, hours, minutes, seconds);

26: printf("One minute load average %ld\n", info.loads[0]);

27: printf("Five minute load average %ld\n", info.loads[1]);

28: printf("Fifteen minute load average %ld\n", info.loads[2]);

29: printf("Total Ram Available %ld\n", info.totalram);

30: printf("Free Ram Available %ld\n", info.freeram);

31: printf("Shared Ram Available %ld\n", info.sharedram);

32: printf("Buffer Ram Available %ld\n", info.bufferram);

33: printf("Total Swap Size %ld\n", info.totalswap);

34: printf("Available Swap Size %ld\n", info.freeswap);

35: printf("Processes running: %d\n", info.procs);

36: printf("Total high memory size %ld\n", info.totalhigh);

37: printf("Available high memory %ld\n", info.freehigh);

Chapter 20 Other Application Development Topics 389

38: printf("Memory Unit size %d\n", info.mem_unit);

39: }

40:

41: return 0;

42: }

Much of this information can also be gathered from the /proc filesystem, but
that is more difficult because of the parsing that’s necessary. Some information is
provided in /proc/uptime, /proc/meminfo, and /proc/loadavg.

The proc filesystem is a virtual filesystem that contains runtime information about
the state of the operating system. The proc filesystem can be used to inquire about
various features by “cat”ing files in the proc filesystem. For example, you can
identify all processes in the system (/proc/#), information about the CPU
(/proc/cpuinfo), the devices found on the PCI buses (/proc/pci), the kernel mod-
ules currently loaded (/proc/modules), and much more runtime information.

MAPPING MEMORY WITH mmap

While not completely related to shared memory, the mmap API function provides the
means to map file contents into user program space. The prototype function for
mmap (and munmap to unmap the memory) is defined as follows:

#include <sys/mman.h>

void *mmap(void *start, size_t length, int prot, int flags,

int fd, off_t offset);

int munmap(void *start, size_t length);

The mmap function takes in a file byte offset (offset) and tries to map it to the
address defined by the caller (start) from the file descriptor fd (you will look at
what this means shortly). Commonly, the start address is defined as NULL, allow-
ing mmap to map it to whatever local address it chooses. This address (local map-
ping) is returned by the mmap function. The length of the region is defined by length.
The caller defines the desired memory protection through the prot argument,
which can be PROT_EXEC (region can be executed), PROT_READ (region can be read),
PROT_WRITE (region can be written), or PROT_NONE (pages can’t be accessed). Combi-
nations of protections can be defined. Finally, the type of mapped object is defined
by the flags argument. This can be MAP_FIXED (fail if the start address can’t be used
for the local mapping), MAP_SHARED (share this mapping with other processes), or
MAP_PRIVATE (create a private copy-on-write mapping). The caller must specify
MAP_SHARED or MAP_PRIVATE.

390 GNU/Linux Application Programming

The offset and start arguments must be on page boundaries. The length argu-
ment should be a multiple of the page size.

GNU/Linux also provides some other nonstandard flags that are defined in
Table 20.2.

Chapter 20 Other Application Development Topics 391

Flag Use

MAP_NORESERVE Used with MAP_PRIVATE to instruct the kernel not to

reserve swap space for this region.

MAP_GROWSDOWN Used by the kernel for stack allocation.

MAP_ANONYMOUS This region is not backed by a file (fd and offset

arguments of mmap are therefore ignored).

TABLE 20.2 Nonstandard Flags for mmap

The munmap function simply unmaps the memory mapped by mmap. To munmap,
the address returned by mmap is provided along with the length (which was also
specified to mmap).

Take a look at an example of mmap and munmap. In Listing 20.5, you find an ap-
plication that maps physical memory and makes it available for read. This applica-
tion first creates a file descriptor of the file /dev/mem, which represents the physical
memory available.

It’s important to note that /dev/mem should be used only for read operations.
Writing can be dangerous to the point of crashing your system. Finally, it’s also a
large security hole; therefore, its use should be avoided (though it does require root
access).

The sample application allows the base address and length to be defined on the
command line (lines 15–32). At line 34, you open /dev/mem for read. The file
/dev/mem permits access to physical memory space (for which you use mmap to map
physical memory into the process’s memory space). At lines 38–40, you use mmap to
map the requested region into the process’s address space. The return value is the
address from which the memory can be accessed. You then perform a loop to read
and printf the addresses and their contents (lines 45–57). You finally clean up by
unmapping the memory with munmap (line 59) and then closing the /dev/mem file
 descriptor at line 67.

LISTING 20.5 Mapping Physical Memory with mmap (on the CD-ROM at

./source/ch20/phymap.c)

1: #include <stdio.h>

2: #include <unistd.h>

3: #include <fcntl.h>

4: #include <stdlib.h>

5: #include <errno.h>

6: #include <sys/mman.h>

7:

8: int main(int argc, char *argv[])

9: {

10: int fd;

11: unsigned char *addr, *waddr, count;

12: int length;

13: off_t offset;

14:

15: if (argc < 3) {

16:

17: printf("Usage is phymap <address< <length<\n");

18: exit(-1);

19:

20: }

21:

22: if (argv[1][1] == 'x') {

23: sscanf(argv[1], "0x%x", &offset);

24: } else {

25: sscanf(argv[1], "%d", &offset);

26: }

27:

28: if (argv[2][1] == 'x') {

29: sscanf(argv[2], "0x%x", &length);

30: } else {

31: sscanf(argv[2], "%d", &length);

32: }

33:

34: fd = open("/dev/mem", O_RDONLY);

35:

36: if (fd != -1) {

37:

38: addr = (unsigned char *)mmap(NULL, length,

39: PROT_READ, MAP_SHARED,

40: fd, offset);

41:

392 GNU/Linux Application Programming

42:

43: if (addr != NULL) {

44:

45: waddr = addr;

46:

47: for (count = 0 ; count < length ; count++) {

48:

49: if ((count % 16) == 0) {

50:

51: printf("\n%8p : ", waddr);

52:

53: }

54:

55: printf("%02x ", *waddr++);

56:

57: }

58:

59: munmap(addr, length);

60:

61: } else {

62:

63: printf("Unable to map memory.\n");

64:

65: }

66:

67: close(fd);

68: printf("\n");

69:

70: }

71:

72: return 0;

73: }

Using this application (call it phymap) is illustrated in the following example.
Here you peek at the address 0x000c1000 for 64 bytes.

./phymap 0x000c1000 64

addr = 0x40017000 (Success)

0x40017000 : 56 57 a0 49 04 e8 c0 fe 32 ed 41 c1 e9 03 32 e4

0x40017010 : e8 0d 67 2e 8b b5 e6 08 2e 8a 44 0c d1 e8 f7 e1

0x40017020 : 5f 5e 07 5a 59 c3 33 c9 a4 fe c1 8a 2c 0a ed 75

0x40017030 : f7 fe c1 a4 32 ed c3 50 53 32 e4 b0 11 b3 80 e8

#

Chapter 20 Other Application Development Topics 393

394 GNU/Linux Application Programming

The address shown here is the local address that’s been mapped in your address
space. While it’s different than your requested 0x000c1000, the 0x40017000 repre-
sents the same region for our process.

LOCKING AND UNLOCKING MEMORY

In this section, you take a look at an additional set of functions that are very useful
to high-performance applications. The memory-locking functions permit a process
to lock some or all of its storage that it is never swapped out of memory. The result
is greater performance for the application, because it never has to suffer paging
penalties in a busy system, but this does require the proper permissions.

The functions of interest for locking and unlocking memory are as follows:

#include <sys/mman.h>

int mlock(const void *addr, size_t len);

int munlock(const void *addr, size_t len);

int mlockall(int flags);

int munlockall(void);

The addr and len arguments must be on page boundaries. Now take a look at
the lock/unlock pairs of functions in detail.

The mlock function takes an address (addr) for which the memory pages that
represent the region are to be locked. The len argument defines the size of the re-
gion to lock (meaning that one or more pages might be locked by the operation).
A return value of zero means that the pages are locked. When the application is fin-
ished with the memory, a call to munlock makes the pages available for swapping. A
return of zero represents success of the unlock system call.

The following code example illustrates locking a page of memory and then un-
locking it (see Listing 20.6). The buffer here is a locally created array of characters.

LISTING 20.6 Locking and Unlocking a Memory Page (on the CD-ROM at

./source/ch20/lock.c)

1: #include <stdio.h>

2: #include <sys/mman.h>

3:

4: char data[4096];

5:

6: int main()

7: {

8: int ret;

9:

10: ret = mlock(&data, 1024);

11:

12: printf("mlock ret = %d\n", ret);

13:

14: ret = munlock(&data, 1024);

15:

16: printf("munlock ret = %d\n", ret);

17:

18: return 0;

19: }

At line 10, you call mlock with a reference to the global buffer (data) and its
length. You unlock this page by calling mlock with your buffer and size (identically
to the call to mlock). The entire page containing the buffer is locked, in the event it
falls under the bounds of a page (or two pages if the address spans two)

Child processes do not inherit memory locks (created by mlock or mlockall).
Therefore, if a region of memory is created and subprocesses are also created to
 operate upon it, each child process should perform its own mlock.

The mlockall API function locks all memory (disables paging) for a process’s
entire memory space. This includes not only the code and data for the process, but
also its stack, shared libraries, shared memory, and other memory mapped files.

The mlockall function takes a single argument, which represents the scope of
the lock to be provided. The user can specify MCL_CURRENT, which locks all pages that
are currently mapped into the address space of the process, or MCL_FUTURE, which
locks all pages that will be mapped into the address space of the process in the fu-
ture. For example:

/* Lock currently mapped pages */

mlockall(MCL_CURRENT);

/* Lock all future pages */

mlockall(MCL_FUTURE);

You can also define that all current and future pages are locked into memory by
performing a bitwise OR to put the flags together, as follows:

mlockall(MCL_CURRENT | MCL_FUTURE);

If insufficient memory is available to lock the current set of pages, an ENOMEM
error is returned. If MCL_FUTURE is used, and insufficient memory exists to lock a

Chapter 20 Other Application Development Topics 395

growing process stack, the kernel throws a SIGSEGV (segment violation) signal for
the process, causing it to terminate.

The munlockall system call reenables paging for the pages mapped for the call-
ing process. It takes no arguments and returns zero on success:

/* Unlock the pages for this process */

munlockall();

The munlockall system call should be called after the process has completed its
real-time processing.

LINUX ERROR REPORTING

In Chapter 11, “File Handling in GNU/Linux,” you first encountered the error-
reporting mechanism of Linux called the errno variable. This variable is the last
error that occurred for a given process (or thread, where each thread has its own
errno variable). If another error occurs, the errno variable is overwritten. For this
reason, after an application detects an error (such as a non-zero return from a
 system call), the errno variable should be checked and the error handled.

When using the errno variable, you must first make this variable available to
your application by including the errno.h header file. Also defined here (or in a file
included by this header file) are the various error code symbolic constants.

Each system call presents a different set of errors to the user. Every system call
that returns one or more errors presents those (and the condition that produced
them) in the respective man pages.

Now take a look at an example of using the errno variable in a simple applica-
tion (see Listing 20.7). In this example, you include the necessary header file at line
2. Lines 4–8 are set up to check the number of input arguments and then open the
first string argument as a file. Line 10 is the target of the error processing (opening
a file). If the file returns a NULL (checked at line 12), then you know an error oc-
curred. The errno variable is checked at lines 14–28 (specifically, two known errors
are checked, EACCES and EISDIR) and a string is emitted to notify the user of the error.

LISTING 20.7 Demonstrating the Usage of errno

1: #include <stdio.h>

2: #include <errno.h>

3:

4: int main(int argc, char *argv[])

5: {

396 GNU/Linux Application Programming

6: FILE *fp;

7:

8: if (argc < 2) return 1;

9:

10: fp = fopen(argv[1], "w");

11:

12: if (fp == NULL) {

13:

14: switch(errno) {

15:

16: case EACCES:

17: printf("Can't access file.\n");

18: break;

19:

20: case EISDIR:

21: printf("Can't operate on directory.\n");

22: break;

23:

24: default:

25: printf("another error occurred.\n");

26: break;

27:

28: }

29:

30: return 1;

31:

32: }

33:

34: fclose(fp);

35:

36: return 0;

37: }

In most cases, everything shown in Listing 20.7 is not necessary, but instead all
that is required is just an indication of the error that occurred (particulary if you
have no way to recover from the error). In this case, emitting the error code is the
desired result. In these cases, you can use a simple line such as:

printf("Error occurred: %d\n", errno);

But with around 130 unique error codes, what is even better is a string repre-
senting the error type. The GNU C Library provides a few functions exactly for this
purpose. The prototypes for these functions can be found in string.h.

Chapter 20 Other Application Development Topics 397

The first is the sterror function, which takes an error code and emits a de-
scriptive string. Its prototype is as follows:

char *strerror(int errnum);

char *strerror_r(int errnum, char *buf, size_t n);

So instead of simply printing out the error code, you can emit the string asso-
ciated with the error code, as follows:

printf("%s\n", strerror(errno));

If the error is EACCES, then the following string is emitted:

Permission denied

If you’re working in a threaded application, strerror can’t be used because it
statically allocates the string for the process. For each thread, you want to provide
your own buffer instead. This is why the function prototype for strerror_r accepts
the error code, buffer, and buffer size. The function also returns a pointer to the
user-provided buffer (acting identically to the strerror function).

Finally, you have the perror function. This one is particularly useful because it
simply emits the error message to stderr. Its prototype is as follows:

void perror(const char *message);

The function takes a message that is prepended to the output (typically the
function that caused the errno to be set is passed in). Similar to the last example,
perror can be used as follows:

perror("fopen");

For the EACCES error, this results in:

fopen: Permission denied

The one thing to remember about errno is that its state can be set in every
 system call. Therefore, if you want to maintain knowledge of a given error code,
you need to store it before calling other system calls (which alter it). Further, only
 consider the errno variable valid after a system call returns an error.

398 GNU/Linux Application Programming

SUMMARY

This chapter covered a number of system calls that are useful in the development of
application and tools software. These included the getopt and getopt_long calls for
parsing command-line arguments, a variety of time and time conversion functions,
the sysinfo call to gather high-level system information, the mmap system call to map
files, two pairs of page-locking functions to help build high-performance applica-
tions (by avoiding page swapping penalties), and finally routines for emitting error
codes and descriptive strings.

API SUMMARY

#include <unistd.h>

int getopt(int argc, char * const argv[], const char *optstring);

extern char *optarg;

extern int optopt, optind;

#include <getopt.h>

int getopt_long(int argc, char * const argv[],

const char *optsring,

const struct option *longopts, int *longindex);

extern char *optarg

extern int optopt, optind;

#include <time.h>

time_t time(time_t *t);

struct tm *localtime(const time_t *timep);

struct tm *gmtime(const time_t *timep);

char *asctime(const struct tm *tm);

char *ctime(const time_t *timepDay);

time_t mktime(struct tm *tm);

#include <sys/mman.h>

void *mmap(void *start, size_t length, int prot, int flags,

int fd, off_t offset);

int munmap(void *start, size_t length);

int mlock(const void *addr, size_t len);

int munlock(const void *addr, size_t len);

int mlockall(int flags);

int munlockall(void);

Chapter 20 Other Application Development Topics 399

#include <errno.h>

#include <string.h>

char *strerror(int errnum);

char *strerror_r(int errnum, char *buf, size_t n);

void perror(const char *message);

400 GNU/Linux Application Programming

Chapter 21: Standard GNU/Linux Commands

Chapter 22: Bourne-Again Shell (Bash)

Chapter 23: Editing with sed

Chapter 24: Text Processing with awk

Chapter 25: Parser Generation with flex and bison

Chapter 26: Scripting with Ruby

Chapter 27: Scripting with Python

Chapter 28: GNU/Linux Administration Basics

This part of the book looks at the topic of scripting languages. While scripting
 languages are historically tied to shells, scripting is a much larger topic. This part
covers Bash scripting, domain-specific languages such as sed and awk, and finally
building interpreters with flex and bison.

CHAPTER 21: STANDARD GNU/LINUX COMMANDS

GNU/Linux includes a large set of commands that aid in software development.
We’ll look at a variety of the most commonly used commands and cover them in a
tutorial fashion, including numerous examples.

CHAPTER 22: BOURNE-AGAIN SHELL (BASH)

The bash shell is the de facto standard shell for GNU/Linux. Shell programming is
very beneficial to understand because it permits developers to code repetitive tasks
quickly. Shell programming can be slower than compiling to the native instruction
set, but efficiency isn’t always the most important aspect of development. Compil-
ing source to a native image takes time. The great advantage to scripting is that you
can execute your script immediately. This makes scripting languages perfect for
prototyping. Many scripting languages also allow the script to be performed inter-
actively, which makes it much easier for them to be understood.

Part

IV GNU/Linux Shells and
Scripting

401

CHAPTER 23: EDITING WITH sed

The sed utility (stream editor) is a noninteractive text editing utility that is quite
useful in performing global editing of files. sed can be used on a single file or many
files, and although it is cryptic, it is generally a useful tool that solves a number of
text editing problems. This chapter introduces sed and describes its use in a num-
ber of simple and complex examples.

CHAPTER 24: TEXT PROCESSING WITH awk

While some consider the awk utility an advancement of sed, it is in its own right a
high-level procedural programming language. awk was designed for text pattern
processing on files, but it has evolved into a compact language that is useful in a
number of areas. awk is very convenient in prototyping because it is interpreted,
and programs can be developed and tested quickly. The awk programming language
is useful and can be very beneficial to GNU/Linux developers.

CHAPTER 25: PARSER GENERATION WITH flex AND bison

The development of parsers was traditionally limited to those with extensive expe-
rience in parsing and compiler theory. With the introduction of lex and yacc (and
the GNU replacements, flex and bison), building parsers is much simplified as the
difficult work is done for you. The flex tool is a lexical analyzer generator that
 creates programs for tokenization of input files. The bison tool, working in concert
with the lexer, generates a grammar parser to validate the correctness of input
 tokens. Each of these tools takes an input file defining the token structure and
grammar and produces C source to perform tasks. This makes the development of
parsers simple and very maintainable. In this chapter, flex and bison are intro-
duced through multiple examples of tokenization and grammar parsing.

CHAPTER 26: SCRIPTING WITH RUBY

Development of applications on GNU/Linux isn’t restricted to high-level languages.
Applications can instead be written in interpreted languages such as Ruby. Ruby is
one of the newer object-oriented scripting languages from which you can develop
applications. This chapter introduces Ruby, its syntax, and its useful and unique
features.

402 GNU/Linux Application Programming

CHAPTER 27: SCRIPTING WITH PYTHON

Continuing from the previous chapter, this chapter explores the Python language
for GNU/Linux development. Python is one of the older object-oriented scripting
languages that is powerful and very popular. Python is introduced from the per-
spective of syntax and unique features.

CHAPTER 28: GNU/LINUX ADMINISTRATION BASICS

Development on GNU/Linux implies a certain amount of administration. Whether
it’s upgrading the Linux kernel or installing new software package (from source, or
through a package management utility), you face administration tasks that all de-
velopers need to understand. This chapter introduces you to some of the more
fundamental administration tasks.

Part IV GNU/Linux Shells and Scripting 403

This page intentionally left blank

405

Standard GNU/Linux
Commands

21

INTRODUCTION

This chapter looks at some of the basics of standard GNU/Linux shells in addition
to the important commands that are used frequently.

REDIRECTION

First take a look at a basic topic in GNU/Linux shell use, that of input or output
redirection.

The concept of redirection is simply that of redirecting your input or output
to something other than the default. For example, the standard output of most
commands is redirected to the shell window. You can redirect the output of a com-
mand to a file using the > output redirection symbol. For example:

ls -la

In This Chapter

Standard In, Out, and Error
Invoking Shell Scripts
Redirection
Discussion of Important GNU/Linux Commands

generates a file listing and emits the results to the shell window. You can instead
redirect this to a file as follows:

ls -la > ls-out.txt

Now what would have been emitted to the shell window is now present in the
output file ls-out.txt.

Rather than accept input from the keyboard, you can accept input from
 another source. For example, the command cat simply emits its standard input (or
files named on its command line) to its standard out. You can redirect the contents
of a file to cat using the < input redirection symbol.

cat < ls-out.txt

You can also build more complicated redirection structures. For example,
using the | (pipe) symbol, you can chain a number of generators and filters to-
gether. For example, consider the following command sequence:

find . -name '*.[ch]' -print | xargs grep "mtj" | more

This is actually three different commands that stream their output from left to
right. The first command searches the subdirectory tree (from the current direc-
tory) looking for all files that fit a certain pattern. The pattern defined is '*.[ch]',
which means all files that end in .c or .h. These are passed to the next command,
xargs, which is a special command to read from standard input and pass to the em-
bedded command. In this case, it’s grep. The grep command is a text search utility
that searches all files passed to it from the previous stage for the string term mtj. For
files that pass the search criteria, the lines that contain the search term are emitted
to the next stage, the more command. The more command simply ensures that the
user is able to see all output before it scrolls by. When a screen full of output is
 present, the user must type return for more to continue and potentially present a
new screen’s worth of data.

STANDARD IN/OUT/ERROR

For each application, three special file descriptors are automatically created. These
are called standard input, standard output, and standard error (see Figure 21.1).

This chapter refers to these by their shortened names for brevity. The stdin
 descriptor is commonly the keyboard. Descriptors stdout and stderr are the
 terminal or window attached to the shell (stdout for program results, stderr for
program errors, warnings, and status). The output descriptors are split to provide
greater flexibility for emitting information to the user. While stdout and stderr

share the same default output device, they can be split as desired by the developer.

406 GNU/Linux Application Programming

Chapter 21 Standard GNU/Linux Commands 407

Recall from the previous discussion in the chapter that you can redirect stdout
to a file as follows:

prog > out.txt

where the output of prog is redirected to the file out.txt. Note that if you want to
append our output to out.txt rather than replace the file altogether, you use the
double redirect, as follows:

prog >> out.txt

You can redirect only the error output as follows:

prog 2> error-out.txt

Note that you are using a constant number here to represent stderr. The file
descriptors that are defined for the three standard I/O descriptors are shown in
Table 21.1.

FIGURE 21.1 Program input and output.

Descriptor Description

0 Standard input (stdin)

1 Standard output (stdout)

2 Standard error (stderr)

TABLE 21.1 File Descriptors for Standard I/O Descriptors

If instead you want to redirect both the stdout and stderr to a file (out.txt),
you can do the following:

prog 1> out.txt 2>&1

For the opposite scenario, you can redirect the stdout to the stderr descriptor
as follows:

prog 1>&2

You can also redirect output to unique files. For example, if you want your
stdout to go to out.txt and stderr to go to err.txt, you can do the following:

prog 1>out.txt 2>err.txt

To verify that descriptor routing is working the way you expect, the script in
Listing 21.1 can be used to test.

LISTING 21.1 Descriptor Routing Test Script (on CD-ROM at

./source/ch21/redirtest.sh)

1: #!/bin/bash

2: echo "stdout test" >&1

3: echo "stderr test" >&2

Finally, consider another example that demonstrates ordering of redirection.

prog 2>&1 1>out.txt

In this example, we redirect stderr to stdout and then redirect stdout (not
 including stderr) to the file out.txt. This has the effect of consolidating both the
stdout and stderr to the file out.txt.

ENVIRONMENT VARIABLES

An environment variable is a named object that contains information for use by the
shell and other applications. A number of standard environment variables exist,
such as the PWD variable, but you can create your own for your applications (or
change existing variables). You can inspect the PWD variable by echoing its contents
with the echo command:

408 GNU/Linux Application Programming

$ echo $PWD

PWD=/home/mtj

$

A process can be viewed as an environment and inherits the environment variables
from its parent (such as the shell, which is also a process). A process or script might
also have local variables.

The PWD environment (or shell) variable identifies your current (present) work-
ing directory. You can create your own using the declare or export bash built-in
command.

A script can make environment variables available to child processes, but only
by exporting them. A script cannot export back to the parent process. Take a look
at a couple of examples. The declare built-in command can be used to declare
variables with specific attributes. The export built-in command creates a variable
and marks it to be passed to child processes in the environment. These commands
are illustrated as follows:

$ declare -x myvar="Hello"

$ echo $myvar

Hello

$ export myothervar="Hi"

$ echo $myothervar

Hi

$

A number of other useful environment variable commands exist. For example,
if no argument is provided to export, then it emits all of the variables available to
the environment (which can also be done with the declare and set commands).

SCRIPT INVOCATION

When you invoke a command or script, the command or script must be in your
 binaries path (PATH environment variable) in order for it to be found. You can view
your path by echoing the PATH environment variable as follows:

$ echo $PATH

/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/home/mtj/bin

If you have created a script that does not exist in the path defined (for example,
in your current working directory), then you have to invoke it as follows:

./script.sh

Chapter 21 Standard GNU/Linux Commands 409

The ./ tells the interpreter that the shell script you are invoking is located in the
current directory. Otherwise, you get an error message telling you that the script
cannot be found.

Two special directory files exist that are important in Linux development. The . file
represents the current directory, whereas the .. file represents the parent directory.
For example, if you provide the command cd ., you have no visible change because
you have changed the current directory to the current directory. More interesting,
the cd .. command changes the current directory to the parent directory. These
special files can be seen by viewing the current subdirectory with ls -la.

If this is undesirable, you can easily update your PATH environment variable to
add your current working subdirectory as follows:

$ export PATH=$PATH:./

$ echo $PATH

/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/home/mtj/bin:./

The script script.sh can now be invoked directly without needing to prefix ./.
File links are special files that provide a reference to another file. Two types of

links exist: hard links and soft links (otherwise known as symbolic links). A hard
link is a new entry in the directory file that points to an existing file. The hard link
is indistinguishable from the original file. The problem with hard links is that they
must reference files within the same filesystem. Soft links are regular files them-
selves and simply contain a pointer to the actual file. Soft links can be absolute
(point to a file with a full path) or relative (the path being relative from the current
location). Soft links can be moved while retaining their linkage to the original file.
Note that the special files . and .. are in fact hard links to the absolute directories.

The ln command can be used to construct symbolic links.

BASIC GNU/LINUX COMMANDS

Now that you have some basic understanding of redirection and the standard I/O
descriptors (stdin, stdout, and stderr), it’s time to explore the more useful of the
GNU/Linux commands. This section takes an interactive approach for investigat-
ing these commands, compared to simply telling you what the command does and
all the available options for it. The commands are in no particular order, and there-
fore you can explore each command independently of any other if desired.

Every command in GNU/Linux is itself a process. The shell manipulates the
stdin, stdout, and stderr for commands that are executed in it.

410 GNU/Linux Application Programming

tar

The GNU tar command (named for Tape ARchive) is a useful and versatile archiv-
ing and compressing utility. Targets for tar can be files or directories, where the
 directories are recursed to gather the full contents of the directory tree. Now it’s
time to take a look at uses of the tar utility, investigating a variety of the options as
you go.

You can create a new archive using tar as follows:

tar cf mytar.tar mydir/

You specify two options for creating an archive of directory mydir. The c option
instructs tar to create a new archive with the name (identified via the f option)
mytar.tar. The final arguments are the list of files and/or directories to archive (for
which all files in mydir are included in the archive).

Now say you want to take your tar file (also called a tarball) and re-create the
subdirectory and its contents (otherwise known as the extract option). You could
do this (in another subdirectory) by simply typing the following:

tar xf mytar.tar

If you want to know the contents of your tarball without having to unarchive
the contents, you can do this:

tar tf mytar.tar

which lists all files with their directory paths intact.
By adding the v, or verbose option, you can view the operation of the tar utility

as it works. For both creating and extracting archives, you use the verbose option
as follows:

tar cvf mytar.tar mydir/

tar xvf mytar.tar

One of the most important aspects of the tar utility is the automatic compres-
sion of the tarball. This is performed using the z option and works symmetrically
for both creation and extraction of archives, as follows:

tar czf mytar.tgz mydir/

tar xzf mytar.tgz

A compressed tarball can take more time to create and extract, but this can still
be beneficial, especially if you intend to transfer the set of files over the Internet.

Chapter 21 Standard GNU/Linux Commands 411

412 GNU/Linux Application Programming

cut

The GNU/Linux cut utility can quickly cut elements of each line in a file using one
of two types of specification. The user can define the desired data in terms of fields
in the file or based upon numbered sequences of characters.

This section first takes a look at the basic format of the cut utility and then
looks at some examples of how it can be used. As has been discussed, the cut util-
ity can operate in two modes. In the first mode, cut extracts based upon field spec-
ifications using a delimiting character:

cut -f[spec] -d[delimiter] file

In the second mode, cut extracts based upon character position specifications:

cut -c[spec] file

The spec argument is a list of comma-separated ranges. A range can be repre-
sented (base 1) as shown in Table 21.2.

Range Meaning

n nth character (-c) or field (-f)

n- nth character (-c) or field (-f) from the end of the line

n-m From nth to mth character (-c) or field (-f)

-m From first to mth character (-c) or field (-f)

TABLE 21.2 Range Specs for the cut Utility

Now it’s time to look at some examples of the cut utility. You can explore the
field-based cut first, using the sample file in Listing 21.2.

LISTING 21.2 Sample File (passwd) for Field-Based Cutting (on the CD-ROM at

./source/ch21/passwd)

bob:x:500:500::/home/bob:/bin/bash

sally:x:501:501::/home/sally:/bin/sh

jim:x:502:502::/home/jim:/bin/tcsh

dirk:x:503:503::/home/dirk:/bin/ash

You can experiment with cut interactively, looking not only at the command
but also exactly what cut produces given the field specification. First, say you want
to cut and emit the first field (the name). This is a simple case for cut, demonstrated
as follows:

$ cut -f1 -d: passwd

bob

sally

jim

dirk

$

In this example, you specify to cut field 1 (-f1) using the colon character as the
delimiter (-d:). If you want to know the home directory rather than the user name,
you simply update the field to point to this element of passwd (field 6), as follows:

$ cut -f6 -d: passwd

/home/bob

/home/sally

/home/jim

/home/dirk

$

You can also extract multiple fields, such as the user name (field 1) and the
 preferred shell (field 7):

$ cut -f1,7 -d: passwd

bob:/bin/bash

sally:/bin/bash

jim:/bin/tcsh

dirk:/bin/ash

$

Ordering is important to the cut utility. For example, if you had specified -f7,1
instead in the previous example, the result would have been the same (ordering of
fields in the original file is retained).

Now take a look at some examples of character position specifications. In these
examples, you pipe your input from another command. The ls command lists the
contents of a directory, for example:

Chapter 21 Standard GNU/Linux Commands 413

$ ls -la

total 20

drwxrwxr-x 2 mtj mtj 4096 Feb 17 20:08 .

drwxr-xr-x 6 mtj mtj 4096 Feb 15 20:47 ..

-rw-rw-r— 1 mtj mtj 6229 Feb 16 17:59 ch12.txt

-rw-r—r— 1 mtj mtj 145 Feb 17 20:02 passwd

If you are interested only in the file size (which includes the date and name of
the file), you can do the following:

$ ls -la | cut -c38-

4096 Feb 17 20:08 .

4096 Feb 15 20:47 ..

6229 Feb 16 17:59 ch12.txt

145 Feb 17 20:02 passwd

$

If you are interested only in the size of the file and the file’s name, you can use
the following:

$ ls -la | cut -c38-42,57-

4096.

4096..

6229ch12.txt

145passwd

$

Note in this example that the two cut regions include no space between them.
This is because cut simply segments the regions of the file and emits no spaces be-
tween those regions. If you are interested in a space, you can update the command
as follows (taking a space from the data itself):

$ ls -la | cut -c38-43,57-

4096 .

4096 ..

6229 ch12.txt

145 passwd

$

The cut utility is very simple, but it’s also a very useful utility with quite a bit of
flexibility. The cut utility isn’t the only game in town; later on in the book you will
take a look at sed and awk and their capabilities for text filtering and processing.

414 GNU/Linux Application Programming

paste

The paste command takes data from one or more files and binds them together
into a new stream (with default emission to stdout). Consider the files shown in
Listings 21.3 and 21.4.

LISTING 21.3 The Fruits File (on the CD-ROM at ./source/ch21/fruits.txt)

Apple

Orange

Banana

Papaya

LISTING 21.4 The Tools File (on the CD-ROM at ./source/ch21/tools.txt)

Hammer

Pencil

Drill

Level

Using the paste utility, you can bind these files together as demonstrated in the
following:

$ paste fruits.txt tools.txt

Apple Hammer

Orange Pencil

Banana Drill

Papaya Level

$

If you want some delimiter other than tabs between your consecutive elements,
you can specify a new one using the -d option. For example, you can use a : char-
acter instead, as follows:

$ paste -d: fruits.txt tools.txt

Apple:Hammer

Orange:Pencil

Banana:Drill

Papaya:Level

$

Chapter 21 Standard GNU/Linux Commands 415

416 GNU/Linux Application Programming

Rather than pair consecutive elements in a vertical fashion, you can instead pair
them horizontally using the -s option:

$ paste -s fruits.txt tools.txt

Apple Orange Banana Papaya

Hammer Pencil Drill Level

$

Note that you can specify more than two files if desired.
One final example can help illustrate the paste utility. Recall from the earlier

discussion of cut that it wasn’t possible to alter the order of fields pulled from a file.
The following short script provides the utility of listing the filename and then the
size of the file (see Listing 21.5).

LISTING 21.5 Simple Reversed ls Utility Using cut and paste (on the CD-ROM at

./source/ch21/newls.sh)

#!/bin/bash

ls -l | cut -c38-42 > /tmp/filesize.txt

ls -l | cut -c57- > /tmp/filename.txt

paste /tmp/filename.txt /tmp/filesize.txt

In this example, you first cut the file sizes from the ls -l command and store
the result to /tmp/filesize.txt. You grab the filenames next and store them to
/tmp/filename.txt. Next, using the paste command, you merge the results back
 together, reversing the order. Executing this script on a small directory results in the
following:

$./newls.sh

fruits.txt 27

newls.sh 133

tools.txt 26

$

Note that the use of the /tmp directory in Listing 21.5 is useful for temporary files.
Temporary files can be written to /tmp because they are not persistent across sys-
tem boots. In some cases, files are removed from /tmp as part of a daily or weekly
cleanup process.

sort

The sort utility is useful for sorting a data file in some defined order. In the simplest
case, where the key for sort is the beginning of the file, you specify the file. Take for
example the tools.txt file shown in Listing 21.4. You can easily sort this as follows:

$ sort tools.txt

Drill

Hammer

Level

Pencil

$

You can reverse sort this file by simply adding the -r (reverse) option to the
command line.

You can also sort based upon a key defined by the user. Consider the sample
text file shown in Listing 21.6. This file contains five lines with three columns, with
none of the columns being presorted.

LISTING 21.6 Sample File for Sorting (on the CD-ROM at ./source/ch21/table.txt)

5 11 eee

4 9 ddd

3 21 aaa

2 24 bbb

1 7 ccc

To specify a column to sort, you use the -k (or key) option. The key represents
the column for which you desire the file to be sorted. You can specify more than
one key by simply separating them with commas. To sort based upon the first
 column, you can specify the key as column 1 (or not specify it at all, because it is the
default):

$ sort -k 1 table.txt

1 7 ccc

2 24 bbb

3 21 aaa

4 9 ddd

5 11 eee

$

Chapter 21 Standard GNU/Linux Commands 417

To sort the second column, another option is required to perform a numeric
sort. The space character that comes before the single-digit numbers is significant
and therefore precludes a numeric sort. Therefore, you use the -n option to force a
numeric sort. For example:

$ sort -k 2 -n table.txt

1 7 ccc

4 9 ddd

5 11 eee

3 21 aaa

2 24 bbb

$

One other useful option allows the specification of a new delimiter, in the event
spaces or tabs are not used. The -t option allows you to use a different delimiter,
such as -t: to specify the colon character as the field separator.

find

The find utility is a powerful but complex utility that permits searching the file -
system for files based upon given criteria. Rather than walk through the plethora
of options available for find, this section demonstrates some of the more useful
patterns.

To find all files that end in .c and .h in the current subdirectory, the following
command can be used:

find . -name '*.[ch]' -print

The . specifies that you want to start at the current subdirectory. The -name
 argument refers to what you are searching for, in this case any file ('*') that
ends in either c or h. Finally, you specify -print to emit the search results to
 standard-out.

For each of the search results, you can execute a command using -exec. This
permits you to invoke a command on each file that was found based upon the
search. For example, if you want to change the file permissions of all of the files
found to read-only, you can do the following:

find . -name '*.[ch]' -exec chmod 444 {} \;

You can also restrict the type of files that you’ll look at using the type modifier.
For example, if you want to look only at regular files (a common occurrence when
searching for source files), you can do the following:

find . -name '*.[ch]' -type f -print

418 GNU/Linux Application Programming

Chapter 21 Standard GNU/Linux Commands 419

The f argument to -type represents regular files. You can also look specifically
for directories, symbolic links, or special devices. Table 21.3 provides the type mod-
ifiers that are available.

Modifier Description

b Block device

c Character device

d Directory

p Pipe (named FIFO)

f Regular file

l Symbolic link

s Socket

TABLE 21.3 Type Modifiers Available to find (-type)

One final useful find use is identifying files within a directory that have been
changed within a certain period of time. The following command (using mtime)
identifies the files that have been modified in a given time range (multiples of 24
hours). The following command identifies files that have been modified in the last
day.

find -name '*' -type f -mtime -1 -print

To find files modified in the last week, you can update the mtime argument to
-7. The atime argument can be used to identify recently accessed files. The ctime
argument identifies files whose status was changed recently.

wc

The wc utility is very useful to count the number of characters, words, or lines
within a file.

The following samples illustrate the possibilities of the wc utility.

wc -m file.txt # Count characters in file.txt

wc -w file.txt # Count words in file.txt

wc -l file.txt # Count lines in file.txt

All three counts can be emitted by accumulating the arguments, as follows:

wc -l -w -m file.txt

Regardless of the order of the flags, the order of count emission is always lines,
then words, and then characters.

grep

The grep command permits searching one or more files for a given pattern. The
format of the grep command can be complex, but the simpler examples are quite
useful. This section looks at a few simple examples and discusses what they achieve.

In its simplest form, you can search a single file for a given search string, as
 follows:

grep "the" file.txt

The result of this example is each line emitted to stdout that contains the word
the. Rather than specify a single file, you can use the wildcard to check multiple
files, as follows:

grep "the" *.txt

In this case, all files in the current subdirectory that end in .txt are checked for
the search string.

When the wildcard is used, the filename from which the search string is found
is emitted before each line that’s emitted to stdout.

If the line location of the file where the search string is found is important, the
-n option can be used.

grep -n "the" *.txt

Each time the search string is found, the filename and line number where the
string was found are emitted before the line. If you are interested only in whether
the particular string is found in a file, you can use the -l option to simply emit file-
names, rather than the lines from which the string is found:

grep -l "the" *.txt

When you’re searching specifically for words within a file, the -w option can be
helpful in restricting the search to whole words only:

grep -w "he" *.txt

420 GNU/Linux Application Programming

This option is very useful. When searching for he, for example, you also find
 occurrences of the word the. The -w option restricts the search only to words that
match, so the and there do not result in a match to he.

head and tail

The head and tail commands can be used to view a portion of a file. As the names
imply, head allows you to view the upper portion of a file whereas tail allows you
to view the end of the file.

The number of lines to be emitted can be specified with the –n option, the de-
fault being 10 lines. Requesting the first two lines of a file with head is accomplished
as follows:

head –n 2 file.txt

Similarly, requesting the last two lines of a file using tail uses a similar syntax:

tail –n 2 file.txt

These commands can be joined together with a pipe operation to extract spe-
cific slices of a file. For example, the following commands can be executed to view
the second to last line of the file:

tail –n 2 file.txt | head –n 1

The tail command is commonly used to monitor files that are actively being
written. For example, log files can be monitored as they grow with the –f option
(which stands for follow):

tail –f log.txt

In addition to operating on the basis of lines, head and tail can also be used
with bytes. Simply specify the –c option to indicate the number of bytes.

od

The od utility was once called “octal-dump,” but is now a general utility that emits
files in various representations. The default output remains octal, but files can be
emitted in other formats such as characters or hexadecimal. Consider this sample
file that contains two short lines of text (emitted with cat).

$ cat test.txt

This is a

test file.

$

Chapter 21 Standard GNU/Linux Commands 421

With od, you can see this in hex format with the –x option as follows:

$ od -x test.txt

0000000 6854 7369 6920 2073 2061 740a 7365 2074

0000020 6966 656c 0a2e

0000026

$

The character option to od shows the character contents of the file, but also
 special characters (such as newlines).

$ od -c test.txt

0000000 T h i s i s a \n t e s t

0000020 f i l e . \n

0000026

$

The od utility is very useful for file inspection. In addition to octal, hex, and
character dumps, it also supports standard types like shorts, floats, and ints. You
can also specify the size of the type objects. For example –t x1 specifies to emit hex
bytes (where x4 represents 4-byte hex values).

SUMMARY

This chapter explored some of the basics of commanding in the GNU/Linux shell.
The standard input and output descriptors were investigated (stdin, stdout, and
stderr), along with redirection and command pipelining. The chapter also looked
at ways of invoking shell scripts, including the addition of the current working
 directory to the default search path. Finally, you saw some of the more useful
GNU/Linux commands, including tar (file archives), find (file search), grep (string
search), and some other useful text processing commands (cut, paste, and sort).

422 GNU/Linux Application Programming

423

Bourne-Again Shell (Bash)22

INTRODUCTION

This chapter explores script programming in the Bourne-Again SHell, otherwise
known as Bash. Bash is the de facto standard command shell and shell scripting lan-
guage on Linux and other UNIX systems. This chapter investigates some of the
major language features of Bash, including variables, arithmetic, control structures,
input and output, and function creation. This follows the flow of all other scripting
chapters in this book, allowing you to easily understand the similarities and differ-
ences of each covered language.

PRELIMINARIES

Before jumping in to scripting with bash, you first need to look at some prelimi-
naries that are necessary to run bash scripts. You can tell which shell you’re
 currently using by interrogating the SHELL environment variable:

In This Chapter

An Introduction to bash Scripting
Scripting versus Interactive Shell Use
User Variables and Environmental Variables
Arithmetic in bash
Tests, Conditionals, and Loops in bash
Script Input and Output
Dissecting of Useful Scripts

$ echo $SHELL

/bin/bash

$

The echo command is used to print to the screen. You print the contents of the
SHELL variable, accessing the variable by preceding it with the $ symbol. The result
is the shell that you’re currently operating on, in this case, bash. Technically, it
printed out the location of the shell you’re using (the bash interpreter is found
within the /bin subdirectory).

If you happened not to be using bash, you could simply invoke bash to start that
interpreter:

$ echo $SHELL

/bin/csh

$ bash

$

In this case, you were using another command shell (C-shell here). You invoke
bash to start this interpreter for further commanding.

SAMPLE SCRIPT

You can now write a simple script as a first step to bash scripting. The source for the
script is shown in Listing 22.1.

LISTING 22.1 First bash Script (on the CD-ROM at ./source/ch22/first.sh)

#!/bin/bash

echo "Welcome to $SHELL scripting."

exit

When invoked, this script simply emits the line “Welcome to /bin/bash script-
ing.” and then exits. If you try to enter this script (named first.sh) and execute it
as ./first.sh, you notice that it doesn’t work. You probably see something like
this:

$./first.sh

-bash: ./first.sh: Permission denied.

$

The problem here is that the script is not executable. You must first change the
attributes of the file to tell GNU/Linux that it can be executed. This is done using
the chmod command, illustrated as follows:

424 GNU/Linux Application Programming

$ chmod +x first.sh

$./first.sh

Welcome to /bin/bash scripting.

$

You use chmod to set the execute attribute of the file first.sh, telling
GNU/Linux that it can be executed. After trying to execute again, you see the ex-
pected results.

The question you could ask yourself now is, even though you have told
GNU/Linux that the file can be executed, how does it know that the file is a bash
script? The answer is the “shebang” line in the script. Notice that the first line of the
script starts with #! (also called shebang) followed by the path and interpreter
(/bin/bash). This defines that bash is the shell to be used to interpret this file. If the
file had contained a Perl script, it would have begun #! /bin/perl. You can also add
comments to the script simply by preceding them with a # character.

Because the interpreter is also the shell, you can perform this command inter-
actively, as follows:

$ echo "Welcome to $SHELL scripting."

Welcome to /bin/bash scripting.

$

Now that you have some basics under your belt, it’s time to dig into bash and
work through some more useful scripts.

bash SCRIPTING

This chapter takes a look at the bash scripting language. The following sections
identify the necessary language constructs for application development, including
variables, operations on variables, conditionals, looping, and functions. These
 sections also demonstrate a number of sample applications to illustrate scripting
principles.

VARIABLES

Any worthwhile language permits the creation of variables. In bash, variables are
untyped, which means that all variables are in essence strings. This doesn’t mean
you can’t do arithmetic on bash variables, which is explored shortly. You can cre-
ate a variable and then inspect it very easily as follows:

Chapter 22 Bourne-Again Shell (bash) 425

$ x=12

$ echo $x

12

$

In this example, you create a variable x and bind the value 12 to it. You then
echo the variable x and find your value. Note that the lack of space between the
 variable name, the equals, and the value is relevant. There can be no spaces; other-
wise, an error occurs. Note also that to reference a variable, you precede it with the
dollar sign. This variable is scoped (exists) for the life of the shell from which this
sequence was performed. Had this sequence of commands been performed within
a script (such as ./test.sh), the variable x would not exist after the script was
 completed.

As bash doesn’t type its variables, you can create a string variable similarly:

$ b="my string"

$ echo $b

my string

$

Note that single quotes also would have worked here. An interesting exception
is the use of the backtick. Consider the following:

$ c='echo $b'

$ echo $c

my string

$

The backticks have the effect of evaluating the contents within the backticks,
and in this case the result is assigned to the variable c. When you emit variable c,
you find the value of the original variable b.

The bash interpreter defines a set of environment variables that effectively
 define the environment. These variables exist when the bash shell is started (though
others can be created using the export command). Consider the script in Listing
22.2, which makes use of special environment variables to identify the environment
of the script.

LISTING 22.2 Sample Script Illustrating Standard Environmental Variables (on the

CD-ROM at ./source/ch22/env.sh)

1: #!/bin/bash

2:

3: echo "Welcome to host $HOSTNAME running $OSTYPE."

426 GNU/Linux Application Programming

4: echo "You are user $USER and your home directory is $HOME."

5: echo "The version of bash running on this system is $BASH_VERSION."

6: sleep 1

7: echo "This script has been running for $SECONDS second(s)."

8: exit

Upon executing this script, you see the following on a sample GNU/Linux
 system:

$./env.sh

Welcome to host camus running linux-gnu.

You are user mtj and your home directory is /home/mtj.

The version of bash running on this system is 2.05b.0(1)-release.

This script has been running for 1 second(s).

$

Note that you added a useless sleep call to the script (to stall it for one second)
so that you could see that the SECONDS variable was working. Also note that the
SECONDS variable can be emitted from the command line, but this value represents
the number of seconds that the shell has been running.

bash provides a variety of other special variables. Some of the more important
ones are shown in Table 22.1. These can be echoed to understand their formats.

Chapter 22 Bourne-Again Shell (bash) 427

Variable Description

$PATH Default path to binaries

$PWD Current working directory

$OLDPWD Last working directory

$PPID Process ID of the interpreter (or script)

$# Number of arguments

$0, $1, $2, ... Arguments

$* All arguments as a single word

TABLE 22.1 Useful Environment Variables

One final word about variables in bash and then you can move on to some real
programming. You can declare variables in bash, providing some form of typing.
For example, you can declare a constant variable (cannot be changed after defini-
tion) or declare an integer or even a variable whose scope extends beyond the script.
Examples of these variables are shown interactively in the following:

$ x=1

$ declare -r x

$ x=2

-bash: x: readonly variable

$ echo $x

1

$ y=2

$ declare -i y

$ echo $y

2

$ persist='$PWD'

$ declare -x persist

$ export | grep persist

declare -x persist="/home/mtj"

The last item might require a little more discussion. In this example, you create
a variable persist and assign the current working subdirectory to it. You declare for
exporting outside of the environment, which means if it had been done in a script,
the variable would remain after the script had completed. This can be useful to
allow scripts to alter the environment or to modify the environment for child
processes.

Simple Arithmetic

You can perform simple arithmetic on variables, but you find differences from
 normal assignments that were just reviewed. Consider the source in Listing 22.3.

LISTING 22.3 Simple Script Illustrating Arithmetic with Variables (on the CD-ROM at

./source/ch22/arith.sh)

1: #!/bin/bash

2:

3: x=10

4: y=5

5:

6: let sum=$x+$y

7: diff=$(($x - $y))

8: let mul=$x*$y

9: let div=$x/$y

10: let mod=$x%$y

11: let exp=$x**$y

12:

428 GNU/Linux Application Programming

Chapter 22 Bourne-Again Shell (bash) 429

13: echo "$x + $y = $sum"

14: echo "$x - $y = $diff"

15: echo "$x * $y = $mul"

16: echo "$x / $y = $div"

17: echo "$x ** $y = $exp"

18: exit

At lines 3 and 4, you create and assign values to two local variables, called x and
y. You then illustrate simple math evaluations using two different forms. The first
form uses the let command to assign the evaluated expression to a new variable.
No spaces are permitted in this form. The second example uses the $((<expr>))
form. Note in this case that spaces are permitted, potentially making the expression
much easier to read.

Bitwise Operators

Standard bitwise operators are also available in bash. These include bitwise left shift
(<<), bitwise right shift (>>), bitwise AND (&), bitwise OR (|), bitwise negate (~),
bitwise NOT (!), and bitwise XOR (^). The following interactive session illustrates
these operators:

$ a=4

$ let b="$a<<1"

$ echo $b

8

$ b=8

$ c=4

$ echo $(($c|$d))

12

$ echo $((0xc^0x3))

15

$

Logical Operators

Traditional logical operators can also be found within bash. These include the
 logical AND (&&) and logical OR (||). The following interactive session illustrates
these operators:

$ echo $((2 && 0))

0

$ echo $((4 && 1))

1

$ echo $((3 || 0))

1

$ echo $((0 || 0))

0

The next section investigates how these can be used in conditionals for decision
points.

CONDITIONAL STRUCTURES

bash provides the typical set of conditional constructs. This section explores each
of these constructs and also investigates some of the other available conditional
 expressions that can be used.

CONDITIONALS

This section looks at conditionals. The if/then construct provides a decision point
after evaluating a test construct. The test construct returns a value as its result. The
result of the test construct is zero for true (test succeeds and subsequent commands
are executed) or nonzero for false (test fails and else section, if available, is exe-
cuted). Take a look at a simple example to illustrate (see Listing 22.4).

LISTING 22.4 Simple Script Illustrating Basic if/then/else Construct (on the CD-ROM

at ./source/ch22/cond.sh)

1: #!/bin/bash

2: a=1

3: b=2

4: if [[$a -eq $b]]

5: then

6: echo "equal"

7: else

8: echo "unequal”

9: fi

Note that the result of the test construct is the inverse of what you would expect.
This is because the exit status of a command is 0 for success/normal and != 0 to
 indicate an error.

430 GNU/Linux Application Programming

After creating two variables, you test them for equality using the -eq compari-
son operator. If the test construct is true, you perform the commands contained in
the then block. Otherwise, if an else block is present, this is executed (the test con-
struct was false). else-if chains can also be constructed, as shown in Listing 22.5.

LISTING 22.5 Simple Script Illustrating the if/then/elif/then/fi Construct (on the

CD-ROM at ./source/ch22/cond2.sh)

1: #!/bin/bash

2: x=5

3: y=8

4: if [[$x -lt $y]]

5: then

6: echo "$x < $y"

7: elif [[$x -gt $y]]

8: then

9: echo "$x > $y"

10: elif [[$x -eq $y]]

11: then

12: echo "$x == $y"

13: fi

In this example, you test the integers using the -lt operator (less than), -gt
(greater than), and finally -eq (equality). Other operators are shown in Table 22.2.

Test constructs can also utilize strings such as illustrated in Listing 22.6. In this
example, you also look at two forms of the if/then/fi construct that provide iden-
tical functionality.

Chapter 22 Bourne-Again Shell (bash) 431

Operator Description

-eq Is equal to

-ne Is not equal to

-gt Is greater than

-ge Is greater than or equal to

-lt Is less than

-le Is less than or equal to

TABLE 22.2 Integer Comparison Operators

432 GNU/Linux Application Programming

LISTING 22.6 Simple Script Illustrating the if/then/fi Construct (on the CD-ROM at

./source/ch22/cond3.sh)

1: #!/bin/bash

2: str="ernie"

3: if [[$str = "Ernie"]]

4: then

5: echo "It's Ernie"

6: fi

7:

8:

9: if [["$str" == "Ernie"]]; then echo "It's Ernie"; fi

After creating a string variable at line 2, you test it against a constant string at
line 3. The = operator tests for string equality, as does the == operator. At line 9, you
look at a visibly different form of the if/then/fi construct. As it’s represented on
one line, semicolons separate the individual commands.

In Listing 22.5, you saw the use of the string equality operators. In Table 22.3,
we see some of the other string comparison operators.

Operator Description

= Is equal to

== Is equal to

!= Is not equal to

< Is alphabetically less than

> Is alphabetically greater than

-z Is null

-n Is not null

TABLE 22.3 String Comparison Operators

As a final look at test constructs, take a look some of the more useful file test
 operators. Consider the script shown in Listing 22.7. In this script, you emit some
information about a file (based upon its attributes). You use the file test operators
to determine the attributes of the file.

Listing 22.7 Determine File Attributes Using File Test Operators (on the CD-ROM at

./source/ch22/fileatt.sh)

1: #!/bin/sh

2: thefile="test.sh"

3:

4: if [-e $thefile]

5: then

6: echo "File Exists"

7:

8: if [-f $thefile]

9: then

10: echo "regular file"

11: elif [-d $thefile]

12: then

13: echo "directory"

14: elif [-h $thefile]

15: then

16: echo "symbolic link"

17: fi

18:

19: else

20: echo "File not present"

21: fi

22:

23: exit

The first thing to notice in Listing 22.7 is the embedded if/then/fi construct.
After you identify that the file exists at line 4 using the -e operator (returns true of
the file exists), you continue to test the attributes of the file. At line 8, you check to
see whether you’re dealing with a regular file (-f), in other words a real file as com-
pared to a directory, a symbolic link, and so forth. The file tests continue with a
 directory test at line 11 and finally a symbolic link test at line 14. Lines 19–21 close
out the initial existence test by emitting whether the file was actually present.

A large number of file test operators is provided by bash. Some of the more use-
ful operators are shown in Table 22.4.

Chapter 22 Bourne-Again Shell (bash) 433

For the file test operators shown in Table 22.4, a single file argument is pro-
vided for each of the tests. Two other useful file test operators compare the dates of
two files, illustrated as follows:

if [$file1 -nt $file2]

then

echo "$file is newer than $file2"

elif [$file1 -ot $file2]

then

echo "$file1 is older than $file2"

fi

The file test operator -nt tests whether the first file is newer than the second file,
while -ot tests whether the first file is older than the second file.

If you are more interested in the reverse of a test, for example, whether a file is
not a directory, then the ! operator can be used. The following code snippet illus-
trates this use:

if [! -d $file1]

then

echo "File is not a directory"

fi

One special case to note is when you have a single command to perform based
upon the success of a given test construct. Consider the following:

[-r myfile.txt] && echo "the file is readable."

434 GNU/Linux Application Programming

Operator Description

-e Test for file existence

-f Test for regular file

-s Test for file with nonzero size

-d Test for directory

-h Test for symbolic link

-r Test for file read permission

-w Test for file write permission

-x Test for file execute permission

TABLE 22.4 File Test Operators

If the test succeeds (the file myfile.txt is readable), then the command that fol-
lows is executed. The logical AND operator between the test and command ensures
that only if the initial test construct is true is the command that follows performed.
If the test construct is false, the rest of the line is ignored.

This has been a quick introduction to some of the bash test operators. The
“Resources” section at the end of this chapter provides more information to inves-
tigate further.

case CONSTRUCT

Take a look at another conditional structure that provides some advantages over
standard if conditionals when testing a large number of items. The case command
permits a sequence of test constructs utilizing integers or strings. Consider the ex-
ample shown in Listing 22.8.

LISTING 22.8 Simple Example of the case/esac Construct (on the CD-ROM at

./source/ch22/case.sh)

1: #!/bin/bash

2: var=2

3:

4: case "$var" in

5: 0) echo "The value is 0" ;;

6: 1) echo The value is 1 ;;

7: 2) echo The value is 2 ;;

8: *) echo The value is not 0, 1, or 2

9: esac

10:

11: exit

The case construct shown in Listing 22.8 illustrates testing an integer among
three values. At line 4, you set up the case construct using $var. At line 5, you per-
form the test against 0, and if it succeeds, the commands that follow are executed.
Lines 6 and 7 test against values 1 and 2. Finally at line 8, the default * simply says
that if all previous tests failed, this line is executed. At line 9, the case structure is
closed. Note that the command list within the tests ends with ;;. This indicates to
the interpreter that the commands are finished, and either another case test or the
closure of the case construct is coming. Note that the ordering of case tests is im-
portant. Consider if line 8 had been the first test instead of the last. In this case, the
default would always succeed, which isn’t what is desired.

Chapter 22 Bourne-Again Shell (bash) 435

You can also test ranges within the test construct. Consider the script shown in
Listing 22.9 that tests against the ranges 0-5 and 6-9. The special form [0-5] defines
a range of values between 0 and 5 inclusive.

LISTING 22.9 Simple Example of the case/esac Construct with Ranges (on the

CD-ROM at ./source/ch22/case2.sh)

1: #!/bin/bash

2: var=2

3:

4: case $var in

5: [0-5]) echo The value is between 0 and 5 ;;

6: [6-9]) echo The value is between 6 and 9 ;;

7: *) echo It's something else...

8: esac

9:

10: exit

The case construct can be used to test characters as well. The script shown in
Listing 22.10 illustrates character tests. Also shown is the concatenation of ranges,
here [a-zA-z] tests for all alphabetic characters, both lower- and uppercase.

LISTING 22.10 Another Example of the case/esac Construct Illustrating Ranges (on the

CD-ROM at ./source/ch22/case3.sh)

1: #!/bin/bash

2:

3: char=f

4:

5: case $char in

6: [a-zA-z]) echo An upper or lower case character ;;

7: [0-9]) echo A number ;;

8: *) echo Something else ;;

9: esac

10:

11: exit

Finally, strings can also be tested with the case construct. A simple example is
shown in Listing 22.11. In this example, a string is checked against four possibilities.
Note that at line 7, the test construct is made up of two different tests. If the name
is Marc or Tim, then the test is satisfied. You use the logical OR operator in this case,
which is legal within the case test construct.

436 GNU/Linux Application Programming

LISTING 22.11 Simple String Example of the case/esac Construct (on the CD-ROM at

./source/ch22/case4.sh)

1: #!/bin/bash

2:

3: name=Tim

4:

5: case $name in

6: Dan) echo It's Dan. ;;

7: Marc | Tim) echo It's me. ;;

8: Ronald) echo It's Ronald. ;;

9: *) echo I don't know you. ;;

10: esac

11:

12: exit

This has been the tip of the iceberg as far as case test constructs go—many
other types of conditionals are possible. The “Resources” section at the end of this
chapter provides other sources that dig deeper into this area.

LOOPING STRUCTURES

Now take a look at how looping constructs are performed within bash. This section
looks at the two most commonly used constructs: the while loop and the for loop.

while LOOPS

The while loop simply performs the commands within the while loop as long as the
conditional expression is true. First take a look at a simple example that counts
from 1 to 5 (shown in Listing 22.12).

LISTING 22.12 Simple while Loop Example (on the CD-ROM at

./source/ch22/loop.sh)

1: #!/bin/bash

2:

3: var=1

4:

5: while [$var -le 5]

6: do

7: echo var is $var

8: let var=$var+1

Chapter 22 Bourne-Again Shell (bash) 437

9: done

10:

11: exit

In this example, you define the looping conditional at line 5 (var <= 5). While
this condition is true, you print out the value and increment var. After the condi-
tion is false, you fall through the loop to done (at line 9) and ultimately exit the
script.

Loops can also be nested. The sample script in Listing 22.13 illustrates this. In
this example, you generate a multiplication table of sorts using two variables. Lines
4 to 18 define the outer loop, whereas lines 8 to 14 define the inner. The only dif-
ference, as in other high-level languages, is that the inner loop is indented to show
the structure of the code.

LISTING 22.13 Nested while Loop Example (on the CD-ROM at

./source/ch22/loop2.sh)

1: #!/bin/bash

2: outer=0

3:

4: while [$outer -lt 5] ; do

5:

6: inner=0

7:

8: while [$inner -lt 3] ; do

9:

10: echo $outer * $inner = $(($outer * $inner))

11:

12: inner=$(expr $inner + 1)

13:

14: done

15:

16: let outer=$outer+1

17:

18: done

19:

20: exit

Another interesting item to note about the script in Listing 22.13 is the arith-
metic expressions used. In the outer loop you find the use of let to assign outer to
itself plus one. The inner loop uses the expr command, which is an expression
 evaluator.

438 GNU/Linux Application Programming

for LOOPS

The for/in/do/done construct in bash enables you to loop through a range of
 variables. This differs from the classical for loop that is available in high-level
 languages such as C, but bash’s perspective is very useful and offers some capabili-
ties not found in C. Listing 22.14 provides a very simple for loop.

LISTING 22.14 Simple for Loop Example (on the CD-ROM at

./source/ch22/forloop.sh)

1: #!/bin/bash

2:

3: echo Counting from 1 to 5

4:

5: for val in 1 2 3 4 5

6: do

7: echo -n $val

8: done

9: echo

10:

11: exit

The result of this script is:

./test.sh

Counting from 1 to 5

1 2 3 4 5

#

Of course, you can emulate the C for loop mechanism very simply as shown in
Listing 22.15.

Listing 22.15 Simple for Loop Example Using C-Like Construct (on the CD-ROM at

./source/ch22/forloop2.sh)

1: #!/bin/bash

2:

3: for ((var=1 ; var <= 5 ; var++))

4: do

5: echo -n $var

6: done

7: echo

8:

9: exit

Chapter 22 Bourne-Again Shell (bash) 439

This code in Listing 22.15 is identical to the original for-in loop shown in List-
ing 22.14.

You can also use strings within the looping range, as illustrated in Listing 22.16.
This script simply iterates through the string’s provided range.

LISTING 22.16 Another for Loop Illustrating String Ranges (on the CD-ROM at

./source/ch22/forloop3.sh)

1: #!/bin/bash

2:

3: echo -n The first four planets are

4: for planet in mercury venus earth mars ; do

5: echo -n $planet

6: done

7: echo .

8:

9: exit

Where bash shines over traditional high-level languages is in the capability
to replace ranges with results of commands. Take a look at a more complicated
 example of the for-in loop that uses the replacement symbol *, which indicates the
files in the current subdirectory (see Listing 22.17).

LISTING 22.17 Listing the User Subdirectories on the System Using Wildcard

Replacement (on the CD-ROM at ./source/ch22/forloop4.sh)

1: #!/bin/bash

2:

3: # Save the current directory

4: curwd=$PWD

5:

6: # Change the current directory to /home

7: cd /home

8:

9: echo -n Users on the system are:

10:

11: # Loop through each file (via the wildcard)

12: for user in *; do

13: echo -n $user

14: done

15: echo

16:

440 GNU/Linux Application Programming

Chapter 22 Bourne-Again Shell (bash) 441

17: # Return to the previous directory

18: cd $curwd

19:

20: exit

INPUT AND OUTPUT

You’ve seen some examples already of output using the echo command. This com-
mand simply emits the provided string to the display. You also saw suppression of
the newline character using the -n option. The echo command also provides the
means to emit data through a binary interface. For example, to emit horizontal
tabs, the \t option can be used, as follows:

echo -e \t\t\t\tIndented text.

Some of the other options that exist are shown in Table 22.5. To enable inter-
pretation of these strings, the -e option must be specified before the string.

Sequence Interpretation

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\\ Backslash

\NNN ASCII code of octal value

TABLE 22.5 Special Sequences in Echoed Strings

You can accept input from the user using the read command. The read com-
mand provides a number of options, a few of which are investigated here. First, take
a look at the basic form of a read command via the interactive bash shell:

read var

test string

echo $var

test string

read -s var

echo $var

silent input

In the first form, you read a string from the user and store it into variable var.
In the second form of read you specify the -s flag. The -s flag represents silent
input, which means that characters that are entered in response to a read are not
echoed back to the screen. In this case, you typed silent input, and you see this
after the variable is echoed back.

Some of the other options that exist for the read command are shown in Table
22.6

442 GNU/Linux Application Programming

Option Description

-a Input is assigned into an array, starting with index 0

-d Character to use to terminate input (rather than newline)

-n Maximum number of characters to read

-p Prompt string displayed to prompt user for input

-s Silent mode (don’t echo input characters)

-t Timeout in seconds for read

-u File descriptor to read from rather than terminal

TABLE 22.6 Other Options for the read Command

FUNCTIONS

Bash allows you to break scripts up into more manageable pieces by creating func-
tions. Functions can be very simple, such as:

function <name> () {

sequence of command

}

As in C, the function must be declared before it can be called. Now take a look
at a simple example of a function that sums together two numbers that are passed
in from the caller (see Listing 22.18).

LISTING 22.18 Creating a Function That Utilizes Parameters (on the CD-ROM at

./source/ch22/func.sh)

1: #!/bin/bash

2:

3: function sum ()

4: {

5:

6: echo $(($1 + $2))

7:

8: }

9:

10: sum 5 10

In this example, you declare a new function called sum (lines 3–8), which emits
the sum of the two parameters passed to it. Recall that $1 represents the first para-
meter and $2 represents the second. So what does $0 represent? Just as in C, the first
argument from the perspective of a main program is the name of the program itself
that was called. In this case, the name is the script file itself. What happens if the
caller doesn’t provide all of the necessary parameters (passes only one parameter
 instead of two)? This would be a good time for some error checking, so you can
 update the script as shown in Listing 22.19.

LISTING 22.19 Adding Error Checking to Our Previous Function (on the CD-ROM at

./source/ch22/func2.sh)

1: #!/bin/bash

2:

3: function sum ()

4: {

5:

6: if [$# -ne 2] ; then

7: echo usage is sum <param1> <param2>

8: exit

9: fi

10:

11: echo $(($1 + $2))

12:

13: }

14:

15: sum 5 10

Chapter 22 Bourne-Again Shell (bash) 443

Note in this version (updated from Listing 22.18) that error checking is now
performed in lines 6–9. You test the special variable $#, which represents the num-
ber of parameters passed to the constant 2. Because you’re expecting two arguments
to be passed to us, you echo the use and exit if two parameters are not present.

The parameter variables are dependent upon context. So, in Listing 22.20, the $1
parameter at line 15 is different from the $1 present at line 6.

You can also return values from functions. You use the return command to
 actually return the value from the function, and then you use the special variable $?
to access this value from the caller. See the example shown in Listing 22.20.

LISTING 22.20 Adding Function return to Our Previous sum Function (on the CD-ROM

at ./source/ch22/func3.sh)

1: #!/bin/bash

2:

3: function sum ()

4: {

5:

6: if [$# -ne 2] ; then

7: echo usage is sum <param1> <param2>

8: exit

9: fi

10:

11: return $(($1 + $2))

12:

13: }

14:

15: sum 5 10

16: ret=$?

17:

18: echo $ret

In this version, rather than echo the result of the summation, you return it to
the caller at line 11. At line 16, you grab the result of the function using the special
$? variable. This variable represents the exit status of the last function called.

SAMPLE SCRIPTS

Now that you’ve covered some of the basic elements of scripting, from variables to
conditional and looping structures, it’s time to look at some sample scripts that
 actually provide some useful functionality.

444 GNU/Linux Application Programming

SIMPLE DIRECTORY ARCHIVE SCRIPT

The goal of the first script is to provide a subdirectory archive tool. The single
 parameter for the tool is a subdirectory that is archived using the tar utility, with
the resulting archive file stored in the current working subdirectory. The script
source can be found in Listing 22.21.

LISTING 22.21 Directory Archive Script (on the CD-ROM at

./source/ch22/archive.sh)

1: #!/bin/bash

2:

3: # First, do some error checking

4: if [$# -ne 1] ; then

5: echo Usage is ./archive.sh <directory-name>

6: exit -1

7: fi

8:

9: if [! -e $1] ; then

10: echo Directory does not exist

11: exit -1

12: fi

13:

14: if [! -d $1] ; then

15: echo Target must be a directory.

16: exit -1

17: fi

18:

19: # Remove the existing archive

20: archive=$1.tgz

21:

22: if [-f $archive] ; then

23: rm -f $archive

24: fi

25:

26: # Archive the directory

27: tar czf $archive $1

28:

29: exit

As is probably apparent right away, the script in Listing 22.21 is mostly error
checking. You first ensure that there’s a single argument to the script at lines 4–7.
You then check that the target provided actually exists at lines 9–12, and that it’s a

Chapter 22 Bourne-Again Shell (bash) 445

directory at lines 14–17. At line 20, you create the archive file by appending the ex-
tension .tgz to the end. If the archive exists, you remove it at lines 22–24. Finally,
you call the tar utility to create the archive at line 27. You specify three arguments
to tar: c to create the archive, z to filter using gzip, and f to specify the filename
for the archive.

FILES UPDATED/CREATED TODAY SCRIPT

The goal of this script is to recursively search a directory to print any files that have
been updated today. This is a relatively simple task that is also simple to express in
bash.

The following sample script illustrates some other concepts not yet covered. See
Listing 22.22 for the full script. This script is made up of three parts. The first part
(lines 61–63) invokes the script based upon the user’s call. The second part (lines
48–59) does some basic error checking and then starts the recursive process by in-
terrogating the current subdirectory. Finally, the last part is the recursive function
that looks at all files within a given subdirectory. Upon finding a new directory, the
recurse() function is called again to dig down further into the tree.

When you call the fut.sh script, two functions are declared (recurse() and
main()). The script ultimately ends up at line 61, where the main function is called
using the first argument passed to the script as the argument passed to main().

In function main() (line 48), you begin by storing the current date in the format
YYYY-MM-DD. This is performed using the date command, specifying the desired for-
mat in double quotes. You store this result into a variable called today. Note that
today isn’t local to main(); it can be used in other functions afterward.

You can declare a variable as local to a function. This is useful if you want to store
information in a function for recursive uses. To declare a local variable, you sim-
ply insert the local keyword before the variable.

The main() function continues by storing the argument (the directory to
recurse) in variable checkdir (line 52). You then test checkdir to see if it’s empty
(has zero length) at line 54. If it is empty, you store . to checkdir, which represents
the current subdirectory. This entire test is done so that if the user passes no argu-
ments, you simply use the current subdirectory as the argument default. Finally,
you call the recurse() function with the checkdir variable (line 58).

The bulk of the script is found in function recurse(). This function recursively
digs into the directory to find any files that have changed today. The first thing you
do is cd into the subdirectory passed to you (line 15). Note that when . is passed,

446 GNU/Linux Application Programming

you cd into the current directory (in other words, no change takes place). You then
iterate through the files in the subdirectory (line 18).

The first thing to check for a given file is to see if it’s another directory (line 21).
If it is, you simply call the recurse() function (recursively) to dig into this subdi-
rectory (line 22). Otherwise, you check to see if the file is a regular file (line 25). If
it is, you perform an ls command on the file, gathering a long time format (line
27). The time style format of this ls command (long-iso) happens to match the
format that you gathered in main() to represent the date for today.

At line 29, you search the ls line (longfile) using the date stored in today. This
is done through the grep command. You pipe the contents of longfile to grep to
search for the today string. If the string is found in longfile, the line simply results;
otherwise, a blank line results. At line 31, you check to see if the check variable (the
result of the grep) is a nonzero length string. If so, you emit the current file and con-
tinue the process at line 18 to get the next file in the directory.

After you have exhausted the file list from line 18, you exit the loop at line 39.
You check to see if the directory passed to you was not . . If not, you cd up one
 directory (because you cd’d down one directory at line 15). If the directory was
identified as . (the current directory), you avoid cd’ing up one level.

LISTING 22.22 Files Updated/Created Today Script (on the CD-ROM at

./source/ch22/fut.sh)

1: #!/bin/bash

2: #

3: # fut.sh

4: #

5: # Find files created/updated today.

6: #

7: # Usage is:

8: #

9: # fut.sh <dir>

10: #

11:

12: function recurse()

13: {

14: # 'cd' down into the named directory

15: cd $1

16:

17: # Iterate through all of the files

18: for file in * ; do

19:

20: # If the file is a directory, recurse

21: if [-d $file] ; then

Chapter 22 Bourne-Again Shell (bash) 447

22: recurse $file

23: fi

24:

25: if [-f $file] ; then

26:

27: longfile='ls -l —time-style=long-iso $file'

28:

29: check='echo $longfile | grep $today'

30:

31: if [-n $check] ; then

32:

33: echo $PWD/$file

34:

35: fi

36:

37: fi

38:

39: done

40:

41: if [$1 != .] ; then

42: cd ..

43: fi

44:

45: }

46:

47:

48: function main()

49: {

50: today='date +%Y-%m-%d'

51:

52: checkdir=$1

53:

54: if [-z $checkdir] ; then

55: checkdir=.

56: fi

57:

58: recurse $checkdir

59: }

60:

61: main $1

62:

63: exit

448 GNU/Linux Application Programming

SCRIPTING LANGUAGE ALTERNATIVES

bash is one option of scripting, but GNU/Linux offers a number of shells and script-
ing language alternatives. In addition to bash, GNU/Linux offers csh/tcsh (Berke-
ley C-shell), ksh (the Korn shell), zsh (Z-shell), and others. For higher level
scripting, you have the choice of numerous languages, such as Python, Ruby, Perl,
Tcl, Scsh, and others. So many languages, so little time . . .

SUMMARY

This chapter took a quick tour of the bash scripting shell. It explored variables
in bash, including special variables that describe the environment. The basics of
scripting were introduced, along with a demonstration of simple numerical
methods in bash. Fundamental concepts in bash were also reviewed, including tests,
conditionals, and a number of looping constructs. Methods for input and output in
scripts were also discussed, in addition to bash’s function specification constructs.
Finally, a number of useful scripts were discussed and dissected to illustrate bash
scripting.

RESOURCES

“Advanced Bash-Scripting Guide” at http://www.tldp.org/LDP/abs/html/.
“Bash Reference Manual” at http://www.gnu.org/software/bash/manual/bashref.html.
“Bash FAQ” at ftp://ftp.cwru.edu/pub/bash/FAQ.

Chapter 22 Bourne-Again Shell (bash) 449

http://www.tldp.org/LDP/abs/html/
http://www.gnu.org/software/bash/manual/bashref.html

This page intentionally left blank

451

Editing with sed23

INTRODUCTION

The sed utility is a very useful utility, but it can also be one of the most cryptic. sed
is a stream editor that alters text that flows through it using a number of types of
transformations. sed does not alter the original file provided to it but instead
 provides the transformed text to stdout. sed is one of the oldest tools in UNIX,
written in the early 1970s by Lee McMahon. sed operations are stream operations
(as the name implies) where simple scripts provide filtering and transformation of
text. Consider Figure 23.1, which shows a simple example of sed use with a graph-
ical illustration.

Now it’s time to pick apart this sed command and look at it a little further to
understand how sed works for this case (the substitute command, s).

The full sed command (for the case shown in Figure 23.1) is illustrated in Fig-
ure 23.2.

In This Chapter

Quick Introduction to sed
Discussion of sed Spaces
Typical sed Command-Line Options
sed and Regular Expressions
sed Numerical and Pattern Ranges
Most Useful sed Commands

You invoke sed using the sed command and then provide a script to use on the
input stream (defined by the third parameter, file.txt). The sed script represents
a substitute transformation where a pattern is searched in the input stream (pattern
string) and, when found, is replaced by the replacement string. Note that the com-
mand (s), pattern search string, and replacement string are all delimited by the /
character. This character can be used for search and replacement; you will take a
look at how this is done shortly.

You end the sed script with a g to indicate that you want to perform the search
and replace over the entire stream. If g is not provided, only the first occurrence is
replaced. You can instead replace g with a number, which indicates the particular
occurrence to change. For example, ending with /2 indicates to change only the
 second occurrence.

ANATOMY OF A SIMPLE SCRIPT

To complete your introduction, you can take look at this script in action. The file
shown in Listing 23.1 illustrates the first simple script.

452 GNU/Linux Application Programming

FIGURE 23.1 The sed model as a text filter.

FIGURE 23.2 Anatomy of a simple sed invocation.

LISTING 23.1 Sample File for sed Illustration (on the CD-ROM at

./source/ch23/file.txt)

1: This is a sample text string which is going to be used.

2:

3: This is one more string that can be used.

4:

5: Finally, this is the last string in the test set.

Now using the previous sed script on Listing 23.1, you see the following:

sed 's/is/IS/g' file.txt

ThIS IS a sample text string which IS going to be used.

ThIS IS one more string that can be used.

Finally, thIS IS the last string in the test set.

#

Each occurrence of is is replaced with IS over the entire file. Consider now
what happens if you omit the final g:

sed 's/is/IS/' file.txt

ThIS is a sample text string which is going to be used.

ThIS is one more string that can be used.

Finally, thIS is the last string in the test set.

#

Note that instead of replacing each occurrence in the file, it replaced only the
first occurrence in each line.

You can create two transforms by using the -e option (which is implied in the
earlier example). Consider this example:

sed -e 's/is/IS/g' -e 's/IS/is/g' file.txt

This is a sample text string which is going to be used.

This is one more string that can be used.

Finally, this is the last string in the test set.

#

Chapter 23 Editing with sed 453

In this case, you convert is to IS, but then you follow this with the reverse
transform. The result is the same as the original file. The key here is the use of the
-e (script or expression) to provide multiple transformations on the same input
text.

sed makes only one pass over the input file and is therefore very efficient. sed
 operates by reading a single line from stdin, executing the series of editing
 commands on it (potentially a series of commands), and then writing the output
to stdout.

Now that you have a quick introduction to sed, you can look at some of sed’s
other capabilities. The sed utility can be quite broad and complex. Therefore, the
focus in this chapter is on the more useful aspects of sed.

sed SPACES (BUFFERS)

Within sed, you find a number of spaces (or buffers) on which sed commands
 operate. Each input line is first copied to the pattern space. The pattern space is the
temporary holding space on which sed commands are performed. After the pro-
vided sed scripts have all been performed on the pattern space, the line is copied to
the output. Also available in sed is the hold space. Within sed, you can copy the
contents of the pattern space to the hold space and retrieve them at some later time.
The hold space is just a temporary buffer, but it can be useful to remember certain
lines.

TYPICAL sed COMMAND-LINE OPTIONS

Rather than specify scripts on the command line, sed scripts can also be specified in
a file. This can be useful when complex sed scripts are needed. To invoke a scripted
file with sed, simply use the -f option to specify the script file.

You can suppress automatic emission of sed output by using the -n flag. When
you look at the print command later in this chapter, you can see where this flag can
be useful.

When dealing with very large files, you can achieve better intermediate perfor-
mance with the -u flag. In this unbuffered mode, sed loads smaller amounts of data
from the input files and flushes data to the output more often. This means better
 visual performance (you see results more often), but it might represent worse over-
all performance.

454 GNU/Linux Application Programming

Chapter 23 Editing with sed 455

REGULAR EXPRESSIONS

A key aspect of sed is its use of regular expressions. A regular expression is a pattern
that can match text strings. Regular expressions are a formal language from which
very complex patterns can be expressed. Take a look at a few examples in Table 23.1
(using the sed delimiter for completeness):

/dog/ Matches any occurrence of dog

/[a-z]/ Matches a single character a through z

/[a-zA-Z]/ Matches single characters a through z and A through Z

/[0-9]/ Matches all single digits (0 through 9)

/0[ab]1/ Matches 0a1 and 0b1

/Z*/ Matches zero or more occurrences of Z (“, Z, ZZ, ZZZ, and so on)

/Z?/ Matches zero or one instance of Z (‘’ Z)

/[^0-9]/ Matches any single character other than digits

/t.m/ Matches any occurrence of t separated by one character followed

by m, such as tim, tom, and so on

These patterns illustrate a number of special symbols used within regular
 expressions. For example, the [] indicates a range of characters. The - symbol is
used to define the range. The * character indicates that a character might repeat
zero or more times. The ? specifies that one or zero instances of the character is
used for the match. The ^ character indicates the characters that are NOT used for
the match. Finally, the . character matches any character.

Two other regular expressions (called anchors) that you explore with sed in this
chapter include ^ (different context than mentioned in the previous paragraph) to
match at the beginning of the line and $ to match at the end of the line (see Table
23.2).

/^The/ Matches "The" at the beginning of a line

/end.$/ Matches "end." at the end of a line

/^T.*\.$/ Matches lines that start with T and end with .

TABLE 23.1 Pattern Matching Examples with Regular Expressions

TABLE 23.2 Beginning and End Pattern Matching with Anchors

RANGES AND OCCURRENCES

The lines to be processed by sed can be restricted using ranges. A line range can
consist of a single-line definition or a range of lines. For example (using the substi-
tute command for illustration):

5s/this/that/

replaces occurrences of this with that on line 5. You can specify that only the first
five lines are operated upon, such as follows:

1,5s/this/that/

where 1,5 represents the range of lines one through five. If instead you want the
range of line five to the end of the file, this can be provided using the end of file
symbol $:

5,$s/this/that/

When you provide no range, it applies to all lines. One final useful modifier is
the ! command. This tells sed not to apply to the given line range. Take a look at
this with the prior example:

5,$!s/this/that/

This tells sed to apply the substitution to all lines excluding line five through the
end of the file.

Rather than specify line ranges, you can also define ranges based upon patterns.
Consider the following example:

'/^The/s/this/that/'

This substitutes that for this for any line that begins with The. You can also
perform substitutions between pattern ranges, as follows:

'/start/,/end/s/index/idx/g'

This replaces index with idx after a line containing start is found and ends the
replacement after a line containing end is found.

456 GNU/Linux Application Programming

ESSENTIAL sed COMMANDS

Now that you have some basic details of sed under your belt, you can take a look at
some of the most useful commands. The next sections dig in a little further to these
commands to explore some of their other uses.

SUBSTITUTE (s)

The substitute command, as you have explored already, provides a simple search
and replacement over the input stream. As this chapter has already investigated this
command, this section covers some of the other aspects not yet touched upon. The
format of the substitute is as follows:

[address1[,address2]]s/pattern/replacement/[n|g]

An optional address or address range can be specified before the substitute
command. A single address indicates that the substitution is restricted to the par-
ticular line or search expression. Two addresses or patterns (separated by a comma)
indicate a range for the substitution. The flags (shown at the end of the command
specification) are n, representing a number, and g, representing global. If a number
is specified, the substitution is performed only on that occurrence. For example:

sed '/this/that/' file.txt

replaces the first occurrence (of each line) contained in the input file, file.txt. You
can achieve the same thing with the script following:

sed '/this/that/1' file.txt

If you want the second occurrence of this to be replaced with that, you simply
specify n as 2. The global flag specifies that all occurrences on all inputs lines are to
be replaced.

DELETE (d)

The delete command simply deletes the lines that match your defined restriction.
For example, if you want to remove the first five lines of a file, you can use the fol-
lowing sed command:

sed '1,5d' file.txt

Chapter 23 Editing with sed 457

You can tell sed to delete all but the first five lines using the delete command
and reversing the restriction with !:

sed '1,5!d' file.txt

PRINT (p)

The print command can be thought of as the reverse of delete. One difference is
that you must specify the -n flag to avoid double-printing the output. To reproduce
the earlier delete example of emitting only the first five lines, you use the following:

sed -n '1,5p' file.txt

You can also instruct sed to emit only those lines that contain a particular
search string, such as those containing a : at the beginning of the line:

sed -n '/^:/p' file.txt

APPENDING (a), INSERTING (i), AND CHANGING (c) LINES

You can also append, insert, or change entire lines based upon range or pattern. To
insert a blank line after a line is found containing start, you can perform the
 following append command:

sed '/start/a\ ' file.txt

You can insert a blank line at the end of the file using the insert command:

sed '$i\' file.txt

You can change a line entirely as follows. This script looks for the word secret
and replaces the entire line with DELETED:

sed '/secret/c\DELETED' file4.txt

Finally, you can perform all three commands using the {} symbols to group the
commands. The following script emits a start line before the line matching the key-
word, a stop line after the matching line, and then DELETED for the line itself (on the
CD-ROM at ./source/ch23/multi.sed).

sed '/secret/{

i\

—start

458 GNU/Linux Application Programming

a\

—end

c\

DELETED

}' file.txt

The grouping shown here can apply to other commands, but with some
 restrictions. For example, when the delete command is used, all commands after it
in the grouping are ignored because the delete command terminates the editing
 session.

QUIT (q)

The quit command, as the name implies, simply ends the sed editing session. This
command can be quite useful. Consider the following example:

sed '10q' file.txt

This command emits the first 10 lines of the file.txt, and when the 10th line
is reached, the sed session is ended. This particular command emulates another
useful GNU/Linux command called head (which emits the head of a file).

TRANSFORMATION (y)

You can transform text using the y command. This provides for replacing one char-
acter for another. You provide two sets of characters: the first refers to the search set
and the second the replacement set. For example, if you encounter an A, you replace
with an a, and so on.

To convert all uppercase letters to lowercase, you can use the following:

sed 'y/ABCDEFGHIJKLMNOPQRSTUVWXYZ/abcdefghijklmnopqrstuvwxyz/' file

The pattern and replacement strings represent a one-to-one correspondence
for which the transformation takes place. For this reason, each string must be of
equal length.

LINE NUMBERING (=)

The = command is used to emit the current line number. This can be used to emit
the line numbers that match a given search string or to simply emit the number of
lines in the input file.

Chapter 23 Editing with sed 459

For example, if you are interested in which lines contain a given search pattern,
you can accomplish this with the following sed script:

sed -n '/This/=' file.txt

This script results in line numbers emitted (one per line) for each line that con-
tains the word This.

HOLDING THE PATTERN SPACE (h)

Using the hold buffer, you can store away the pattern space to the hold buffer and
then operate on the pattern buffer directly. The following example illustrates emit-
ting both the altered line and the unaltered line. Also illustrated here are comments
within sed scripts (all characters after the # symbol).

sed '{

store the pattern space to the hold buffer

h

perform the substitution on the pattern space

s/is/IS/

append the unaltered line to the pattern space

G

}' file.txt

This script emits the altered line and follows it immediately with the unaltered
line (the line not having been altered by the substitute command).

SUMMARY

While this chapter has only scratched the surface of text processing with sed, you’ve
nevertheless seen some of the power provided by this little utility. The chapter took
a quick tour of regular expressions and their use in sed, as well as the use of
 numerical and pattern-based ranges to restrict sed’s processing. You then reviewed
some of the most used sed commands, including substitution, printing, deleting,
and transforming. The chapter ended with a quick discussion of the use of the hold
buffer, which gives sed the capability of memory.

460 GNU/Linux Application Programming

SOME USEFUL sed ONE-LINERS

Emit the first 10 lines of a file (such as 'head')

sed 10q file.txt

Emit a double-spaced version of the file

sed 'G' file.txt

Emit number of lines in input file

sed -n '$=' file.txt

Emit the last line of a file

sed '$!d' file.txt

Emit all lines greater than 30 characters in length

sed -n '/^.\{30\}/p' file.txt

Emit all non-blank lines

sed '/^$/d' file.txt

Remove all blank lines at the top of a file

sed '/./,$!d' file.txt

RESOURCES

“On the Early History and Impact of Unix Tools to Build the Tools for a New Mil-
lennium,” from Netizens: An Anthology, by Ronda and Michael Hauben, June
12, 1996. Found at http://www.columbia.edu/~rh120/ch001j.c11.

“Sed . . . The Stream Editor” at http://www.cornerstonemag.com/sed/.

Chapter 23 Editing with sed 461

http://www.columbia.edu/~rh120/ch001j.c11
http://www.cornerstonemag.com/sed/

This page intentionally left blank

463

Text Processing with awk24

INTRODUCTION

The awk programming language is a scripting language that can be used for very
simple single-line applications to large applications. awk is a general-purpose
 language, but it excels at its original task of text processing. This chapter takes a tour
of the awk programming language, illustrating by numerous examples how it can
be used by the developer. awk takes over where sed left off, but each has its own
 individual strengths.

SHORT HISTORY

The first version of awk was released in 1977 by Alfred Aho, Peter Weinberger, and
Brian Kernighan (its name is the combination of the first letter of the authors’ last
names). Its first integration was into version 7 AT&T UNIX (as all three creators
worked for Bell Labs at the time). awk has gone through a variety of changes in its
life. Its syntax and notation borrow both from shell scripting languages and also C.

In This Chapter

An Introduction to awk
Simple awk Scripting
Complex Applications in awk
Conditional and Looping Constructs in awk
awk Built-In Functions

awk STRUCTURE

The higher- level structure of awk programs is conceptually very simple (see Figure
24.1).

464 GNU/Linux Application Programming

FIGURE 24.1 Structure of an awk program.

The structure of an awk program can be split into three sections. The BEGIN
 section is performed before the first line is read from the input file(s), and the END
section is performed after the last line is processed from the input file(s). Between
the optional BEGIN and END sections is the awk pattern/action section. For each
input file specified, each of the patterns is compared in order, and if a pattern
matches, then its associated action is performed.

This chapter splits its discussion of awk into two sections. In the first, you take
a look at simple awk programs that can be specified on the command line, and then
you look at building more complex awk programs for scripting.

COMMAND-LINE awk

You can start by taking a look at some simple awk scripts that demonstrate its be-
havior. You use the following data in the file missiles.txt (which contains data
about Cold War nuclear delivery platforms). The data (Listing 24.1) is delimited
with : and contains five fields (missile name, length, weight, range, and speed).

LISTING 24.1 Missile Data for awk Scripts (This information can also be viewed at the

Strategic Air Command Web site at http://www.strategic-air-command.com and on

the CD-ROM at ./source/ch24/missiles.txt)

Thor:65:109330:1725:10250

Snark:67:48147:6325:650

http://www.strategic-air-command.com

Jupiter:55:110000:1976:9022

Atlas:75:260000:6300:17500

Titan:98:221500:6300:15000

Minuteman III:56:65000:6300:15000

Peacekeeper:71:195000:6000:15000

You can emit lines in much the same way that sed did, but include a search ex-
pression as the pattern and the print command as the action:

awk '/Thor/{print}' missiles.txt

Thor:65:109330:1725:10250

#

Without a pattern, you simply emit the entire file:

awk '{print}' missiles.txt

Thor:65:109330:1725:10250

Snark:67:48147:6325:650

Jupiter:55:110000:1976:9022

Atlas:75:260000:6300:17500

Titan:98:221500:6300:15000

Minuteman III:56:65000:6300:15000

Peacekeeper:71:195000:6000:15000

#

Rather than emit the entire line, you can emit selected fields instead. awk auto-
matically splits the line (otherwise known as a record) into the fields delimited by
the colon. So if you want to emit the missile and range for the Thor missile, you can
do this as follows:

awk -F: '/Thor/{print $1 ":" $5}' missiles.txt

Thor:10250

#

Note that you specify the delimiter as : using the -F command-line option.
Each field is parsed to a $ variable. The first field is defined as $1, the second as $2,
and so on. The entire record is defined as $0.

You can add additional text to make your output more reasonable by simply
including more text for the print command (the command is actually one line):

awk -F: '/Thor/{print "Missile " $1 " has a range of " $5 "

miles"}' missiles.txt

Missile Thor has a range of 10250 miles

#

Chapter 24 Text Processing with awk 465

Arithmetic expressions are also possible on the data. Consider this example,
which emits those missiles that have a range of 12,000 miles or more:

awk -F: '$5 > 12000 { print $1 }' missiles.txt

Atlas

Titan

Minuteman III

Peacekeeper

#

In this example, your pattern is the test of $5 (the range field) being greater than
12,000. When this test pattern is satisfied, your action is to emit the first field (the
name of the missile).

awk provides a number of built-in variables that can be useful. For example, if
you want to know the number of records in the file, you can use the optional END
section with the NR built-in variable (number of the record):

awk 'END { print NR }' missiles.txt

7

#

Note here that you emit NR at the end, so it’s the total number of records that
are in the file. If you emit NR at each line, it’s the number of that given line, such as
follows:

awk -F: '{ print NR, $0 }' missiles.txt

1 Thor:65:109330:1725:10250

2 Snark:67:48147:6325:650

3 Jupiter:55:110000:1976:9022

4 Atlas:75:260000:6300:17500

5 Titan:98:221500:6300:15000

6 Minuteman III:56:65000:5300:15000

7 Peacekeeper:71:195000:6000:15000

#

Given the range and speed data, you can calculate how long it takes to reach
its maximum target (roughly calculated as range over speed). This is provided as
follows:

466 GNU/Linux Application Programming

awk -F: '{ printf "%15s %3.2f\n", $1, $4/$5}' missiles.txt

Thor 0.17

Snark 9.73

Jupiter 0.22

Atlas 0.36

Titan 0.42

Minuteman III 0.35

Peacekeeper 0.40

#

This example demonstrates simple arithmetic ($4/$5 to compute the time to
target) but also the use of printf within awk. Rather than simply print the results (as
you’ve done in previous examples), you use the printf command to provide a
more structured output. You specify size and alignment for the string (missile
name) and also the format of the time-to-target result. From this data, you can see
that the Snark has the longest time of flight (it’s also the slowest of the missiles
shown here), and Thor the least.

Now take a look at one final example in this command-line section that
demonstrates a bit more of the arithmetic properties of awk. Say that you have one
of each of these missiles, and you want to know their combined weight. This is eas-
ily calculated, using each of the three awk sections, as follows:

awk 'BEGIN {FS=":"} {wt += $3} END {print wt}' missiles.txt

1008977

#

Now take a look at each of the three sections to see what’s going on. In the first
section (BEGIN), you specify the field separator (using the built-in FS variable). You
can also specify this on the command line (with the -F option), but the use this
 example demonstrates makes it part of the script and is therefore less error prone.
For each record that you find, you sum the weight field (field 3). Note that you did
not initialize the wt variable, as awk automatically initializes it to zero when it’s cre-
ated. After you have processed the last record, the END section is performed where
you simply print the weight total (just a tad over 1,000,000 pounds or 457,664.27
kilograms).

You’ve looked at some of awk’s built-in variables so far (such as FS and NR).
These and other built-in variables are available for use. A list of some of the most
useful is shown in Table 24.1.

Chapter 24 Text Processing with awk 467

468 GNU/Linux Application Programming

SCRIPTED awk

Now it’s time dig in further and explore some of awk’s other capabilities. This
 section moves beyond the simple single-line scripts and looks at how applications
can be developed in awk.

Scripting applications in awk allows you to build bigger and more complex
 applications. You can start with an update to the previous application (printing the
total weight of all missiles). This example sums all of the numeric data and adds
headers and trailers to the data (see Listing 24.2).

LISTING 24.2 Expanding the Summing Application (on the CD-ROM at

./source/ch21/tabulate.awk)

1: BEGIN {

2:

3: FS = ":"

4: printf "\n Name Length Range"

5: printf " Speed Weight\n"

6:

7: }

8:

9: {

10: printf "%15s %8d %8d %8d %8d\n", $1, $2, $4, $5, $3

11:

12: len += $2

13: wt += $3

14: rng += $4

Variable Description

NR Input record number

NF Number of fields in the current record

FS Field separator (default space and tab)

OFS Output field separator (default space)

RS Input record separator (default newline)

ORS Output record separator (default newline)

FILENAME Current input filename

TABLE 24.1 awk’s Built-In Variables

15: spd += $5

16:

17: }

18:

19: END {

20:

21: printf "\n Totals ———— ————"

22: printf " ———— ————\n”

23: printf " %8d %8d %8d %8d\n\n",

24: len, rng, spd, wt

25:

26: }

Listing 24.2 illustrates the three awk sections. You define the field separator and
emit a header line at lines 3–5 within the BEGIN section. Next, for each record in the
input file, you emit the fields of the record in an order different than that of the
original itself (note line 10). Lines 10–15 are performed for each record (because no
pattern exists here, only an action that defaults to each record). Lines 12–15 simply
sum each of the fields for which you desire an accumulation. You keep track of the
total lengths (len), total weight (wt), total range (rng), and finally total speed (spd).
The END section (which is performed after the last record is processed) emits the
 totals. Note the use of printf here to better control the format of the output.

You invoke this script (called tabulate.awk) as follows (with sample results
shown given the input file from Listing 24.1):

awk -f tabulate.awk missiles.txt

Name Length Range Speed Weight

Thor 65 1725 10250 109330

Snark 67 6325 650 48147

Jupiter 55 1976 9022 110000

Atlas 75 6300 17500 260000

Titan 98 6300 15000 221500

Minuteman III 56 5300 15000 65000

Peacekeeper 71 6000 15000 195000

Totals ———— ———— ———— ————

487 33926 82422 1008977

#

Granted, the data is meaningless, but it illustrates how you can process the
input data and format the output data.

Now it’s time to update the application to find the extremes of the data. In this
example, you store the missile that is the longest, heaviest, has the longest range,
and is the fastest. This example illustrates a very interesting aspect of awk that is not

Chapter 24 Text Processing with awk 469

provided in many other languages that you use every day: dynamic and associative
arrays.

Listing 24.3 shows the new application, which is similar to the original in List-
ing 24.2. In the BEGIN section (lines 1–7) you set up the field separator and then emit
the table header.

For each record in the file, you have a default action (lines 9–29). You check
each of the test elements (length, weight, range, and speed), and if you find one that
exceeds the current (default of zero), then you save it and the current record. Recall
that numeric variables are automatically initialized to zero. Note here that saving
the current record is done with an associative array that is also dynamic. You have
not declared the array (saved) or its size. The index is a string that identifies the par-
ticular record of interest. Note that you can remove an element from the associa-
tive array using the delete command, such as in the following:

delete saved["longest"]

which removes the entry identified by the longest index.
After the last record is processed, you perform the END section (lines 31–52).

Here you simply emit the data stored from the previous extreme’s capture. Note
the use of the split command, which provides the means to split a line into its
 individual fields (as is done automatically when the record is read). The split
 command takes a string (stored in the associative array) and another variable that
represents the array of split elements.

LISTING 24.3 Finding and Storing the Extremes (on the CD-ROM at

./source/ch21/order.awk)

1: BEGIN {

2:

3: FS = ":"

4: printf "\n Name Length Range"

5: printf " Speed Weight\n"

6:

7: }

8:

9: {

10: if ($2 > longest) {

11: saved["longest"] = $0

12: longest = $2

470 GNU/Linux Application Programming

13: }

14:

15: if ($3 > heaviest) {

16: saved["heaviest"] = $0

17: heaviest = $3

18: }

19:

20: if ($4 > longest_range) {

21: saved["longest_range"] = $0

22: longest_range = $4

23: }

24:

25: if ($5 > fastest) {

26: saved["fastest"] = $0

27: fastest = $5

28: }

29: }

30:

31: END {

32:

33: printf "———————— ———— ————"

34: printf " ———— ————\n"

35:

36: split(saved["longest"], var, ":")

37: printf "%15s %8d %8d %8d %8d (Longest)\n\n",

38: var[1], var[2], var[4], var[5], var[3]

39:

40: split(saved["heaviest"], var, ":")

41: printf "%15s %8d %8d %8d %8d (Heaviest)\n\n",

42: var[1], var[2], var[4], var[5], var[3]

43:

44: split(saved["longest_range"], var, ":")

45: printf "%15s %8d %8d %8d %8d (Longest Range)\n\n",

46: var[1], var[2], var[4], var[5], var[3]

47:

48: split(saved["fastest"], var, ":")

49: printf "%15s %8d %8d %8d %8d (Fastest)\n\n",

50: var[1], var[2], var[4], var[5], var[3]

51:

52: }

Chapter 24 Text Processing with awk 471

The sample output, given the previous data file, is shown in the following:

awk -f order.awk missiles.txt

Name Length Range Speed Weight

———— ———— ———— ———— ————

Titan 98 6300 15000 221500 (Longest)

Atlas 75 6300 17500 260000 (Heaviest)

Snark 67 6325 650 48147 (Longest Range)

Atlas 75 6300 17500 260000 (Fastest)

#

awk does provide some shortcuts to simplify the application. Consider the
 following replacement to the END section of Listing 24.3 (see Listing 24.4).

LISTING 24.4 Replacement of the END Section of Listing 24.3 (on the CD-ROM at

./source/ch21/order2.awk)

1: END {

2:

3: printf "———————— ———— ————"

4: printf " ———— ————\n"

5:

6: for (name in saved) {

7:

8: split(saved[name], var, ":")

9: printf "%15s %8d %8d %8d %8d (%s)\n\n",

10: var[1], var[2], var[4], var[5], var[3], name

11:

12: }

13:

14: }

This example illustrates awk’s for loop, but using an index other than an integer
(what you might commonly think of for iterating through a loop). At line 6,
you walk through the indices of the saved array (longest, heaviest, longest_range,
and fastest). Using name at line 8, you split out the entry in the saved array for that
index and emit the data as you did before.

OTHER awk PATTERNS

The awk programming language can be used for other tasks besides file processing.
Consider this example that simply emits a table of various data (Listing 24.5).

472 GNU/Linux Application Programming

Here you see an awk program that processes no input file (as the code exists
solely in the BEGIN section, no file is ever sought). You perform a for loop using an
integer iterator and emit the index, the square root of the index (sqrt), the natural
logarithm of the index (log), and finally a random number between 0 and 1.

LISTING 24.5 Generating a Data Table (on the CD-ROM at ./source/ch21/table.awk)

1: BEGIN {

2: for (i = 1 ; i <= 10 ; i ++) {

3: printf("%2d %f %f %f\n", i, sqrt(i), log(i), rand())

4: }

5: }

You can use a while loop instead of a for loop, as shown in Listing 24.6.

LISTING 24.6 Generating a Data Table Using a while Loop (on the CD-ROM at

./source/ch21/table2.awk)

1: BEGIN {

2: i = 1

3: while (i <= 10) {

4: printf("%2d %f %f %f\n"", i, sqrt(i), log(i), rand())

5: i++

6: }

7: }

So awk gives you the basic looping and control constructs that you expect from
a high-level language, but within a pattern-matching architecture.

This tour hopefully gives you a taste for the capabilities of the awk programming
language, but you can find much more. awk provides a number of other built-in
functions for reading a line from the input file (getline), searching for a substring
within a string (index), returning the length of a string (length), and a sprintf
command for string formatting.

SUMMARY

This chapter took a quick tour of the awk programming language. It explored a
number of text-processing applications using both one-line and multiline scripts.
It also investigated the variety of control forms available in awk inherited from the
C language, including loop constructs and conditionals.

Chapter 24 Text Processing with awk 473

USEFUL awk ONE-LINERS

awk is a great language for useful one-line programs. The following are a number
of useful awk scripts that can be coded in a single line.

Emit every line that is not blank

awk 'NF > 0 {print}' file.txt

Emit the number of lines in a file

awk '{num_lines++} END{print num_lines}' file.txt

or (another number of lines example)

awk 'END { print NR }' file.txt

Emit the first 10 lines of a file (like head)

awk 'NR < 11 { print $0 }' file.txt

Print each line, preceded by its line number

awk '{print NR, $0}' missiles.txt

Count the number of lines that contain 'PATTERN'

awk '/PATTERN/{num++} END{ print num }' file.txt

.

474 GNU/Linux Application Programming

475

Parser Generation with
flex and bison

25

INTRODUCTION

The topic of parser construction using two very well known tools is the focus of this
chapter. It first takes a quick tour of lexical analysis and grammar processing and
then investigates the respective tools. The chapter investigates a few examples,
 including a simple firewall configuration parser. The flex (fast lexical analyzer
 generator) and bison (GNU parser generator) are the focus of this chapter.

LEXICAL ANALYSIS AND GRAMMAR PARSING

This section begins with a short introduction to parser construction. A parser gives
you the ability to process a file that has a known structure and grammar. Rather
than build this parser from scratch, you can use tools to specify the parser. This is
both faster and a less error prone approach to parser construction and is therefore
very useful.

Parsers are very useful, and you will develop many of them in your career.
Though few of you will take on the task of building full-featured compilers, parsers

In This Chapter

An Introduction to Lexical Analysis
An Introduction to Parser Generation
The flex and bison Utilities
The flex and bison Specification Files
Lexer and Parser Integration

are useful in a variety of areas. For example, configuration files for larger applica-
tions can require complex parsers to be built to describe how the application’s
 behavior is specified. The techniques discussed here make building these kinds of
parsers a snap.

The first task in parsing is the tokenization of your input file. In this phase, you
break your input file down into its representative chunks. For example, breaking
down the C source fragment:

if (counter < 9) counter++;

results in the tokens parsed:

'if', '(', 'counter', '<', '9', ')', 'counter', '++', ';'

That’s quite a few tokens, but you will see why this is necessary shortly. Identi-
fying how the tokens are made up is the specification part of lexical analysis. Fur-
ther, the lexical analyzer returns metadata that describes what was parsed. For
example, rather than the tokens, additional data is returned, such as:

IF_TOKEN OPEN_PAREN VARIABLE OP_LESSTHAN NUMBER CLOSE_PAREN

VARIABLE UNARY_INC SEMICOLON

This is useful because when you’re trying to understand whether the tokens
have meaning, it’s not important which variable you’re dealing with, but just that
you have a variable (identified by the VARIABLE token metadata).

After you’ve broken down your input file into tokens, these tokens can be
passed to your grammar parser to understand if they are meaningful. For example,
consider the following simple grammar to define an if statement:

IF_STMT:

IF_TOKEN OPEN_PAREN TEST CLOSE_PAREN EXPRESSION SEMICOLON

This defines an if statement rule (IF_STMT) that specifies that you’ll have an
IF_TOKEN (if), a test expression surrounded by parens (OPEN_PAREN TEST

CLOSE_PAREN), followed by an EXPRESSION terminated by a SEMICOLON. Further:

TEST:

VARIABLE OPERATOR NUMBER

OPERATOR:

OP_EQUALITY | OP_LESSTHAN | OP_GREATERTHAN

defines that your test is represented by a variable, an operator (one of three), and a
number. Finally, the simple EXPRESSION is:

476 GNU/Linux Application Programming

EXPRESSION:

VARIABLE UNARY_OP

UNARY_OP:

UNARY_INC | UNARY_DEC

Now that you have your simple grammar rules specified, take a look at a couple
of test fragments to see how it works. Consider your original code fragment. Figure
25.1 illustrates this if statement with its parse tree.

Chapter 25 Parser Generation with flex and bison 477

FIGURE 25.1 Parse tree for a sample C code fragment.

You can see in this diagram that each token from the C fragment is correctly
recognized by our sample grammar. Each token is matched with the syntax and is
therefore a proper line of C (in this simple example). Now take a look at another
 example, but in this case, an erroneous one (Figure 25.2).

FIGURE 25.2 Incomplete parse tree for an erroneous C code fragment.

478 GNU/Linux Application Programming

In this case, two errors are found. First, you parse down the TEST subtree and
find an issue. The TEST is made up of a VARIABLE followed by an OPERATOR and ends
with a NUMBER. You find the VARIABLE (counter), but upon trying to recognize the
OPERATOR, you find something that is not matched (!=). Because an invalid OPERATOR
was defined, you signal an error and exit (or more intelligently identify the error,
but then try to move on with the parse to see if any other errors are found). In the
next case, you expect an EXPRESSION following the CLOSE_PAREN. You try to recognize
the EXPRESSION as a VARIABLE and a UNARY_OP, but instead find a UNARY_OP and then a
VARIABLE. Both elements are recognized, but syntactically, they represent an error.
Instead of first finding a VARIABLE, you see a UNARY_OP and signal the error.

Note that the tree illustrates two concepts in parsing. The endpoints of the tree
(leaves) represent the symbols of the grammar, whereas the edges represent the de-
rivation of the grammar to the endpoints. When a sequence of tokens is properly
matched in the tree to a set of nodes, the tokens are recognized by the grammar.

LEXER AND PARSER COMMUNICATION

A typical compiler contains numerous phases (commonly six). The lexical analyzer
and grammar parser are two of the phases in compiler construction, but for the
purposes here, they are all that are required. For the parsing of configuration files,
you need to break the file down into tokens and then parse these into a parse tree.
This is illustrated in Figure 25.3.

FIGURE 25.3 Typical phases in configuration parsing.

Given your input file, the lexical analyzer (or lexer) takes the file as characters
and assembles them into tokens. The grammar parser takes the tokens and parses
them into parse trees. Based upon the successful creation of the parse tree, you have
syntactically correct code (or configuration). From here, you can utilize the parse
tree to extract your configuration data.

The lexical analyzer (flex) takes a file of regular expressions and produces a finite
state machine that recognizes the sequence of tokens for the target language. The
parser generator (bison) takes a file defining a context free grammar and produces
an LALR parser that recognizes the language.

While the focus here is on flex and bison, some might recognize these tools by
their early UNIX names lex and yacc (yet-another-compiler-compiler). flex and
bison are GNU projects; therefore this chapter utilizes them instead. The next
 sections look at the each of the tools separately and then bring them together in a
single configuration example.

flex

The fast lexical analyzer generator (or flex) is a tool that uses a collection of regular
expressions provided by the user to produce a lexical analyzer. The produced
 application can then be used to tokenize an input file from a sequence of characters
to a sequence of tokens. The generated application is really nothing more than a
 finite state automaton derived from the set of regular expressions.

Now take a look at a simple example to understand what all of this means. First,
a flex input file has the format:

%{

<C declarations>

%}

<definitions>

%%

<rules>

%%

<user code>

The first section introduces a set of C declarations into the resulting lexer. Next
are definitions or simple name declarations that are used in the rules section (think
of them as symbolic constant regular expressions). This section also contains start
conditions for the lexical analysis, which can be used to conditionally activate rules
in the rules section. Definitions have the form:

name definition

The rules section defines the set of regular expressions used to tokenize the
input. These rules define the finite automata to parse the tokens and take the form:

pattern action

Chapter 25 Parser Generation with flex and bison 479

Finally, the last section is user code that is integrated into the resulting lexical
analyzer code. Now on to a real example. In Listing 25.1 you see a simple flex input
file.

LISTING 25.1 Simple flex Input File Example (on the CD-ROM at

./source/ch25/simple/example.fl)

1: %{

2: #include <stdio.h>

3: %}

4:

5: NUM [0-9]

6: VAR [a-zA-Z]

7: WS [\t]

8:

9: %%

10: set printf("(STMT set) ");

11: {NUM}+ printf("(NUM %s) ", yytext);

12: {VAR}+ printf("(VAR %s) ", yytext);

13: - printf("(OP minus) ");

14: \+ printf("(OP plus) ");

15: = printf("(OP equal) ");

16: ; printf("(END stmt) ");

17: \n printf("\n\n");

18: {WS}+ /* Ignore whitespace */

19: <<EOF>> printf("End of parse\n."); yyterminate();

20: %%

Note first the three sections in Listing 25.1. You see the definitions section
(everything prior to the first %%). At line 2, you see some C code that will be
 integrated into the final lexer. Because you intend to use some standard C library
functions within your rules section, you tell flex to include the stdio.h header file
so that these symbols (such as printf) can be resolved. You then provide three
 definitions that are later in your rules section (you can also think of these as aliases).
First, the NUM definition defines a regular expression for a number. This defines that
a number is a digit between 0 and 9. Next is the VAR definition, which specifies that
variables are made up of lower- and uppercase letters. Finally, the WS definition
 indicates that whitespace is space or tab characters. Note that these are simply def-
initions; the rules section utilizes these to further specify tokens in your simple
 language.

The next section (between the two %% tags) identifies the rules. These represent
patterns (regular expressions, herein called regex) and an action to take when the
pattern is found. Consider the first rule at line 10. The rule defined here refers to the

480 GNU/Linux Application Programming

discovery of the token set. When the set is found, you perform the printf (to emit
(stmt SET)). The next rule is a regular expression that’s used to match numbers of
arbitrary length. You use your definition of NUM (in braces, as required by flex) and
follow it with a plus. The plus indicates that you are looking for one or more
of these digits. So, if you find a number (0–9) and then a character that is not a
number, the match is complete, and you perform the action. In this action, you
emit the value that you’ve recognized, which flex stores in a character string called
yytext. The next rule at line 12 is similar to your number rule but instead (per the
definition at line 6) collects alpha characters.

At lines 13 and 15, you see some very simple recognizers. When you see a
- symbol, you emit a minus string, and when you see a + (escaped with \ to delin-
eate it from the one or more regex symbol), you emit a plus string. Line 17 looks for
newlines and simply emits a newline to stdout.

One final point to note is line 19. This special symbol recognizes the end of the
file, for which you simply end the session using the supplied yyterminate function.

Take a look now at how you can build and then test this lexer using stdin. To
build your lexer, you simply provide the file (example.fl) to the flex utility, as
 follows:

$ flex example.fl

The result is a file called lex.yy.c, which contains the lexer. You can now com-
pile this file as follows:

$ gcc -o example lex.yy.c -lfl

The trailing -lfl tells gcc to link in the flex library (libfl.a). Now you have an
executable for which you can test. Take a look at a few examples typed from the
shell (see Listing 25.2).

LISTING 25.2 Test of Simple Lexer Specified in Listing 25.1

1: $./example

2: set counter = 0;

3: (STMT set) (VAR counter) (OP equal) (NUM 0) (END stmt)

4:

5: set counter=0;

6: (STMT set) (VAR counter) (OP equal) (NUM 0) (END stmt)

7:

8: set set = set;

9: (STMT set) (STMT set) (OP equal) (STMT set) (END stmt)

10:

Chapter 25 Parser Generation with flex and bison 481

11: set a = a + 1;

12: (STMT set) (VAR a) (OP equal) (VAR a) (OP plus) (NUM 1) (END stmt)

13:

14: abc123def

15: (VAR abc) (NUM 123) (VAR def)

16:

17: End of parse

18: $

At line 1, you start the lexer and then begin providing input. Note at line 18 in
Listing 25.1 that you ignore any whitespace that’s encountered. This is why lines 2
and 5 of Listing 25.2 result in an identical set of tokens being generated. At line 8,
you see the set reserved word used as a variable. The lexer simply parses this as a
statement, which would presumably be caught by the grammar parser. The point
here is that the lexer doesn’t know and therefore simply parses the tokens as it sees
them (even though they might not make sense).

One other item to note (to further clarify how the lexer works) is the input
shown at line 14. In this case, no whitespace is provided to delimit the input. The
lexer correctly notes that alpha characters are VAR tokens and numeric characters
represent NUM tokens. In this case, the three tokens are correctly parsed from the
input without any reference to delimiters.

Finally, at line 16 of Listing 25.2, you perform a Ctrl+D to end the parse. The
lexer catches this (via the <<EOF>> symbol) and ends the parse session.

In these examples, the actions to the rule patterns have been to write to stdout.
Later in this chapter, you’ll take a look at how to connect the lexical analyzer to the
grammar parser.

bison

Now that you have some understanding of the lexical analysis process, it’s time to
dig into grammar parsing. You evolve the last lexer to work with a new grammar
parser built with bison.

The grammar parser that you build with bison works in concert with the lexi-
cal analyzer. It accepts the tokens recognized by the lexer and matches them with
the grammar symbols to identify a properly structured input. The bison tool builds
a bottom-up parser and, using a process known as shift-reduce, attempts to map all
of the lexer data elements to grammar symbols.

482 GNU/Linux Application Programming

A SIMPLE GRAMMAR

Now, take a first look at a simple example that models your input from Listing 25.2.
What you want your grammar to represent is a set of set operations. These can take
the form as follows:

set counter = 1;

set counter = counter + 1;

set counter = lastcount;

set delta = counter - lastcount;

In this very simple grammar, you can reduce to the following rules. First each
statement starts with a set command followed by a variable and an = symbol. After
the assignment operator, you have what you call an expression and terminate with
a ;. So your first rule can take the form:

'set' VARIABLE '=' EXPRESSION ';'

Your EXPRESSION has one of four forms:

NUMBER

VARIABLE

VARIABLE OPERATOR NUMBER

VARIABLE OPERATOR VARIABLE

Finally, you support two operators within an expression. It can be either an ad-
dition or a subtraction:

'+'

'-'

This is reasonable so far for this very simple grammar. It should be clear now
how the lexer and grammar parser work together. The lexer breaks the input down
into the necessary tokens, which the grammar parser takes, and using its rules, de-
termines if the symbols can be recognized by the grammar.

ENCODING THE GRAMMAR IN bison

Now it’s time to look at how the simple grammar can be represented for bison. The
bison input file is similar to the flex input file. It starts with a section containing C
code that is imported into the grammar parser, followed by a set of declarations:

Chapter 25 Parser Generation with flex and bison 483

%{

C Declarations

%}

Bison Declarations

%%

Grammar Rules

%%

C Code

The bison input file can be quite a bit more complex than the flex input file,
so it’s time to continue the illustration with a real example. This example provides
a grammar for the previous set example. This is shown in Listing 25.3.

LISTING 25.3 bison Grammar File for Our Simple set Example (on the CD-ROM at

./source/ch25/setexample/grammar.y)

1: %{

2: #include <stdio.h>

3:

4: void yyerror(const char *str)

5: {

6: fprintf(stderr, "error: %s\n", str);

7: }

8:

9: int main()

10: {

11: yyparse();

12:

13: return 0;

14: }

15: %}

16:

17: %token SET NUMBER VARIABLE OP_MINUS OP_PLUS ASSIGN END

18:

19: %%

20:

21: statements:

22: | statements statement

23: ;

24:

25:

26: statement:

27: SET VARIABLE ASSIGN expression END

28: {

484 GNU/Linux Application Programming

Chapter 25 Parser Generation with flex and bison 485

29: printf("properly formed\n");

30: }

31: ;

32:

33:

34: expression:

35: NUMBER

36: |

37: VARIABLE

38: |

39: VARIABLE operator NUMBER

40: |

41: VARIABLE operator VARIABLE

42: ;

43:

44:

45: operator:

46: OP_MINUS

47: |

48: OP_PLUS

49: ;

In the first section of C declarations (lines 1–15), you see code that is to be
ported to the generated parser. You include any header files that are referenced in
this C declarations section or in code in the rules section (such as the printf at line
29). Also of note are two functions that you provide here for the parser. The first is
a special function called yyerror that is called by the generated parser if an error
 occurs. Next, you see the main function. Normally, you would have your own main
and call the parser, but for this simple example, you embed the main within the
parser itself. The main calls the function yyparse, which is the grammar parser. The
grammar parser invokes the lexical analyzer internally.

In the next section, bison declarations, you see a special symbol called %token.
This identifies all the tokens that are used by the parser to recognize the grammar.
The lexical analyzer must know about these as well and must be built to return
them. You will have another look at the lexer shortly and see how it’s changed to
support connectivity with the parser.

The bulk of your bison input file is the rules that make up the grammar. The
rules section begins at the first %% symbol in the file (line 19). Your first rule is the
statements rule (lines 21–23). A rule is made up of a name followed by a colon and
then a series of tokens or nonterminals with an optional action sequence (within a
set of braces), terminated by a ;. The statements rule has two possibilities. The
blank after the colon means that there might be no more tokens to parse (end of

file) or (|) or another possibility. If you had placed statement as the only possibil-
ity, then you could parse a single statement and no more. By specifying statements
before statement, you allow the possibility of parsing more than one statement in
your input.

The statement rule (lines 26–31) permits the parse of a single kind of statement
(a variable assignment). Your statement must begin with a set command followed
by a variable name and an assignment operator. You then see an expression rule,
which covers a number of different possibilities. The statement ends with a semi-
colon (represented here as an END token). Note here that you provide an optional
action sequence for the statement. If your rule matches without encountering any
errors, the optional command is performed within the parser. Here you simply
emit that the input provided was properly formed within the grammar.

The expression rule (lines 34–42) defines the varieties of expressions that are
possible (the right value, or rvar, of your statement). Four possibilities are con -
sidered legal. It can be a number, another variable, a sum of a variable and a vari-
able or number, or a difference between a variable and a variable or number. The
operator rule (lines 45–49) covers the two types of operators that are legal (a - as
defined by the OP_MINUS token or a + as defined by OP_PLUS).

The goal of this parse, as defined by the code that you have inserted into the
grammar, is simply to identify a properly formed statement.

bison grammars are expressed in a machine-readable Backus-Naur Form (or
BNF). A BNF is a formal syntax used to express context-free grammars and is a
widely used notation to express grammars for computer programming languages.

HOOKING THE LEXER TO THE GRAMMAR PARSER

Now that you have your grammar parser done, it’s time to look at how to modify the
lexer so that both know about the proper set of tokens and also how to connect the
lexer to the parser (see Listing 25.4). You can start by looking at the upgraded flex
input file and reading a description of the changes to support the connectivity.

LISTING 25.4 Upgraded flex Input File (on the CD-ROM at

./source/ch25/setexample/tokens.l)

1: %{

2: #include <stdio.h>

3: #include "grammar.tab.h"

4: %}

5:

486 GNU/Linux Application Programming

6: NUM [0-9]

7: VAR [a-zA-Z]

8: WS [\t]

9:

10: %%

11: set return SET;

12: {NUM}+ return NUMBER;

13: {VAR}+ return VARIABLE;

14: - return OP_MINUS;

15: \+ return OP_PLUS;

16: = return ASSIGN;

17: ; return END;

18: \n /* Ignore whitespace */

19: {WS}+ /* Ignore whitespace */

20: %%

The first point to note is that to know which tokens (constant names) the
parser generator is using you must include them in the lexer. When the parser
 generator is built with bison, it also generates a header file that contains the tokens
that were specified (via the %token symbol). These can now be included within the
flex input file to connect them together. In the compile phase of the lexer, you can
easily find if you have disconnects (because of missing symbol errors).

The second point to note is that you’re no longer just printing the token that
was recognized, but instead returning the token to the caller. The caller in this case
is the parser generator.

Now it’s time to walk through the process of building a parser from both the
flex and bison input files. In this example, the bison grammar input file is named
grammar.y, and the flex input file is called tokens.l. You start by building the parser
itself because the lexer is dependent upon the header file generated here:

ls

grammar.y tokens.l

bison -d grammar.y

ls

grammar.tab.c grammar.tab.h grammar.y tokens.l

#

You tell bison (via the -d flag) to generate the extra output file (which contains
your macro definitions) so that you can hook it up to the lexer. You see here that
two files are created: grammar.tab.c and grammar.tab.h. The C source file is the
parser source, and the .h file the macro definitions file.

Chapter 25 Parser Generation with flex and bison 487

Next, it’s time to build the lexer using flex:

flex tokens.l

ls

grammar.tab.c grammar.tab.h grammar.y lex.yy.c tokens.l

You invoke flex with your flex input file, which results in a new file called
lex.yy.c. This is your lexical analyzer. Finally, you can build these together with gcc
and generate the parser as follows:

gcc grammar.tab.c lex.yy.c -o parser -lfl

Now you have your parser executable in a file called parser. You can try it out
and see how it works (see Listing 25.5).

LISTING 25.5 Sample Use of the set Parser

$./parser

set counter = 1;

properly formed

set counter = counter + 1;

properly formed

set counter = lastCount;

properly formed

set deltaCount = counter - lastCount;

properly formed

set set = set;

error: parse error

$

You can see from this use that it properly recognizes your grammar. When you
encounter an error, it simply exits with a status. You can also exit the parser by
pressing Ctrl+D.

Note that the last example, where an error was detected, presents an interesting
case. The set token is valid as far as variables go (given the variable rule in the lexer
at line 13 of Listing 25.4), but given the precedence of your regular expressions, it’s
detected as the SET token rather than a variable. Given the grammar, this is defined
as an error.

So now you have built a parser that identifies whether the input is correct given
the tokens that can be recognized and the grammar. The next step is actually doing
something with the data, which you look at in the next section.

488 GNU/Linux Application Programming

BUILDING A SIMPLE CONFIGURATION PARSER

Now it’s time to continue with another example of parser construction with flex
and bison, but in this case, you use the data that’s parsed. This example creates
a parser for an e-mail firewall configuration that defines from whom you accept
e-mail and also from whom you reject e-mail. In this example, mail that’s not spec-
ified as allowed but also not explicitly specified as disallowed is simply quarantined
for later review by the e-mail recipient. The goal of such an e-mail firewall is to
quickly identify e-mail that you expect, disallow e-mail that you don’t want, and
then cache the rest for later review.

The configuration file is illustrated in Listing 25.6. You have two sections that
define those e-mail addresses that you allow (those that you immediately allow to
make it to the recipient) and also those that you disallow (reject or ignore).

LISTING 25.6 Sample E-Mail Firewall Configuration File (on the CD-ROM at

./source/ch25/config/config.file)

1: allow {

2:

3: mtj@mtjones.com

4: dan_5422@yahoo.com

5: albert@camus.com

6:

7: }

8:

9: disallow {

10:

11: spammer@spamcorp.com

12: viagera@pharma.com

13:

14: }

The structure of this file (Listing 25.6) is very simple. Those e-mail addresses in
the allow section are permitted, whereas those in the disallow section are rejected.

The parser is constructed in the two phases that were demonstrated in the first
example earlier in the chapter. The configuration file lexer is defined in a file called
config.l, and the grammar parser in config.y. Rather than taking your configura-
tion file from stdin, in this example you allow the configuration file to be read from
a file.

Chapter 25 Parser Generation with flex and bison 489

CONFIGURATION FILE LEXICAL ANALYZER

The lexer is the first phase of your configuration file parser. It breaks down the file
into its basic elements and returns them to the grammar parser. The tokens that
you permit, from Listing 25.6, are minimal and consist of two reserved words
(allow and disallow), section delimiters ({ and }), and finally the e-mail addresses,
which consist of an aggregate of tokens. Whitespace and newlines are simply
 ignored. The flex input file for the configuration file lexer is shown in Listing 25.7.

Listing 25.7 Configuration Parser flex Input File (on the CD-ROM at

./source/ch25/config/config.fl)

1: %{

2: #include <stdio.h>

3:

4: #include "config.tab.h"

5: %}

6:

7: %%

8: allow return ALLOW;

9: disallow return DISALLOW;

10: [a-zA-Z]+[a-zA-Z0-9_]* yylval=strdup(yytext); return WORD;

11: \{ return OPEN_BRACE;

12: \} return CLOSE_BRACE;

13: \@ return ATSYM;

14: \. return PERIODSYM;

15: \n /* Ignore end-of-line */

16: [\t]+ /* Ignore whitespace */

17: %%

The first item to note is that you have specified that you need the parser gener-
ator header file to understand what tokens are communicated (line 4). Next, at line
10, you see a new action for a string pattern. This particular pattern recognizes
strings that begin with a letter (uppercase or lowercase) and then follow with op-
tional characters of letters, numbers, or the _ character. When you recognize one of
these, its value (what was tokenized) is copied into a special variable called yylval.
When the lexer recognizes this token, it’s stored in yytext, which allows the parser
to see the actual token (in addition to the token type that’s returned, in this case
WORD).

Now you have a lexer that tokenizes your file and also returns the special words
that it finds (ignoring the reserved words, given their precedence in the table). Now
you can explore the new parser (Listing 25.8).

490 GNU/Linux Application Programming

Listing 25.8 Configuration Parser bison Input File (on the CD-ROM at

./source/ch25/config/config.y)

1: %{

2: #include <stdio.h>

3: #include <string.h>

4:

5: void yyerror(const char *str)

6: {

7: fprintf(stderr, "error: %s\n", str);

8: }

9:

10:

11: int main()

12: {

13: FILE *infp;

14:

15: infp = fopen("config.file", "r");

16:

17: yyrestart(infp);

18:

19: yyparse();

20:

21: fclose(infp);

22:

23: return 0;

24: }

25:

26:

27: char address[10][80];

28: int addrCount = 0;

29:

30: %}

31:

32: %token ALLOW OPEN_BRACE CLOSE_BRACE DISALLOW WORD ATSYM PERIODSYM

33:

34: %%

35:

36: configs:

37: | configs config

38: ;

39:

40: config:

41: allowed

Chapter 25 Parser Generation with flex and bison 491

42: |

43: disallowed

44: ;

45:

46: allowed: ALLOW OPEN_BRACE targets CLOSE_BRACE

47: {

48: int i;

49: printf("Allow these addresses:\n");

50: for (i = 0 ; i < addrCount ; i++) {

51: printf("\t%s\n", address[i]);

52: }

53: addrCount = 0;

54: }

55: ;

56:

57: disallowed: DISALLOW OPEN_BRACE targets CLOSE_BRACE

58: {

59: int i;

60: printf("Disallow these addresses:\n");

61: for (i = 0 ; i < addrCount ; i++) {

62: printf("\t%s\n", address[i]);

63: }

64: addrCount = 0;

65: }

66: ;

67:

68:

69: targets:

70: |

71: targets email_address

72: ;

73:

74:

75: email_address:

76: WORD ATSYM WORD PERIODSYM WORD

77: {

78: if (addrCount < 10) {

79: sprintf(address[addrCount++],

80: "%s@%s.%s", $1, $3, $5);

81: free($1); free($3); free($5);

82: }

83: }

84: ;

492 GNU/Linux Application Programming

The C code section of Listing 25.8 (lines 1–30) illustrates some of the key
changes that make this parser useful in the configuration domain. The main func-
tion, rather than simply calling yyparse, opens the desired configuration file and
then calls the function yyrestart with the file pointer. This allows you to change the
input from stdin to the file of your choice. You then call the yyparse function to
perform the grammar parse. Upon return (the parse is either complete or an error
was encountered), you close your input file pointer. You also declare a few re-
sources (lines 27 and 28), which store the e-mail addresses and the number parsed
so far. You can see how these are actually used in the bison rules section.

In the bison declaration section (lines 31–33) you define the tokens that are ex-
pected from the lexer. The result of this line (when the parser generator is created)
is a header file containing symbolic constants for each of these tokens.

The rules section (lines 34–84) defines the grammar for the configuration
parser. You include a base rule to allow one or more configuration sections (at lines
36–38) and then a rule to match either an allow section or a disallow section (lines
40–44). The allowed and disallowed rules are similar in pattern, except for what
they represent (permitted or rejected e-mail addresses). Each begins with the re-
spective reserved word (allow or disallow) and then an open brace ({) followed by
zero or more e-mail addresses and terminated by a close brace (}). You see C code
sections for each of the two rules, but you can return to these after you first dive
into the targets rule.

In the targets rule, you specify that zero or more e-mail addresses can be
 recognized (lines 69–72). The email_address rule (lines 75–84) specifies a simple
e-mail address recognizer. In this case, that is a word followed by an @ symbol,
followed by another two words, separated by a “.”. Therefore, e-mail addresses
such as:

mtj@mtjones.com

are recognized, but:

mtj@mail.mtjones.com

is not. For this demonstration, the simple e-mail address spec suffices.
The action portion of the email_address rule defines what you do when you

recognize a valid e-mail address. In this case (as long as you haven’t exhausted your
storage resources), you populate an address entry with the aggregated e-mail ad-
dress. Note here that the token list:

WORD ATSYM WORD PERIODSYM WORD

Chapter 25 Parser Generation with flex and bison 493

is accessible through a special set of references. The reference $1 represents the first
WORD in the list. Recall in the lexer (Listing 25.7, line 10) that you duplicated the cur-
rent token using strdup to yylval. The $1 here represents the yylval stored by the
lexer. Reference $3 represents the third WORD and $5 the last WORD. Therefore, you use
sprintf (to concatenate the strings together into your address array), resulting in a
contiguous e-mail address from the individual WORD parts. After you have stored the
address recognized, you free each of the string references. Recall that you used
strdup to copy the current token. This has the effect of mallocing memory for the
new object, and therefore, you must free this resource.

After the CLOSE_BRACE is recognized for the section (line 46 or 57), you emit the
addresses that are found. You know the type of addresses these are (allowed or
disallowed), given the context of the rule. If you are in the allowed rule, then
you know that these addresses are within an allow section. Similarly, within the
disallowed rule, you emit the addresses as disallowed. After you emit each section,
you zero the addrCount to permit additional sections to be recognized and stored.

Now take a look at an example of the parser. Listing 25.9 provides a sample file
(properly formed).

LISTING 25.9 Sample Configuration File

1: allow {

2:

3: mtj@mtjones.com

4: dan_5422@yahoo.com

5:

6: }

7:

8: disallow {

9:

10: you@yahoo.com

11: them@excite.com

12:

13: }

Calling this file config.file (as required by the parser), you can demonstrate
its use as follows:

$./parser

Allow these addresses:

mtj@mtjones.com

dan_4522@yahoo.com

494 GNU/Linux Application Programming

Chapter 25 Parser Generation with flex and bison 495

Disallow these addresses:

you@yahoo.com

them@excite.com

$

If any sections were not properly formed, you would not see any addresses (be-
cause the addresses aren’t actually printf’d until the entire section is parsed).

While this was a simple example, it nevertheless illustrates some of the power
of flex and bison. flex and bison can be used to build lexers and parsers for very
complex languages (such as the C language) or very simple grammars as illustrated
here.

THE BIG PICTURE

Figure 25.3 showed the phases involved in taking an input file, breaking it down
into tokens (via the lexical analyzer), and then passing these tokens to the parser to
generate a parse tree. Figure 25.4 now amends the previous figure to illustrate what
was done here.

FIGURE 25.4 Parsing phases with flex and bison flows.

496 GNU/Linux Application Programming

As this chapter has shown, the lexical analyzer is generated from the flex util-
ity, given an input file representing the regular expressions that recognize the
 tokens of the grammar. The parser is generated from the bison utility, again speci-
fied by a grammar file. Each of these phases is built together in a single image, with
connectivity between the two specified by the flex and bison tools and also by the
developer.

The flow of the lexer and parser is partly provided internally but is visible in the
grammar definitions (see Figure 25.5). Your main function (provided in the bison
grammar file) calls yyparse to perform the parsing function. This in turn calls yylex
to retrieve the tokens as they’re extracted from the input stream. The yylex func-
tion returns the type of token found, with any other data needed by the parser re-
turned in other variables (such as yylval).

FIGURE 25.5 Grammar definitions in lexer and parser flow.

You have seen a few of the internal functions and variables provided in the
scanner and parser. Table 25.1 provides a list of some of the others that you might
encounter in your use of flex and bison.

Designing and specifying parsers (and lexers) can be a difficult task, but in the
end, the act of specifying how the grammar works is necessary even if it’s to be done
by hand. After the specification is done, the generation of the parser with bison is
trivial (compared to writing one by hand), and therefore flex and bison can be very
useful tools in our development toolbox.

SUMMARY

The flex and bison tools can be two very important elements for software specifi-
cation and generation of lexers and grammar parsers. The flex tool allows the spec-
ification and generation of lexical analyzers that provide the ability to tokenize the
input. The bison tool allows the specification of a grammar, which when generated
can take the tokens from the lexical analysis phase to recognize correctly formed
input. This chapter demonstrated these tools in two scenarios, looking at two
 different parsing examples. The build process was also discussed, including linkage
between the lexer and parser phases

Chapter 25 Parser Generation with flex and bison 497

Name Type Description

yyparse Function Parser function (called by main)

yyerror Function Error function (can be provided by user)

yylex Function Scanner functions (returns tokens, used by

yyparse)

yyterminate Function Terminates the parsing process

yylval char*/union Token value

yytext char* Pattern string used by the lexer

yydebug int Set to 1 to enable debug mode

TABLE 25.1 Useful Scanner and Parser Functions and Variables

This page intentionally left blank

499

Scripting with Ruby26

INTRODUCTION

It seems like a new language comes out every day. That’s probably not too far from
the truth, but the useful languages that take hold and build communities behind
them are much less frequent. One of those languages that has grown in popularity
in recent years is the Ruby language. Ruby is a portable object-oriented scripting
language that was designed by Yukihiro Matsumoto. Ruby was partially inspired by
the Eiffel and Ada languages and includes all of the features you’d expect in a mod-
ern language. This chapter explores the Ruby language and shows you why it’s the
next language that you should master.

AN INTRODUCTION TO RUBY

Like natural languages, computer languages allow programmers to express designs.
Some languages make this easier than others. For example, machine languages that
use lower level (register-level) instructions as the means for expressing design are
naturally hard. Higher level languages hide the details of the given machine and make
common concepts simpler to use (such as functions to build common behaviors).

In This Chapter

Ruby Overview
Ruby in Comparison to Other Languages
Ruby Language Features

But not all higher level languages are alike. Some languages make text process-
ing easy (such as Icon), and others are ideal for building reliable systems (such as
Ada). Ruby is a great general purpose language, but has some attributes that make
it ideal for prototyping (testing ideas in the small), network programming, and also
for teaching programming principles (including object-oriented programming).

WHY USE RUBY?

In the end, programming languages are a matter of preference. Ruby is a great
 language, but practically anything that you can do in Ruby, you could also do in
Python or Perl. Having said that, Ruby is a very special language. From a personal
perspective, I find Ruby to be one of the most intuitive languages out there. The
language just seems to make sense, and using new language features for the first
time is natural and intuitive.

But preference plays a huge part in language use. The key question is whether
or not you can be productive in a language. Given the intuitive nature of Ruby, it’s
one of the most productive languages available.

COMPARING TO OTHER LANGUAGES

Whereas Ruby was inspired by both Eiffel and Ada, it is nevertheless comparable to
a variety of other languages. Take a look at some of the important attributes of
Ruby in comparison to those in other popular languages. Some of Ruby’s impor-
tant characteristics are provided in Table 26.1.

500 GNU/Linux Application Programming

Attribute Other Languages

Multiparadigm Ada, Objective Caml, Tcl, Lua

Dynamic Smalltalk, Lisp, Lua, Eiffel, Python

Object oriented Eiffel, Ada, C++, Smalltalk

Interpreted Smalltalk, Tcl, BASIC, Scheme

Reflective Smalltalk, Java, Lua, C#, Python

TABLE 26.1 Important Attributes of the Ruby Language

Multiparadigm languages are those that can support multiple language para-
digms (imperative, object-oriented, functional, logic-based, as examples). Ruby
supports each of the paradigms in an elegant way.

Dynamic languages perform functionality at runtime that is commonly per-
formed at compile time. This can include adding new code at runtime and chang-
ing the type system. These features are commonly found in functional languages
(such as closures and continuations).

Object-oriented languages are those that use an object model for development.
In these languages, classes and methods (functions) are coupled with encapsula-
tion, polymorphism, and inheritance. But Ruby (like Smalltalk and unlike most
other object-oriented languages) is pure. Everything in Ruby is an object and can
have properties or methods applied to it. You will explore the impact of this later
in this chapter.

Languages that are compiled are translated from their high-level constructs to
machine-level instructions. Running on the hardware directly means that these
languages provide fast executables, but ones that are not portable. Interpreted lan-
guages are those in which the high-level language is interpreted directly without
having gone to the machine level. This means that the execution of the scripts is
slower, but it much more portable to run on other architectures without change.

Reflective programming refers to the ability to observe and modify the behav-
ior of a program at runtime. From one perspective, if a language allows data to be
interpreted as a program, then it supports reflection.

Ruby’s most often discussed problem is its performance. When compared to
other interpreted languages (such as Perl or Python), Ruby does not perform as
well. But at the time of this writing, Ruby is moving towards version 1.9, which will
 include a new virtual machine with better performance.

QUICK RUBY EXAMPLES

Now that you’ve explored Ruby at a high level, you can take a look at some of the
high-level attributes of Ruby through some examples. These examples are provided
to give you a quick taste of Ruby, and in the sections that follow take a deeper look
at Ruby.

The classic example of language demonstration is the “Hello World” program.
In Ruby, using irb, this is shown in Listing 26.1.

LISTING 26.1 The Ruby Hello World Program with irb

mtj@camus:~$ irb

irb(main):001:0> puts "Hello World."

Hello World.

=> nil

irb(main):002:0>

Chapter 26 Scripting with Ruby 501

Creating a function (or method for Ruby) is shown in Listing 26.2. A method
is defined with the def method. Note that after the method is defined, you can call
it and see its result.

LISTING 26.2 Creating a Method (Function) with Ruby

irb(main):002:0> def my_sound

irb(main):003:1> puts "bark"

irb(main):004:1> end

=> nil

irb(main):005:0> my_sound

bark

=> nil

irb(main):006:0>

You could create a class for animals very easily with Ruby using the class re-
served word (see Listing 26.3). In this listing, you create a class called Dog and then
create a new instance of this class and invoke its method.

LISTING 26.3 A Simple Class Example in Ruby

irb(main):001:0> class Dog

irb(main):002:1> def my_sound

irb(main):003:2> puts "bark"

irb(main):004:2> end

irb(main):005:1> end

=> nil

irb(main):006:0> zoe = Dog.new

=> #<Dog:0xb7c5fd88>

irb(main):007:0> zoe.my_sound

bark

=> nil

irb(main):008:0>

Recall that Ruby is a pure object-oriented language, which means that every-
thing is an object. Even numbers and primitive types are objects, for example:

irb(main):014:0> 5.+(1)

=> 6

This illustrates the application of a method on a number object (5). To that
 object, you apply the + method with an argument of 1, resulting in 6.

502 GNU/Linux Application Programming

Chapter 26 Scripting with Ruby 503

Finally, take a look at a multiparadigm aspect of Ruby. One of the most inter-
esting language features of Ruby comes from functional languages like Lisp. The
higher order function map is used to transform a list by applying a function to each
element. The result of this operation is a new list. In Ruby, the map method is
 applied to the list object. Each element of the list (defined by variable x) is trans-
formed as the square operation.

irb(main):017:0> [1, 2, 3, 4, 5].map { |x| x*x }

=> [1, 4, 9, 16, 25]

Note here that the map method takes a function as its argument and results in a
new function that takes a list and applies each element of the list to it. Maps provide
an interesting way to achieve iteration, but Ruby has others, which you will review.

Now that you’ve seen a short glimpse of what Ruby has to offer, the rest of
the chapter takes a more systematic approach to reviewing the language and its
 offerings.

The Ruby language can be freely downloaded from the Ruby Web site at
http://www.ruby-lang.org/en/. You can explore Ruby in two ways. The first is
through traditional scripting (writing your Ruby in a script and then using the
Ruby interpreter to execute). You can also use interactive Ruby (irb) to interact
with the interpreter on a line-by-line basis. This is a great way to experiment with
the Ruby interpreter.

LANGUAGE ELEMENTS

Ruby is ranked in the top 10 languages worldwide, and some even call it artful. The
next sections look at the language to see just why it’s so popular and powerful.

TYPES AND VARIABLES

Ruby supports a number of different types, some of which might be foreign to you
if you’ve not worked with a high-level (or domain-specific) language. Types in
Ruby need not be explicitly defined, but instead can be inferred based upon value.
This section looks at the basic types, and then others are introduced as you get into
other features.

Ruby supports two numeric types, the Fixnum (or integer) and the Float.
Strings are also supported, as are ranges. A range includes a lower and upper value
and can be used in iterators (which you’ll review later). Also shown is Ruby’s abil-
ity to determine the type of a variable at runtime (see Listing 26.4). To determine

http://www.ruby-lang.org/en/

this, you use the class method (remember, everything is an object in Ruby, which
implies that it’s the instance of a class).

LISTING 26.4 Creating Variables and Then Determining Their Type

irb(main):001:0> x = 9

=> 9

irb(main):002:0> puts x.class

Fixnum

=> nil

irb(main):003:0> y = 1.414

=> 1.414

irb(main):004:0> puts y.class

Float

=> nil

irb(main):005:0> z = "text string"

=> "text string"

irb(main):006:0> puts z.class

String

=> nil

irb(main):007:0> w = 1..5

=> 1..5

irb(main):008:0> puts w.class

Range

=> nil

irb(main):009:0>

As you can guess, a language as powerful as Ruby is going to have more types
than this. You’ll see some of the other important types when you explore Ruby’s
object-oriented features later in the chapter.

CONTROL

Ruby supports the standard range of conditionals, but also a few others that are
useful to understand. The standard if/then/else constructs are available (see List-
ing 26.5) in addition to the case statement, with which you are no doubt familiar.

LISTING 26.5 Example of Ruby’s if/then/else Conditional Structure

irb(main):001:0> legs = 4

=> 4

irb(main):002:0> if legs == 2 then

irb(main):003:1* puts "biped"

irb(main):004:1> elsif legs == 4 then

504 GNU/Linux Application Programming

irb(main):005:1* puts "quadruped"

irb(main):006:1> elsif legs == 6 then

irb(main):007:1* puts "hexaped"

irb(main):008:1> else

irb(main):009:1* puts "undefined"

irb(main):010:1> end

quadruped

=> nil

irb(main):011:0>

The case statement so common in other languages is also available in Ruby.
Just as in Ada (which also uses the case/when structure), in Ruby you can use ranges
within case statements (see Listing 26.6). An else can also be used within the case
statement, taking the place of the default block. The then statement is optional in
this context.

LISTING 26.6 Illustrating the Ruby case Construct

irb(main):001:0> x = 9

=> 9

irb(main):002:0> case x

irb(main):003:1> when 1..8 then puts "1..8"

irb(main):004:1> when 9..12 then puts "9..12"

irb(main):005:1> end

9..12

=> nil

irb(main):006:0>

Finally, Ruby offers a couple of shorthand operations that are useful in certain
cases. The if modifier and unless keyword are syntactic sugar, but are useful
nonetheless.

The if modifier simply reverses the order of the if condition. For example, the
following two examples are syntactically identical:

if legs == 2 then puts "biped" end

puts "biped" if legs == 2

The unless expression is another example of syntactic sugar. Using unless
 simply means it maps to the not condition, as shown in the following:

legs = false

if !legs then puts "no legs" end

unless legs then puts "no legs" end

Chapter 26 Scripting with Ruby 505

“Syntactic sugar” is a term coined by Peter Landin, and it describes additions to a
language that don’t affect its functionality but make the language “sweeter” to use.

ITERATION

Ruby offers a number of methods for iteration, many of which are recognizable
from other languages, but Ruby also offers some novel additions. You can begin
with the while statement that simply repeats a block of code while an expression
is true. The while modifier is a special case of while, which essentially reverses
 expression ordering (as shown in Listing 26.7).

LISTING 26.7 while and while Modifier in Ruby

irb(main):016:0> while x < 10

irb(main):017:1> x+=1

irb(main):018:1> end

irb(main):019:0> x+=1 while x < 10

Another interesting looping technique is called until. This repeats execution
of a body of code until an expression returns true. Listing 26.8 shows two variants
of until (including the until modifier).

LISTING 26.8 until and until Modifier in Ruby.

irb(main):005:0> until x == 10

irb(main):006:1> x+=1

irb(main):007:1> end

irb(main):008:0> x+=1 until x == 10

Another looping construct that is familiar in other languages is the for loop.
What’s different primarily is the use of the range, but some other interesting mod-
els are available as well. Listing 26.9 first shows the standard for loop with a range.
But the second example illustrates Ruby’s use of an array with iteration. Here the
for loop iterates through an array of primes to 13.

506 GNU/Linux Application Programming

LISTING 26.9 for Loop and Its Variants.

irb(main):010:0> for i in 1..10

irb(main):011:1> puts i

irb(main):012:1> end

irb(main):001:0> for i in [2, 3, 5, 7, 11, 13]

irb(main):002:1> puts i

irb(main):003:1> end

But as it turns out, the for loop is just syntactic sugar for Ruby’s real iterator.
For example (see Listing 26.10), you can code your array iterator as shown below.
This code snippet uses each to iterate through the array, with the iterating variable
being x. The second example shows that this is much different from standard iter-
ators in other languages. Because the iteration is over the elements of an array, the
array can be made up of more than just Fixnums. The final example in Listing 26.10
is the each_with_index method. This method (of class Array) returns not only the
element in the array but also its position.

LISTING 26.10 Iterating Over an Array

irb(main):005:0* [1, 3, 5, 7, 11, 13].each do |x|

irb(main):006:1* puts x

irb(main):007:1> end

irb(main):021:0> names = [‘Tim’, ‘Jill’, ‘Megan’, ‘Elise’, ‘Marc’]

=> ["Tim", "Jill", "Megan", "Elise", "Marc"]

irb(main):022:0> names.each do |x|

irb(main):023:1* puts x

irb(main):024:1> end

Tim

Jill

Megan

Elise

Marc

=> ["Tim", "Jill", "Megan", "Elise", "Marc"]

irb(main):025:0>

Chapter 26 Scripting with Ruby 507

irb(main):031:0> names.each_with_index do |x, index|

irb(main):032:1* puts “#{x} at pos #{index}"

irb(main):033:1> end

Tim at pos 0

Jill at pos 1

Megan at pos 2

Elise at pos 3

Marc at pos 4

=> ["Tim", "Jill", "Megan", "Elise", "Marc"]

irb(main):034:0>

STRING HANDLING IN RUBY

Ruby is very interesting when it comes to string handling. The String object has an
interesting set of methods that are available, including the arithmetic operators. For
example, as shown in Listing 26.11, you can apply the + and * operators to Ruby
strings, with the intuitive result.

LISTING 26.11 Ruby Arithmetic Operations on Strings

irb(main):001:0> str = "test"

=> "test"

irb(main):002:0> str = str + "string"

=> "teststring"

irb(main):003:0> str = str * 2

=> "teststringteststring"

irb(main):004:0>

Ruby also provides the standard set of operators that you would expect for
natural string operations. For example, you can retrieve the length of a string and
extract substrings (see Listing 26.12). The delete method can be used to remove
characters from a string. Note the use of delete! here, which modifies the string in
place. In all other cases, a new string is returned.

The final example in Listing 26.12 illustrates the ability to chain methods to-
gether on a given object. In this case, the str object has the reverse method applied,
followed by the delete method (removing the g character).

LISTING 26.12 Ruby Arithmetic Operations on Strings

irb(main):001:0> str = "test"

=> "test"

irb(main):002:0> str = str + "string"

=> "teststring"

508 GNU/Linux Application Programming

irb(main):003:0> str = str * 2

=> "teststringteststring"

irb(main):004:0> str.length

=> 20

irb(main):005:0> str[0,7]

=> "teststr"

irb(main):006:0> str.delete!("test")

=> "ringring"

irb(main):007:0> str.reverse

=> "gnirgnir"

irb(main):008:0> puts str.reverse.delete("g")

rinrin

=> nil

ASSOCIATIVE ARRAYS

Ruby includes support for associative arrays. An associative array, which is also
called a hash, is essentially a lookup table. You have a key, and with each key you
have an associated value. The operation of lookup is provided in the language,
which means simpler code. The associative array can be viewed as an array of asso-
ciations. Listing 26.13 shows the creation of an associative array and its use. The =>
symbol associates the key (such as Tim) with a value (such as 42).

LISTING 26.13 Creating and Using an Associative Array

irb(main):001:0> a_array = { 'Tim' => 42, 'Jill' => 40, 'Megan' => 15 }

=> {"Jill"=>40, "Tim"=>42, "Megan"=>15}

irb(main):002:0> a_array['Tim']

=> 42

irb(main):003:0> a_array['Megan']

=> 15

irb(main):004:0> a_array['Elise']

=> nil

irb(main):005:0>

CLASSES AND METHODS

Ruby is an object-oriented language, so as you would expect, classes are part of the
language. A class is a construct that groups related methods and variables together.
Variables in this case are instance variables, which you’ll review shortly.

Chapter 26 Scripting with Ruby 509

Recall that everything in Ruby is an object. You can see this through an interactive
Ruby session. With an empty class named Dog, you invoke the class method to find
that this is an object of type Module (which is itself an instance of an Object).

irb(main):001:0> class Dog

irb(main):002:1> end

=> nil

irb(main):003:0> Dog.class

=> Module

irb(main):004:0> Dog.superclass

=> Object

Note in this example that Dog has no methods defined, yet the superclass method
was invoked. This is because superclass is a method of Object, of which Dog is a
descendent.

Take a look at an example of building a class in Ruby, and also extending a class
through inheritance. Listing 26.14 provides an example of each through a class
called Dog. Class Dog has two methods: sound and name. These methods simply emit
a string when invoked. Next, you define a new class called LittleDog, which is a
subclass of Dog. Note that in Ruby, you can have only one level of inheritance. In
LittleDog, the sound method is redefined (to fit a smaller dog).

The remainder of Listing 26.14 shows creating an instance of each class. In the
first case, an object rover is created using the new method (which is part of the
Class class). The methods of instance rover are called, which results in "Spot" and
"Bark". A LittleDog instance is then created named fifi. The methods for fifi are
invoked, resulting in "Spot" and "Yip".

LISTING 26.14 Demonstrating Ruby Classes and Inheritance

class Dog

def sound

puts "Bark"

end

def name

puts "Spot"

end

end

510 GNU/Linux Application Programming

class LittleDog < Dog

def sound

puts "Yip"

end

end

rover = Dog.new

rover.name

rover.sound

fifi = LittleDog.new

fifi.name

fifi.sound

As you would expect, invoking the class method on rover and fifi results in
Dog and LittleDog, respectively. Class instance variables can also be included inside
the classes and initialized through a special function called initialize. Listing 26.10
presents a new class called NewDog. This class has the previous two methods for
emitting the name and sound, but also a new method for initializing these instance
variables. You can take a deeper look at initialize to see how this is done.

Method initialize is a special method that is invoked when the new method is
called (the object is created). This method can take zero or more arguments. In this
case, you specify two arguments that can be initialized for an instance of the class
(name and sound). Within initialize, you check the length of the strings that are
passed in, and if zero is the result, then you initialize with a default value. Note the
use of the @ symbol in the variable name. This defines that the variable is a class
 instance variable (associated with this instance of the class). A @@ would represent
a class variable, which would be common in all instances of the class.

The remainder of the class is simple. The name and sound methods emit the class
instance variables that were set in initialize. At the end of Listing 26.15, the class
is instantiated twice. In the first case, the name and sound class instance variables are
initialized, but in the second example, only the sound class instance variable is ini-
tialized. In this case, the output is "Spot" and "Woof".

Note that for greater error checking, you can use the class method to ensure that
the type passed in is a String. For example:

if name.class != String) then error...

Chapter 26 Scripting with Ruby 511

LISTING 26.15 Instance Variables and Initialization

class NewDog

def initialize(name, sound)

if name.length == 0

@name = "Spot"

else

@name = name

end

if sound.length == 0

@sound = "bark"

else

@sound = sound

end

end

def name

puts @name

end

def sound

puts @sound

end

end

zoe = NewDog.new("Zoe", "Yalp")

zoe.name

zoe.sound

noname = NewDog.new("", "Woof")

noname.name

noname.sound

One final example illustrates some of the freedom available in Ruby for object
creation. You can construct an object and then add methods to it as needed. This
is done by creating an object as an instance of Object, as illustrated in Listing 26.16.
With the object instance (dyn), a method is added to it by simply defining a new
method with the class instance prefix (dyn.identify).

512 GNU/Linux Application Programming

LISTING 26.16 Dynamically Adding Methods to Objects

irb(main):001:0> dyn = Object.new

=> #<Object:0xb7c813ac>

irb(main):002:0> def dyn.identify

irb(main):003:1> puts "identify method"

irb(main):004:1> end

=> nil

irb(main):005:0> dyn.identify

identify method

=> nil

irb(main):006:0> dyn.class

=> Object

irb(main):007:0>

Now that you have a basic understanding of Ruby language features, the next
section looks at some of the more advanced features and then some examples.

ADVANCED FEATURES

Ruby supports a number of advanced features, some of which might not be famil-
iar. As Ruby has a number of influences, you’ll find object-oriented features, im-
perative language features, and functional language features. This section shows a
few of the more important elements available within Ruby.

DYNAMIC CODE

Ruby provides a class called Proc that allows blocks of code to be created that can
be dynamically bound to variables. This allows the same method to be bound to
variables independently resulting in different contexts of the same method. An
 example can best illustrate what this means. Listing 26.17 shows a use of the Proc
class within a method. The gen_mul method creates a new method bound to the
 argument passed in (factor). The n variable is the argument of the resulting
method, as shown in the listing. The call method invokes the dynamic method.

At any time you can determine the binding to the parameter of the dynamic
method using eval. The eval method comes from the Kernel module.

LISTING 26.17 Dynamically Adding Methods to Objects

irb(main):003:0* def gen_mul(factor)

irb(main):004:1> return Proc.new { |n| n*factor }

irb(main):005:1> end

Chapter 26 Scripting with Ruby 513

=> nil

irb(main):006:0> mulby3 = gen_mul(3)

=> #<Proc:0xb7d485b4@(irb):4>

irb(main):007:0> mulby10 = gen_mul(10)

=> #<Proc:0xb7d485b4@(irb):4>

irb(main):008:0> mulby3.call(7)

=> 21

irb(main):009:0> mulby10.call(8)

=> 80

irb(main):010:0> eval("factor", mulby3)

=> 3

irb(main):011:0> eval("factor", mulby10)

=> 10

irb(main):012:0>

This aspect of Ruby is similar to Ada’s generic capability. The Ada generic allows
for parameterized functions, not only of value but also of type.

EXCEPTION HANDLING

Exceptions are how languages handle dynamic or user-definable errors. Simply
put, the language supports setting up exception handlers to catch runtime errors
when they occur. For example, say you want to build a method to compute the
square of a number. This can be done simply, as shown in Listing 26.18.

LISTING 26.18 A Simple square Method

def square(x)

return x*x

end

However, then what happens when you pass something invalid? Here’s an irb
session showing just that (see Listing 26.19).

LISTING 26.19 Creating an Error by Passing an Incorrect Type

irb(main):004:0> square("hello")

TypeError: can't convert String into Integer

from (irb):2:in `*'

from (irb):2:in `square'

from (irb):4

from :0

irb(main):005:0>

514 GNU/Linux Application Programming

As shown, a type error occurs because the '*' method can’t be applied to a
String type. You can detect this situation and report it to the caller with the raise
method. So you can detect and return an exception, as shown in Listing 26.20. The
raise method, in this case, returns a runtime error string if the type of the passed
object is not Fixnum. Otherwise, the square is returned. Note the error returned after
trying to pass in a String.

LISTING 26.20 Raising an Exception

irb(main):001:0> def square(x)

irb(main):002:1> raise "Not a number (#{x.class})" if x.class !=

Fixnum

irb(main):003:1> return x*x

irb(main):004:1> end

=> nil

irb(main):005:0> square(5)

=> 25

irb(main):006:0> square("string")

RuntimeError: Not a number (String)

from (irb):2:in `square'

from (irb):6

from :0

irb(main):007:0>

What’s really needed in this case is a way not only to throw an exception,
but also to catch it in the caller. This is done, not surprisingly, with a keyword
called rescue. You can see this in Listing 26.21. In the square method, you raise an
Exception called ArgumentError, which is an object. The test method is where the
exception catching occurs. You define a block (that starts with a begin) that
includes a rescue clause. If an exception occurs within the block, then the rescue
clause is invoked. Note here that the rescue clause is named with the particular
exception to be caught. It could be “un-named” to catch all exceptions.

LISTING 26.21 Raising an Exception and Catching Within a Rescue Block

def square(a)

raise ArgumentError if a.class != Fixnum

return a*a

end

Chapter 26 Scripting with Ruby 515

def test

begin

puts square(5)

puts square("hello")

rescue ArgumentError

puts "Recover from this error!!!"

end

puts "done"

end

When the test method is invoked, it results in the following (see Listing
26.22). The first call to square returns normally, but the second call throws the
ArgumentError exception, which is caught by the rescue clause.

LISTING 26.22 Executing the Exception test Method

irb(main):027:0> test

25

Recover from this error!!!

done

=> nil

irb(main):028:0>

By catching the exception, you can recover from the error, instead of the
method simply causing the script to exit. This is an important distinction and
 allows the development of more reliable applications.

INTROSPECTION

Introspection, or reflection, refers to a language’s ability to inspect itself at runtime.
One aspect of introspection is the ability to enumerate living objects at runtime.
Ruby provides an interesting module called ObjectSpace that provides this ability.
You can refine this by iterating only through objects of a specific class or module.
This is demonstrated in Listing 26.23.

516 GNU/Linux Application Programming

LISTING 26.23 Enumerating All Numeric Objects

irb(main):040:0> ObjectSpace.each_object(Numeric) {|x| puts x}

2.71828182845905

3.14159265358979

2.22044604925031e-16

1.79769313486232e+308

2.2250738585072e-308

=> 5

irb(main):041:0>

The ObjectSpace module can also be used to add finalizers to other objects. A
finalizer is a proc that is invoked when a particular object is destroyed. This oper-
ation is shown in Listing 26.24. A sample class is created (Dog), and then an instance
of that class (zoe). The ObjectSpace module is included, so that you don’t have
to specify it as a prefix to its methods. The finalizer is created with a call to
define_finalizer. This includes your object and a simple proc that is called before
the object is garbage collected. You force the object to be removed, and a call to
garbage_collect (part of the ObjectSpace module) finally removes the object caus-
ing a call to the finalizer.

LISTING 26.24 Creating a finalizer for an Object

irb(main):001:0> class Dog

irb(main):002:1> end

=> nil

irb(main):003:0> include ObjectSpace

=> Object

irb(main):004:0> zoe = Dog.new

=> #<Dog:0xb7d317c4>

irb(main):005:0> define_finalizer(zoe, proc {|id| puts "bye #{id}"})

=> [0, #<Proc:0xb7d1ca18@(irb):6>]

irb(main):006:0> zoe = nil

=> nil

irb(main):007:0> garbage_collect

bye -605436738

=> nil

OTHER FEATURES

Entire books could be written on the useful features of Ruby, but unfortunately
only a chapter is provided here. Ruby also provides an operating system–independent
threads implementation. This makes the threads behavior uniform across all

Chapter 26 Scripting with Ruby 517

 platforms, which is a great advantage. Ruby supports many other features outside
of the language, such as the standard interpreter, an interactive interpreter, and a
debugger and profiler. Ruby compilers also exist if performance is more important
than portability.

RUBY AS AN EMBEDDED LANGUAGE

One of the greatest features of this class of language is that many of them (includ-
ing Ruby) can be embedded in another language. This is a popular technique in
game engines where the scripting language allows user extension of the game (for
example, non-player-character behaviors) while the graphics engine runs natively
for speed.

In addition to embedding Ruby into another language, you can extend Ruby
with another language such as C. This allows you to build methods in C that exe-
cute natively for performance, but still maintain the flexibility provided by Ruby.

SUMMARY

While this has been a whirlwind tour of Ruby, what you’ve explored here should
give you a sense of the power and intuitiveness of the Ruby language. Ruby is an in-
fant language when you consider other languages from which it was inspired.
Smalltalk, for example, began development in 1969, whereas Ruby first appeared in
1996 (almost 27 years later). But Ruby has learned from its predecessors and
 incorporates the most important features of many languages. From its simple
 object-oriented structure to its advanced features such as introspection and excep-
tion handling, Ruby is a complete language and worth the time and effort to learn.

RESOURCES

Ruby Programming Language Web site at http://www.ruby-lang.org/en/.
Ruby Language Wikipedia page at http://en.wikipedia.org/wiki/Ruby_(programming_

language).
Ruby-Doc, Help and Documentation for the Ruby Language at http://www.ruby-

doc.org/.

518 GNU/Linux Application Programming

http://www.ruby-lang.org/en/
http://en.wikipedia.org/wiki/Ruby_(programming_language)
http://en.wikipedia.org/wiki/Ruby_(programming_language)
http://www.ruby-doc.org/
http://www.ruby-doc.org/

519

Scripting with Python27

INTRODUCTION

The previous chapter discussed the object-oriented language Ruby. Whereas Ruby
is gaining in popularity, Python is here today with an army of devoted users.
Python is another object-oriented and multiparadigm scripting language that is
both useful and very popular. One of the key ideas behind Python is that it be read-
able and accessible to everyone (experienced programmers and beginners alike).
Today you can find Python everywhere and on every major OS platform. This
chapter explores Python and gets into what makes it tick.

AN INTRODUCTION TO PYTHON

Python is one of the older scripting languages because even though it was released
in its first version in 1991, it was conceived and developing during the 1980s.
Python was created by Guido van Rossum as a successor to the ABC programming
language at the National Research Institute for Mathematics and Computer Science
(or CWI, in Dutch) in the Netherlands. The ABC language was also developed at
CWI as a general-purpose language whose goal was to educate.

In This Chapter

Python Introduction
Comparable Languages to Python
Python Language Review

Like Ruby and the other object-oriented scripting languages, Python has
evolved over the years. Its first release was in 1991, but the “1.0” release didn’t
come until 1994. Some of the major elements introduced in the 1.0 release were nu-
merous Lisp features such as lambda, map, and reduce. Python’s evolution continued
with the acquisition of new features from Modula-2, Haskell, Icon, Java, and
Scheme. In the recent past Python unified its types and classes into a single hierar-
chy (as Ruby had done from the beginning).

WHY USE PYTHON?

You have many reasons to use Python, but this chapter focuses on a few of the more
important aspects of the language. First, Python is used in many places, indicating
that it’s a solid language with a quality run-time environment. Python powers the
Zope application server (which is a persistent object database) that can be easily
managed through a standard web interface. You’ll also find Python behind the
YouTube video-sharing website and even in game systems (such as Civilization IV).
Python is a great language that’s highly readable with a reliable environment.

Python also includes a massive standard library that can be easily augmented
with user-defined modules. The standard library includes standard types of opera-
tions that you would expect, but also provides high-level interfaces for things like
application layer Internet protocols (HTTP, SMTP, etc.). This makes it easy to
build feature-rich applications with a minimal amount of user code.

But one of the most interesting aspects of Python is its development process.
Python includes what’s called a PEP, or Python Enhancement Proposal, which is
used to propose new features for Python. This is similar to the Request for Com-
ments (RFC) process that defined the evolution of the Internet protocols. The PEPs
document everything from new language feature requests, schedules for releases,
application programming interfaces (APIs), and the PEP process itself. This open-
ness to the user and developer community makes Python a powerful contender in
the future.

One of the biggest complaints of Python is that it’s slower than other languages
of its type. This is true in certain cases, but Python serves another need first. Source
changes to Python for the purposes of optimization are avoided if it means that
Python itself is less readable. If performance is key and you desire to continue with
Python, then you can write time-critical portions of source in a language that com-
piles to the machine’s native instruction set. These native routines can then be
joined with Python through its foreign function interface.

COMPARING TO OTHER LANGUAGES

Because it’s always easier to understand something by comparing it to something
else you already know, this section explores some of the important attributes of the

520 GNU/Linux Application Programming

Chapter 27 Scripting with Python 521

Python language and their application in other programming languages. Table 27.1
provides some of the major attributes of the Python language.

Attribute Other Languages

Multiparadigm Ada, Ruby, Tcl, Lua

Dynamic Eiffel, Lua, Lisp, Smalltalk

Object oriented Ada, C++, Eiffel, Ruby, Smalltalk

Interpreted BASIC, Scheme, Smalltalk, Tcl

Reflective C#, Java, Lua, Ruby, Smalltalk

Strongly typed C, Haskell, Java, Pascal

TABLE 27.1 Important Attributes of the Python Language

Python is multiparadigm because it supports more than one programming
 approach. For example, you can write object-oriented programs with Python and
also imperative programs. You can also write in a functional paradigm (such as
Lisp) and also logic (for example, Prolog). All of this simply means that Python em-
ploys the best ideas of the best programming languages and makes them available
for you to express your ideas.

A dynamic language permits activities at run time that in traditional languages
are permitted only at compile time. This includes adding new elements or types to
the language. Python permits such functionality (as is common in functional
 languages).

Python can be used in an object-oriented fashion (remember, Python is multi-
paradigm). This means that applications are constructed in terms of objects with
encapsulation, inheritance, and polymorphism. Applications are built from collec-
tions of objects that cooperate to solve its given task.

Python is an interpreted language, but can also be compiled. This means that
Python can benefit from multiplatform interpretation or can be compiled to run
directly on the bare hardware for better performance. Python is also implemented
in a number of variants. Standard Python (called CPython) is Python implemented
in the C language. You also have Jython, which is Python written in Java. You can
also find IronPython, which is Python for the .NET environment, and even a self-
hosted Python implementation (Python written in Python, called PyPy).

Reflective programming simply means that the distinction of capabilities be-
tween compile time and run time is blurred (activities usually restricted to compile
time can be performed at run time). A classic example of this is Lisp where program
and data can be intermixed (program treated as data, and data treated as program).

Strong typing is unfortunately an overused term, and its definition can vary de-
pending upon how it’s used. Strong typing in this context (language design) simply
means that a type system exists and rules exist for the way types are used and inter-
mixed. For example, it should not be possible to take the square root of a string
(though simple arithmetic operations are applied to strings successfully, such as
string addition for concatenation). Certain languages have no typing (such as
Forth, which requires the programmer to explicitly know how to treat a memory
object). Other languages require all variables to have a type with casting to convert
between types. Other languages do not support type conversion without working
around the language (such as Ada and unchecked conversion).

Python does not enforce static typing, but is instead dynamically typed. This
means that the particular type of a variable might not be known until it is used in
execution (through the context of its use).

QUICK PYTHON EXAMPLES

One of the most interesting aspects of Python programming is that code is very
readable and intuitive. Python can be used for script execution and also as an
 interactive interpreter. This allows you to experiment with the language and see
 immediate results from your input.

You can start with the simplest example, the classic “hello world” program (see
Listing 27.1). Python is started without a script, so it begins in interactive mode.
Note here that the lines that begin with >>> and ... are Python prompts and indi-
cate user input into Python. Everything else is Python output. The >>> is the stan-
dard Python prompt and ... is the continuation prompt. In this example, you
declare your function using the def keyword (short for define). This is followed by
the function name and an optional list of arguments (in this case, none). All state-
ments that follow the : are executed as the function. Only one statement follows,
which uses the print statement to emit the message. Invoking the new function is
then done by simply referencing it.

LISTING 27.1 The Hello World Program with Python

mtj@camus:~$ python

Python 2.5.1 (r251:54863, Nov 4 2007, 12:38:30)

[GCC 4.0.3 (Ubuntu 4.0.3-1ubuntu5)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> def helloworld():

... print "Hello World"

...

522 GNU/Linux Application Programming

>>> helloworld()

Hello World

>>>

One thing that’s probably obvious in this example is the lack of an “end” state-
ment. Python uses indentation to determine what is contained in a block. This can
be a little confusing, but because most programs are written with indentation for
readability, Python uses this to determine which code belongs to which block.

In Listing 27.1, you saw how to create a simple function, but now take a look at
an example with arguments (see Listing 27.2). Here you define a method called
circle_area that computes the area of a circle given its radius. You first import the
math module (which binds the module into the local namespace, making its con-
tents available). You then define your function with a single input argument that
does not have an associated type. Its type is derived later when it’s used in a float-
ing-point operation. The area variable is calculated and then returned.

LISTING 27.2 Creating a Method (Function) with Python

>>> import math

>>> def circle_area(r):

... area = math.pi * r * r

... return area

...

>>> circle_area(5)

78.539816339744831

>>>

Now take a look at a simple example of Python’s form of object-oriented
 programming. A class is defined using the class keyword, which is followed by the
name of the class—for example, Dog. Within the class you can define the class ob-
jects. For example, in Listing 27.3, you create a single method called my_sound. The
method includes a single statement that prints the sound that this animal makes.
After the class is defined you instantiate a new instance of the class. Note here that
you use the class object like a function (as a class instantiation can include argu-
ments). After the new instance is created, you invoke the my_sound method through
the instance to achieve the obvious result.

LISTING 27.3 A Simple Class Example in Python

>>> class Dog:

... def my_sound(self):

... print "bark"

Chapter 27 Scripting with Python 523

...

>>> zoe = Dog()

>>> zoe.my_sound()

bark

>>>

As a final example, it’s time to take a quick look at functional programming in
Python. One of the most basic concepts in functional programming is the map
 operation. The map operation works by applying a function to a list and returning a
new list (recall that functional languages like Lisp and Scheme are very list-
 oriented). The map operation can be performed outside of the functional style, but
use of the map function results in very clean and readable code.

The map function is demonstrated in Listing 27.4. The map function takes two
arguments, a function and a list. In this example, you create a new function that
simply returns the square of its argument to represent your function. Then you cre-
ate a simple list. Finally, the map function is used to iterate the list using the provided
function. The result is a new list.

LISTING 27.4 Using the map Function to Iterate a List

>>> def square(x):

... return x*x

...

>>> x = [1, 2, 3, 4, 5]

>>> map(square, x)

[1, 4, 9, 16, 25]

>>>

Note here how the map function results in very clean code that is simple and
readable. You could implement this using an iterator as well, as shown in Listing
27.5. In this example, you create an empty list and then iterate the original list
using the for keyword. For each item in x, you append the square of that item to the
new list n. The result is the same, albeit a bit involved than before.

LISTING 27.5 Emulating the map Function Through Iteration

>>> n = []

>>> for y in x:

... n.append(square(y))

...

>>> print n

[1, 4, 9, 16, 25]

>>>

524 GNU/Linux Application Programming

Chapter 27 Scripting with Python 525

Later in this chapter, you’ll look at some of the other functional capabilities of
the Python language, including lambda functions, reduce and filter.

You can download the latest version of Python from the Python website at
http://www.python.org. This book uses version 2.5.1 of the Python interpreter. The
Python website also includes a large number of tutorials and extensive documen-
tation as well as audio/visual resources to help bring you up to speed.

LANGUAGE ELEMENTS

Python is a hugely popular language, and for good reason. This section explores the
Python language to see why it’s so readable, easy to use, and popular.

TYPES AND VARIABLES

Python includes a number of built-in types, some of which you’re probably famil-
iar with and some you might not be. Python includes four basic numeric types: int,
long, float, and complex. These are demonstrated in Listing 27.6, including the use
of the type function to determine the type of an object at run time.

LISTING 27.6 Basic Numeric Types in Python

>>> a = 1

>>> lo = 98237498723498234234987234987234

>>> f = 3.14159

>>> c = complex(1, -1)

>>> type(a)

<type 'int'>

>>> type(lo)

<type 'long'>

>>> type(f)

<type 'float'>

>>> type(c)

<type 'complex'>

>>>

In addition to the basic types, Python also supports a number of aggregate
types such as strings, lists, and tuples (see Listing 27.7). These types are also called
container types. The string represents a list of characters and can be delimited with
either the single quote (') or double-quote (") character. A string is an immutable
object that can’t be changed after it is created. A list on the other hand is a mutable

http://www.python.org

object. This means that you can add or remove items from the list without having
to create a new list.

A tuple is another immutable type that contains a number of objects. You can
think of a tuple as a kind of structure that contains a mixture of types. As shown in
Listing 27.7, you can address a tuple and its individual elements.

LISTING 27.7 The Python Sequence Types

>>> s = 'my string'

>>> l = [1, 2, [3.1, 3.2], 4, 5, [6.1, 6.2, 6.3]]

>>> tp = ("Tim", 42, "Jill", 40)

>>> type(s)

<type 'str'>

>>> type(l)

<type 'list'>

>>> type(tp)

<type 'tuple'>

>>> type(tp[0])

<type 'str'>

>>> type(tp[1])

<type 'int'>

>>>

Finally, types are not specific to variables; all objects in Python have a type. For
example, if you declare a function, that function has the type 'function'. A class is
of type 'classobj' and a method within a class is a type 'instancemethod'. Finally,
an instance of a class is of type 'instance'. These are demonstrated in Listing 27.8.

LISTING 27.8 Types of other Objects in Python.

>>> def square(x):

... return x*x

...

>>> type(square)

<type 'function'>

>>> class dog:

... def func():

... return 0

...

>>>

>>> type(dog)

<type 'classobj'>

>>> type(dog.func)

526 GNU/Linux Application Programming

<type 'instancemethod'>

>>> zoe = dog()

>>> type(zoe)

<type 'instance'>

>>>

Every object in Python has an associated type and does not change after the
 object has been created. An object’s value might change (as indicated by its type),
but never the type of object itself. The type of the object determines which methods
can be applied to it. The coming sections explore some of these methods as they
apply to particular objects.

CONTROL

Python supports the standard if conditional. This operates the same way you’d ex-
pect, but has a variation between the else and else-if variant. Instead of 'else if',
Python instead uses elif (see Listing 27.9).

LISTING 27.9 Using the if Conditional in Python

>>> mode = "test"

>>> if mode == "test":

... print "in the test mode"

... else:

... print "not in the test mode"

...

in the test mode

>>>

The use of elif is shown in Listing 27.10. This is simply the 'else if' variant
and can be chained for any number of tests. In this case, you have two tests, and
then an else (the default case).

LISTING 27.10 Use of else-if to Chain Conditionals Together

>>> mode = "run"

>>> if mode == "test":

... print "test mode"

... elif mode == "run":

... print "run mode"

... else:

... print "unknown"

...

Chapter 27 Scripting with Python 527

run mode

>>>

ITERATION

Python provides a number of constructs for iteration, including while and for, and
a few others that exploit unique Python types. The while loop has the standard
structure of a condition followed by a block of statements (see Listing 27.11). Two
options are shown here, the first using a condition and the other demonstrating an
infinite loop. Within this example, the break statement is used to control termina-
tion of the loop.

LISTING 27.11 Python while Loop Examples

>>> i = 0

>>> while i < 10:

... i = i + 1

>>>

>>> while 1:

... i = i - 1

... if i == 0: break

The for loop uses the standard convention, iterating over a range. But Python
provides some interesting variants of this using the range type and list. Listing 27.12
demonstrates a few useful forms of the for loop. Note that these two examples are
identical, each iterates through the range 0 through 9. The first example uses a
range, which for a range (x,y) means the values from x to y – 1.

LISTING 27.12 Python for Loop Examples

>>> for i in range(0,10):

... print i

...

** prints 0 – 9

>>> for i in (0, 1, 2, 3, 4, 5, 6, 7, 8, 9):

... print i

...

** prints 0 - 9

The next variation uses a sequence. A sequence can be a string, list, or tuple,
and Python correctly iterates through it. Listing 27.13 iterates through a tuple and
emits the types of each element as they are encountered using the type function.

528 GNU/Linux Application Programming

LISTING 27.13 Python for Loop Example with a Tuple

>>> tp = ("Megan", 15, "Elise", 11, "Marc", 8)

>>> for v in tp:

... print type(v)

...

<type 'str'>

<type 'int'>

<type 'str'>

<type 'int’>

<type 'str’>

<type ‘int’>

>>>

One final looping construct that should be considered is the map function (List-
ing 27.14). The result of map is a list that contains the elements emitted within the
for loop of Listing 27.13. Listing 27.14 contains two examples that are identical.
One uses the map function and the other uses a for loop to construct the same list.

LISTING 27.14 Comparing the map Function with a Comparable for Loop

>>> m = map(type, tp)

>>> print m

[<type 'str'>, <type 'int'>, <type ‘str’>, <type 'int'>, <type 'str’>,

<type 'int’>]

>>>

>>> l = []

>>> for v in tp:

... l.append(type(v))

...

>>> print l

[<type 'str'>, <type 'int'>, <type 'str'>, <type ‘int’>, <type 'str'>,

<type 'int'>]

>>>

STRING HANDLING IN PYTHON

Like most high-level scripting languages, Python has a very large library of
 operations that can be performed on strings. These built-in operations tend to
be very useful and are one of the main reasons that Python is so important in text-
 processing applications. Recall that strings are immutable objects, which means
that after they are created they cannot be modified. Instead, if a string is to be
 modified, a new string is returned instead. This results in greater higher memory
utilization and eventual garbage collection, so it’s something to consider.

Chapter 27 Scripting with Python 529

Garbage collection is the periodic collection of unused objects and returning of
their memory to the heap. Garbage collection is a good thing, but when a large
number of objects need to be reaped, it can result in choppy execution. For example,
if you are reaping a small number of objects, only a small amount of time is neces-
sary. But if you are reaping a large number of objects, then it can take significant
time. You can control this process through the garbage collector interface, which is
reviewed later in this chapter.

One of the most basic string operations is string length (see Listing 27.15). The
len function takes the string as its argument and returns the length of the string (the
number of characters within the string). The count method can be used to count the
number and letter sequences within a string. Note the difference between these
two usages. The len function operates on the string whereas the count method is
provided through the string object. In the latter case, you specify the object and
method to invoke that object. Another useful approach is used to find a substring
within another string. The result is the starting character position of that substring.
You can also replace a substring with another substring using the replace method.
This method takes the search string and replacement string and returns a new
transformed string.

LISTING 27.15 Exploring Python String Functions

>>> st = "This is a test string"

>>> len(st)

21

>>> st.count('is')

2

>>> st.find('test')

10

>>> st.replace('test', 'new')

'This is a new string'

>>>

Where Python is really useful is in parsing applications. Python makes it easy
to break a string down into its representative parts (into a list) that can then be
 further manipulated. The split method is used to create a list of the elements of a
string. The list can then be manipulated normally, as shown in Listing 27.16, as an
iterator. In this example, you iterate through the list spstr, capitalize each word
with the capitalize method, and then create the new list l. This list is turned back
into a string with the join method. Note here that join is applied to a string, which
serves as the delimiter. Each string in the list is joined with the delimiter (separat-
ing each string), and the result is a new string.

530 GNU/Linux Application Programming

LISTING 27.16 Python String Parsing Functions.

>>> spstr = st.split()

>>> print spstr

['This', 'is', 'a', 'test', 'string']

>>> l = []

>>> for i in spstr:

... l.append(i.capitalize())

...

>>> print l

['This', 'Is', 'A', 'Test', 'String']

>>> jstr = " ".join(l)

>>> print jstr

This Is A Test String

>>>

ASSOCIATIVE ARRAYS

Python includes built-in support for associative arrays, what in Python is called a
dictionary. The dictionary is a way to retrieve information based upon not an index
but instead by key. A dictionary is made up of key/value pairs; given the key, the
value is returned. This is similar to an array, where given an array offset, a value is
returned. But in this case, the key might be a value or a string. An example of a
Python dictionary is provided in Listing 27.17.

LISTING 27.17 Creating and Using a Python Dictionary

>>> spouse = {"Tim":"Jill", "Bud":"Celeta", "Ernie":"Lila"}

>>> spouse["Tim"]

'Jill'

>>> spouse["Ed"] = "Maria"

>>> spouse

{'Tim': 'Jill', 'Ernie': 'Lila', 'Bud': 'Celeta', 'Ed': 'Maria'}

>>> del spouse["Tim"]

>>> spouse

{'Ernie': 'Lila', 'Bud': 'Celeta', 'Ed': 'Maria'}

>>>

In this example, you create a dictionary of spouses where the key is a string and
the value is another string. The dictionary is defined as the key/value pairs delim-
ited by a colon. After the spouse dictionary is created, you can treat it just like an
array where the key is used as in the index (for example, spouse["Tim"]). Again, just
like an array, you can add new elements to a dictionary by setting a new key with a
new value. Finally, you can remove elements of a dictionary using the del function.

Chapter 27 Scripting with Python 531

With del, you specify the dictionary and key, and the result is a dictionary without
that key/value pair.

CLASSES AND METHODS

As Python supports object-oriented programming, classes are an integral part of
program definition. In Python you can use existing classes, define your own classes,
and also inherit from existing classes.

You can start with a simple class, and then move on to more complicated
 examples. All classes are defined with the class keyword (see Listing 27.18). Follow-
ing this is the name of the class, which is typically capitalized. Within the class you de-
fine two methods. The first is a special method that serves as a constructor called
__init__. This special method is invoked when a new class object is instantiated. It ac-
cepts two arguments, though only one is visible to the user. The self represents the
instance of data for the particular class. This is discussed shortly.

In this constructor, you allow a string to be passed that represents the sound
that the class instance makes when invoked. If the sound parameter is an empty
string, then the default sound is used. Otherwise, the sound instance variable is
copied from the user. Another method exists to emit the sound, which is called
my_sound. This method simply prints the sound that was initialized during the
 object creation (constructor) process.

LISTING 27.18 A Simple Python Class Example

class Dog:

def __init__(self, sound):

if sound != "":

self.sound = sound

else:

self.sound = "bark"

def my_sound(self):

print self.sound

Now that you’ve reviewed the class, you can return to the self parameter. Re-
call that a class can be instantiated into a new object, and that object has its own data
but shares the methods with all other instances of this class. The self represents the
instance data, which is unique to each instance, though the methods might not be
unique. This is why the first parameter to each method is self. You don’t actually
pass in self; it’s your instance of that object and is managed internally.

Creating new instances of the Dog class is illustrated in Listing 27.19. Creating a
new instance looks similar to calling a function (of the class name). The result is an

532 GNU/Linux Application Programming

Chapter 27 Scripting with Python 533

object instance for the class with its own instance data (represented internally by
self). Note here that when my_sound is invoked, self is implied as passed (as asso-
ciated with the particular instance, such as zoe). Another way to think about the
zoe.my_sound() call is my_sound(zoe).

LISTING 27.19 Instantiating New Instances of the Dog Class

>>> zoe = Dog("woof")

>>> zoe.my_sound()

woof

>>> maddie = Dog("")

>>> maddie.my_sound()

bark

>>>

Now take a look at an example of multiple inheritances in Python. You can
have a class with multiple base classes or a class with a single inherited base class (as
is going to be demonstrated here). In this example, you have a class called Thing
that inherits the class Size. Class Size inherits class Color, and class Color inherits
class Shape. Each includes instance variables and their own set of class methods.
This hierarchy is shown in Figure 27.1.

FIGURE 27.1 A Graphical View of the Listing 27.20

Note in Listing 27.20 the use of the named __init__ calls. In the constructors,
the __init__ function of its base class is called by name. This allows the specific in-
herited class’s __init__ function to be called directly. Finally, within the Thing class,
you provide two helper functions that are used to return a list and tuple represen-
tation of the class’s data.

LISTING 27.20 Demonstrating Python’s Multiple Inheritance

class Shape:

def __init__(self, shape):

self.shape = shape

def get_shape(self):

return self.shape

class Color(Shape):

def __init__(self, color, shape):

Shape.__init__(self, shape)

self.color = color

def get_color(self):

return self.color

class Size(Color):

def __init__(self, size, color, shape):

Color.__init__(self, color, shape)

self.size = size

def get_size(self):

return self.size

class Thing(Size):

def __init__(self, size, color, shape):

Size.__init__(self, size, color, shape)

534 GNU/Linux Application Programming

def thing_tuple(self):

return (self.get_size(), self.get_color(),

self.get_shape())

def thing_list(self):

return [self.get_size(), self.get_color(),

self.get_shape()]

The use of multiple inheritances is not without its issues, but in certain cases it
can be useful. Avoiding name conflicts is one of the issues to be careful of, but with
proper naming conventions, this can be easily avoided.

ADVANCED FEATURES

Now it’s time to explore some of the advanced features of Python that set it apart
from other languages. This section reviews Python’s dynamic code, functional pro-
gramming, exception management, and a few other features.

DYNAMIC CODE

The ability to treat code as data and data as code is one of the most striking aspects
of dynamic languages. In functional languages this is called a higher order function
(take a function as input, or present a function as output). Listing 27.21 demon-
strates this capability in Python. First, you create a function that simply returns a
square of a number. This is demonstrated next, by summing two squares. Next, you
create a list that contains elements of code (summing two squares). This is joined
to create a string and then passed to eval to evaluate the new string as code. As
demonstrated, you can dynamically create new code and then execute it within the
context of Python program.

LISTING 27.21 Higher Order Functions in Python

>>> def square(x):

... return x*x

...

>>> square(5)+square(7)

74

>>> l = ['square', '(5)', '+', 'square', '(7)']

>>> mycode = "".join(l)

>>> print l

['square', '(5)', '+', 'square', '(7)']

>>> print mycode

Chapter 27 Scripting with Python 535

square(5)+square(7)

>>> eval(mycode)

74

>>>

FUNCTIONAL PROGRAMMING

In the last section, you explored higher order functions in Python, one of its many
functional programming paradigms. Even earlier in this chapter, you looked at the
map operation as a way to simplify and build more readable programs. This section
now explores some of the other functional elements of Python.

Recall that the map function allows you to apply a user-defined function to each
element of a list, providing an iterator with much greater readability. The map
 function results in a new list of the return values. Another iterating function that
operates over a list is reduce. The difference is that whereas map and reduce operate
over a list, reduce consumes the element of the list until its empty. An example is
shown in Listing 27.22. This example results in a series of multiplications between
each element of the list. The range results in a list consisting of [1, 2, 3, 4], which
when multiplied (1*2*3*4) results in 24.

LISTING 27.22 Using the reduce Function for List Computation

>>> def mul(x,y):

... return x*y

...

>>> reduce(mul, range(1,5))

24

>>>

Python also includes an important aspect of functional programming called
lambda functions. lambda functions are anonymous functions that are created at
run time through the lambda construct. Take a look at an example of a creating and
using a lambda function in Python (see Listing 27.23).

LISTING 27.23 Creating and Using a lambda Function

>>> g = lambda x: x*x

>>> g(7)

49

>>>

536 GNU/Linux Application Programming

This example looks very similar to creating a function, but these functions
can be treated differently from standard Python functions. Take a look now at an
example of creating dynamic functions with lambda. The example shown in Listing
27.24 creates a new function at run time based upon an argument. Here you create a
multiplier function at run time that’s tailored at run time. The construct_multiplier
function actually returns a lambda function based upon the argument defined by the
user. This new function is then used to create two dynamic functions with different
multipliers.

LISTING 27.24 Creating Dynamic Functions with lambda

>>> def construct_multiplier(x): return lambda n: x*n

...

>>> mulby2 = construct_multiplier(2)

>>> mulby7 = construct_multiplier(7)

>>>

>>> print mulby2(10)

20

>>> print mulby7(4)

28

>>>

EXCEPTION HANDLING

Python includes a rich exception handling mechanism that allows you to handle
run-time errors or special conditions in your applications. This is similar to excep-
tion handling in other languages, where a try clause surrounds the block of code to
check and an except clause provides the error-handling code.

try:

…block of code to check…

except:

…error handling…

Now take a look at a concrete example. Listing 27.25 demonstrates a simple
 example of exception handling. In this case, you create a function to create a list
from a string and return the list. But if the argument passed to the function is not
a string, you need to handle this rather than simply raising an exception (which is
explored shortly). If something other than a list is provided, you simply return an
empty list.

Chapter 27 Scripting with Python 537

LISTING 27.25 Handling Exceptions with try/except

>>> def str2list(str):

... try:

... return str.split()

... except:

... return []

...

>>> print str2list("this is a test string")

['this', 'is', 'a', 'test', 'string']

>>> print str2list(50.19)

[]

>>>

The only problem with this kind of solution is that you hide the error from the
caller. This can be useful in many cases, but in others, it’s necessary to notify the
caller of the issue so that it can deal with it in the way it needs. In this case, you re-
move the exception handling from the str2list function and instead move it to the
caller (as shown in Listing 27.26).

LISTING 27.26 Handling Named Exceptions

>>> def str2list(str):

... return str.split()

...

>>> try:

... print str2list(5)

... except AttributeError:

... print "caught attribute error"

...

caught attribute error

>>>

In this case, you move the exception handling code from the function out to
the calling code and also update it to handle a specific exception. Within the except
clause, you define the specific error that is to be handled (in this case, you know that
if an integer is passed, an AttributeError results). This allows the caller to handle
the issue in whichever way the caller determines. A list of exceptions can be
provided in parenthesis, if multiple exceptions are to be handled by a single except
clause. A user can also raise existing or new exceptions with the raise statement.

Python also allows the creation of new exceptions (which are classes in them-
selves). A list of the standard exceptions is provided in Table 27.2.

538 GNU/Linux Application Programming

Chapter 27 Scripting with Python 539

SUMMARY

Hopefully this short review has provided a sample of Python’s strengths and why
it’s one of the most popular scripting languages available today. With Python’s
built-ins and massive standard library, it’s easy to build simple programs that
accomplish amazing things in code on an order of magnitude smaller than other
high-level languages. Python is yet another object-oriented scripting language in an
already crowded scripting space, but it is well worth your time to learn and use.

RESOURCES

Python Programming Language—Official Web site at http://www.python.org/.
Wikipedia Python Programming Language at http://en.wikipedia.org/wiki/

Python_(programming_language).
Python online documentation at http://docs.python.org/.

Python Exception Meaning

ArithmeticError Indicates overflow, zero division, floating-point error

AssertionError Raised when an assert fails

AttributeError Object does not support attribute references

MemoryError Operation runs out of memory

NameError Local or global variable not found in namespace

SystemError Internal interpreter error

TABLE 27.2 Typical Exceptions in Python (Incomplete)

http://www.python.org/
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Python_(programming_language)
http://docs.python.org/

This page intentionally left blank

541

GNU/Linux Administration
Basics

28

INTRODUCTION

This chapter explores GNU/Linux system administration from the developer’s per-
spective. This means that topics such as basic configuration, user management,
and so forth, are not covered. Instead, the chapter explores navigating the Linux
filesystem, package management, kernel management, and other topics.

NAVIGATING THE LINUX FILESYSTEM

With so many UNIX and Linux distributions it’s easy for them to become forked
and therefore incompatible. One of the main areas where incompatibility can result
is with the filesystem (its structure and where things are stored). Luckily, the
Filesystem Hierarchy Standard (FHS) was created to address this problem (not
only for the large number of Linux distributions, but also for BSD and other UNIX-
like operating systems). You can find more information about the FHS at its home
http://www.pathname.com/fhs/.

The FHS defines which subdirectories appear in the root (/) filesystem and
what their contents should be (see Table 28.1).

In This Chapter

Navigating the Linux Filesystem
Managing Packages in GNU/Linux
Managing Your Kernel

http://www.pathname.com/fhs/

The FHS goes into greater detail, but this first-level introduction provides some
perspective on the contents of the root filesystem. The standard actually delves into
considerable detail regarding the location of files, including the rationale, and is
therefore useful to peruse.

PACKAGE MANAGEMENT

Package management is the process by which software packages are maintained
(installed, upgraded, or uninstalled). Software packages are commonly distributed
within a single file (for simplicity) but can result in many files installed in numer-
ous places within a system. The package includes not only the software itself
(in source or binary form) but also automated instructions on how and where to
install the package.

This section explores some of the package management possibilities, starting
with the most basic.

542 GNU/Linux Application Programming

Directory Purpose

/ Primary root hierarchy (for the entire root filesystem)

/bin Primary commands used in single-user mode

/sbin System binaries

/dev Devices files (user-space to kernel links)

/etc System-wide configuration files

/home Home directories for local users

/lib Libraries needed for binaries in /bin and /sbin

/mnt Directories for temporary mounted filesystems

/opt Directory for optional software packages

/proc Virtual filesystem (kernel status and user-space process status)

/tmp Directory for temporary files

/usr User-dependent hierarchy (/usr/bin, /usr/sbin, /usr/include,

and so on)

/var Variable files (such as mail and print spools, e-mail, logs, and so on)

TABLE 28.1 Standard Subdirectories of the FHS

TARBALL DISTRIBUTION

The most common and platform-independent way to distribute software packages
is through a compressed tarball. A tarball is a file format that is created and ma-
nipulated using the tar command. The tarball typically requires a bit more work,
but is so common that it’s useful to understand.

The tar command’s name comes from its initial use as a format for tape backup.
The name itself is derived from “tape archive” but is standardized under the
POSIX umbrella. The tar utility retains its heritage from its old tape usage days.
For example, access (like a tape) is sequential. Using tar, if the last file is to be
 extracted, the entire archive is scanned to get to that file (just as it would in the case
of tape hardware).

Many software packages are distributed as tarballs because tarballs are univer-
sally understood and compress to a manageable size for storage and transfer. Dis-
tributing software using a tarball typically implies a set of other tools (such as
automake, autoconf, configure, and so on), which are described in Chapter 8,
“Building Packages with automak/autoconf.”

Tarballs typically follow a standard naming convention so it’s simple to know how
a file was constructed. A standard tarball is named file.tar, which indicates an
uncompressed tarball. If the tarball is compressed, it is named file.tar.gz for gzip
compression and file.tar.bz2 for bzip2 compression. As you see later in the
 chapter, tarballs can be automatically compressed or decompressed through the
tar command.

After a tarball is downloaded, a common place to manipulate it is in
/usr/local/src. Recall that this location stores local data that is specific to this
host. If the tarball is to be removed after its software package is installed, then a
 better place is /tmp. This location is ideal because it is routinely and automatically
purged. But it’s sometimes desirable to keep the source around, so in this example,
the former directory is used. Next (see Listing 28.1), the particular tarball to be
 installed is downloaded (in this example, the latest version of Ruby is used for
demonstration purposes).

With the compressed Ruby tarball, you invoke tar on the tarball with three op-
tions. The first option x indicates that you’re extracting an archive (instead of using
c to create one). Next, you specify that a filename follows on the command line (not
using STDIN). Finally, you specify z to indicate that it’s a gzip-compressed archive
and to gunzip the tarball automatically. The result is a new directory (in this case
ruby-1.8.6-p111), which contains the source to the Ruby object-oriented scripting
language.

Chapter 28 GNU/Linux Administration Basics 543

LISTING 28.1 Downloading the Tarball to the Working Directory

root@camus:~# cd /usr/local/src

root@camus:/usr/local/src# wget http://xyz.lcs.mit.edu/ruby/

ruby-1.8.6-p111.tar.gz

—18:35:21— http://xyz.lcs.mit.edu/ruby/ruby-1.8.6-p111.tar.gz

=> `ruby-1.8.6-p111.tar.gz'

...

Length: 4,547,579 (4.3M) [application/x-tar]

18:35:41 (218.60 KB/s) - `ruby-1.8.6-p111.tar.gz' saved

[4547579/4547579]

root@camus:/usr/local/src# tar xfz ruby-1.8.6-p111.tar.gz

root@camus:/usr/local/src#

The next step is to build the source to your package, so you descend into the
packages subdirectory. If the subdirectory contains a Makefile (which is the make
specification for the make utility), then you typically just need to type make to build
the source. If Makefile is not present, then you need to go through the configura-
tion process. This process automatically creates the Makefile to build the source.
This process is necessary because systems can differ in a number of ways. Tools, for
example, can be stored in different places. You might be running a different shell
than is expected. A compiler might not support the prerequisites of the package,
or prerequisite packages might not exist (requiring a download of additional
modules). The configure process automatically checks your system and builds the
Makefile appropriately.

The remainder of the process is then quite simple (see Listing 28.2). First, run
the configure script that’s present in the working directory (where the source was
just installed). Next, type make to build the source. The configure script can also be
used to provide instructions for the configuration—for example, where to install,
which options to enable, and so on. You can usually see a list of the available op-
tions by typing ./configure –help.

LISTING 28.2 The configure and make Process

root@camus:/usr/local/src/ruby-1.8.6-p111# ./configure

checking build system type... i686-pc-linux-gnu

checking host system type... i686-pc-linux-gnu

checking target system type... i686-pc-linux-gnu

checking for gcc... gcc

checking for C compiler default output file name... a.out

checking whether the C compiler works... yes

544 GNU/Linux Application Programming

checking whether we are cross compiling... no

...

creating config.h

configure: creating ./config.status

config.status: creating Makefile

root@camus:/usr/local/src/ruby-1.8.6-p111#

root@camus:/usr/local/src/ruby-1.8.6-p111# make

gcc -g -O2 -DRUBY_EXPORT -D_GNU_SOURCE=1 -I. -I. -c array.c

gcc -g -O2 -DRUBY_EXPORT -D_GNU_SOURCE=1 -I. -I. -c bignum.c

...

make[1]: Leaving directory `/usr/local/src/ruby-1.8.6-p111/ext/zlib'

making ruby

make[1]: Entering directory `/usr/local/src/ruby-1.8.6-p111'

gcc -g -O2 -DRUBY_EXPORT -D_GNU_SOURCE=1 -L. -rdynamic -Wl,-export-

dynamic main.o -lruby-static -ldl -lcrypt -lm -o ruby

make[1]: Leaving directory `/usr/local/src/ruby-1.8.6-p111'

root@camus:/usr/local/src/ruby-1.8.6-p111#

Finally (see Listing 28.3), type make install to install the resulting images to
their respective locations (as indicated in the Makefile and defined through config-
ure). Other make options like install (which are rules within the Makefile) are
usually available, including options such as test to run a configured test on the
 resulting image or clean to remove the built objects. To fully clean the distribution
directory, dist-clean is typically included.

LISTING 28.3 The Final Installation Process

root@camus:/usr/local/src/ruby-1.8.6-p111# make install

./miniruby ./instruby.rb —dest-dir="" —extout=".ext" —make="make" —

mflags="" —make-flags="" —installed-list .installed.list —mantype="doc"

installing binary commands

installing command scripts

installing library scripts

installing headers

installing manpages

installing extension objects

installing extension scripts

root@camus:/usr/local/src/ruby-1.8.6-p111# ruby —version

ruby 1.8.6 (2007-09-24 patchlevel 111) [i686-linux]

root@camus:/usr/local/src/ruby-1.8.6-p111#

At this point, the Ruby interpreter and associated tools have been installed and
are available for use. While this process was relatively simple, it can be considerably

Chapter 28 GNU/Linux Administration Basics 545

546 GNU/Linux Application Programming

more complex if you system does not have the prerequisite resources (such as
 libraries or other packages necessary to complete the build and installation). The
advantage to this approach is that it works in almost all cases and allows you to
 tailor the package to your specific needs.

But when this process goes badly, it can go very, very badly. For example, say
the package you want to install has a dependency on a set of other packages. Each
of these dependencies has its own set of dependencies. This can happen in practice,
so there must be another way. Luckily, you have multiple ways in the form of
 package management systems.

ADVANCED PACKAGE TOOL

At the other end of the package management spectrum is the advanced package
tool, or Apt. Apt, which is used in the Ubuntu Linux distribution, is actually a front
end for the dpkg package manager that originated in the Debian Linux distribution.
Apt is a set of simple utilities that automates the secure retrieval, configuration, and
installation of software packages.

Apt consists of a number of utilities under the apt prefix (as well as a more
curses-based implementation that’s a bit simpler to use). This section explores the
basic apt- commands and then reviews the curses-based aptitude.

The apt-get command is the basic apt package handling utility. It serves a
number of needs, such as installing new packages, upgrading packages, and even
upgrading an entire system with the latest versions of installed packages. Table 28.2
lists some of the important functions of the apt-get utility.

apt-get Command Description

update Resynchronize the package index files from the repository.

upgrade Install the newest versions of all packages currently installed.

dist-upgrade Install newest versions as well as handle changing

dependencies of the packages.

install Install one or more new packages.

remove Remove one or more installed packages.

source Have apt retrieve source packages.

check Update the package index files and check dependencies.

autoclean Remove retrieved packages that are out of date.

TABLE 28.2 Commands for the apt-get Utility

A special file called /etc/apt/sources.list maintains the list of servers that are
used for package synchronization. These servers keep track of packages, versions,
dependencies, and availability. The local cache can be used with another utility
called apt-cache to find packages that offer a particular feature. You can start with
an example of finding a package with apt-cache and then install it with apt-get.

Say that you want to install the very useful embeddable scripting language Lua.
The Lua language is a simple and extensible language that was designed to be em-
bedded into other systems (such as games) to extend them in various ways. It’s an
interesting language, so it’s useful to have it available. You start by using apt-cache
with the search command to find all packages that have the feature lua (see Listing
28.4).

LISTING 28.4 Finding a Package with apt-cache

root@camus:~# apt-cache search lua

autogen - an automated text file generator

eperl - Embedded Perl 5 Language

example-content - Ubuntu example content

exuberant-ctags - build tag file indexes of source code definitions

...

libtolua-dev - Tool to integrate C/C++ code with Lua - development files

libtolua0 - Tool to integrate C/C++ code with Lua - runtime libraries

lighttpd-mod-cml - Cache meta language module for lighttpd

lua-mode - Emacs mode for editing Lua programs

lua40 - Small embeddable language with simple procedural syntax

lua40-doc - Documentation for the Lua 4.0 programming language

lua5.1 - Simple, extensible, embeddable programming language

lua5.1-doc - Simple, extensible, embeddable programming language

luasocket - TCP/UDP socket library for Lua 5.0

luasocket-dev - TCP/UDP socket library for Lua 5.0

As you can see from this example, apt-cache finds many packages with lua in
the name (in actual fact, over 60 were found). But you can see at the end that the
package you want is lua5.1, so you want to install this using apt-get. You use the
install command to apt-get and specify the particular package that you want to
install, as shown in Listing 28.5.

LISTING 28.5 Installing a New Package with apt-get

root@camus:~# apt-get install lua5.1

Reading package lists... Done

Building dependency tree... Done

Chapter 28 GNU/Linux Administration Basics 547

The following NEW packages will be installed:

lua5.1

0 upgraded, 1 newly installed, 0 to remove and 58 not upgraded.

Need to get 112kB of archives.

After unpacking 283kB of additional disk space will be used.

Get:1 http://us.archive.ubuntu.com dapper/universe lua5.1 5.1-1 [112kB]

Fetched 112kB in 1s (69.6kB/s)

Selecting previously deselected package lua5.1.

(Reading database ... 33053 files and directories currently installed.)

Unpacking lua5.1 (from .../archives/lua5.1_5.1-1_i386.deb) ...

Setting up lua5.1 (5.1-1) ...

root@camus:~# lua

Lua 5.1 Copyright (C) 1994-2006 Lua.org, PUC-Rio

>

As can be seen from Listing 28.5, the package list and dependency tree are read,
and the package to be installed is found. The apt-get utility determines the size of
the archive (what’s going to be downloaded) and also how much room is required
for the install. Then the package is downloaded, unpacked, and installed. In the
end, the lua interpreter is executed to demonstrate the completed process.

If Lua has any dependencies that are not satisfied on the system, those packages
are also downloaded and installed to ensure that the required package is complete.

Now to the real strength of apt: It also includes the ability to remove packages.
This is something that’s not possible with the old fashioned install process, but
 because apt keeps track of what is installed for a package, it can use this informa-
tion to remove what was installed. Listing 28.6 demonstrates removing a package
with apt-get.

LISTING 28.6 Removing an Installed Package with apt

root@camus:/home/mtj# apt-get remove lua5.1

Reading package lists... Done

Building dependency tree... Done

The following packages will be REMOVED:

lua5.1

0 upgraded, 0 newly installed, 1 to remove and 58 not upgraded.

Need to get 0B of archives.

After unpacking 283kB disk space will be freed.

Do you want to continue [Y/n]? Y

(Reading database ... 33060 files and directories currently installed.)

Removing lua5.1 ...

root@camus:/home/mtj#

548 GNU/Linux Application Programming

Chapter 28 GNU/Linux Administration Basics 549

Apt is but one example of the package managers available for GNU/Linux.
Some of the other useful package managers are provided in Table 28.3.

Name Description

dpkg The Debian package manager (on which apt is based)

rpm Red Hat Package Manager

yum Yellow Dog Updater

pacman Package Manager for Arch Linux

slapt Slackware Package Manager (apt-like).

TABLE 28.3 Other Useful Package Managers for GNU/Linux

The aptitude tool provides a text-oriented graphical front end to apt-get (as
shown in Figure 28.1). If you prefer this type of control, this tool is a great front end
to apt.

FIGURE 28.1 The graphical front end to apt, aptitude.

KERNEL UPGRADES

Even if you never plan on making changes to the Linux kernel, it’s worth knowing
how to configure and install a new kernel. For example, improvements to kernels
are being made all of the time, so evolving with the kernel allows you to take ad-
vantage of these evolutions. Consider the latest happenings in virtualization. Rather
than waiting for a new Linux distribution that includes these enhancements, you
can download the latest stable kernel and take advantage right away.

The other advantage is that the Linux kernel delivered in the typical Linux
 distributions was configured and built to run on virtually any of the x86-based
platforms. This means that it’s extremely versatile, but not ideal in terms of perfor-
mance. What’s desired is a kernel that’s built for the system on which it’s going to
be run. This is a great reason to learn how to configure and build the Linux kernel.

GETTING THE LATEST KERNEL

The Linux kernel archives are kept at the Kernel.org site (http://www.kernel.org).
At this site you find not only current and past kernels, but also patches and infor-
mation about the development trees and mailing lists.

Before downloading the new kernel, start by moving to the subdirectory where
the new kernel should go (/usr/src/linux). From here you download the kernel,
uncompress it with bunzip2, and untar it into a kernel tree. This process is shown
in Listing 28.7.

LISTING 28.7 Downloading and Installing the Kernel Source

[root@plato ~]# cd /usr/src

[root@plato src]#

[root@plato src]# wget http://kernel.org/pub/linux/kernel/v2.6/

linux-2.6.23.1.tar.bz2

Resolving kernel.org... 204.152.191.5, 204.152.191.37

Connecting to kernel.org[204.152.191.5]:80... connected.

…

12:31:19 (343.51 KB/s) - `linux-2.6.23.1.tar.bz2' saved

[45,477,128/45,477,128]

[root@plato src]#

[root@plato src]# bunzip2 linux-2.6.23.1.tar.bz2

[root@plato src]# tar xf linux-2.6.23.1.tar

[root@plato src]# cd linux-2.6.23.1

[root@plato linux-2.6.23.1]#

550 GNU/Linux Application Programming

http://www.kernel.org

Chapter 28 GNU/Linux Administration Basics 551

The result of Listing 28.7 is a Linux kernel source tree at /usr/src/linux-
2.6.23.1. The next step is to configure the kernel and build.

CONFIGURING THE KERNEL

Kernel configuration is a process by which you define the kernel that you want to
build. This includes the elements to include in the kernel, the drivers to build (and
those to build as modules), as well as many (many) other options. For example, you
can define the specific processor on which the kernel runs (which can be beneficial
to define for performance). This section starts with a review of some of the options
for kernel configuration.

When a kernel component is compiled into the kernel, it adds to the kernel size and
required resources. When a component is compiled as a module, it is not included
in the kernel and is loaded only when it’s needed. This means that even though
many components are defined as modules, only those used by your system are ac-
tually loaded when they’re needed. There’s also no performance benefit to keeping
a component in the kernel compared to compiling as a module. Therefore, config-
uring components as modules is clearly advantageous.

The kernel includes a number of mechanisms for configuration, each initiated
from the kernel Makefile. The oldest method (make config) is a command-line
 interface that enumerates each kernel configuration option, one at a time. This is
tedious and is rarely used these days. The second method (make menuconfig) uses a
text-mode GUI and is much faster and easier (see Figure 28.2).

FIGURE 28.2 The text-oriented GUI of make menuconfig.

The kernel source also includes a graphical configuration tool that’s based on
Trolltech’s Qt toolkit. This is a great configuration editor, but unfortunately the Qt
toolkit isn’t installed by default on all Linux systems. Therefore, if you intend to use
this, you need to download the freely available version.

After you’ve waded through the more than 2,400 options, the result is a
 configuration file called .config. This human-readable text file contains all of the
options and specifies which are enabled, which are disabled, and which are to be
compiled as modules.

BUILDING THE KERNEL

After the kernel has been configured, the next step is to build the kernel. Typing
make all builds both the kernel and kernel modules (which used to require two
steps):

[root@plato linux-2.6.23.1]# make all

If you’re curious, you can also type make help, which emits each of the available
options (from kernel configuration to kernel build and beyond). Depending upon
the number of options enabled and the speed of the build machine, the build
process can take anywhere from a short time to a very, very long time. When the
build process completes, it’s time to install the kernel and the associated kernel
modules.

Prior to beginning the kernel configuration process, you might find it’s useful to
collect some information about the target hardware environment. This can be
 accomplished in a number of ways, but two of the most important elements here
are lspci and /proc/cpuinfo. The lspci command identifies the PCI devices that
are attached to the system (helping out in the configuration of devices). The
/proc/cpuinfo file identifies the processor on which the system is running, and can
be used to build a kernel that runs efficiently on the target hardware.

INSTALLING THE KERNEL

Installing the kernel involves installing the kernel modules, compressed Linux
image, and system map file. Installing the kernel modules is performed very simply
as follows:

[root@plato linux-2.6.23.1]# make modules_install

552 GNU/Linux Application Programming

This step installs the kernel modules and associated information into /lib/
modules (into a new subdirectory of the kernel version, in this case 2.6.23.1).

Next, the kernel and system map are installed into the boot directory. This is a
special directory that is accessed during the boot process. Copying the kernel and
system map is done as follows:

[root@plato linux-2.6.23.1]# cp arch/i386/boot/bzImage /boot/

vmlinuz-2.6.23.1

[root@plato linux-2.6.23.1]# cp System.map /boot/System.map-2.6.23.1

The file bzImage is the bzip compressed kernel image (that resulted during the
early kernel build process). The System.map contains the symbol table for the new
kernel image. In other words, the System.map contains the names of all symbols
along with their addresses. This is used for kernel debugging (oops information is
resolved using data from this file). The symbol information is available dynamically
through the kernel through the /proc/kallsyms file.

Some systems require an initial ramdisk image, so it’s safe to create an initial
ramdisk image using the following command in case it’s necessary:

[root@plato linux-2.6.23.1]# mkinitrd /boot/initrd-2.6.23.1 2.6.23.1

CONFIGURING THE BOOTLOADER

The final step before testing the new kernel is to tell the bootloader about the new
kernel image. Most Linux distributions today use GRUB (GRand Unified Boot-
loader), which has taken over from the older LILO (LInux LOader). They accom-
plish the same task, but GRUB is preferable (a new and improved LILO).

The file /boot/grub/grub.conf tells the bootloader about the available kernel
images that can be booted. This file defines (for each kernel) the disk for the root
filesystem, the kernel image (and options), and the initial ramdisk image. For the
kernel image created in this section, Listing 28.8 demonstrates the kernel informa-
tion that allows GRUB to boot this new image.

LISTING 28.8 Configuring the GRUB Bootloader for the New Kernel

title Kernel-2.6.23.1 (2.6.23.1)

root (hd0,0)

kernel /vmlinuz-2.6.23.1 ro root=/dev/VolGroup00/LogVol00 rhgb

quiet

initrd /initrd-2.6.23.1.img

Chapter 28 GNU/Linux Administration Basics 553

After the GRUB configuration is modified, the remaining step is to reboot the
system and then hit the Enter key when the GRUB prompt appears. At this point,
the new kernel can be selected and booted.

SUMMARY

The administration of GNU/Linux systems is much more than user management
and service configuration. Understanding the layout of the GNU/Linux filesystem,
managing packages and their dependencies, and keeping up to date on the latest
Linux kernels are important topics in developer-based administration. Upgrading
the Linux kernel not only keeps your system up to date, but it also makes available
the latest features of the kernel (such as virtualization or new storage technologies
such as Serial Attached SCSI). Therefore, it’s an important skill to both know and
use.

554 GNU/Linux Application Programming

Chapter 29: Software Unit Testing Frameworks

Chapter 30: Debugging with GDB

Chapter 31: Code Hardening

Chapter 32: Coverage Testing with GNU gcov

Chapter 33: Profiling with GNU gprof

Chapter 34: Advanced Debugging Topics

This final part of the book looks at the topics of debugging and testing. This in-
cludes unit testing frameworks, using the GNU source-level debugger, advanced
debugging techniques (including memory debugging), and finally code-hardening
techniques for creating higher quality and more reliable GNU/Linux applications.

CHAPTER 29: SOFTWARE UNIT TESTING FRAMEWORKS

The topic of software testing is an important one with quite a bit of development in
the open source community. After an introduction to unit and system testing, unit
testing frameworks are explored, including a look at how to make your own and at
two open source distributions. The expect utility is also covered as a means to test
applications at a high level.

CHAPTER 30: DEBUGGING WITH GDB

The GNU Debugger (GDB) is a source-level debugger that is a staple for GNU/
Linux application development. GDB is integrated into the GNU toolchain and
 offers both command-line and GUI versions. This chapter presents GDB in a
 tutorial fashion and walks through the debugging of a simple application using
breakpoints. Features such as data inspection and stack frame viewing and the GDB
commands used most are covered. More advanced features for multiprocess and
multithreaded application debugging and core-dump file debugging are also
 discussed.

Part

V Debugging and Testing

555

CHAPTER 31: CODE HARDENING

The topic of code hardening, otherwise known as defensive programming, is an
umbrella for a variety of techniques that have the goal of increasing the quality and
reliability of software. This chapter looks at numerous coding methods as well as
tools (such as static source-checking tools) to help build better software.

CHAPTER 32: COVERAGE TESTING WITH GNU gcov

In this chapter, the topic of testing is analyzed from the perspective of coverage test-
ing using the gcov utility. The gcov utility provides a way to identify path execution
of an application. This tool can be very useful in determining full test path cover-
age of an application (where all paths are taken for a given regression of an appli-
cation). It can also be useful in identifying how often a given path was taken and,
therefore, is a useful performance tool.

CHAPTER 33: PROFILING WITH GNU gprof

Profiling tools can be useful in identifying where the majority of time is taken for a
given application. This chapter investigates the gprof utility, which can be used to
help focus optimization efforts in an application by profiling the application to see
where the majority of time is spent.

CHAPTER 34: ADVANCED DEBUGGING TOPICS

This final chapter explores a number of debugging topics including memory de-
bugging. Some of the most difficult debugging can center around memory man-
agement, so this chapter reviews a number of techniques and open source tools for
supporting memory debugging. We’ll also explore some of the cross-referencing
tools as well as some useful tracing tools.

556 GNU/Linux Application Programming

557

Software Unit Testing
Frameworks

29

INTRODUCTION

Writing software is difficult, even when building on an outstanding operating
 system such as GNU/Linux. The complexity of software grows as the sizes of the
systems that you develop grow. But even when you are developing smaller systems,
problems can still find their way in. This is where testing comes in. Even if you
 develop software that doesn’t work the first time, performing tests on the software
can identify the shortcomings, allowing you to fix them.

If the tests are repeatable, you can easily retest your software after you have
made changes to it (otherwise known as regressing). This makes it much easier to
update your software, because you know it’s easy to verify that you haven’t broken
anything when you’re done. If you do find something that’s broken but wasn’t
tested before, you simply update the regression test to check it in the future.

This chapter looks at a number of available open source unit testing frame-
works and how they can be used to improve the quality of your software.

In This Chapter

Unit Testing Versus System Testing
Brew Your Own Frameworks
Testing with the C Unit Test Framework
Testing with the Embedded Unit Test Framework
Testing with expect

558 GNU/Linux Application Programming

UNIT TESTING

First, you need to understand what is meant by “unit” testing. For this discussion,
it’s best to divide testing into two unique categories. The first is end-to-end (or
 system) tests, which test specific user-level features of the software (see Figure 29.1).

FIGURE 29.1 System testing (or end-to-end) perspective.

You can also think about this as testing based upon the requirements of the
software. In this category, you typically don’t consider how the software is con-
structed (black-box testing) but instead simply test for what the system should do.
As illustrated in Figure 29.2, the components of your system can be further broken
down into smaller modules called units.

Unit testing assumes more knowledge and insight into the software to be tested.
Unit tests address units of a software system and, therefore, don’t typically address
system requirements but instead the internal behavior of the system. Say that your
software system included a queue unit that was to be used for internal task commu-
nication. You can separate this queue unit from the rest of the system and test it in
isolation with a number of different tests. This is a unit test, because you are ad-
dressing a unit of the system (see Figure 29.3). You also commonly consider how the
unit was constructed and, therefore, test with this knowledge (white-box testing).
This permits you to ensure that you’ve tested all of the elements of the unit (recall
the use of the GNU gcov utility in Chapter 32, “Coverage Testing with GNU gcov”).

Therefore, a unit test simply invokes the unit’s APIs and verifies that a given
stimulus produces an expected result.

Chapter 29 Software Unit Testing Frameworks 559

FIGURE 29.2 System components are made up of units.

FIGURE 29.3 Unit testing perspective of an individual

software unit.

UNIT TESTING FRAMEWORKS

Now that you’ve identified the scope of the unit test, it’s time to look at some unit
testing frameworks to explore how they can be used to increase the quality of your
software. The following are the frameworks reviewed in the sections that follow.

Brew your own
C unit test (cut) system
Embedded unit test
expect

BREW YOUR OWN

Building your own simple unit test framework is not difficult. Even the simplest
 architecture can yield great benefits. Take a look at a simple architecture for testing
a software unit.

Consider that you have a simple stack module with an API consisting of the
 following:

typedef struct { ... } stack_t;

int stackCreate(stack_t *stack, int stackSize);

int stackPush(stack_t *stack, int element);

int stackPop(stack_t *stack, int *element);

int stackDestroy(stack_t *stack);

This very simple Last-In-First-Out (LIRO) stack API permits you to create a
new stack, push an element on the stack, pop an element from the stack, and finally
destroy the stack. Listing 29.1 shows the code (stack.c) for this simple module, and
Listing 29.2 shows the header file (stack.h).

LISTING 29.1 Stack Module Source (on the CD-ROM at ./source/ch24 /byo/stack.c)

1: #include <stdlib.h>

2: #include "stack.h"

3:

4:

5: int stackCreate(stack_t *stack, int stackSize)

6: {

7: if ((stackSize == 0) || (stackSize > 1024)) return -1;

8:

9: stack->storage = (int *)malloc(sizeof(int) * stackSize);

10:

560 GNU/Linux Application Programming

11: if (stack->storage == (void *)0) return -1;

12:

13: stack->state = STACK_CREATED;

14: stack->max = stackSize;

15: stack->index = 0;

16:

17: return 0;

18: }

19:

20:

21: int stackPush(stack_t *stack, int element)

22: {

23: if (stack == (stack_t *)NULL) return -1;

24: if (stack->state != STACK_CREATED) return -1;

25: if (stack->index >= stack->max) return -1;

26:

27: stack->storage[stack->index++] = element;

28:

29: return 0;

30: }

31:

32:

33: int stackPop(stack_t *stack, int *element)

34: {

35: if (stack == (stack_t *)NULL) return -1;

36: if (stack->state != STACK_CREATED) return -1;

37: if (stack->index == 0) return -1;

38:

39: *element = stack->storage[—stack->index];

40:

41: return 0;

42: }

43:

44:

45: int stackDestroy(stack_t *stack)

46: {

47: if (stack == (stack_t *)NULL) return -1;

48: if (stack->state != STACK_CREATED) return -1;

49:

50: stack->state = 0;

51: free((void *)stack->storage);

52:

53: return 0;

54: }

Chapter 29 Software Unit Testing Frameworks 561

LISTING 29.2 Stack Module Header File (on the CD-ROM at

./source/ch24/byo/stack.h)

1: #define STACK_CREATED 0xFAF32000

2:

3: typedef struct {

4:

5: int state;

6: int index;

7: int max;

8: int *storage;

9:

10: } stack_t;

11:

12:

13: int stackCreate(stack_t *stack, int stackSize);

14:

15: int stackCreate(stack_t *stack, int element);

16:

17: int stackPop(stack_t *stack, int *element);

18:

19: int stackDestroy(stack_t *stack);

Take a look at a simple regression that, when built with this stack module, can
be used to verify that it works as expected. Because many individual tests can be
used to validate this module, this section concentrates on just a few to illustrate the
approach.

First, in this regression, you provide two infrastructure functions as wrappers
for the regression. The first is a simple main function that invokes each of the tests,
and the second is a result checking function. The result checking function simply
tests the result input. If it’s zero, the test failed; otherwise, the test passed. This func-
tion is shown in Listing 29.4 (which you will look at shortly).

You declare a failed integer, which is used to keep track of the number of actual
failures. This is used by your main, which allows it to determine if the regression
passed or failed. The checkResult function (Listing 29.3) takes two inputs: a test
number and the individual test result. If the test result is zero, then you mark the
test as failed (and increment the failed count). Otherwise, the test passes (result is
nonzero), and you indicate this.

562 GNU/Linux Application Programming

LISTING 29.3 Result Checking Function for a Simple Regression (on the CD-ROM at

./source/ch24/byo/regress.c)

1: int failed;

2:

3: void checkResult(int testnum, int result)

4: {

5: if (result == 0) {

6: printf("*** Failed test number %d\n", testnum);

7: failed++;

8: } else {

9: printf("Test number %2d passed.\n", testnum);

10: }

11: }

The main program simply calls your regression tests in order, clearing the failed
count (as shown in Listing 29.4).

LISTING 29.4 Simple Regression main (on the CD-ROM at

./source/ch24/byo/regress.c)

1: int main()

2: {

3:

4: failed = 0;

5: test1();

6:

7: return 0;

8: }

Now take a look at a regression that focuses on creation and destruction of
stacks. As you saw in the stack module source, you encounter numerous ways that
a stack creation and destruction can fail. This test tries to address each of them so
that you can convince yourself that it’s coded properly (see Listing 29.5).

In this regression, you call an API function with a set of input data and then
check the result. In some cases, you pass good data, and in others you pass data that
causes the function to exit with a failure status. Consider lines 8–9, which test stack
creation with a null stack element. This creation should fail and return -1. At line
9, you call checkResult with your test number (first argument) and then the test
 result as argument two. Note here that you test the ret variable with -1, because
that’s what you expect for this failure case. If ret wasn’t -1, then the expression
 results in 0, indicating that the test failed. Otherwise, if ret is -1, the expression
 reduces to 1, and the result is a pass.

Chapter 29 Software Unit Testing Frameworks 563

This regression also explores the stack structure to ensure that the creation
function has properly initialized the internal elements. At line 20, you check the
 internal state variable to ensure that it has been properly initialized with STACK_
CREATED.

LISTING 29.5 Stack Module Regression Focusing on Creation and Destruction (on the

CD-ROM at ./source/ch24/byo/regress.c)

1: void test1(void)

2: {

3: stack_t myStack;

4: int ret;

5:

6: failed = 0;

7:

8: ret = stackCreate(0, 0);

9: checkResult(0, (ret == -1));

10:

11: ret = stackCreate(&myStack, 0);

12: checkResult(1, (ret == -1));

13:

14: ret = stackCreate(&myStack, 65536);

15: checkResult(2, (ret == -1));

16:

17: ret = stackCreate(&myStack, 1024);

18: checkResult(3, (ret == 0));

19:

20: checkResult(4, (myStack.state == STACK_CREATED));

21:

22: checkResult(5, (myStack.index == 0));

23:

24: checkResult(6, (myStack.max == 1024));

25:

26: checkResult(7, (myStack.storage != (int *)0));

27:

28: ret = stackDestroy(0);

29: checkResult(8, (ret == -1));

30:

31: ret = stackDestroy(&myStack);

32: checkResult(9, (ret == 0));

33:

34: checkResult(10, (myStack.state != STACK_CREATED));

35:

564 GNU/Linux Application Programming

36: if (failed == 0) printf("test1 passed.\n");

37: else printf("test1 failed\n");

38: }

At the end of this simple regression, you indicate whether the entire test passed
(all individual tests passed) or failed. A sample run of the regression is illustrated as
follows:

gcc -Wall -o test regress.c stack.c

./test

Test number 0 passed.

Test number 1 passed.

Test number 2 passed.

Test number 3 passed.

Test number 4 passed.

Test number 5 passed.

Test number 6 passed.

Test number 7 passed.

Test number 8 passed.

Test number 9 passed.

Test number 10 passed.

test1 passed.

#

While this method is quite simple, it’s also very effective and permits the quick
revalidation of a unit after changes are made. After you have run your regression,
you can deliver it safely with the understanding that you are less likely to break the
software that uses it.

C UNIT TEST SYSTEM

The C unit test system, or cut for short, is a simple architecture for building unit test
applications. Cut provides a simple environment for the integration of unit tests,
with a set of tools that are used to pull together tests and then build a main frame-
work to invoke and report them. Cut parses the unit test files and then builds them
together into a single image, performing each of the provided unit tests in order.

Cut provides a utility, written in Python, called cutgen.py. This utility parses
the unit test source files and then builds a main function around the tests that are
to be run. The unit test files must be written in a certain way; you can see this in the
sample source.

Chapter 29 Software Unit Testing Frameworks 565

Now it’s time to walk through an example that verifies the push and pop func-
tions of your previous stack example. Cut presents a simple interface that we build
to, which is demonstrated in Listing 29.6.

You declare your locals at line 5 and 6 (your two stacks for which you perform
your tests) and then four functions that serve as the interface to cut.

The first two functions to note are the first and last. These are the initialization
function, __CUT_BRINGUP__Explode (at lines 8–20), and the post test execution
 function, __CUT_TAKEDOWN__Explode (at lines 74–85). The cut framework calls the
bringup function prior to test start, and after all of the test functions have been
 performed, the takedown function is called. Note that you simply perform your
necessary initialization (initialize your two stacks with stackCreate), but you also
perform unit testing here to ensure that the required elements are available for you
in the unit test. Similarly, in the takedown function, which is called after all unit tests
have been called, you destroy the stacks, but you also check the return status of
these calls.

The unit tests are encoded as function with a prefix __CUT__. This allows the
cutgen utility to find them and call them within the test framework. As you perform
the necessary elements of your unit tests, you call a special function called ASSERT,
which is used to log errors. The ASSERT function has two pieces: a test expression
and a string emitted if the test fails. The test expression identifies the success
 condition, and if false, then the test element fails.

Note that in some cases, you have multiple tests for each API element (such as
shown for lines 64–65).

LISTING 29.6 Unit Test Example Written for Cut (on the CD-ROM at

./source/ch24/cut/test_1.c)

1: #include <stdio.h>

2: #include "stack.h"

3: #include "cut.h"

4:

5: stack_t myStack_1;

6: stack_t myStack_2;

7:

8: void __CUT_BRINGUP__Explode(void)

9: {

10: int ret;

11:

12: printf("Stack test bringup called\n");

13:

14: ret = stackCreate(&myStack_1, 5);

566 GNU/Linux Application Programming

15: ASSERT((ret == 0), "Stack 1 Creation.");

16:

17: ret = stackCreate(&myStack_2, 5);

18: ASSERT((ret == 0), "Stack 2 Creation.");

19:

20: }

21:

22:

23: void __CUT__PushConsumptionTest(void)

24: {

25: int ret;

26:

27: /* Exhaust the stack */

28:

29: ret = stackPush(&myStack_1, 1);

30: ASSERT((ret == 0), "Stack Push 1 failed.");

31:

32: ret = stackPush(&myStack_1, 2);

33: ASSERT((ret == 0), "Stack Push 2 failed.");

34:

35: ret = stackPush(&myStack_1, 3);

36: ASSERT((ret == 0), "Stack Push 3 failed.");

37:

38: ret = stackPush(&myStack_1, 4);

39: ASSERT((ret == 0), "Stack Push 4 failed.");

40:

41: ret = stackPush(&myStack_1, 5);

42: ASSERT((ret == 0), "Stack Push 5 failed.");

43:

44: ret = stackPush(&myStack_1, 6);

45: ASSERT((ret == -1), "Stack exhaustion failed.");

46:

47: }

48:

49:

50: void __CUT__PushPopTest(void)

51: {

52: int ret;

53: int value;

54:

55: /* Test two pushes and then two pops */

56:

57: ret = stackPush(&myStack_2, 55);

Chapter 29 Software Unit Testing Frameworks 567

58: ASSERT((ret == 0), "Stack Push of 55 failed.");

59:

60: ret = stackPush(&myStack_2, 101);

61: ASSERT((ret == 0), "Stack Push of 101 failed.");

62:

63: ret = stackPop(&myStack_2, &value);

64: ASSERT((ret == 0), "Stack Pop failed.");

65: ASSERT((value == 101), "Stack Popped Wrong Value.");

66:

67: ret = stackPop(&myStack_2, &value);

68: ASSERT((ret == 0), "Stack Pop failed.");

69: ASSERT((value == 55), "Stack Popped Wrong Value.");

70:

71: }

72:

73:

74: void __CUT_TAKEDOWN__Explode(void)

75: {

76: int ret;

77:

78: ret = stackDestroy(&myStack_1);

79: ASSERT((ret == 0), "Stack 1 Destruction.");

80:

81: ret = stackDestroy(&myStack_2);

82: ASSERT((ret == 0), "Stack 2 Destruction.");

83:

84: printf("\n\nTest Complete\n");

85: }

Now that you have your unit test file (encoded for the cut environment), you
can look at how you make this an executable test. While this can be easily encoded
in a simple Makefile, this example demonstrates command-line building.

You need three files from the cut system (the URL from which these files can
be obtained is provided in the “Resources” section of this chapter). The cutgen.py
utility builds the unit test environment, given your set of unit test source files. This
is a Python file, so a Python interpreter is needed on the target system. Two other
files are cut.h and libcut.inc, which are ultimately linked with your unit test
 application.

The first step is creating the cut unit test environment. This creates C main and
brings together the necessary APIs used by the unit tests. The cutgen.py utility pro-
vides this for you, as demonstrated here:

cutgen.py test_1.c > cutcheck.c

568 GNU/Linux Application Programming

Given your unit test file (Listing 29.6), you provide this as the single argument
to cutgen.py and redirect the output into a source file called cutcheck.c. To further
understand what cutgen has provided, you can now look at this file (shown in List-
ing 29.7).

The automatically generated file from cutgen simply brings together the unit
tests present in your unit test files and calls them in order. You can provide nu-
merous unit test files to cutgen, which results in additional unit test functions being
invoked within the generated file.

LISTING 29.7 Unit Test Environment Source Created by cutgen

1: #include "libcut.inc"

2:

3:

4: extern void __CUT_BRINGUP__Explode(void);

5: extern void __CUT__PushConsumptionTest(void);

6: extern void __CUT__PushPopTest(void);

7: extern void __CUT_TAKEDOWN__Explode(void);

8:

9:

10: int main(int argc, char *argv[])

11: {

12: cut_init(-1);

13:

14: cut_start("Explode", __CUT_TAKEDOWN__Explode);

15: __CUT_BRINGUP__Explode();

16: __CUT__PushConsumptionTest();

17: __CUT__PushPopTest();

18: cut_end("Explode");

19: __CUT_TAKEDOWN__Explode();

20:

21:

22: cut_break_formatting();

23: return 0;

24: }

Finally, you simply compile and link the files together to build a unit test image.
This image implies the automatically generated source file, unit test file, and the
source to test (stack.c). This image is illustrated here:

gcc -o cutcheck stack.c test_1.c cutcheck.c

Chapter 29 Software Unit Testing Frameworks 569

You can then execute the unit test by simply invoking cutcheck. This emits
numbers and . characters to indicate progress through the unit test process.

./cutcheck

Stack test bringup called

0......... 10.....

Test Complete

#

The cut system provides some additional features that have not been addressed
here, but from this quick review, you can see how powerful and useful this simple
utility can be.

EMBEDDED UNIT TEST

The embedded unit test framework (called Embunit) is an interesting framework
that’s designed for embedded systems. The framework can operate without the
need for standard C libraries and allocates objects from a const area. Embunit also
provides a number of tools to generate test templates and also the main function for
the test environment.

The Embunit framework is very similar to cut and provides a very useful API
for testing. Some of the test functions that are provided in Embunit are shown in
Table 29.1.

570 GNU/Linux Application Programming

Function Purpose

TEST_ASSERT_EQUAL_STRING(exp,actual) Assert on failed string compare.

TEST_ASSERT_EQUAL_INT(exp,actual) Assert on failed integer compare.

TEST_ASSERT_NULL(pointer) Assert if pointer is NULL.

TEST_ASSERT_NOT_NULL(pointer) Assert if pointer is not NULL.

TEST_ASSERT_MESSAGE(cond,message) Assert and emit message if the

condition is false.

TEST_ASSERT(condition) Assert if the condition is false.

TEST_FAIL(message) Fail the test, emitting the message.

TABLE 29.1 Test Functions Provided by Embunit

Chapter 29 Software Unit Testing Frameworks 571

Now it’s time to take a look at a unit test coded for the Embunit framework and
then look at the main program that sets up the environment. In Listing 29.8, a min-
imal unit test for Embunit is shown. At line 1, you include the embUnit header file
(which makes the test interface available to your unit test). You then define two
functions that are called before and after each unique unit test that’s identified to
embUnit: setUp at lines 7–10 and tearDown at lines 13–16.

You then define your individual unit tests (lines 19–54). Three tests are illustrated
here; the first is called testInit (lines 19–25), the second is called testPushPop (lines
28–45), and the third is called testStackDestroy (lines 48–54). As with your earlier
unit tests, you perform an action and then test the result. In this case, you use the
Embunit-provided TEST_ASSERT_EQUAL_INT function to check the response, and if
the assert fails, an error message is printed.

Finally, you specify the unit tests that are available within the StackTest_tests
function (lines 57–68). This is done in the context of a test fixtures structure. You
define fixtures as simply an array that’s initialized with the provided functions and
function names. Note that you provide your three unit tests here, providing a name
for each to indicate the specific test in the event a failure occurs. You then create
 another structure at lines 64–65 that defines your test, setup function, teardown
function, and fixtures (your list of unit tests). This new structure (called
StackTest) is returned to the caller, which is explored shortly.

LISTING 29.8 Unit Test Coded for the Embunit Framework (on the CD-ROM at

./source/ch24/emb/stackTest.c)

1: #include <embUnit/embUnit.h>

2: #include <stdio.h>

3: #include "stack.h"

4:

5: stack_t myStack;

6:

7: static void setUp(void)

8: {

9: printf("setUp called.\n");

10: }

11:

12:

13: static void tearDown(void)

14: {

15: printf("tearDown called.\n");

16: }

17:

18:

19: static void testInit(void)

20: {

21: int ret;

22:

23: ret = stackCreate(&myStack, 5);

24: TEST_ASSERT_EQUAL_INT(0, ret);

25: }

26:

27:

28: static void testPushPop(void)

29: {

30: int ret, value;

31:

32: ret = stackPush(&myStack, 55);

33: TEST_ASSERT_EQUAL_INT(0, ret);

34:

35: ret = stackPush(&myStack, 101);

36: TEST_ASSERT_EQUAL_INT(0, ret);

37:

38: ret = stackPop(&myStack, &value);

39: TEST_ASSERT_EQUAL_INT(0, ret);

40: TEST_ASSERT_EQUAL_INT(101, value);

41:

42: ret = stackPop(&myStack, &value);

43: TEST_ASSERT_EQUAL_INT(0, ret);

44: TEST_ASSERT_EQUAL_INT(55, value);

45: }

46:

47:

48: static void testStackDestroy(void)

49: {

50: int ret;

51:

52: ret = stackDestroy(&myStack);

53: TEST_ASSERT_EQUAL_INT(0, ret);

54: }

55:

56:

57: TestRef StackTest_tests(void)

58: {

59: EMB_UNIT_TESTFIXTURES(fixtures) {

60: new_TestFixture("testInit", testInit),

61: new_TestFixture("testPushPop"", testPushPop),

62: new_TestFixture("testStackDestroy", testStackDestroy),

572 GNU/Linux Application Programming

63: };

64: EMB_UNIT_TESTCALLER(StackTest, "StackTest",

65: setUp, tearDown, fixtures);

66:

67: return(TestRef)&StackTest;

68: }

The EMB_UNIT_TESTFIXTURES and EMB_UNIT_TESTCALLER are macros that create
special arrays representing the individual unit tests (fixtures) as well as the unit
test aggregate (StackTest).

The main program provides the means to invoke the unit tests (see Listing 29.9).
You include the embUnit header file to gather the types and symbols. At line 3, you
declare the previous function, which creates the text fixtures array (recall from
Listing 29.8, lines 57–68). You call the TestRunner_start function to initialize the
test environment and then invoke TestRunner_runTest with your unit test fixture
init function (StackTest_tests). This invokes all of the unit tests from Listing
29.8. When done, you call TestRunner_end, which emits statistics about the unit test,
including the number of tests run and the number of failed tests.

LISTING 29.9 Embunit main Program (on the CD-ROM at ./source/ch24/emb/main.c)

1: #include <embUnit/embUnit.h>

2:

3: TestRef StackTest_tests(void);

4:

5: int main(int argc, const char *argv[])

6: {

7: TestRunner_start();

8: TestRunner_runTest(StackTest_tests());

9: TestRunner_end();

10: return 0;

11: }

Building the unit test within Embunit simply involves compiling and linking
your source files together with the Embunit library. To find the Embunit library,
you must specify its location (as well as the location of the header files). Building
and running the unit test is illustrated as follows:

gcc -Wall -I/usr/local/src/embunit/ \

-L/usr/local/src/embunit/lib \

-o stackTest main.c stack.c stackTest.c -lembUnit

./stackTest

Chapter 29 Software Unit Testing Frameworks 573

.setUp called.

testInit called

tearDown called.

.setUp called.

tearDown called.

.setUp called.

tearDown called.

OK (3 tests)

#

Using GNU Compiler Collection (GCC), you build the image called stackTest
and then invoke it. You can see that setUp and tearDown are called three times each,
before and after each of your unit tests. In the end, you can see that the Embunit
test environment reports that three tests were run and all were okay.

expect UTILITY

The expect utility has found wide use in the testing domain. expect is an applica-
tion that scripts programmed dialogues with interactive programs. Using expect,
you can spawn an application and then perform a script consisting of dialogue with
the application. This dialogue consists of a series of statements and expected re-
sponses. In the test domain, the statements are the stimulus to the application, and
the expected response is what you expect from a valid application under test.

The expect utility can even talk to numerous applications at once and has a
very rich structure for application test.

Consider the following test in Listing 29.10. At line 3, you set an internal
 variable of timeout to 1. This tells expect that when the timeout keyword is used, the
timeout represents 1 second (instead of the default of 10 seconds). Next, you
 declare a procedure called sendexpect. This function provides both the send and
expect behaviors in one function. It sends the out string (argument one) to the
 attached process. The expect function in this case uses the pattern match behavior.
Two possibilities exist for what you expect as input from the attached process. If
you receive the in string (argument two of the sendexpect procedure), then you
have received what you expected and emit a passed message. Otherwise, you wait,
and when the timeout occurs, you call the test a failure and exit.

At line 14, you spawn the test process (in this case you are testing the bc calcu-
lator). You consume the input from bc’s startup by expecting the string warranty.
You then emit an indicator to stdout, indicating that the test has started (line 17).
At this point, you begin the test. Using the sendexpect procedure, you send a com-
mand to the application and then provide what you expect as a response. Because
you are testing a calculator process, you provide some simple expressions (lines

574 GNU/Linux Application Programming

20–22), followed by a slightly more complex function example. In the end, you
emit the bc quit command, expecting eof (an indication that the bc application
 terminated).

LISTING 29.10 Testing the bc Calculator with expect (on the CD-ROM at

./source/ch24/expect/test_bc)

1: #!/usr/local/bin/expect -f

2:

3: set timeout 1

4:

5: proc sendexpect { out in } {

6: send $out

7: expect {

8: $in { puts "passed\n" }

9: timeout { puts "***failed\n" ; exit }

10: }

11: }

12:

13: # Start the bc test

14: spawn bc

15: expect "warranty"

16:

17: puts "Test Starting\n"

18:

19: # Test some simple math

20: sendexpect "2+4\n" "6"

21: sendexpect "2*8\n" "16"

22: sendexpect "9-2\n" "7"

23:

24: # Test a simple function

25: sendexpect \

26: "define f (x) { if (x<=1) return(1); return(f(x-1) * x); }\n"

"\r"

27: sendexpect "f(5)\n" "120"

28:

29: # End the test session

30: sendexpect "quit\n" eof

31:

32: puts "Test Complete\n"

33:

34: exit

Chapter 29 Software Unit Testing Frameworks 575

The expect method differs greatly from your unit test examples, but it is a very
powerful mechanism not only for testing but also for automated tasks, even those
on remote systems.

SUMMARY

The unit testing discipline has improved with open source tools. These tools (and
more complex ones such as the DejaGnu framework) provide efficient and simple
mechanisms for unit testing. This chapter explored unit testing (as opposed to sys-
tem testing) and investigated a number of methods to achieve it. First you reviewed
a brew your own method for testing that was simple but got the job done. Then you
reviewed two open source tools for unit testing, the C unit test system (cut) and the
embedded unit test system. Finally, you took a quick look at expect and its
 capabilities for process-based testing.

RESOURCES

The C unit test system at http://sourceforge.net/projects/cut/.
Embedded unit test framework at http://sourceforge.net/projects/embunit/.
Expect home page at http://expect.nist.gov/.

576 GNU/Linux Application Programming

http://sourceforge.net/projects/cut/
http://sourceforge.net/projects/embunit/
http://expect.nist.gov/

577

Debugging with GDB30

INTRODUCTION

The GNU Debugger (also known as GDB) is a source-level debugger that provides
the ability to debug applications at the source and machine levels. Additionally,
GDB permits the debugging of already running applications (by attaching to the
application’s process ID) as well as debugging applications post-mortem. All of the
traditional features you expect from a source-level debugger are available with
GDB, including multilanguage and multi-architecture support.

This chapter introduces GDB and explores its features and capabilities in a
 tutorial manner.

COMPILING FOR GDB

Before you jump into GDB, you first need to know how to build your application
so that it’s debuggable by GDB. The -g flag tells the compiler to include debugging
information in the image, which can be used by GDB to understand variable types
(for data inspection) and machine instruction to source-line mappings. Compiling
is illustrated as follows:

In This Chapter

Source Debugging with GDB
Debugging Multiprocess Applications
Debugging Multithreaded Applications
Debugging Programs Already Running
Post-Mortem Debugging

gcc -g testapp.c -o testapp

The test image can now be successfully debugged via GDB. One very important
point to note is that debugging with optimization enabled can yield odd results.
The optimizer might move code around or remove code altogether. This can make
an optimized debugging session confusing and hard to follow. Therefore, while
GDB can still debug optimized code, it’s much easier to debug an unoptimized
image.

USING GDB

Now it’s time to dive into GDB and look at its capabilities for debugging C appli-
cations. In this section you look at some of the most common methods for debug-
ging with GDB using breakpoints. It demonstrates using command-line GDB,
though GUI versions exist.

One important point to note before you jump in is that the program being
 debugged uses the same terminal input and output as GDB. This is suitable for your
purposes here.

You can redirect stdin and stdout for the program’s I/O. You can redirect the
output on the command line when we start the GDB session. You can also specify
a new terminal for the program’s stdin using the tty shell command.

To demonstrate GDB, you can use the source shown in Listing 30.1. This
source represents a very simple stack implementation that provides math operators.

LISTING 30.1 Sample Source for the GDB Debugging Session (on the CD-ROM at

./source/ch30/testapp.c)

1: #include <stdio.h>

2: #include <assert.h>

3:

4: #define MAX_STACK_ELEMS 10

5:

6: #define OP_ADD 0

7: #define OP_SUBTRACT 1

8: #define OP_MULTIPLY 2

9: #define OP_DIVIDE 3

10:

11:

12: typedef struct {

13: int stack[MAX_STACK_ELEMS];

14: int index;

578 GNU/Linux Application Programming

15: } STACK_T;

16:

17:

18: void initStack(STACK_T *stack)

19: {

20: assert(stack);

21: stack->index = 0;

22: }

23:

24:

25: void push(STACK_T *stack, int elem)

26: {

27: assert(stack);

28: assert(stack->index < MAX_STACK_ELEMS);

29:

30: stack->stack[stack->index++] = elem;

31: return;

32: }

33:

34:

35: int pop(STACK_T *stack)

36: {

37: assert(stack);

38: assert(stack->index > 0);

39:

40: return(stack->stack[—stack->index]);

41: }

42:

43:

44: void operator(STACK_T *stack, int op)

45: {

46: int a, b;

47:

48: assert(stack);

49: assert(stack->index > 0);

50:

51: a = pop(stack); b = pop(stack);

52:

53: switch(op) {

54:

55: case OP_ADD:

56: push(stack, (a+b)); break;

57:

58: case OP_SUBTRACT:

Chapter 30 Debugging with GDB 579

59: push(stack, (a-b)); break;

60:

61: case OP_MULTIPLY:

62: push(stack, (a*b)); break;

63:

64: case OP_DIVIDE:

65: push(stack, (a/b)); break;

66:

67: default:

68: assert(0); break;

69:

70: }

71:

72: }

73:

74:

75: int main()

76: {

77: STACK_T stack;

78:

79: initStack(&stack);

80:

81: push(&stack, 2);

82: push(&stack, 5);

83: push(&stack, 2);

84: push(&stack, 3);

85: push(&stack, 5);

86: push(&stack, 3);

87: push(&stack, 6);

88:

89: operator(&stack, OP_ADD);

90: operator(&stack, OP_SUBTRACT);

91: operator(&stack, OP_MULTIPLY);

92: operator(&stack, OP_DIVIDE);

93: operator(&stack, OP_ADD);

94: operator(&stack, OP_SUBTRACT);

95:

96: printf("Result is %d\n", pop(&stack));

97: return 0;

98: }

580 GNU/Linux Application Programming

You compile your source with the -g flag to include debugging information for
GDB, as in the following:

gcc -g -Wall -o testapp testapp.c

#

STARTING GDB

To debug a program with GDB, you simply execute GDB with your program name
as the first argument. You can also start GDB and then load your program using the
load command. In this example you start GDB with your application:

gdb testapp

GNU gdb Red Hat Linux (5.3post-0.20021129.18rh)

Copyright 2003 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public

License, and you are welcome to change it and/or distribute

copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty"

for details.

This GDB was configured as "i386-redhat-linux-gnu"...

(gdb)

The (gdb) is the regular prompt for GDB and indicates that it is available for
commands. You can start your application using the run command at this point,
but the next sections look at a few other commands first.

LOOKING AT SOURCE

After you start GDB, your application is not yet running, but instead is just loaded
into GDB. Using the list command, you can view the source of your application,
as demonstrated in the following:

(gdb) list

70 }

71

72 }

73

74

75 int main()

76 {

77 STACK_T stack;

78

Chapter 30 Debugging with GDB 581

79 initStack(&stack);

(gdb)

The main is our entry point, so list here shows this entry. You can also specify
the lines of interest with list as follows:

(gdb) list 75,85

75 int main()

76 {

77 STACK_T stack;

78

79 initStack(&stack);

80

81 push(&stack, 2);

82 push(&stack, 5);

83 push(&stack, 2);

84 push(&stack, 3);

85 push(&stack, 5);

(gdb)

Using the list command with no arguments always lists the source with the
current line centered in the list.

USING BREAKPOINTS

The primary strategy for debugging with GDB is the use of breakpoints to stop the
running program and allow inspection of the internal data. A breakpoint can be set
in a variety of ways, but the most common is by specifying a function name. Here,
you tell GDB to break at your main program:

(gdb) break main

Breakpoint 1 at 0x804855b: file testapp.c, line 79.

(gdb) run

Starting program: /home/mtj/gnulinux/ch30/testapp

Breakpoint 1, main () at testapp.c:79

79 initStack(&stack);

(gdb)

After you give the break command, GDB tells you your breakpoint number
(because you can set multiple) and the address, filename, and line number of the
breakpoint. You then start your application using the run command, which results
in hitting your previously set breakpoint. After the breakpoint is hit, GDB shows

582 GNU/Linux Application Programming

Chapter 30 Debugging with GDB 583

the line that is to be executed next. Note that this statement, line 79, is the first
 executable statement of your application.

Recall that in all C applications, the main function is the user entry point to the
 application, but various other work goes on behind the scenes to start and end the
program. Therefore, when you break at the main function, you break at your user
entry point, but not the true start of the application.

You can view the available breakpoints using the info command:

(gdb) info breakpoints

Num Type Disp Enb Address What

1 breakpoint keep y 0x0804855b in main at testapp.c:79

breakpoint already hit 1 time

(gdb)

You see your single breakpoint and an indication from GDB that this break-
point has been hit.

If your breakpoint is now of no use, you remove it using the clear command:

(gdb) clear 79

Deleted breakpoint 1

(gdb)

Other methods for setting breakpoints are shown in Table 30.1.

Command Breakpoint Method

break function Set a breakpoint at a function.

break file:function Set a breakpoint at a function (named file).

break line Set a breakpoint at a line number.

break file:line Set a breakpoint at a line number (named file).

break address Set a breakpoint at a physical address.

TABLE 30.1 Available Methods for Setting Breakpoints

584 GNU/Linux Application Programming

One final interesting breakpoint method is the conditional breakpoint. Con-
sider the following command:

(gdb) break operator if op = 2

Breakpoint 2 at 0x8048445: file testapp.c, line 48.

This tells GDB to break at the operator function if the op argument is equal to
2 (OP_MULTIPLY). This can be very useful if you’re looking for a given condition and
can save your having to break at each call and check the variable.

STEPPING THROUGH THE SOURCE

When you last left your debugging session, you had hit a breakpoint on your main
function. Now it’s time to step forward through the source. You have a few differ-
ent possibilities, depending upon what you want to achieve (Table 30.2 lists these).
To execute the next line of code, you can use the step command. This also steps
into a function (if a function call is the next line to execute). If you prefer to step
over a function, you can use the next command, which executes the next line and,
if it’s a function, simply performs it and sets the next line to execute to the line after
the function. The cont command (short for continue) simply starts the program
running.

Command (Shortcut) Operation

next (n) Execute next line, step over functions.

step (s) Execute next line, step into functions.

cont (c) Continue execution.

TABLE 30.2 Methods for Stepping Through the Source

You can also provide a count after the next and step commands, which per-
forms the command the number of times specified as the argument. For example,
issuing the command step 5 performs the step command five times.

You can see the next and step commands within your debugging session as
 follows:

Breakpoint 1, main () at testapp.c:79

79 initStack(&stack);

(gdb) s

initStack (stack=0xbfffde60) at testapp.c:20

20 assert(stack);

(gdb) s

21 stack->index = 0;

(gdb) s

22 }

(gdb) s

main () at testapp.c:81

81 push(&stack, 2);

(gdb) n

82 push(&stack, 5);

(gdb)

In this last debugging fragment, you step into the initStack function. GDB
then lets you know where you are (the function name and stack address). You step
through the lines of initStack, and upon returning, GDB lets you know again that
you are back in the main function. You then use the next command to perform the
push function with a value of 2.

INSPECTING DATA

GDB makes it easy to inspect the data within a running program. Continuing with
your debugging session, it’s now time to look at your stack structure. You do this
with the display command:

(gdb) display stack

1: stack = {stack = {2, 0, 1107383313, 134513378,

1108545272, 1108544020, -1073750392, 134513265,

1108544020, 1073792624}, index = 1}

(gdb)

If you simply display the stack variable, you see the aggregate components of
the structure (first the array itself, then the index variable). Note that many of the
stack elements are unusually large numbers, but this is only because the structure
is not initialized. You can inspect specific elements of the stack variable, also using
the display command:

(gdb) display stack.index

2: stack.index = 1

(gdb)

If you are dealing with an object reference (a pointer to the structure), you can
deal with it as you would in C. For example, in this next example, you step into the
push function to illustrate dealing with an object reference:

Chapter 30 Debugging with GDB 585

(gdb) s

push (stack=0xbffffae0, elem=5) at testapp.c:27

27 assert(stack);

(gdb) display stack->index

3: stack->index = 1

(gdb) display stack->stack[0]

4: stack->stack[0] = 2

(gdb)

One important consideration is the issue of static data. Static data names might
be used numerous times in an application (bad coding policy, but it happens). To
display a specific instance of static data, you can reference both the variable and file,
such as display 'file2.c'::variable.

The print command (or its shortcut, p) can also be used to display data.

CHANGING DATA

It’s also possible to change the data in an operating program. You use the set com-
mand to change data, illustrated as follows:

(gdb) set stack->stack[9] = 999

(gdb) p *stack

$11 = {stack = {2, 0, 1107383313, 134513378,

1108545272, 1108544020, -1073743096, 134513265,

1108544020, 999}, index = 1}

(gdb)

Here you see that you have modified the last element of your stack array and
then printed it back out to monitor the change.

EXAMINING THE STACK

The backtrace command (or bt for short) can be used to inspect the stack. This
can tell you the current active function trace and the parameters passed. You are
currently in the push function in the debugging session; take a look at the stack
backtrace:

(gdb) bt

#0 push (stack=0xbffffae0, elem=5) at testapp.c:27

#1 0x08048589 in main () at testapp.c:82

#2 0x42015504 in __libc_start_main () from /lib/tls/libc.so.6

(gdb)

586 GNU/Linux Application Programming

At the top is the current stack frame. You are in the push function, with a stack
reference and an element of 5. The second frame is the function that called push,
in this case, the main function. Note here that main was called by a function
__libc_start_main. This function provides the initialization for glibc.

STOPPING THE PROGRAM

It’s also possible to stop a debugging session using Ctrl+C. If the program is
stopped in a function for which no debugging information is available (it wasn’t
compiled with -g), then only assembly is displayed (because source debugging
 information is not available).

OTHER GDB DEBUGGING TOPICS

This section touches on some other topics of GDB, such as multiprocess applica-
tion debugging and post-mortem debugging.

MULTIPROCESS APPLICATION DEBUGGING

One problem with the debugging of multiprocess applications is which process to
follow when a new process is created. Recall from Chapter 13, “Introduction to
Sockets Programming,” that the fork function returns to both the parent and child
processes. You can tell GDB which to return to follow using the follow-fork-mode
command. For example, if you want to debug the child process, you specify to
follow the child process as follows:

set follow-fork-mode child

Or, if you instead want to follow the parent (the default mode), you specify this
as follows:

set follow-fork-mode parent

In either case, when GDB follows one process, the other process (child or par-
ent) continues to run unimpeded. You can also tell GDB to ask you which process
to follow when a fork occurs, as follows:

set follow-fork-mode ask

When the fork occurs, GDB asks which to follow. Whichever is not followed
executes normally.

Chapter 30 Debugging with GDB 587

MULTITHREADED APPLICATION DEBUGGING

There’s no other way to put it: debugging multithreaded applications is difficult at
best. GDB offers some capabilities that assist in multithreaded debugging, and this
section looks at those.

The breakpoint is one of the most important aspects of debugging, but its
 behavior is different in multithreaded applications. If a breakpoint is created at a
source line used by multiple threads, then every thread is affected by the break-
point. You can limit this by specifying the thread to be affected. For example:

(gdb) break pos.c:17 thread 5

This installs a breakpoint at line 20 in myfile.c, but only for thread number 5.
You can further refine these breakpoints using thread qualifiers. For example:

11 void *posThread(void *arg)

12 {

13 int ret;

14

15 ret = checkPosition(arg);

16

17 if (ret == 0) {

18

19 ret = move(arg);

20 }

21 (gdb) b pos.c:17 thread 5 if ret > 0

Breakpoint 1 at 0x8048550: file pos.c, line 19

(gdb)

In this example, you specify to break at line 17 in file pos.c for thread 5,
but here you qualify that thread 5 is stopped only if the local ret variable is greater
than 0.

You can identify the threads that are currently active in a multithreaded appli-
cation using the info threads command. This command lists each of the active
threads and its current state. For example:

(gdb) info threads

5 Thread -161539152 (LWP 2819) posThread (arg=0x0) at pos.c:17

...

* 1 Thread -151046720 (LWP 2808) init at init.c:154

(gdb)

588 GNU/Linux Application Programming

The * before thread 1 identifies that it is the current focus of the debugger. You
can switch to any thread using the thread command, which allows you to change
the focus of the debugger to the specified thread.

(gdb) thread 1

[Switching to thread 1 (Thread -161539152 (LWP 2819))]#0 posThread

17 if (ret == 0) {

(gdb)

As you step through a multithreaded program, you will find that the focus of
the debugger can change at any step. This can be annoying, especially when the cur-
rent thread is what you are interested in debugging. You can instruct GDB not to
preempt the current thread by locking the scheduler. For example:

(gdb) set scheduler-locking on

This tells GDB not to preempt the current thread. When you want to allow
other threads to preempt your current thread, you can set the mode to off:

(gdb) set scheduler-locking off

Finally, you can identify the current mode using the show command:

(gdb) show scheduler-locking

Mode for locking scheduler during execution is "on".

(gdb)

One final important command for thread debugging is the ability to apply a
single command to all threads within an application. The thread apply all com-
mand is used for this purpose. For example, the following command emits a stack
backtrace for every active thread:

(gdb) thread apply all backtrace

The thread apply command can also apply to a list of threads instead of all
threads, as illustrated in the following:

(gdb) thread apply 1 4 9 backtrace

This performs a stack backtrace on threads 1, 4, and 9.

Chapter 30 Debugging with GDB 589

590 GNU/Linux Application Programming

DEBUGGING AN EXISTING PROCESS

You can debug an application that is currently running by attaching GDB to the
process. All that you need is the process identifier for the process to debug. In this
example, you have started the application in one terminal and then started GDB in
another. After GDB has started, you issue the attach command to attach to the
process. This suspends the process, allowing you to control it.

$ gdb

GNU gdb Red Hat Linux (5.3post-0.20021129.18rh)

...

This GDB was configured as "i386-redhat-linux-gnu".

(gdb) attach 23558

Attaching to process 23558

Reading symbols from /home/mtj/gnulinux/ch30/testapp...done.

Reading symbols from /lib/tls/libc.so.6...done.

Loaded symbols for /lib/tls/libc.so.6

Reading symbols from /lib/ld-linux.so.2...done.

Loaded symbols for /lib/ld-linux.so.2

0x08048468 in operator (stack=0xbfffe9e0, op=1) at testapp.c:51

51 a = pop(stack); b = pop(stack);

(gdb) bt

#0 0x08048468 in operator (stack=0xbfffe9e0, op=1) at testapp.c:51

#1 0x080485cc in main () at testapp.c:93

#2 0x42015504 in __libc_start_main () from /lib/tls/libc.so.6

(gdb)

This method is very useful for dealing with “hung” programs where the fault occurs
only after some period of time, or for dealing with unexpected hangs in production
environments.

GDB starts by loading the symbols for the process and then identifying where
the process was suspended (in the operator function). You issue the bt command
to list the backtrace, which tells you which particular invocation of operator you are
in (in this case, an OP_SUBTRACT call). Finally, if you are done debugging, you can re-
lease the process to continue by detaching from it using the detach call:

(gdb) detach

Detaching from program: /home/mtj/gnulinux/ch30/testapp,

process 23558

(gdb) quit

$

After the detach command has finished, the process continues normally.

POST-MORTEM DEBUGGING

When an application aborts and dumps a resulting core dump file, GDB can be
used to identify what happened. Your application has been hardened, but you can
remove a couple of asserts in the push function to force a core dump.

To enable GNU/Linux to generate a core dump, the command ulimit -c unlimited

should be performed. Otherwise, with limits in place, core dump files are not
 generated.

You execute our application to get the core dump:

$./testapp

Segmentation fault (core dumped)

$ ls

core.23730 testapp testapp.c

Now that you have your core dump, you can use GDB to identify where things
went wrong. In the following example, you specify the executable application and
the core dump image to GDB. It loads the app and uses the core dump file to iden-
tify what happened at the time of failure. After all the symbols are loaded, you see
that the function failure occurred at push (but you already knew that). What’s most
important is that you see someone called push with a stack argument of 0 (null
pointer). You might have caught this with our assert function, but it was conve-
niently removed for the sake of demonstration.

Further down, you see that the offending call was made at testapp line 30. This
happens to be a call that you added to force the creation of this core file.

gdb testapp core.23730

GNU gdb Red Hat Linux (5.3post-0.20021129.18rh)

...

Core was generated by `./testapp'.

Program terminated with signal 11, Segmentation fault.

Reading symbols from /lib/tls/libc.so.6...done.

Loaded symbols for /lib/tls/libc.so.6

Reading symbols from /lib/ld-linux.so.2...done.

Loaded symbols for /lib/ld-linux.so.2

#0 0x0804839c in push (stack=0x0, elem=2) at testapp.c:30

30 stack->stack[stack->index++] = elem;

Chapter 30 Debugging with GDB 591

(gdb) bt

#0 0x0804839c in push (stack=0x0, elem=2) at testapp.c:30

#1 0x08048536 in main () at testapp.c:81

#2 0x42015504 in __libc_start_main () from /lib/tls/libc.so.6

(gdb)

Although that was a quick review, it covers many of the necessary features that
are needed for debugging with GDB.

SUMMARY

A source-level debugger such as GDB is a necessary tool for developing applications
of any size. This quick review of GDB introduced compiling for GDB debugging
and many of the most useful commands. Other topics such as multiprocess appli-
cation debugging and post-mortem debugging were also discussed.

RESOURCES

GDB: The GNU Project Debugger website at http://www.gnu.org/software/gdb/.

592 GNU/Linux Application Programming

http://www.gnu.org/software/gdb/

593

Code Hardening31

INTRODUCTION

The practice of code hardening (or defensive programming) is a useful technique
to increase the quality and reliability of software. The practice entails anticipating
where errors can occur in our code and then writing that code in a way that either
avoids them altogether or identifies them immediately so that their source can be
more easily tracked. Because C is not a safe language, some methods have proven
invaluable to help build more reliable programs, and this chapter details them.

This chapter covers a number of techniques under the umbrella of code hard-
ening, all of which can be applied immediately. Because the benefits are clear, you
can jump right into this chapter and look at a variety of code-hardening methods,
as well as tool-based techniques such as using the compiler or open source tools to
help build secure and reliable GNU/Linux applications.

In This Chapter

An Introduction to Code Hardening
Code Hardening Techniques
Tools Support for Code Hardening
Tracing Binary Applications

CODE HARDENING TECHNIQUES

Code hardening can take a number of different forms, and entire books have been
written on the topic. This section looks at a variety of techniques that can help build
better code.

RETURN VALUES

The failure to check return values is one of the most common mistakes made in
modern software. Many applications call user or system functions and are very
 optimistic about their successful operation. When building hardened software, you
should make all reasonable attempts to check return values, and if you find failures,
deal with them appropriately. Reasonable attempts is a key here; consider the
 following bogus example:

ret = printf("Current mode is %d\n", mode);

if (ret < 0) {

ret = printf("An error occurred emitting mode.\n");

}

The point is easily illustrated, but in most cases (of user and system calls) the
return value is relevant and should be checked in every case.

STRONGLY CONSIDER USER/NETWORK I/O

Whenever you develop applications that take input either from a user or from the
network (such as a Sockets application), it’s even more critical to scrutinize the
 incoming data. Errors such as insufficient data for a given operation or more data
received than buffer space is available for are two of the most common.

USE SAFE STRING FUNCTIONS

A number of standard C library functions suffer from security problems. The prob-
lem they present is that they have no bounds checking, which means that they can
be exploited (this chapter discusses the buffer overflow issue shortly). The simple
solution to this problem is to avoid unsafe functions and instead use the safe
 versions (as shown in Table 31.1).

594 GNU/Linux Application Programming

Chapter 31 Code Hardening 595

BUFFER OVERFLOW

Buffer overruns cause unpredictable software behavior in the best case and security
exploits in the worst. Buffer overruns can be avoided very simply. Consider the fol-
lowing erroneous example:

static char myArray[10];

...

int i;

for (i = 0 ; i < 10 ; i++) {

myArray[i] = (char)(0x30+i);

}

myArray[i] = 0; // <—Overrun

In this example, you have overrun the bounds of your array by writing to the
11th element. Whatever object follows this array is now corrupted. You actually
have a very simple solution to this problem, and it involves a better programming
practice using symbolic constants. In the next example, you create a constant defin-
ing the size of your array, but then you add one more element for the trailing NULL.

#define ARRAY_SIZE 10

static char myArray[ARRAY_SIZE+1];

...

int i;

for (i = 0 ; i < ARRAY_SIZE ; i++) {

myArray[i] = (char)(0x30+i);

}

myArray[ARRAY_SIZE] = 0;

Unsafe Function Safe Replacement Header

gets fgets stdio.h

sprintf snprintf stdio.h

strcat strncat string.h

strcpy strncpy string.h

strcmp strncmp string.h

strcasecmp strncasecmp strings.h

vsprintf vsnprintf stdio.h

TABLE 31.1 Safe Replacements for C Library Functions

You’ve automatically protected the array by an extra element at the end, but
also—in good programming practice—you’ve used a symbol to denote the size of
the array, rather than relying on a number.

PROVIDE LOGICAL ALTERNATIVES AT DECISION POINTS

A very common mistake that can yield unpredictable results is the absence of a
default section in a switch statement. Consider the following example:

switch(mode) {

case OPERATIONAL_MODE:

/* switch to operational mode processing */

break;

case BUILT_IN_TEST_MODE:

/* switch to test processing */

break;

}

Here, in the event, another mode was added, but this particular code segment
was not updated; the result after this segment has executed is unpredictable. The
solution is to always include a default section that either asserts (in debugging
mode) or at a minimum notifies the caller that a problem has occurred. If you’re re-
ally not expecting another mode, you can simply call assert here to catch the con-
dition during debugging:

switch(mode) {

case OPERATIONAL_MODE:

/* switch to operational mode processing */

break;

case BUILT_IN_TEST_MODE:

/* switch to test processing */

break;

default:

assert(0);

break;

}

A similar problem exists with if/then/else chains. The following example
 illustrates the problem:

float multiplier = 0.0;

if (state == FIRST_STAGE) multiplier = 0.75;

else if (state == SECOND_STAGE) multiplier = 1.25;

596 GNU/Linux Application Programming

If your state is corrupted or takes on a value that you did not expect, then your
multiplier takes on the value of 0.0, and the result is unpredictable at best and,
 depending upon the application, catastrophic at worst. At a minimum you should
provide an else to catch the issue, such as seen here:

float multiplier = 0.0;

if (state == FIRST_STAGE) multiplier = 0.75;

else if (state == SECOND_STAGE) multiplier = 1.25;

else multiplier = SAFE_MULTIPLIER;

In many cases, the trailing else isn’t necessary, but whenever one is seen, you
should give it extra scrutiny to avoid erroneous results.

SELF-IDENTIFYING STRUCTURES

A self-identifying structure is a method that mimics the concept of runtime type
checking present in strongly typed languages. In a strongly typed language, the use
of an invalid type results in a runtime error. Consider the passing of pointers in a
weakly typed language such as C. With C typecasting, it’s not difficult to confuse
one structure for another.

With a simple policy change to C structures and a limited amount of checking,
you can help ensure that functions are dealing with the right types. Consider the C
source shown in Listing 31.1. At lines 6–12, you see your target structure, which
contains a special header called a signature (sometimes called a runtime type identi-
fier). The type is shown at line 4, in this case simply a signature that uniquely rep-
resents your structure. You then provide two macro functions that initialize
(INIT_TARGET_MARKER) and then check (CHECK_TARGET_MARKER) the signature in the
structure.

Skip ahead a little and take a look at the main function at lines 34–54. You allo-
cate two objects (both of size targetMarket_t) and then initialize one of them as an
actual target marker using the INIT_TARGET_MARKER macro. Finally, you try to display
each of the objects by passing each to the displayTarget function.

In your displayTarget function (lines 22–31), your first task is to check the
 signature of the received object by calling CHECK_TARGET_MARKER. If the signature is
not correct, you call assert rather than risk providing bogus information. Granted,
in a production system you can probably handle this better, but this illustrates the
concept.

Chapter 31 Code Hardening 597

LISTING 31.1 Illustrating a Self-Identifying Structure (on the CD-ROM at

./source/ch31/selfident.c)

1: #include <stdio.h>

2: #include <assert.h>

3:

4: #define TARGET_MARKER_SIG 0xFAF32000

5:

6: typedef struct {

7:

8: unsigned int signature;

9: unsigned int targetType;

10: double x, y, z;

11:

12: } targetMarker_t;

13:

14:

15: #define INIT_TARGET_MARKER(ptr) \

16: (((targetMarker_t *)ptr)->signature = TARGET_MARKER_SIG)

17: #define CHECK_TARGET_MARKER(ptr) \

18: assert(((targetMarker_t *)ptr)->signature == \

19: TARGET_MARKER_SIG)

20:

21:

22: void displayTarget(targetMarker_t *target)

23: {

24:

25: /* Pre-check of the target structure */

26: CHECK_TARGET_MARKER(target);

27:

28: printf("Target type is %d\n", target->targetType);

29:

30: return;

31: }

32:

33:

34: int main()

35: {

36: void *object1, *object2;

37:

38: /* Create two objects */

39: object1 = (void *)malloc(sizeof(targetMarker_t));

40: assert(object1);

41: object2 = (void *)malloc(sizeof(targetMarker_t));

598 GNU/Linux Application Programming

42: assert(object2);

44: /* Init object1 as a target marker struct */

45: INIT_TARGET_MARKER(object1);

46:

47: /* Try to display object1 */

48: displayTarget((targetMarker_t *)object1);

49:

50: /* Try to display object2 */

51: displayTarget((targetMarker_t *)object2);

52:

53: return 0;

54: }

REPORTING ERRORS

The reporting of errors is an interesting topic because the policy that’s chosen can
be very different depending upon the type of application you’re developing. For ex-
ample, if you are writing a command-line utility, emitting error messages to stderr
is a common method to communicate errors to the user. But what happens if
you’re building an application that has I/O capabilities, such as an embedded Linux
application? You have a number of possibilities, including the generation of a
 specialized log or use of the standard system log (syslog). The syslog function has
the prototype:

#include <syslog.h>

void syslog(int priority, char *format, ...);

To the syslog function, you provide a priority, a format string, and some
 arguments (similar to printf). The priority can be one of LOG_EMERG, LOG_ALERT,
LOG_CRIT, LOG_ERR, LOG_WARNING, LOG_NOTICE, LOG_INFO, or LOG_DEBUG. An example of
using syslog to generate a message to the system log is shown in Listing 31.2.

LISTING 31.2 Simple Example of syslog Use (on the CD-ROM at

./source/ch31/simpsyslog.c)

1: #include <syslog.h>

2:

3: int main()

4: {

5:

6: syslog(LOG_ERR, "Unable to load configuration!");

7:

8: return 0;

9: }

Chapter 31 Code Hardening 599

This results in your system log (stored within your filesystem at /var/log/mes-
sages) being updated as follows:

Jul 21 18:13:10 camus sltest: Unable to load configuration!

In this example, your application in Listing 31.2 was called sltest, with the
hostname of camus. The system log can be especially useful because it’s an aggregate
of many error reports. This allows a developer to see where a message was generated
in relation to others, which can be very useful in helping to understand problems.

The syslog is very useful for communicating information for system applications
and daemons.

One final topic on error reporting is that of being specific about the error being
reported. The error message must uniquely identify the error for the user to be able
to deal with it reasonably.

REDUCING COMPLEXITY ALSO REDUCES POTENTIAL BUGS

Code that is of higher complexity potentially contains more bugs. It’s a fact of life,
but one that you can use to help reduce defects. In some disciplines this is called
refactoring, but the general goal is to take a complex piece of software and break it
up so that it’s more easily understood. This very act can lead to higher quality soft-
ware that is more easily maintained.

SELF-PROTECTIVE FUNCTIONS

Writing self-protective functions can be a very useful debugging mechanism to
 ensure that your software is correct. The programming language Eiffel includes
language features to provide this mechanism (known as programming by contract).

Being self protective means that when you write a function, you scrutinize the
input to the function and, upon completion of its processing, scrutinize the output
to ensure that what you’ve done is correct.

Take a look at an example of a simple function that illustrates this behavior (see
Listing 31.3).

If an expression results in false (0), the assert function causes the application
to fail and an error to be generated to stdout. To disable asserts within an applica-
tion, the NDEBUG symbol can be defined, which causes the assert calls to be opti-
mized away.

600 GNU/Linux Application Programming

LISTING 31.3 Example of a Self-Protective Function (on the CD-ROM at

./source/ch31/selfprot.c)

1: STATUS_T checkAntennaStatus(ANTENNA_T antenna, MODE_T *mode)

2: {

3: ANTENNA_STS_T retStatus;

4:

5: /* Validate the input */

6: assert(validAntenna(antenna));

7: assert(validMode(mode));

8:

9:

10: /*————————————————————*/

11: /* Internal checkAntennaStatus processing */

12: /*————————————————————*/

13:

14:

15: /* We may have changed modes, check it. */

16: assert(validMode(mode));

17:

18: return retStatus;

19: }

In Listing 31.3 you see a function that first ensures that it’s getting good data
(validating input) and then that what it’s providing is correct (checking output).
You also can return errors upon finding these conditions, but for this example, you
are mandating proper behavior at all levels. If all functions performed this activity,
finding the real source of bugs would be a snap.

The use of assert isn’t restricted just to ensuring that function inputs and out-
puts are correct. It can also be used for internal consistency. Any critical failure that
should be identified during debugging is easily handled with assert.

Using the assert call for internal consistency is often the only practical way to
find timing (race condition) bugs in threaded code.

MAXIMIZE DEBUG OUTPUT

Too much output can disguise errors; too little and an error can be missed. The
right balance must be found when emitting debug and error output to ensure that
only the necessary information is presented to avoid overloading an already over-
loaded user.

Chapter 31 Code Hardening 601

MEMORY DEBUGGING

You have many libraries available that support debugging dynamic memory man-
agement on GNU/Linux. One of the most popular is called Electric Fence, which
programs the underlying processor’s MMU (memory management unit) to catch
memory errors via segment faults. Electric Fence can also detect exceeding array
bounds. The Electric Fence library is very powerful and identifies memory errors
immediately.

COMPILER SUPPORT

The compiler itself can be an invaluable tool to identify issues in your code. When
you build software, you should always enable warnings using the -Wall flag. To
 further ensure that warnings aren’t missed in large applications, you can enable the
-Werror flag, which treats warnings as errors and therefore halts further compila-
tion of a source file. When building an application that has many source files, this
combination can be beneficial. This is demonstrated as follows:

gcc -Wall -Werror test.c -o test

If you want your source to have ANSI compatibility, you can enable checking
for ANSI compliance (with pedantic checking) as follows:

gcc -ansi -pedantic test.c -o test

Identifying uninitialized variables is a very useful test, but in addition to the
warning option, optimization must also be enabled, because the data flow infor-
mation is available only when the code is optimized:

gcc -Wall -O -Wuninitialized test.c -o test

Chapter 5, “The GNU Compiler Toolchain,” provides additional warning in-
formation. The gcc main page also contains numerous warning options about
those enabled via -Wall.

SOURCE CHECKING TOOLS

To identify security vulnerabilities as well as common programming mistakes,
source-checking tools should be part of the development process. In addition to
being simple to use, they can easily be automated as part of the build process. One
important note when using source-checking tools is that while they can identify

602 GNU/Linux Application Programming

flaws, they can also miss them. Therefore, use your best judgment when using the
tools, and always know your source.

The splint tool (short for secure programming lint) is a static source-checking
tool built by the Inexpensive Program Analysis group at the University of Virginia.
It provides strong and weak checking of source and, with annotation, can perform
a very complete analysis of source.

With unannotated source, you can use the -weak option (with header files
found in the ./inc subdirectory):

splint -weak *.c -I./inc

splint also supports modes for standard checking (-standard, the default
mode), moderate checking (-checks), and extremely strict checking (-strict).

The flawfinder tool (developed by David Wheeler) is another useful tool that
statically checks source in search of errors. flawfinder provides useful error mes-
sages that can be tutorial in nature. Consider the following example:

$ flawfinder test.c

test.c:11: [2] (buffer) char:

Statically-sized arrays can be overflowed. Perform bounds

checking, use functions that limit length, or ensure that

the size is larger than the maximum possible length.

$

In this case, an array is found that does not necessarily present a security issue,
but a gentle reminder is provided concerning the potential for exploitation.

Many other source-checking tools exist, such as RATS (Rough Auditing Tool for
Security) and ITS4 (static vulnerability scanner). URLs for these tools can be found
in the “Resources” section of this chapter.

CODE TRACING

One final useful topic is that of system call tracing. While not specifically a source
auditing tool, it can be a very useful tool for understanding the underlying opera-
tion of a GNU/Linux application. The strace utility provides the capability to trace
the execution of an application from the perspective of system calls (such as fopen
or fwrite, to name just two).

Consider the application shown in Listing 31.4. This application violates many
of the code hardening principles already discussed, but you can see how you can
still debug it using strace.

Chapter 31 Code Hardening 603

LISTING 31.4 Poorly Hardened Application (on the CD-ROM at

./source/ch31/badprog.c)

1: #include <unistd.h>

2: #include <fcntl.h>

3:

4: #define MAX_BUF 128

5:

6: int main()

7: {

8: int fd;

9: char buf[MAX_BUF+1];

10:

11: fd = open("myfile.txt", O_RDONLY);

12:

13: read(fd, buf, MAX_BUF);

14:

15: printf("read %s\n", buf);

16:

17: close(fd);

18: }

The first thing to note about this application is that at line 11, where you at-
tempt to open the file called myfile.txt, you have no checking to ensure that the
file actually exists. Executing this application gives an unpredictable result:

$ gcc -o bad bad.c

$./bad

read @êÿ¿8Z@

$

This is surely not what you expected, so now you can use strace to see what’s
going on. The following shrinks the output a bit, because in this case you are not in-
terested in the libraries that are loaded and such.

$ strace ./bad

execve("./bad", ["./bad"], [/* 20 vars */]) = 0

uname({sys="Linux", node="camus", ...}) = 0

...

open("myfile.txt", O_RDONLY) = -1 ENOENT (No such file or

directory)

read(-1, 0xbfffef20, 128) = -1 EBADF (Bad file descriptor)

fstat64(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 0), ...}) = 0

604 GNU/Linux Application Programming

mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS,

-1, 0) = 0x40017000

write(1, "read \300\357\377\2778Z\1@\n", 14read Àïÿ¿8Z@

) = 14

close(-1) = -1 EBADF (Bad file descriptor)

munmap(0x40017000, 4096) = 0

exit_group(-1) = ?

$

After executing the app, you can see that the execve system call is used to actu-
ally start the program. You then see an open shortly after execution, which matches
your source (line 11, Listing 31.4). You can see at the right that the open system call
returned –1, with an error of ENOENT (the file doesn’t exist). This tells you right away
what’s going on with your application. The attempted read also fails, with the error
of a bad file descriptor (because the open call failed).

The strace tool can be useful not only to understand the operation of your
programs, but also the operation of programs for which you might not have source.
From the perspective of system calls, you can at some level understand what binary
applications are up to.

SUMMARY

Code hardening can increase your development time, but it routinely reduces your
debugging time. By anticipating faults while you design, you automatically increase
the reliability and quality of your software, so this technique is one to be mastered.
This chapter discussed a variety of code hardening techniques, as well as non-
coding methods to help create better software and understand its operation.

RESOURCES

Secure Programming for Linux and UNIX HOWTO at http://www.dwheeler.com/
secure-programs/Secure-Programs-HOWTO/index.html.

Electric Fence malloc() Debugger at http://perens.com/FreeSoftware/.
Splint Source Checking Tool at http://www.splint.org/.
Flawfinder Source Checker at http://www.dwheeler.com/flawfinder/.
RATS Source Checker at http://www.fortifysoftware.com/security-resources/

rats.jsp.
ITS4 Static Vulnerability Scanner at http://www.cigital.com/its4/.

Chapter 31 Code Hardening 605

http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/index.html
http://www.splint.org/
http://www.dwheeler.com/flawfinder/
http://www.fortifysoftware.com/security-resources/rats.jsp
http://www.fortifysoftware.com/security-resources/rats.jsp
http://www.cigital.com/its4/
http://perens.com/FreeSoftware/
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/index.html

This page intentionally left blank

607

Coverage Testing with
GNU gcov

32

In This Chapter

Understanding GNU’s gcov Tool
Exploring the Different Uses for gcov
Building Software for gcov
Understanding gcov’s Various Data Products
Illustrating Problems with gcov and Optimization

INTRODUCTION

This chapter explores the gcov utility and demonstrates how it can be used to both
help test and support software profiling and optimization. You will learn how to
build software for use with gcov and then understand the various types of data that
are provided. Finally, the chapter investigates things to avoid when performing
coverage testing.

WHAT IS gcov?

The chapter begins with an overview of what gcov can do for you. The gcov utility
is a coverage testing tool. When built with an application, the gcov utility monitors
the application under execution and identifies which source lines have been exe-
cuted and which have not. Further, gcov can identify the number of times a partic-
ular line has been executed, making it useful for performance profiling (where an
application is spending most of its time). Because gcov can tell which lines have not

been executed, it is useful to determine which code is not covered in test. In con-
cert with a test suite, gcov can identify whether all source lines have been adequately
covered [FSF02].

This chapter discusses the use of gcov bundled with version 3.2.2 of the GNU
compiler toolchain.

PREPARING THE IMAGE

First take a look at how an image is prepared for use with gcov. You get more detail
of gcov options in the coming sections, but this section serves as an introduction.
For an example you can use the simple bubblesort source file shown in Listing 32.1.

LISTING 32.1 Sample Source File to Illustrate the gcov Utility (on the CD-ROM at

./source/ch32/bubblesort.c)

1: #include <stdio.h>

2:

3: void bubbleSort(int list[], int size)

4: {

5: int i, j, temp, swap = 1;

6:

7: while (swap) {

8:

9: swap = 0;

10:

11: for (i = (size-1) ; i >= 0 ; i—) {

12:

13: for (j = 1 ; j <= i ; j++) {

14:

15: if (list[j-1] > list[j]) {

16:

17: temp = list[j-1];

18: list[j-1] = list[j];

19: list[j] = temp;

20: swap = 1;

21:

22: }

23:

24: }

25:

26: }

27:

608 GNU/Linux Application Programming

28: }

29:

30: }

31:

32: int main()

33: {

34: int theList[10]={10, 9, 8, 7, 6, 5, 4, 3, 2, 1};

35: int i;

36:

37: /* Invoke the bubble sort algorithm */

38: bubbleSort(theList, 10);

39:

40: /* Print out the final list */

41: for (i = 0 ; i < 10 ; i++) {

42: printf("%d\n", theList[i]);

43: }

44:

45: }

The gcov utility is used in conjunction with the compiler toolchain. This means
that the image on which you want to perform coverage testing must be compiled
with a special set of options. These are illustrated as follows for compiling the
source file bubblesort.c:

gcc bubblesort.c -o bubblesort -ftest-coverage -fprofile-arcs

The resulting image, when executed, produces a number of files containing
 statistics about the application (along with statistics emitted to standard-out).
These files are then used by the gcov utility to report statistics and coverage infor-
mation to you. When the -ftest-coverage option is specified, two files are gener-
ated for each source file. These files use the extension .bb (basic-block) and .bbg
(basic block graph) and help to reconstruct the program flow graph of the executed
application. For the option -fprofile-arcs, a .da file is generated that contains the
execution count for each instrument branch. These files are used after execution,
along with the original source file, to identify the execution behavior of the source.

USING THE gcov UTILITY

Now that you have the image, you can continue to walk through the rest of the
process. Executing the new application yields the set of statistics files discussed pre-
viously (.bb, .bbg, and .da). You then execute the gcov application with the source
file that you want to examine as follows:

Chapter 32 Coverage Testing with GNU gcov 609

$./bubblesort

...

$ gcov bubblesort.c

100.00% of 17 source lines executed in file bubblesort.c

Creating bubblesort.c.gcov.

This tells you that all source lines within your sample application were executed
at least once. You can see the actual counts for each source line by reviewing the
generated file bubblesort.c.gcov (see Listing 32.2).

LISTING 32.2 File bubblesort.c.gcov Resulting from Invocation of gcov Utility

1: #include <stdio.h>

2:

3: void bubbleSort(int list[], int size)

4: 1 {

5: 1 int i, j, temp, swap = 1;

6:

7: 3 while (swap) {

8:

9: 2 swap = 0;

10:

11: 22 for (i = (size-1) ; i >= 0 ; i—) {

12:

13: 110 for (j = 1 ; j <= i ; j++) {

14:

15: 90 if (list[j-1] > list[j]) {

16:

17: 45 temp = list[j-1];

18: 45 list[j-1] = list[j];

19: 45 list[j] = temp;

20: 45 swap = 1;

21:

22: }

23:

24: }

25:

26: }

27:

28: }

29:

30: }

31:

32: int main()

610 GNU/Linux Application Programming

33: 1 {

34: 1 int theList[10]={10, 9, 8, 7, 6, 5, 4, 3, 2, 1};

35: 1 int i;

36:

37: /* Invoke the bubble sort algorithm */

38: 1 bubbleSort(theList, 10);

39:

40: /* Print out the final list */

41: 11 for (i = 0 ; i < 10 ; i++) {

42: 10 printf("%d\n", theList[i]);

43: }

44:

45: }

Now, you can take a look at some of the major points of Listing 32.2 to see
what’s provided. The first column shows the execution count for each line of source
(line 4 shows a count of one execution, the call of the bubbleSort function). In some
cases execution counts aren’t provided. These are simply C source elements that
don’t result in code (for example, lines 22 through 30).

The counts can provide some information about the execution of the applica-
tion. For example, the test at line 15 was executed 90 times, but the code executed
within the test (lines 17–20) was executed only 45 times. This tells you that while
the test was invoked 90 times, the test succeeded only 45. In other words, half of the
tests resulted in a swap of two elements. This behavior is because of the ordering of
the test data at line 34.

The gcov files (.bb, .bbg, and .da) should be removed before running the applica-
tion again. If the .da file isn’t removed, the statistics simply accumulate rather than
start over. This can be useful but, if unexpected, problematic.

The code segment executed most often, not surprisingly, is the inner loop of
the sort algorithm. This is because line 13 is invoked one time more than line 15
 because of the exit test (to complete the loop).

LOOKING AT BRANCH PROBABILITIES

You can also see the branch statistics for the application using the -b option. This
option writes branch frequencies and summaries for each branch in the instru-
mented application. For example, when you invoke gcov with the -b option, you
now get the following:

Chapter 32 Coverage Testing with GNU gcov 611

$ gcov -b bubblesort.c

100.00% of 17 source lines executed in file bubblesort.c

100.00% of 12 branches executed in file bubblesort.c

100.00% of 12 branches taken at least once in file bubblesort.c

100.00% of 2 calls executed in file bubblesort.c

Creating bubblesort.c.gcov.

$

The resulting bubblesort.c.gcov file is shown in Listing 32.3. Here you see a
similar Listing to 32.2, but this time the branch points have been labeled with their
frequencies.

LISTING 32.3 File bubblesort.c.gcov Resulting from Invocation of gcov Utility with -b

1: #include <stdio.h>

2:

3: void bubbleSort(int list[], int size)

4: 1 {

5: 1 int i, j, temp, swap = 1;

6:

7: 3 while (swap) {

8: branch 0 taken = 67%

9: branch 1 taken = 100%

10:

11: 2 swap = 0;

12:

13: 22 for (i = (size-1) ; i >= 0 ; i—) {

14: branch 0 taken = 91%

15: branch 1 taken = 100%

16: branch 2 taken = 100%

17:

18: 110 for (j = 1 ; j <= i ; j++) {

19: branch 0 taken = 82%

20: branch 1 taken = 100%

21: branch 2 taken = 100%

22:

23: 90 if (list[j-1] > list[j]) {

24: branch 0 taken = 50%

25:

26: 45 temp = list[j-1];

27: 45 list[j-1] = list[j];

28: 45 list[j] = temp;

29: 45 swap = 1;

30:

612 GNU/Linux Application Programming

31: }

32:

33: }

34:

35: }

36:

37: }

38:

39: }

40:

41: int main()

42: 1 {

43: 1 int theList[10]={10, 9, 8, 7, 6, 5, 4, 3, 2, 1};

44: 1 int i;

45:

46: /* Invoke the bubble sort algorithm */

47: 1 bubbleSort(theList, 10);

48: call 0 returns = 100%

49:

50: /* Print out the final list */

51: 11 for (i = 0 ; i < 10 ; i++) {

52: branch 0 taken = 91%

53: branch 1 taken = 100%

54: branch 2 taken = 100%

55: 10 printf("%d\n", theList[i]);

56: call 0 returns = 100%

57: }

58:

59: }

The branch points are very dependent upon the target architecture’s instruc-
tion set. Line 23 is a simple if statement and therefore has one branch point rep-
resented. Note that this is 50%, which cross-checks with your observation of line
execution counts previously. Other branch points are a little more difficult to parse.
For example, line 7 represents a while statement and has two branch points. In x86
assembly, this line compiles to what you see in Listing 32.4.

LISTING 32.4 x86 Assembly for the First Branch Point of bubblesort.c.gcov

1: cmpl $0, -20(%ebp)

2: jne .L4

3: jmp .L1

Chapter 32 Coverage Testing with GNU gcov 613

The swap variable is compared at line 1 to the value 0 in Listing 32.4. If it’s not
equal to zero, the jump at line 2 is taken (jump-nonzero) to .L4 (line 11 from List-
ing 32.3). Otherwise, the jump at line 3 is taken to .L1. The branch probabilities
show that line 2 (branch 0) was taken 67 percent of the time. This is because the line
was executed three times, but the jne (line 2 of Listing 32.3) was taken only twice
(2/3 or 67 percent). When the jne at line 2 is not taken, you do the absolute jump
(jmp) at line 3. This is executed once, and after it is executed, the application ends.
Therefore, branch 1 (line 9 of Listing 32.3) is taken 100 percent of the time.

So the branch probabilities are useful in understanding program flow, but
 consulting the assembly can be required to understand what the branch points
 represent.

INCOMPLETE EXECUTION COVERAGE

When gcov encounters an application whose test coverage is not 100 percent, the
lines that are not executed are labeled with ###### rather than an execution count.
Listing 32.5 shows a source file created by gcov that illustrates less than 100 percent
coverage.

LISTING 32.5 A Sample Program with Incomplete Test Coverage (on the CD-ROM at

./source/ch32/incomptest.c)

1: #include <stdio.h>

2:

3: int main()

4: 1 {

5: 1 int a=1, b=2;

6:

7: 1 if (a == 1) {

8: 1 printf("a = 1\n");

9: } else {

10: ###### printf("a != 1\n");

11: }

12:

13: 1 if (b == 1) {

14: ###### printf("b = 1\n");

15: } else {

16: 1 printf("b != 1\n");

17: }

18:

19: 1 return 0;

20: }

614 GNU/Linux Application Programming

The gcov utility also reports this information to standard-out when it is run. It
emits the number of source lines possible to execute (in this case 9) and the per-
centage that were actually executed (here, 78 percent):

$ gcov incomptest.c

77.78% of 9 source lines executed in file incomptest.c

Creating incomptest.c.gcov.

$

If your sample application has multiple functions, you can see the breakdown
per function through the use of the -f option (or -function-summaries). This is
 illustrated using your previous bubblesort application as follows:

$ gcov -f bubblesort.c

100.00% of 11 source lines executed in function bubbleSort

100.00% of 6 source lines executed in function main

100.00% of 17 source lines executed in file bubblesort.c

Creating bubblesort.c.gcov.

$

OPTIONS AVAILABLE FOR gcov

Now that you have seen gcov in action in a few scenarios, it’s time to look at gcov’s
full list of options (see Table 32.1). The gcov utility is invoked with the source file
to be annotated as follows:

gcov [options] sourcefile

From Table 32.1, you can see a short single letter option and a longer option.
The short option is useful when you are using gcov from the command line, but
when gcov is part of a Makefile, you should use the longer options should because
they’re more descriptive.

To retrieve version information about the gcov utility, you use the -v option.
Because gcov is tied to a given compiler toolchain (it’s actually built from the gcc
toolchain source), the versions for gcc and gcov are identical.

An introduction to gcov and the option help for gcov can be displayed using the
-h option.

The branch probabilities can be emitted to the annotated source file using the
-b option (see the section “Looking at Branch Probabilities” earlier in this chapter).
Rather than producing branch percentages, you can emit branch counts using the
-c option.

Chapter 32 Coverage Testing with GNU gcov 615

If the annotated source file is not important, you can use the -n option. This
can be useful if all that’s important is to understand the test coverage of the source.
This information is emitted to standard-out.

When you are including source in header files, it can be useful to use the -l
 option to produce long filenames. This helps make filenames unambiguous if
 multiple source files include headers containing source (each getting its own gcov
annotated header file).

You can emit coverage information to standard-out for each function rather
than the entire application using the -f option. This is discussed in the section “In-
complete Execution Coverage,” earlier in this chapter.

The final option, -o, tells gcov where the gcov object files are stored. By default,
gcov looks for the files in the current directory. If they’re stored elsewhere, this op-
tion specifies where gcov can find them.

CONSIDERATIONS

Certain capabilities should be avoided when you are using gcov for test coverage.
You should disable optimization when you are using gcov. Because optimization
can result in source lines being moved or removed, coverage is less meaningful.
Coverage testing is also less meaningful when you are using source macro expan-
sion in the source after the preprocessor stage. These aren’t shown in gcov and
therefore miss identification of full test coverage.

616 GNU/Linux Application Programming

Option Purpose

-v, —version Emit version information (no further processing).

-h, —help Emit help information (no further processing).

-b, —branch-probabilities Emit branch frequencies to the output file

(with summary).

-c, —branch-counts Emit branch counts rather than frequencies.

-n, —no-output Do not create the gcov output file.

-l, —long-file-names Create long filenames.

-f, —function-summaries Emit summaries for each function.

-o, —object-directory Directory where .bb, .bbg, and .da files are

stored.

TABLE 32.1 gcov Utility Options

If you are a GNU/Linux kernel developer, gcov can be used for certain archi-
tectures within the kernel. A patch is available from IBM to allow gcov use in the
kernel. Its availability is provided in the “Resources” section.

SUMMARY

This chapter introduced GNU’s gcov test coverage tool. It explored the capabilities
for gcov, including coverage testing, identifying branch probabilities, and emitting
summaries for each function under review. It investigated building software for use
with gcov and some considerations for options to avoid, such as optimization and
source macro expansion.

REFERENCES

[FSF02] “Using the GNU Compiler Collection (GCC),” Free Software Foundation
at http://gcc.gnu.org/onlinedocs/gcc-3.2.3/gcc/index.html#toc_Gcov.

RESOURCES

The LTP GCOV-kernel extension (GCOV-kernel) at http://ltp.sourceforge.net/
coverage/.

Chapter 32 Coverage Testing with GNU gcov 617

http://gcc.gnu.org/onlinedocs/gcc-3.2.3/gcc/index.html#toc_Gcov
http://ltp.sourceforge.net/coverage/
http://ltp.sourceforge.net/coverage/

This page intentionally left blank

619

Profiling with GNU gprof33

INTRODUCTION

This chapter investigates the gprof utility and explores how it can be used to help
build efficient programs. You’ll learn how software must be built for use with gprof
and then have a chance to understand the data products that are provided. Finally,
the chapter investigates the variety of options that gprof provides and how they can
be used.

WHAT IS PROFILING?

Profiling is the art of analyzing the performance of an application. By identifying
where a program spends the majority of its time, you can better isolate where your
modifications can yield the biggest performance gains. The most common result of
profiling is a better understanding of where a given program spends its time. By
looking at where the program spends the majority of its time, you can yield signif-
icant gains by improving that portion of code, rather than fine-tuning code that
doesn’t affect the bottom line.

In This Chapter

An Introduction to Performance Profiling
An Introduction to the GNU gprof Profiler Utility
Preparing an Image for Use with gprof
Discussing the Data Products Provided by gprof
Exploring Some of the Most Important gprof Utility Options

WHAT IS gprof?

The gprof utility is the GNU profiler, a tool that identifies how much time is spent
in a function of an operating program. The GNU profiler also identifies which
functions were called by a given function. Similar to the gcov utility (the topic of
Chapter 32, “Coverage Testing with GNU gcov”), the compiler introduces profiling
code into the target image, which generates a statistics file upon execution. This file
(gmon.out) contains histogram records, call-graph arc records, and basic-block
 execution records that illustrate the execution profile of an application. When read
by the gprof utility, the performance behavior of the application can be readily
 understood.

This chapter discusses use of the gprof utility bundled with version 3.2.2 of the
GNU compiler toolchain.

PREPARING THE IMAGE

Now it’s time to look at how an image is prepared for profiling with gprof. You first
look at some basic uses of profiling with gprof, and in later sections you look at
some of the other options available. For the profiling example, you use the follow-
ing sorting demo shown in Listing 33.1. This sample source (sort.c) illustrates two
sorting algorithms, the insert-sort (function insertSort, lines 5–21) and the
 bubble-sort (function bubbleSort, lines 23–50). Each is run with identical data
to understand unambiguously their profiling properties for a given data set (as
provided by function init_list, lines 53–62).

LISTING 33.1 Sample Source to Explore the gprof Utility (on the CD-ROM at

./source/ch33/sort.c)

1: #include <stdio.h>

2:

3: #define MAX_ELEMENTS 10000

4:

5: void insertSort(int list[], int size)

6: {

7: int i, j, temp;

8:

9: for (i = 1 ; i <= size-1 ; i++) {

10:

11: temp = list[i];

12:

13: for (j = i-1 ; j >= 0 && (list[j] > temp) ; j—) {

620 GNU/Linux Application Programming

14: list[j+1] = list[j];

15: }

16:

17: list[j+1] = temp;

18:

19: }

20:

21: }

22:

23: void bubbleSort(int list[], int size)

24: {

25: int i, j, temp, swap = 1;

26:

27: while (swap) {

28:

29: swap = 0;

30:

31: for (i = (size-1) ; i >= 0 ; i—) {

32:

33: for (j = 1 ; j <= i ; j++) {

34:

35: if (list[j-1] > list[j]) {

36:

37: temp = list[j-1];

38: list[j-1] = list[j];

39: list[j] = temp;

40: swap = 1;

41:

42: }

43:

44: }

45:

46: }

47:

48: }

49:

50: }

51:

52:

53: void init_list(int list[], int size)

54: {

55: int i;

56:

57: for (i = 0 ; i < size ; i++) {

Chapter 33 Profiling with GNU gprof 621

622 GNU/Linux Application Programming

58: list[i] = (size-i);

59: }

60:

61: return;

62: }

63:

64:

65: int main()

66: {

67: int list[MAX_ELEMENTS]; int i;

68:

69: /* Invoke the bubble sort algorithm */

70: init_list(list, MAX_ELEMENTS);

71: bubbleSort(list, MAX_ELEMENTS);

72: init_list(list, MAX_ELEMENTS);

73: insertSort(list, MAX_ELEMENTS);

74:

75: }

The gprof utility uses information from the executable image and the profiler
output file, gmon.out, to generate its profiling data. To collect the profiling data, the
image must be compiled and linked with a special set of compiler flags. These are
illustrated in the following for compiling the sample source file, sort.c:

gcc sort.c -o sort -pg

The result is an image, sort, which is instrumented to collect profiling infor-
mation. When the image is executed and completes normally, a file called gmon.out
results, containing the profiling data.

The gmon.out file is written upon normal exit of the application. If the program
exits abnormally or the user forces an exit with a Ctrl+C, the gmon.out file is not
written.

USING THE gprof UTILITY

Upon execution of the profiler-instrumented image, the gmon.out file is generated.
This file is used in conjunction with the original image for gprof to generate
human-readable statistics information. Take a look at a simple example and the
data products that result. First, you invoke the image and then generate the gprof
summary:

$./sort

$ gprof sort gmon.out > sort.gprof

The gprof utility writes its human-readable output to standard-out, so the user
must redirect this to a file to save it. The first element of the gprof output is what’s
called the “flat profile.” This provides the basic timing summary of the executable,
as shown in Listing 33.2. Note that this is not the complete output of gprof. You can
take a look at other data products shortly.

LISTING 33.2 Sample Flat Profile Output from gprof

$ gprof sort gmon.out | more

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls s/call s/call name

71.66 3.11 3.11 1 3.11 3.11 bubbleSort

28.11 4.33 1.22 1 1.22 1.22 insertSort

0.23 4.34 0.01 2 0.01 0.01 init_list

...

As you saw in Listing 33.1, your application is made up of three functions.
Each function is represented here with a variety of timing data. The first column
represents the percentage of time spent in each function in relation to the whole.
What’s interesting to note from this column is that the bubble-sort algorithm
 requires 2.5 times as much execution time to sort the identical list as the insert-sort.
The next column, cumulative seconds, is a running sum of the number of seconds,
and the next, self seconds, is the number of seconds taken by this function alone.
Note that the table itself is sorted by this column in descending order. The column
entitled calls represents the total number of times that this function was called, if
the function itself was profiled; otherwise the element is blank. The self s/call
represents the average number of seconds spent in this function (including func-
tions that it calls), while the total s/call represents the total number of seconds
spent in the function (including functions that it calls). Finally, the name of the
function is provided.

The next element provided by gprof is the call graph. This summary (shown in
Listing 33.3) shows each function and the calls that are made by it, including the
time spent within each function. It illustrates the timing as a hierarchy, which is
useful in understanding timing for individual functions down the chain and their
effect on higher layers of the call chain.

Chapter 33 Profiling with GNU gprof 623

LISTING 33.3 Sample Call Graph Output from gprof

index % time self children called name

<spontaneous>

[1] 100.0 0.00 2.11 main [1]

1.44 0.00 1/1 bubbleSort [2]

0.67 0.00 1/1 insertSort [3]

0.00 0.00 2/2 init_list [4]

———————————————————————-

1.44 0.00 1/1 main [1]

[2] 68.2 1.44 0.00 1 bubbleSort [2]

———————————————————————-

0.67 0.00 1/1 main [1]

[3] 31.8 0.67 0.00 1 insertSort [3]

———————————————————————-

0.00 0.00 2/2 main [1]

[4] 0.0 0.00 0.00 2 init_list [4]

———————————————————————-

The index column is a unique number given to each element. The column
marked % time represents the percentage of the total amount of time that is spent
in the given function and its children calls. The self column is the amount of time
spent in the function, with children as the amount of time spent in the children’s
functions. Note that in the first row, children is 2.11 (a sum of the two sort func-
tions 1.44 + 0.67). This illustrates that the children functions took all of the time,
and no meaningful time was spent in the main function itself. The called field iden-
tifies how many times the function was called by the parent. The first number is the
number of times the particular parent called the function, and the second number
is the total number of times that the child function was called altogether. Finally,
the name column represents the names of the functions. Note that in the first row
(after the row headings), the name <spontaneous> is used. This simply means that
the parent could not be determined (very likely the C-start initialization).

Now that you have a performance baseline of your application, you can rebuild
your application and can see how you can improve it. In this example, you build
using -O2 optimization to see how well it improves this very simple application:

$ gcc -o sort sort.c -pg -O2

$./sort

$ gprof sort gmon.out | more

From Listing 33.4, you see that the performance of the application improves
significantly (a five times improvement for the insert-sort) from Listing 33.2

624 GNU/Linux Application Programming

(pre-optimization). The function bubbleSort sees only a modest four times
improvement.

LISTING 33.4 Sample Flat Profile Output from gprof for the Optimized Application

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls ms/call ms/call name

76.47 0.78 0.78 1 780.00 780.00 bubbleSort

23.53 1.02 0.24 1 240.00 240.00 insertSort

0.00 1.02 0.00 2 0.00 0.00 init_list

This clearly illustrates the usefulness of the gprof utility (and the gcc opti-
mizer). You can also see how the -O2 optimization level improves the source.

OPTIONS AVAILABLE FOR gprof

Now that you have covered the basic uses of gprof, you can look at the variety of
options that are provided. While gprof provides a large number of options, this
 section discusses some of the more useful ones here. For a complete list of options,
see the gprof help.

Source Annotation

The gprof utility can be used to annotate the source with frequency of execution.
However, the image must be built for this purpose. The -g and -a options must be
specified along with -pg as:

gcc -o sort sort.c -g -pg

This results in an image with not only the profile information (via the -pg
 option), but also debugging information (through the -g option). Upon executing
the image and checking the resulting output, as follows:

gprof -A -l sort gmon.out

you get Listing 33.5. The -A option tells gprof to emit an annotated source listing.
The -l option specifies to emit a function execution profile, as shown in the
 following:

Chapter 33 Profiling with GNU gprof 625

Listing 33.5 Sample Source Annotation from gprof for the Sort Application

(Incomplete)

#include <stdio.h>

#define MAX_ELEMENTS 10000

void insertSort(int list[], int size)

1 -> {

int i, j, temp;

for (i = 1 ; i <= size-1 ; i++) {

temp = list[i];

for (j = i-1 ; j >= 0 && (list[j] > temp) ; j—) {

list[j+1] = list[j];

}

list[j+1] = temp;

}

}

The -x option can also be used with gprof to extend execution counts to all
source lines.

Ignoring Private Functions

For private functions that are statically declared, you can ignore the statistics for
these through the use of the -a option (or -no-static). The time spent in the pri-
vate function is attributed to the caller, with the private function never appearing
in the flat profile or the call graph.

Recommending Function Ordering

The gprof utility can recommend a function ordering that can improve cache and
translation lookaside buffer (TLB) performance on systems that require functions
to be contiguous in memory. For systems that include multiway caches, this might
not provide much improvement.

To recommend a function ordering (via —function-ordering), the following
command sequences can be used:

$ gcc -o sort sort.c -pg -g

$./sort

$ gprof sort gmon.out —function-ordering

A list of functions is then suggested with specific ordering (using the source
from Listing 33.1). The result is shown in Listing 33.6.

626 GNU/Linux Application Programming

LISTING 33.6 Sample Function Ordering from gprof

insertSort

bubbleSort

init_list

_init

_start

__gmon_start__

. . .

Note the grouping of the sorting and init functions, which are all called in
proximity of one another. In some cases, reordering functions can be done as
 simply as coexisting contiguous functions within a single source file. The linker can
also provide this capability.

The file ordering option (—file-ordering) provides a similar capability by rec-
ommending the order in which objects should be linked to the target image.

Minimizing gprof Summary

The -b option is useful to minimize the amount of superfluous description data
that is emitted. Using -b removes the field discussion in the output, as shown in
Listing 33.7.

LISTING 33.7 Sample Brief Output from gprof

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls s/call s/call name

71.59 3.10 3.10 1 3.10 3.10 bubbleSort

28.41 4.33 1.23 1 1.23 1.23 insertSort

0.00 4.33 0.00 2 0.00 0.00 init_list

Call graph

granularity: each sample hit covers 4 byte(s) for 0.23% of 4.33

seconds

index % time self children called name

<spontaneous>

[1] 100.0 0.00 4.33 main [1]

3.10 0.00 1/1 bubbleSort [2]

1.23 0.00 1/1 insertSort [3]

0.00 0.00 2/2 init_list [4]

———————————————————————-

3.10 0.00 1/1 main [1]

Chapter 33 Profiling with GNU gprof 627

[2] 71.6 3.10 0.00 1 bubbleSort [2]

———————————————————————-

1.23 0.00 1/1 main [1]

[3] 28.4 1.23 0.00 1 insertSort [3]

———————————————————————-

0.00 0.00 2/2 main [1]

[4] 0.0 0.00 0.00 2 init_list [4]

———————————————————————-

Index by function name

[2] bubbleSort (sort.c) [4] init_list (sort.c) [3] insertSort

(sort.c)

To further minimize the output, —no-flat-profile can be used if the flat pro-
file is not needed (the default is —flat-profile). The call graph can be disabled
using the —no-graph option (default is —graph).

Finding Unused Functions

The gprof utility can identify functions that are not called in a given run. The
—display-unused-functions is used in conjunction with the —static-call-graph

option to list those functions, as follows:

gprof sort gmon.out —display-unused-functions —static-call-graph

Increasing gprof Accuracy

In some cases, a program might differ in timing or might represent such a small
timing sample that its accuracy is left in question. To increase the accuracy of an ap-
plication’s profiling, the application can be performed numerous times and then
averaged. A sample bash script that provides this capability is shown in Listing 33.8
[GNUgprof].

LISTING 33.8 Analyzing Multiple Invocations of an Application (on the CD-ROM at

./source/ch33/script)

#!/bin/bash

for i in 'seq 1 5'; do

./sort

mv gmon.out gmon.out.$i

done

gprof —sum sort gmon.out.*

gprof -b —no-graph sort gmon.sum

628 GNU/Linux Application Programming

Running this script results in a single flat profile over five invocations of the
sort application. This uses the -sum option of gprof to summarize the collection of
input gmon.out files into a single summary file, gmon.sum. The per/call measure-
ments of the flat profile can then be used as higher accuracy function timings.

CONSIDERATIONS

Profiling with gprof is a sampling process that is subject to statistical inaccuracies.
Recall from Listing 33.7 that each sample counts as 0.01 seconds. This is the sam-
pling period. The closer the sampling time is to this period, the larger the error is
for the profile. For this reason, increasing the accuracy of the profile is recom-
mended (see the previous section, “Increasing gprof Accuracy”). When gprof is en-
abled, it does introduce extra code into the image that can also affect its behavior
and performance. Therefore, simply by measuring the performance of the code,
you can affect it. This should always be kept in mind when you are using perfor-
mance and coverage tools.

SUMMARY

This chapter discussed profiling with GNU’s gprof, identifying some of the most
useful options that are provided. You walked through building an application for
use with gprof and then gathering a profile from it, including options for the vari-
ous gprof data products and recommendations for improving the performance of
an application from a caching perspective.

REFERENCES

[GNUgprof] The GNU Profiler, Jay Fenlason and Richard Stallman at http://www.
gnu.org/software/binutils/manual/gprof-2.9.1/html_mono/gprof.html.

Chapter 33 Profiling with GNU gprof 629

http://www.gnu.org/software/binutils/manual/gprof-2.9.1/html_mono/gprof.html
http://www.gnu.org/software/binutils/manual/gprof-2.9.1/html_mono/gprof.html

This page intentionally left blank

631

Advanced Debugging Topics34

INTRODUCTION

This final chapter looks at some of the advanced techniques for debugging GNU/
Linux applications and also shows you how to tune them. It looks at a variety of
open source tools for memory debugging and cross-referencing, as well as other
tools and techniques.

MEMORY DEBUGGING

You can start this chapter with one of the most difficult to debug issues, which
would be dynamic memory issues. These can take the form of invalid use of a freed
buffer, buffer overruns, or leaks. Overruns tend to result in insidious bugs where
the resulting behavior might not be deterministic and can change to a different be-
havior in a new run or after a compile. Leaks tend to result in different behaviors
such as program freezes or severe reductions in performance.

This section reviews a number of open source solutions that can help you find
memory issues in your programs.

In This Chapter

Memory Debugging with Open Source Tools
Cross-Referencing Tools
Tracing Tools
Other Techniques

VALGRIND

Valgrind is a suite of tools for debugging and profiling. One of the most well known
tools in this suite is called memwatch; it can help find memory issues (such as
memory leaks). Valgrind also includes other tools such as cachegrind, to annotate
your program based upon its cache utilization, and massif, which is a heap profiler.

The easiest way to get the Valgrind suite is through the apt command:

$ sudo apt-get install valgrind

After installation, you have a binary called valgrind installed that contains the
suite of debugging tools.

Out-of-bound memory errors are not only common, but tend to create prob-
lems that aren’t easily traceable back to the out-of-bound error. When a write
 occurs out of bounds, another object is corrupted, so the impact can be unrelated.

Now it’s time to take a look at a couple of uses of Valgrind. One of the most im-
portant uses of Valgrind is memcheck. This tool specifically monitors memory
usage and allocation within a running application. You start with the sample pro-
gram shown in Listing 34.1. This program has two specific errors. You can then use
memcheck to find them.

LISTING 34.1 Sample Program with Memory Errors (test.c)

1: #include <stdio.h>

2: #include <stdlib.h>

3: #include <string.h>

4:

5: int main()

6: {

7: char *buffer;

8:

9: buffer = (char *)malloc(5);

10:

11: strcpy(buffer, "0123456");

12:

13: printf("buffer is %s\n", buffer);

14:

15: return 0;

16: }

632 GNU/Linux Application Programming

To use memcheck, you first need to prepare your program. You compile the
program normally, but with the -g option, which inserts debugging information
into the resulting executable. Recall that the -g option is required to use GNU
 Debugger (GDB).

$ gcc -g -o test test.c

If you execute this program, it appears to operate normally (the errors are not
immediately destructive). Now you can use Valgrind to find the errors. You use
Valgrind as an application and your test program as an argument, as shown in
 Listing 34.2. As shown, the utility finds the buffer overrun at line 11 (in strcpy).
Valgrind also finds the memory leak (reported at the end of the listing) indicated by
an allocation but not an accompanying free.

LISTING 34.2 Sample Output from the Valgrind Utility

$ valgrind —tool=memcheck ./test

==7221== Memcheck, a memory error detector.

==7221== Copyright (C) 2002-2005, and GNU GPL'd, by Julian Seward et

al.

==7221== Using LibVEX rev 1471, a library for dynamic binary translation.

==7221== Copyright (C) 2004-2005, and GNU GPL'd, by OpenWorks LLP.

==7221== Using valgrind-3.1.0-Debian, a dynamic binary instrumentation

framework.

==7221== Copyright (C) 2000-2005, and GNU GPL'd, by Julian Seward et al.

==7221== For more details, rerun with: -v

==7221==

==7221== Invalid write of size 4

==7221== at 0x80483CC: main (test.c:11)

==7221== Address 0x415502C is 4 bytes inside a block of size 5 alloc'd

==7221== at 0x401B422: malloc (vg_replace_malloc.c:149)

==7221== by 0x80483BF: main (test.c:9)

==7221==

...

buffer is 0123456

==7221==

==7221== ERROR SUMMARY: 8 errors from 5 contexts (suppressed: 11 from 1)

==7221== malloc/free: in use at exit: 5 bytes in 1 blocks.

==7221== malloc/free: 1 allocs, 0 frees, 5 bytes allocated.

==7221== For counts of detected errors, rerun with: -v

==7221== searching for pointers to 1 not-freed blocks.

Chapter 34 Advanced Debugging Topics 633

==7221== checked 75,428 bytes.

==7221==

==7221== LEAK SUMMARY:

==7221== definitely lost: 5 bytes in 1 blocks.

==7221== possibly lost: 0 bytes in 0 blocks.

==7221== still reachable: 0 bytes in 0 blocks.

==7221== suppressed: 0 bytes in 0 blocks.

==7221== Use —leak-check=full to see details of leaked memory.

$

You can also use Valgrind to profile an application’s cache usage. To do this
you use the cachegrind option within Valgrind (which is shown in Listing 34.3). As
you can see in the listing, the utility details both instruction and data cache usage
for the Level 1 and Level 2 caches. This is extremely useful for profiling cache usage
to improve it for greater performance.

LISTING 34.3 Valgrind’s cachegrind Output

$ valgrind —tool=cachegrind ./test

==7331== Cachegrind, an I1/D1/L2 cache profiler.

==7331== Copyright (C) 2002-2005, and GNU GPL'd, by Nicholas Nethercote

et al.

==7331== Using LibVEX rev 1471, a library for dynamic binary translation.

==7331== Copyright (C) 2004-2005, and GNU GPL'd, by OpenWorks LLP.

==7331== Using valgrind-3.1.0-Debian, a dynamic binary instrumentation

framework.

==7331== Copyright (C) 2000-2005, and GNU GPL'd, by Julian Seward et al.

==7331== For more details, rerun with: -v

==7331==

buffer is 0123456

==7331==

==7331== I refs: 168,074

==7331== I1 misses: 1,247

==7331== L2i misses: 1,187

==7331== I1 miss rate: 0.74%

==7331== L2i miss rate: 0.70%

==7331==

==7331== D refs: 77,981 (58,028 rd + 19,953 wr)

==7331== D1 misses: 3,356 (2,971 rd + 385 wr)

==7331== L2d misses: 2,704 (2,383 rd + 321 wr)

==7331== D1 miss rate: 4.3% (5.1% + 1.9%)

==7331== L2d miss rate: 3.4% (4.1% + 1.6%)

==7331==

634 GNU/Linux Application Programming

==7331== L2 refs: 4,603 (4,218 rd + 385 wr)

==7331== L2 misses: 3,891 (3,570 rd + 321 wr)

==7331== L2 miss rate: 1.5% (1.5% + 1.6%)

$

When you are using Valgrind, your application slows by 20 or 30 times (as it’s
a CPU emulator), but that’s a small price to pay for the benefits that it provides.

ELECTRIC FENCE

Electric Fence is another memory debugger with the novel feature that it can iden-
tify the precise function of a malloc’d buffer where an overrun or underrun occurs.
Electric Fence is able to do this because it uses the virtual memory subsystem to
place zones around malloc’d buffers from which hardware can detect overrun/
underrun conditions.

First, to get the latest Electric Fence, use apt with the following command line:

$ sudo apt-get install electric-fence

You can build Electric Fence into your application by linking in the library as
follows:

$ gcc -o test test.c -lefence

After it is compiled, run your application under GDB, and Electric Fence indi-
cates any overruns that occur. Electric Fence causes your program to run slower
with more memory. Electric Fence is also an older tool, and you have better alter-
natives to choose (such as Valgrind).

yamd

The yamd (yet another malloc debugger) utility is another useful package for
 detecting memory-related bugs in both C and C++. The yamd package works, like
most, by emulating the malloc and free calls with specially instrumented versions.

You can download the yamd package using the command line that follows. It
can be built and installed using the package installation instructions explored in
Chapter 28, “GNU/Linux Administration Basics.”

$ wget http://www.cs.hmc.edu/~nate/yamd/yamd-0.32.tar.gz

After it is installed, you can use the utility to build an image from your source
to be tested. It’s time to use another test program now that exhibits erroneous free-
ing behaviors. For this example, you use the simple program shown in Listing 34.4.

Chapter 34 Advanced Debugging Topics 635

This application exhibits two errors. The first is an attempt to free a buffer back to
the heap twice (line 11), and the second is an attempt to release an erroneous buffer
(line 12).

LISTING 34.4 Sample Program with Erroneous Freeing Behaviors

1: #include <stdio.h>

2: #include <stdlib.h>

3:

4: int main()

5: {

6: char *buffer;

7:

8: buffer = (char *)malloc(50);

9:

10: free(buffer);

11: free(buffer);

12: free(++buffer);

13:

14: return 0;

15: }

To prepare your program with yamd, you use the provided utilities to build the
program as follows:

$ yamd-gcc test.c

for your sample C program. If your application is written in C++, you can use yamd-
g++. The result of this is an executable called a.out. You can execute this directly, as
shown in Listing 34.5, which includes the output generated by yamd. For system
calls, you see a variety of output indicating the traceback. The INFO blocks indicate
normal operations (such as the malloc and first successful free). The ERROR blocks
indicate abnormal operations, which include the multiple freeing of the buffer and
the attempt to free an erroneous buffer. Note that some of the traceback informa-
tion has been removed to shrink the output.

LISTING 34.5 Execution of the yamd Instrumented Image

$./a.out

YAMD version 0.32

Starting run: ./a.out

Executable: /home/mtj/memcheck/a.out

Virtual program size is 1580 K

Time is Sun Feb 3 00:21:01 2008

636 GNU/Linux Application Programming

default_alignment = 1

min_log_level = 1

repair_corrupted = 0

die_on_corrupted = 1

check_front = 0

INFO: Normal allocation of this block

Address 0xb7ef8fce, size 50

Allocated by malloc at

BEGIN TRACEBACK

/lib/tls/i686/cmov/libc.so.6(malloc+0x35)[0xb7e2b3c5]

./a.out[0x8048b3c]

/lib/tls/i686/cmov/libc.so.6(__libc_start_main+0xd2)[0xb7ddaea2]

./a.out[0x8048a81]

END TRACEBACK

INFO: Normal deallocation of this block

Address 0xb7ef8fce, size 50

Allocated by malloc at

BEGIN TRACEBACK

/lib/tls/i686/cmov/libc.so.6(malloc+0x35)[0xb7e2b3c5]

./a.out[0x8048b3c]

/lib/tls/i686/cmov/libc.so.6(__libc_start_main+0xd2)[0xb7ddaea2]

./a.out[0x8048a81]

END TRACEBACK

Freed by free at

BEGIN TRACEBACK

/lib/tls/i686/cmov/libc.so.6(__libc_free+0x35)[0xb7e292f5]

./a.out[0x8048b4a]

/lib/tls/i686/cmov/libc.so.6(__libc_start_main+0xd2)[0xb7ddaea2]

./a.out[0x8048a81]

END TRACEBACK

ERROR: Multiple freeing

free of pointer already freed

Address 0xb7ef8fce, size 50

Allocated by malloc

Freed by free

ERROR: Free of errnoneous pointer

Freeing erroneous pointer 0xb7ef8fcf

Seems to be part of this block:

Address 0xb7ef8fce, size 50

Allocated by malloc

Chapter 34 Advanced Debugging Topics 637

Freed by free

Address in question is at offset 1 (in bounds)

*** Finished at Sun Feb 3 00:21:01 2008

Allocated a grand total of 50 bytes

1 allocations

Average of 50 bytes per allocation

Max bytes allocated at one time: 50

12 K alloced internally / 8 K mapped now / 4 K max

Virtual program size is 1596 K

End.

$

As can be see in Listing 34.5, yamd generates a considerable amount of output.
In addition to the runtime error checking, it also provides a summary of memory
manipulations when the program exits.

mtrace

Finally, you now take a look at one of the simpler methods for detecting memory
leaks in C or C++ programs. The mtrace utility can parse a trace file that is collected
during the execution of an instrumented program. To instrument your program,
you simply add the mtrace() function to log malloc and free calls, as shown in
Listing 34.6. Line 9 contains the mtrace call.

Listing 34.6 Instrumenting Your Program with mtrace (test.c)

1: #include <stdio.h>

2: #include <stdlib.h>

3: #include <mcheck.h>

4:

5: int main()

6: {

7: char *buffer;

8:

9: mtrace();

10:

11: buffer = (char *)malloc(50);

12:

13: return 0;

14: }

638 GNU/Linux Application Programming

You can now compile your application (including debug information) as
 follows:

$ gcc -g -o test test.c

Next, you set an environment variable that defines where the trace data should
be emitted (MALLOC_TRACE):

$ export MALLOC_TRACE=/home/mtj/memcheck/mtrace.txt

After executing the test program, the malloc/free tracing is written to your trace
file defined by MALLOC_TRACE. You can then use the mtrace utility to parse the results
as follows:

$ mtrace test $MALLOC_TRACE

Memory not freed:

————————-

Address Size Caller

0x0804a378 0x32 at /home/mtj/memcheck/test.c:11

$

What’s shown is an allocation of a buffer at line 11 that has no accompanying
free (a memory leak).

The mtrace approach to memory leak detection is part of the GNU C library
and, therefore, is probably already on your system.

CROSS-REFERENCING TOOLS

Modern integrated development environments (IDEs) include the capability to
create a cross-reference of the source tree to enable simpler navigation. GNU/Linux
supports a number of options that provide cross-referencing capabilities in the
context of traditional GNU/Linux editing environments (such as vi). The next
 sections explore two options provided by GNU/Linux.

CSCOPE

Cscope is a great utility for browsing source code and integrates with GNU/Linux
editors. Cscope is much more than a grep utility with results formatting, as it can
parse the source to find the context of the object that you’re looking for. For ex-
ample, you can find any C symbol (variable name, function name, and so on),

Chapter 34 Advanced Debugging Topics 639

global definitions, functions that are called by another function, functions calling a
defined function, and simple text string and other search possibilities. Listing 34.7
shows a simple example of searching for a C symbol (in this case, ruby_debug)
within the Ruby language source distribution. After providing the variable name
(entered at the bottom of the listing), Cscope provides the references at the top.
Each of these references can be selected, which takes the user to the particular
source file in a given editor (default vi).

LISTING 34.7 Sample Output of the Cscope Utility

C symbol: ruby_debug

File Function Line

0 ruby.c <global> 52 VALUE ruby_debug = Qfalse;

1 eval.c rb_longjmp 4576 if (RTEST(ruby_debug) &&

!NIL_P(ruby_errinfo)

2 eval.c rb_thread_start_0 12018 else if (th->safe < 4 &&

(ruby_thread_abort

|| th->abort || RTEST(ruby_debug)))

{

3 ruby.c proc_options 516 ruby_debug = Qtrue;

4 ruby.c proc_options 709 ruby_debug = Qtrue;

5 ruby.c ruby_prog_init 1161 rb_define_variable("$DEBUG",

&ruby_debug);

6 ruby.c ruby_prog_init 1162 rb_define_variable("$-d",

&ruby_debug);

7 ruby.h VALUE 552 RUBY_EXTERN VALUE ruby_verbose,

ruby_debug;

8 sprintf.c rb_f_sprintf 801 if (RTEST(ruby_debug))

rb_raise(rb_eArgError, mesg);

Find this C symbol:

Find this global definition:

Find functions called by this function:

Find functions calling this function:

Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

You can exit out of the utility by simply pressing Ctrl+D.

640 GNU/Linux Application Programming

OTHER CROSS-REFERENCING TOOLS

The cxref utility is a useful one for generating cross-references of a program. This
utility can produce HTML listings of one or more source files, including all func-
tions and symbols and their relationships (where defined and used).

Another cross-reference tool that provides a simple but easy to read function
call hierarchy is called cflow. The output of cflow shows the functions defined in a
file (and their source line), along with the functions that are called from each func-
tion. A sample output of cflow is shown in Listing 34.8.

The cflow output can be read very easily. The functions that are left indented
(such as ruby_getcwd) are those functions present in the file (util.c) along with
their source line. Those functions indented to the right in the following listing are
those functions that are called (such as ruby_xmalloc()).

LISTING 34.8 Sample Output from the cflow Utility

$ cflow util.c

1 ruby_getcwd {util.c 644}

2 ruby_xmalloc {}

3 getcwd {}

4 __errno_location {}

5 free {}

6 rb_sys_fail {}

7 ruby_xrealloc {}

8 ruby_qsort {util.c 483}

9 mmswap_ {}

10 mmrot3_ {util.c 437}

11 ruby_scan_hex {util.c 52}

12 strchr {}

13 ruby_strdup {util.c 632}

14 strlen {}

15 ruby_xmalloc {}

16 memcpy {}

17 ruby_strtod {util.c 740}

18 __errno_location {}

19 __ctype_b_loc {}

20 __builtin_huge_val {}

$

SYSTEM CALL TRACING WITH ltrace

In Chapter 31, “Code Hardening,” you got a first look at system call tracing using
strace. But what if your interest lies in library calls made by a given executable?

Chapter 34 Advanced Debugging Topics 641

That’s where ltrace comes in. The ltrace utility emits a symbolic trace for an exe-
cutable for a specific dynamic library. The ltrace utility can also be used just like
strace, but this section focuses on its library trace capabilities.

Now it’s time to take a look at a couple of examples that illustrate the capabili-
ties of ltrace. First, say for a given command (in this case ls) you want to see what
library calls are made to the standard C library (libc). Recall that you can under-
stand which libraries an image is dependent upon using the ldd command. In this
example, you specify the library of interest with the -l option and then provide your
image to trace at the end (see Listing 34.9). As the image is run, the library calls are
emitted (on the left) with the return status of each shown on the right (after the =).

This listing is informative because you can see the operation of the ls utility.
The ls command attempts to read in a number of environment variables, none of
which are found (each returns NULL). Note near the end of this partial listing the call
to getopt_long (which is used to retrieve command-line options). As shown, this
 library call returns -1, indicating that all options have been parsed (which in this
case are none). Also of interest is the third parameter to getopt_long. This is the list
of command-line options that are supported to ls (where w and I require a para-
meter). This is sometimes useful to find options that are hidden (not listed in the
help, but available in the image).

LISTING 34.9 Tracing Calls to libc with ltrace

$ ltrace -l /lib/libc.so.6 /bin/ls

__libc_start_main(0x804e5c5, 1, 0xbffee604, 0x80563a8, <unfinished ...>

setlocale(6, "") = "en_US.UTF-8"

bindtextdomain("coreutils", "/usr/share/locale") = "/usr/share/locale"

textdomain("coreutils") = "coreutils"

__cxa_atexit(0x804fcbd, 0, 0, 0xb7fabadc, 0xbffee578) = 0

isatty(1) = 1

getenv("QUOTING_STYLE") = NULL

getenv("LS_BLOCK_SIZE") = NULL

getenv("BLOCK_SIZE") = NULL

getenv("BLOCKSIZE") = NULL

getenv("POSIXLY_CORRECT") = NULL

getenv("BLOCK_SIZE") = NULL

getenv("COLUMNS") = NULL

ioctl(1, 21523, 0xbffee130) = 0

getenv("TABSIZE") = NULL

getopt_long(1, 0xbffee604, "abcdfghiklmnopqrstuvw:xABCDFGHI:"...) = -1

...

642 GNU/Linux Application Programming

exit(0 <unfinished ...>

__fpending(0xb7fac0e0, 0xb7e6e8e8, 1, 1, 0) = 0

fclose(0xb7fac0e0) = 0

+++ exited (status 0) +++

$

Another useful option of ltrace is -r, which emits the relative timestamp of
each library call (see Listing 34.10). Also shown in this listing is the indent option
(-n), which indents n spaces for each nested system call.

LISTING 34.10 Nested System Call Tracing with Relative Timestamps

$ ltrace -r -n 5 -l /lib/libc.so.6 /bin/ls

...

0.002015 fwrite_unlocked("Test.pm", 1, 7, 0xb7eda0e0) = 7

0.001010 __overflow(0xb7eda0e0, 10, 0, 0, 0test test.pl Test.pm

) = 10

0.001143 free(0x80763f0) = <void>

0.001307 free(NULL) = <void>

0.001258 free(0x80763d8) = <void>

0.000834 exit(0 <unfinished ...>

0.000513 __fpending(0xb7eda0e0, 0xb7d9c8e8, 1, 1, 0) = 0

0.001314 fclose(0xb7eda0e0) = 0

0.002497 +++ exited (status 0) +++

$

Instead of tracing information, you can explore the numbers of system calls
made by a program and how much time is spent in each. This is achieved using the
-c option (for count). This is shown in Listing 34.11.

LISTING 34.11 System Call Counts with ltrace

$ ltrace -c -l /lib/libc.so.6 /bin/ls

test test.pl Test.pm

% time seconds usecs/call calls function

——— —————- —————- ————- ——————————

68.15 0.019121 19121 1 setlocale

4.11 0.001153 64 18 __ctype_get_mb_cur_max

3.95 0.001109 79 14 readdir64

3.46 0.000972 972 1 qsort

3.45 0.000967 64 15 __errno_location

2.87 0.000804 160 5 __overflow

Chapter 34 Advanced Debugging Topics 643

2.26 0.000633 70 9 malloc

1.99 0.000557 69 8 getenv

1.38 0.000388 129 3 fwrite_unlocked

1.05 0.000296 296 1 opendir

0.94 0.000265 66 4 memcpy

0.84 0.000237 79 3 strcoll

0.82 0.000230 230 1 fclose

0.78 0.000220 73 3 free

0.58 0.000162 162 1 isatty

0.55 0.000153 153 1 closedir

0.50 0.000140 140 1 ioctl

0.40 0.000113 113 1 bindtextdomain

0.39 0.000110 110 1 realloc

0.35 0.000098 98 1 getopt_long

0.31 0.000087 87 1 __cxa_atexit

0.30 0.000083 83 1 __fpending

0.29 0.000082 82 1 textdomain

0.28 0.000079 79 1 _setjmp

——— —————- —————- ————- ——————————

100.00 0.028059 96 total

$

Other useful options for ltrace include tracing child processes created by the
image (-f), emitting the instruction pointer at call time (-i), showing the time
spent inside a system call (-T), and increasing the debug level (-d).

DYNAMIC ATTACHMENT WITH GDB

A very interesting feature of GDB is its ability to attach to an already running
process. You can start with the simple program shown in Listing 34.12 as the pro-
gram to which you want to attach.

LISTING 34.12 Attaching to a Running Process with GDB

1: #include <stdio.h>

2: #include <unistd.h>

3:

4: int counter = 0;

5:

6: int main()

7: {

644 GNU/Linux Application Programming

8: while(1) {

9:

10: sleep(1);

11:

12: counter++;

13:

14: }

15:

16: return 0;

17: }

Listing 34.13 shows your sample session with GDB. You begin by compiling the
sample program (note the use of -g, which is required here to use symbol infor-
mation). With an executable image created, you start the image in the background.
You then use GDB, specifying the process ID (PID) to which you want to attach.
GDB attaches to the process (using a signal to stop it, but keep its memory intact)
and then loads the symbols from the various libraries to which the image was com-
piled. At this point, you are presented with the gdb prompt and can look at the
source, inspect variables, and step through the source. When you are done, you use
the detach command to detach from the process and allow it to continue running.

LISTING 34.13 Attaching to a Running Process with GDB

$ gcc -g -o proc proc.c

$./proc &

[1] 16999

$ gdb -q - 16999

Attaching to process 16999

Reading symbols from /home/mtj/memcheck/proc...done.

Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".

Reading symbols from /lib/tls/i686/cmov/libc.so.6...done.

Loaded symbols for /lib/tls/i686/cmov/libc.so.6

Reading symbols from /lib/ld-linux.so.2...done.

Loaded symbols for /lib/ld-linux.so.2

0xffffe410 in __kernel_vsyscall ()

(gdb) list

1 #include <stdio.h>

2 #include <unistd.h>

3

4 int counter = 0;

5

6 int main()

7 {

Chapter 34 Advanced Debugging Topics 645

8 while(1) {

9

10 sleep(1);

(gdb) p counter

$1 = 9

(gdb) step

Single stepping until exit from function __kernel_vsyscall,

which has no line number information.

0xb7e6c110 in nanosleep () from /lib/tls/i686/cmov/libc.so.6

(gdb) step

Single stepping until exit from function nanosleep,

which has no line number information.

0xb7e6bf3c in sleep () from /lib/tls/i686/cmov/libc.so.6

(gdb) step

Single stepping until exit from function sleep,

which has no line number information.

main () at proc.c:12

12 counter++;

(gdb) step

14 }

(gdb) p counter

$2 = 10

(gdb) detach

Detaching from program: /home/mtj/memcheck/proc, process 16999

(gdb) quit

You have new mail in /var/mail/mtj

mtj@camus:~/memcheck$

You must have adequate permissions to debug processes, and this is mostly
useful only if the symbols are retained in the image (through the -g option during
compile). But if your process is stuck or is dominating CPU usage, attaching
through GDB is a great way to find out why.

SUMMARY

GNU/Linux supports a wide range of advanced debugging options, including a variety
of solutions to support memory debugging. This chapter has presented a number of
memory debugging options that can help identify memory leaks, buffer overruns, and
buffer under-runs. Also explored in this chapter were cross-referencing tools and tools
to assist in system-level tracing.

646 GNU/Linux Application Programming

RESOURCES

ccmalloc at http://www.inf.ethz.ch/personal/biere/projects/ccmalloc/.
Cscope at http://cscope.sourceforge.net/.
cxref (Cross-Reference) at http://www.gedanken.demon.co.uk/cxref/.
Electric Fence at http://perens.com/FreeSoftware/.
ltrace at http://linux.die.net/man/1/ltrace.
mtrace at http://en.wikipedia.org/wiki/Mtrace.
Valgrind Instrumentation Framework at http://www.valgrind.org.

Chapter 34 Advanced Debugging Topics 647

http://www.inf.ethz.ch/personal/biere/projects/ccmalloc/
http://www.gedanken.demon.co.uk/cxref/
http://www.valgrind.org
http://cscope.sourceforge.net/
http://perens.com/FreeSoftware/
http://linux.die.net/man/1/ltrace
http://en.wikipedia.org/wiki/Mtrace

This page intentionally left blank

649

AMD Advanced Micro Devices
API Application Programmer’s Interface
APT Advanced Package Tool
ASCII American Standard Code for Information Interchange
AT&T American Telephone and Telegraph
AWK Aho-Weinberger-Kernighan
BASH Bourne-Again SHell
BB Basic Block
BBG Basic Block Graph
BIOS Basic Input Output System
BNF Backus-Naur Form
BSD Berkeley Software Distribution
BSS Block Started by Symbol
CMU Carnegie Mellon University
COW Copy-On-Write
CPU Central Processing Unit
CSE Common Sub-expression Elimination
CVS Concurrent Versions System
DEC Digital Equipment Corporation
DMA Direct Memory Access
DNS Domain Name Server
DL Dynamically Loaded
DWARF Debugging with Attribute Record Format
EMACS Editing MACroS
ELF Executable and Linking Format
EOF End of File
EXT2 Second Extended Filesystem
EXT3 Third Extended Filesystem
FHS Filesystem Hierarchy Standard

Acronyms and
Partial Acronyms

Appendix

A

FIFO First-In First-Out
FQDN Fully Qualified Domain Name
FS Field Separator
FSF Free Software Foundation
GCC GNU Compiler Collection
GCOV GNU Coverage
GDB GNU DeBugger
GID Group ID
GLIBC GNU C Library
GMT Greenwich Mean Time
GNU GNU’s Not UNIX
GOT Global Offset Table
GPROF GNU Profiler
HTML HyperText Markup Language
HTONL Host TO Network Long
HTONS Host TO Network Short
HUP HangUP
IBM International Business Machines
IP Internet Protocol
IPC Inter-Process Communication
IPO Initial Public Offering
IPv4 Internet Protocol Version 4
ISS Instruction Set Simulator
JVM Java Virtual Machine
KB KiloByte
KVM Kernel Virtual Machine
LIFO Last-In First-Out
LISP List Processor
MAME Multiple Arcade Machine Emulator
MINIX Miniature UNIX
MIT Massachusetts Institute of Technology
MMU Memory Management Unit
MUTEX Mutual Exclusion
NF Number of Fields
NFS Network File System
NIC Network Interface Card
NPTL Native POSIX Thread Library
NR Number of Record
NTOHL Network TO Host Long
NTOHS Network TO Host Short
OFS Output Field Separator

650 GNU/Linux Application Programming

ORS Output Record Separator
OSI Open Source Initiative
PDP Programmed Data Processor
PGRP Process Group
PIC Position Independent Code
PID Process Identifier
POSIX Portable Operating System Interface
PWD Present Working Directory
QID Queue Identifier
QPL Qt Public License
RAID Redundant Array of Inexpensive Disks
RAM Random Access Memory
REGEX Regular Expression
ROM Read Only Memory
RS (input) Record Separator
SCM Source Control Management
SCSH Scheme Shell
SED Stream Editor
SPLINT Secure Programming Lint
STDERR Standard Error
STDIN Standard Input
STDOUT Standard Output
SVN Subversion
SYSV System 5
TAR Tape Archive
TCL Tool Command Language
TCP Transmission Control Protocol
TLB Translation Lookaside Buffer
UDP User Datagram Protocol
UID User ID
UTC Coordinated Universal Time
VFS Virtual File System
VI Visual Interface
VM Virtual Machine
VMM Virtual Machine Monitor
VPATH Virtual Path
YAMD Yet Another Malloc Debugger

Appendix A Acronyms and Partial Acronyms 651

This page intentionally left blank

653

T
he CD-ROM included with GNU/Linux Application Programming, Second
Edition includes all sample applications found in the book.

CD-ROM FOLDERS

Source: Contains all the code from examples in the book, by chapter.
Figures: Contains all the figures in the book, by chapter.

OVERALL SYSTEM REQUIREMENTS

Linux with a 2.6 Kernel (tested with Fedora and Ubuntu)
Pentium I processor or greater
CD-ROM drive
Hard drive
256 MB of RAM
1 MB of hard drive space for the code examples

About the CD-ROM

Appendix

B

This page intentionally left blank

655

Index

2D plots, 132–134
3D plots, 135–139

A
accept, sockets programming, 191,

194, 200, 210
access modes for opening files, 151
aclocal utility, 98
adding to repository

CVS, 109–110
Git, 122–123
SVN, 116

addresses
local, shared memory, 349
sockets, 188–189, 198–199

admin (svnadmin) command,
114–116

advanced package tool, 546–549
Aho, Alfred, 463
alarm function, 241–243
alarm.c, 242
APIs

application development,
399–400

base, for file handling, 168–171
dynamically loaded, 84–86, 92
file handling, 150–168, 171–172,

375–377
message queues, 284–298, 300
pipe programming, 184
POSIX signals, 243–247
process, traditional, 226–247
processes, 252
pthreads, 256–274, 276
random number wrapper API,

75–78
semaphores, 313–316, 329
shared memory, 339–350, 357
Sockets programming, 197–207,

212–213
time, 385–388

append lines (a) command, sed,
458–459

appending files, fopen access modes,
151

applications, high-level architecture,
9–10

app/Makefile.am, 99
apt (advanced package tool),

546–549
apt-cache utility, 547
apt-get utility, 546, 547–548
ar (archive) utility, 79–81
architectures

architecture-dependent code, 17
device drivers, 10, 17
GNU system libraries, 12
hardware, 17
high-level, 9–10
init component, 13, 16
interprocess communication,

16
loadable modules, 16–17
memory manager, 14
network interface, 15–16
process scheduler, 13
repository model, 106–108
revision model, 108
system call interface, 12
user space/kernel space,

overview, 10–11
Virtual File System, 14–15

archive.sh, 445
arithmetic

in awk, 466–467
bash, 428–429
Ruby language, 508

arith.sh, 428–429
AROS operating system, 41
ASCII data, reading/writing, 158–162
assembling stage of compilation,

46–47
associative arrays

Python, 531–532
Ruby, 509

attachment
attaching/detaching segments,

348–350
dynamic, with GDB, 644–646

attic, CVS, 114
autoconf utility, 100–101
autogen.sh, 97
autogen.sh script, 97–98
automake utility, 98–100

automatic dependency tracking,
69–71

Autotools
autoconf utility, 100–101
automake utility, 98–100
configure script, 101–102
generated Makefiles, 102–103
simple implementation using,

96–98
awk programming language

arithmetic expressions, 466–467
built-in variables, 467–468
command line scripts, 464–468
delimiter (:), 465
END section, 472
finding/storing extremes,

470–472
generating data table, 473
history of, 463
looping, 472–473
missles.txt, 464–465
order.awk, 470–472
records, 465
scripting applications, 468–472
structure of programs, 464
tabulate.awk, 468–469
useful one-liners, 474

B
backticks and bash variables, 426
Backus-Naur Form (BNF), 486
badprog.c, 604
bash (Bourne-Again SHell)

archive.sh, 445
arithmetic, 428–429
arith.sh, 428–429
backticks and variables, 426
bitwise operators, 429
case construct, 435–437
case.sh, 435–437
conditionals, 430–435
cond.sh, 430–432
directory archive script, 445–446
echoed strings, 441
environmental variables, 426–427
env.sh, 426–427
file attributes, 433

bash (continued)
file test operators, 432–435
fileatt.sh, 433
files updated/created today script,

446–448
first.sh, 424–425
forloop.sh, 439–441
func.sh, 443–444
functions, 442–444
fut.sh, 447–448
input and output, 441–442
integer comparison operators,

431
logical operators, 429–430
for loops, 439–441
loop.sh, 437–438
sample script, 424–425
scripting, 425–428
shebang (#!) in scripts, 425
SHELL environment variable,

423–434
string comparison operators, 432
UNIX history, 4
variables, 425–428
while loops, 437–438

bc calculator, testing, 575
Bell Labs, 59
BeOS operating system, 11
Berkeley Software Distribution, see

BSD
big endian byte order, 164
binary data, reading/writing,

162–168
binary semaphores, 303–304
bind, sockets programming, 190,

199
binout.c, 162
bison

basics of, 482
config.y, 491–492
encoding grammar in, 483–486
grammer.y, 484–485
hooking lexer to grammar parser,

486–488
bitwise operators, bash, 429
blame command, SVN, 118–119
BNF (Backus-Naur Form), 486
Bochs emulator, 41
booting

configuring bootloader, 553–554
from emulated floppy disks,

40–41
QEMU options, 40–41

Bourne shell, UNIX history, 4
Bourne-Again SHell, see bash shell
branch option, Git, 126
branch probabilities, gcov utility,

611–614
breakpoints, 582–584

BSD (Berkeley Software Distribution)
forking, 22
history of, 4
licensing, 22

bubblesort.c, 608–609
bubblesort.c.gov, 610–611,

612–613
buffers

buffer overflow, 595–596
erroneous freeing behavior, 636
sed utility, 454

building libraries
shared libraries, 82–83
static libraries, 75–81

buildit script, 61

C
*.c files, 47
C language

Daytime client/server, 191–196
sockets API, 197–207

C library functions, 12
C unit test system (cut), 565–570
cachegrind option, Valgrind, 634
call graph output, 623–624
call tracing, 641–644
Cambridge Monitor System (CMS),

29
case construct, 435–437
case.sh, 435–437
catching signals, 221–222
centralized architectures for source

management, 106, 107
change lines (c) command, sed,

458–459
change-set architectures for source

management, 108
character interfaces for reading/

writing, 153–155
charin.c/charout.c, 154
checkout command for source

control, 110, 113, 119
checkpointing and virtualization, 32
child, creating subprocess with fork,

218–220, 226–227
clients

client/server model, 190–191
Daytime protocol client,

195–196, 210–211
clone, Git, 122
close-socket procedure, 211
closing

client/server connections, 191
dlclose function, 86–88
files, 154, 159, 160, 162
pipes, 178
sockets, 195, 197, 210

CMS (Cambridge Monitor System),
29

code hardening
badprog.c, 604
buffer overflow, 595–596
code tracing, 603–605
compiler support, 602
decision point alternatives,

596–597
flawfinder tool, 603
introduction, 593
memory debugging, 602
reduce complexity, 600
reporting errors, 599–600
return values, 594
safe string functions, 594–595
selfident.c, 598–599
self-identifying structures,

597–598
selfprot.c, 601
self-protective functions,

600–601
signatures, 597
simpsyslog.c, 599
source checking tools, 602–603
splint tool, 603
user/network I/O, 594

code tracing, 603–605
command line

awk, 464–468
parsing options with

getopt/getopt_long,
380–385

passing arguments in C, 379
sed options, 454

commercial license for Qt, 22
commit command for source

control, 111, 113, 116, 124
Common Public License, 20
common.h, 278
compiler, see GCC
concatenation, 65
Concurrent Versions System,

see CVS
condition variables for pthreads,

266–274
conditionals

bash, 430–435
breakpoints, 584
Python, 527
Ruby, 504–506

cond.sh, 430–432
configuration

bootloader, 553–554
building configuration parser,

489
config.fl, 490
configure and make process,

544–545
configure script, 101–102
configure.ac, 100

656 Index

config.y, 491–492
e-mail firewall example, 489
lexical analysis configuration file,

490–495
Linux kernel, 551–552
message queues, 279–280, 285,

288–293
semaphores, 310–312, 316–324
shared memory segments,

332–333
connect, sockets programming, 191,

201
connected sockets functions,

201–203
contours, 3D plots with, 138–139
converting time, 387–388
copy command, SVN, 119
core dump, 232, 591
counting

characters/words/lines in file,
419–420

semaphores, 303–304
coverage testing, see gcov utility
cpuinfo file, 552
CPUs, see processors
create command, SVN, 115
critical section

semaphores, 302–303
threads, 263–264

cross-referencing tools
Cscope utility, 639–640
cxref utility, 641
introduction, 639

Cscope utility, 639–640
ctime function, 386
cut (C unit test system), 565–570
cut command, 412–414
cutgen.py utility, 565, 568–569
CVS (Concurrent Versions System)

adding to repository, 109–110
attic, 114
basics of, 108–109
checkout command, 110
commit command, 111, 113
compared to SVN, 118
diff command, 111–112
import command, 110
init command, 109
log command, 112
manipulating files in repository,

110–111
merging changes from repository,

111
removing files from repository,

114
revision differences, 111–112
setting up new repository, 109
tagging repository, 113

update command, 111
cxref utility, 641

D
Darwin (Apple), 11
data visualization, see Gnuplot
daycli.c, 196
daycli.scm, 211
dayserv.c, 191
dayserv.rb, 210
Debian Linux, 7
debugging, see GDB
debugging memory, see memory

debugging
decision point alternatives, 596–597
declare command, 409
deleting

using awk, 470
using sed, 457–458
using SVN, 120
See also removing

dependencies in Makefile syntax
automatic tracking, 69–71
basics of, 62–63

derivative work
BSD license, 22
GPL requirement, 21–22

device drivers, architecture, 10, 17
dictionary, Python, 531–532
diff command for source control,

111–112, 117, 123
Dijkstra, Edsger, 303
directories

current working, using getcwd,
363–364

directory archive script, 445–446
enumerating, 364–367
notation (.file and ..file), 410
project files, 94
root (/) filesystem, 541–542
walking, 365–366

directory structure
for Autotool files, 96
FHS, 541–542
for simple Makefile example, 95
using make utility, 60

dirlist.c, 364–365
dirwatch.c, 369–372
disks

installing/emulating guest OS,
39–40

virtualization, 30–31
distributed architectures for source

management, 106–108
DL (dynamically loaded) API, 84–86,

92
dlclose function, 86–88
dlopen function, 86–88

documentation of open source
software, 23

drivers, device, 10, 17
dup.c, 180–181
dup/dup2 functions, 177, 179–181
dwalk.c, 366
dynamic code

Python, 535–536
Ruby, 513–514

dynamically loaded (DL) API, 84–86,
92

dynamically loaded libraries, 83–88
dynamic/test.c, 84

E
each_with_index method, Ruby,

507–508
echo command, 424, 441
echoed strings, 441
Eclipse Consortium, 20
editor, see sed utility
Electric Fence, 602, 635
Emacs editor, 5
e-mail firewall configuration, 489
embedded applications, 22
embedded language, 518
embedded unit test, 570–574
Embedded Unit Test framework

(Embunit), 570–574
Embunit (Embedded Unit Test

framework), 570–574
emulation

Bochs, 41
Hercules emulator, 30
instruction set simulators, 35
language VM, 35
Multiple Arcade Machine

Emulator, 34
specialized emulators, 35
system emulation, 34

END section, awk, 472
endian byte order

performance, 164
portability, 164

environ variable, 241
environment variables

bash scripting, 426–427
basics of, 408–409

env.sh, 426–427
ephemeral ports, 189
errno variable, 152–153, 396–397
errors

errno variable, 152–153,
396–397

erroneous buffer freeing behavior,
636

in fopen, 152
opening files, 151–153

Index 657

658 Index

perror function, 398
Python exception handling,

537–539
reporting, 396–398, 599–600
Ruby error checking and class

method, 511
Ruby exception handling,

514–516
standard in/out error, 406–408
sterror function, 398

events
filesystem, notification of,

367–373
monitoring loop, 371–372
parsing/emitting event struc-

ture, 372
example.fl, 480
exception handling

Python, 537–539
Ruby, 514–516

exec function and variants, 226,
237–241

exit function, 243
expect utility, 574–576
export command, 409
extremes, finding/storing in awk,

470–472

F
fast lexical analyzer generator, see

flex tool
fclose, file handling, 154, 159, 160,

162
fdatasync function, 374–375
fdopen, file handling, 170–171
Feldman, Stuart, 59
fgetc, file handling, 153–155
fgetpos, file handling, 167–168
fgets, file handling, 155–156, 157
FHS (Filesystem Hierarchy Stan-

dard), 541–542
field-based cutting, 412–413
fifo

mkfifo API function, 177,
181–182

mkfifo command, 182–183
named pipes, 174, 181

file handling
access modes for opening, 151
APIs, 150–168, 171–172, 375–377
base API for file I/O, 168–171
basics of, 149–150
binary data, 162–168
binout.c, 162
character interfaces, 153–155
charin.c/charout.c, 154
closing files, 154, 159, 160, 162
creating file handles, 150

current working directory,
363–364, 410

dirlist.c, 364–365
dirwatch.c, 369–372
dwalk.c, 366
enumerating directories, 364–367
EOF symbol, 154
file information using stat,

362–363
file pointers, 150
files updated/created today script,

446–448
flushing files, 153, 162
ftype2.c, 362–363
ftype.c, 360–361
getcwd.c, 363–364
globtest.c, 367
nonseq.c, 165
nonsequential reads, 164–167
notification of filesystem events,

367–373
opening files, 150–153
permissions, 169
portability and endianness, 164
reading/writing data, 153
removing files from filesystem,

374
rmtest.c, 374
strin.c, 157
string interfaces, 153, 155–162
strout.c, 156
strucin.c, 160
strucout.c, 158
structured data in ASCII format,

158–162
synchronizing data, 374–375
temporary files, 416
testing file types, 359–361

file test operators, 432–435
file tree walk (ftw function),

365–366
file utility, 88
fileatt.sh, 433
files

file links, 410
plotting data from, 134–135
project files, 94
source control, see source control
Virtual File System, see VFS

Filesystem Hierarchy Standard
(FHS), 541–542

file.txt, 453
find utility, 418–419
first.sh, 424–425
flat profile output, 623
flawfinder tool, 603
flex tool, 479–482

config.fl, 490

example.fl, 480
flushing files, 153, 162
fopen, file handling, 150–153
for loops

awk, 472
bash, 439–441
Python, 528–529
Ruby, 507

fork function, 218–220, 226–227
forking, BSD license, 22
forloop.sh, 439–441
fpipe.c, 178
fprintf, file handling, 159–160, 171
fputc, file handling, 153–154, 156
fputs, file handling, 155–156, 157
fread, file handling, 162–165
free software

vs. open source, 19–20
using in projects, 20–21

Free Software Foundation, see FSF
Freshmeat, 20, 21
fruits.txt, 415
fscanf, file handling, 160–161, 171
fseek, file handling, 164–167
fsetpos, file handling, 167–168
FSF (Free Software Foundation),

5, 20
documentation, 23

fsync function, 374–375
ftell, file handling, 167–168
ftw function, 365–366
ftype2.c, 362–363
ftype.c, 360–361
full virtualization, 32–33
func.sh, 443–444
functions, bash, 442–444
fut.sh, 447–448
fwrite, file handling, 162–163

G
garbage collection, 530
GCC (GNU Compiler Collection)

architectural optimizations,
55–56

basics of, 45–46
code hardening, 602
compilation stages, 46–47
compiler warnings, 49–51
compiling by hand, 60–61
debugging options, 56, 577–578
libraries, 79–80, 82, 83
nm utility, 57
-objdump utility, 57
optimizer, 51–56
patterns, 47–48
size utility, 57
stages with inputs/outputs, 47
tools (binutils), 56–57

useful options, 48–49
versions, 46
-Wall warning options, 49–50,

602
gcov utility

basics of, 607–608
branch probabilities, 611–614
bubblesort.c, 608–609
bubblesort.c.gov, 610–611,

612–613
considerations, 616–617
files, 611
incomplete execution coverage,

614–615
options, 615–616
preparing images, 608–609
using, 609–611

GDB (GNU Debugger)
changing data, 586
debugging existing processes, 590
dynamic attachment, 644–646
examining stack, 586–587
-g compiler options, 56, 577–578
inspecting data, 585–586
introduction, 577
multiprocess applications, 587
multithreaded applications,

588–589
post-mortem debugging, 591–592
starting, 581
stepping through source, 584–585
stopping programs, 587
testapp.c, 578–580
using, 578–581
using breakpoints, 582–584
viewing source, 581–582

generated Makefiles, 102–103
getcwd command, 363–364
getcwd.c, 363–364
gethostbyname function, 206
getopt/getopt_long functions,

380–385
getpeername function, 206
getsockname function, 206
getsockopt, sockets programming,

204–205
Git

adding to repository, 122–123
branch option, 126
clone command, 122
commit command, 124
diff command, 123
init command, 122
installation, 122
introduction, 121
manipulating files in repository,

123–124
merging changes from repository,

124

removing files from repository,
127

repository tagging, 126–127
rm option, 127
setting up repository, 122
show command, 124, 125
show-branch option, 126
status command, 125–126

glob function, 366–367
globtest.c, 367
gmon.out, 622
gmtime function, 386
GNU Build System, 94
GNU Compiler Collection (GCC), see

CGG
GNU compiler toolchain, see CGG
GNU Debugger, see GDB
GNU General Public License (GPL),

20, 21–22
GNU system libraries (glibc), 12
GNU/Linux

current usage/benefits, 7
distributions, 7
GNU and Free Software Founda-

tion, 5
high-level architecture, 9–10
history of, 5–7
Linux kernel, see Linux kernel
minor release numbers (odd/even)

for Linux, 6
operating system architecture,

10–17
Gnuplot

2D plots, 132–134
3D plots, 135–138
3D plots with contours, 138–139
basics of, 129–130
help, 131
hidden line removal, 139–140
installing, 130
layout directive, 141
matrix plot, 138
mplot.p, 142
multiplots, 141–142
packaged as standard utility, 130
plot command, 132, 134
plotting data from files, 134–135
scripts, 133–134
set command, 131
set contour command, 138
set hidden command, 139
show command, 131
smoothing options, 134–135
splot command, 135, 137
storing plots to files, 140–141
tools using, 143
unset command, 131
unset multiplot command,

141

user interface, 130–131
using option, 137

GPL (GNU General Public License),
20, 21–22

gprof utility
basics of, 620
call graph output, 623–624
considerations, 629
finding unused functions, 628
flat profile output, 623
gmon.out, 622
ignoring private functions, 626
increasing accuracy, 628–629
minimizing summary, 627–628
optimized applications, 624–625
options, 625
preparing images, 620–622
profiling, described, 619
recommending function ordering,

626–627
sample brief output, 627–628
sort.c, 620–622
source annotation, 625–626
using, 622–625

grammar parsing
encoding grammar in bison,

483–486
grammar definitions, 496
hooking lexer to grammar parser,

486–488
lexical analysis, 475–478
scanner/parser functions and

variables, 496–497
simple grammar, 483

grammer.y, 484–485
grep command, 420–421
GRUB (GRand Unified Bootloader),

553–554
Grune, Dick, 108

H
hackers, 7
hardware

architecture, 17
assisted virtualization, 36–37
processors, see processes

head command, 421
Hercules emulator, 30
hidden line removal, Gnuplot, 139
high-level architecture, 9–10
holding pattern space (h) command,

sed, 460
hosts

host/network byte order, 193
Sockets programming paradigm,

186–188
htons funciton, 198
“hung programs,” debugging, 590

Index 659

hybrid architectures for source man-
agement, 106–108

Hypervisor
Linux as, 7
virtualization, 28

I
*.i files, 47
IBM

CP-40, 29
M44/44X, 29
open source support, 20
System/370 mainframe, 30

if conditionals
bash, 430–435
Python, 527
Ruby, 504–506

images, testing for optimization, 51
import command for source control,

110, 116
incomplete execution coverage, gcov

utility, 614–615
Inexpensive Program Analysis group,

603
inheritance

Python, 533–535
Ruby, 510–511

init command for source control,
109, 122

init kernel component
architecture, 13
loadable modules, 16

initapi.c, 76
inotify mechanism, 367–373
insert lines (i) command, sed,

458–459
insmod command, 16, 39
inspecting data, debugging, 585–586
installation

Git, 122
Gnuplot, 130
guest OS, 39–40
Lua language, 547–548
Python language, 525
Ruby language, 503
tarball distribution, 543–546

instruction set simulators (ISS), 35
integer comparison operators, bash,

431
interprocess communication, see IPC
interrupt counts, Gnuplot, 134–135
introspection, Ruby, 516–517
I/O (input/output)

base API for file I/O, 168–171
descriptors, 407–408
sockets programming, 201–204
Virtual File System, 14–15

IPC (interprocess communication), 16
See also message queues

ipcs command
message queues, 298–300
semaphores, 327–329
shared memory segments,

356–357
IPv4 addresses, 198
ISO format, 39–40
ISS (instruction set simulators), 35
ITS4 (static vulnerability scanner),

603

J
Java Virtual Machine, see JVM
jiffy, 13
joining threads, 260–262
Joy, Bill, 4
JVM (Java Virtual Machine), 35

K
kernel threads, 215–216
Kernel Virtual Machine (KVM), 7,

41–42
Kernel.org, 550
kernels, Linux, see Linux kernel
Kernighan, Brian, 463
kill API function, 226, 236–237
kill command, 249–250
KVM (Kernel Virtual Machine), 7,

41–42

L
lambda functions, 536–537
Landin, Peter, 506
language VM, 35
languages, programming

multilanguage perspective for
Sockets, 209–211

scripting languages, 449
Last-In-First-Out (LIRO) stack, 560
layered model of networking, 186
layout directive, Gnuplot, 141
lexical analysis

configuration file, 490–495
flex tool, 479–482
grammar parsing, 475–478
hooking lexer to grammar parser,

486–488
lexer and parser communication,

478–479
LGPL (Library GPL), 21
lib/Makefile.am, 99
libraries

ar utility, 79–81
basics of, 73–75
building shared, 82–83
building static, 75–81
C library functions, 12
dynamically loaded, 83–88
file utility, 88

GNU system libraries, 12
LGPL, 21
memory usage, 74–75
nm command, 89
NPTL, 253, 258, 259
objdump utility, 89–91
pthreads, 254, 274–275
ranlib utility, 91–92
size command, 88–89

libtool functionality, 98
licensing

BSD license, 22
BSD operating system, 4
comparisons, summary, 22–23
GPL/LGPL, 20, 21–22
Qt Public License, 22

line numbering (=) command, sed,
459–460

linger time, 205
linking stage of compilation, 46–47
links, hard/soft, 410
Linux kernel

architecture, 9–11
architecture-dependent code, 17
building, 552
configuring, 551–552
configuring bootloader, 553–554
device drivers, 10, 17
downloading latest source,

550–551
GNU/Linux history, 5–6
hardware, 17
history of, 5–6
init component, 13, 16
installation, 552–553
interprocess communication, 16
Kernel.org, 550
loadable modules, 16–17
memory manager, 14
multithreaded applications, 255
network interface, 15–16
process scheduler, 13
upgrade basics, 550
user space/kernel space, 10–11
Virtual File System, 14–15

Linux operating system, see
GNU/Linux

linux/arch, 17
linux/drivers, 17
linux/fs, 14
linux/init, 13
linux/ipc, 16
linux/kernel, 13, 17
./linux/kernel/sys.c, 12
linux/mm, 14
linux/net, 15
LIRO (Last-In-First-Out) stack, 560
listen, Sockets programming, 190,

193, 200

660 Index

little endian byte order
performance, 164
portability, 164

loadable modules, architecture, 16–17
localtime function., 386
lock command, SVN, 118
lock.c, 394–395
locking/unlocking memory, 394–396
log command for source control, 112,

121
logical operators, bash, 429–430
loops

using awk, 472, 473
using bash, 437–438, 439–441
using Python, 528–529
using Ruby, 506–508

loop.sh, 437–438
ls command, 174
lseek, file handling, 164–165
lseek function, 179
lspci command, 552
ltrace utility, 641–644
Lua language, installing, 547–548

M
Mach microkernel (CMU), 5, 6, 11
Mackenzie, David, 94
macros

file test, for stat, 360
wait status, 228
for waitpid, 229

main function, 48
main.c (Embunit), 573
make config method, 551
make menuconfig method, 551
make utility

automatic dependency tracking,
69–71

build script, 61
concatenating variables, 65
directory structure of example

project, 60
introduction, 59
limitations of, 93
manipulating variables, 65–66
output of variables, 64–65
pattern-matching rules, 67–69
rule/target/dependencies for

Makefile, 62–63
variable assignment syntax, 64
VPATH feature, 67, 69, 95

Makefiles
with dependency tracking, 69–71
generated, using Autotools,

102–103
Makefile.am, 98–99
Makefile.deptrack, 70
Makefile.realistic, 67
Makefile.simple, 95

Makefile.simpvar, 64
Makefile.varconcat, 65
Makefile.varmanip, 66
more realistic, 67–69
simple, 62–64
simple build example, 95–96
simple implementation using

Autotools, 96–98
simple solution, 95–96
simple variable, 64
variable concatenation, 65
variable manipulation, 65–66

MAME (Multiple Arcade Machine
Emulator), 34

manipulating files
in CVS repository, 110–111
in registry, 116–117, 123–124

map method, Ruby, 503
mapping memory, 390–394
master/servant model, 274
matrix plot, 138
Matsumoto, Yukihiro, 499
memory

debugging, 602
IPC, 16
locking/unlocking, 394–396
mapping, 390–394
new processes, 216
paging, 14, 29–30
shared, see shared memory
static vs. shared libraries, 74–75

memory debugging
cache usage, 634
Electric Fence, 602, 635
erroneous freeing behavior, 636
introduction, 631
memcheck tool, 632–633
mtrace utility, 638–639
Valgrind utility, 632–635
yamd utility, 635–638

memory management unit, see MMU
memory manager, architecture, 14
merge command, Git, 124
merge command, SVN, 118
merging changes from repository, 111,

117, 124
message framing, 209
message queues

API, 284–298, 300
basics of, 278
common.h, 278
configuration/defaults in msgget,

288
configuring, 279–280, 285,

288–293
creating, 278–279, 285–288
introduction, 277
IPC, 16
message ID, 193, 285–288, 289

mqconf.c, 279–280
mqcreate.c, 279
mqdel.c, 283–284
mqrdset.c, 290–291
mqrecv.c, 282–283
mqsend.c, 281–282
mqstats.c, 291–292
msgget function, 285–288
options, 290–291
permissions, 286, 291
reading messages from, 282–283,

285, 295–298
reading settings, 291–292
removing messages from, 283–284
sending messages, 285, 293–295
status parameters, 289–290
system-wide keys, 287
time parameters, 294–295, 296
user utilities, 298–300
writing messages to, 280–282

microkernels, 6
migration and virtualization, 32
Minix operating system, 6, 8, 11
missles.txt, 464–465
mkfifo API function, 177, 181–182
mkfifo command, 182–183
mkstemp function, 374
mktime function, 386
mlock/mlockall functions, 394–396
mmap function, 390–394
MMU (memory management unit),

17, 602
monolithic kernels, 6, 11
mounted filesystems, 14
mplot.p, 142
mqconf.c, 279–280
mqcreate.c, 279
mqdel.c, 283–284
mqrdset.c, 290–291
mqrecv.c, 282–283
mqsend.c, 281–282
mqstats.c, 291–292
msgctl function, 285, 288–293
msgget function, 285–288
msgrcv function, 285, 295–298
msgsnd function, 285, 293–295
mtrace utility, 638–639
Multics operating system, 4, 8
multi-homing, 207
Multiple Arcade Machine Emulator

(MAME), 34
multiple operating systems, virtualiza-

tion, 30
multiplots, Gnuplot, 141–142
multiprocess applications

communications, see message
queues

GDB, 587
pipes, 177

Index 661

multi-streaming, 208
multithreaded applications

debugging, 588–589
pthreads API, 256–274, 276
writing, 255
See also pthreads

munlock/munlockall functions,
394–396

mutexes, pthreads, 262–266
MY_VAR, 64–65

N
named pipes, 174, 181
Native POSIX Thread Library

(NPTL), 253, 258, 259
network byte order, 193
network interface architecture, 15–16
Neutrino microkernel, 6, 11
newls.sh, 416
Next operating system, 11
nm command, 89
nm utility, 57
nonseq.c, 165
nonsequential reads of binary files,

164–167
-nostdlib switch, 12
notification of filesystem events,

367–373
inotify events, 368–369
inotify mechanism, 367–368
sample output, 373
simple inotify-based applica-

tion, 369–373
Nottberg, Curtis, 59, 93
NPTL (Native POSIX Thread Li-

brary), 253, 258, 259
ntons function, 198

O
*.o files, 47
-O optimization levels, 52–55
O(1) scheduler, 13
objdump utility, 57, 89–91
object files, 47–48
od utility, 421–422
open, file handling, 168–171
Open Source Initiative, see OSI
open source software

BSD license, 22
documentation, 23
ego issues with developers, 24
fanaticism of movement, 24
vs. free software, 19–20
GNU and Free Software Founda-

tion, 5
GPL/LGPL, 20, 21–22
license comparisons, 22–23
Qt Public License, 22

“tainting” effect of GPL software,
21

usability/reliability ramp, 23
opening files

errors, 151–153
fdopen function, 170–171
fopen function, 150–153
open function, 168–171

operating system
guest, installing/emulating, 39–40
virtualization, 30, 35–36

operators
bitwise, 429
file test, 432–435
integer comparison, 431
logical, 429–430
string comparison, 432

optimization, gprof utility, 624–625
optimizer, GCC

architectural optimizations, 55–56
basics of, 51–52
-O0 optimization, 52
-O1 optimization, 52–53
-O2 optimization, 53–54
-O3 optimization, 54–55
-Os optimization, 54
setting, 52

optlong.c, 384–385
opttest.c, 381–382
order.awk, 470–472
OSI (Open Source Initiative), 19, 22
output redirection, 405–406

P
package management

advanced package tool, 546–549
basics of, 542
configure and make process,

544–545
downloading tarball, 543–544
final installation process, 545–546
managers, list of, 549
removing installed package, 548
tarball distribution, 543–546

page size (getpagesize), 333
paging

described, 29–30
memory manager, 14

paravirtualization, 33–34
parent, creating subprocess with fork,

218–220, 226–227
parser generation

bison, 482, 483–486
building configuration parser, 489
configuration file lexical analyzer,

490–495
e-mail firewall configuration, 489
flex tool, 479–482

introduction, 475
lexical analysis and grammar

parsing, 475–478
parsing phases, 495
tokenization, 476, 479

parsing
command line options, 380–385
configuration files, typical phases

in, 478–479
filesystem events, 372
parse trees for C code fragments,

477
phases, 478–479
in Python, 530–531

password entry, alarm and signal
capture, 242–243

paste command, 415–416
PATH environment variable, 409
patterns

matching using GNU make,
67–69

search using grep command,
420–421

sed regular expressions, 455
pause function, 235
PCI device information, 552
peer socket information, 206–207
PEP (Python Enhancement Proposal),

520
permissions

file handling, 169
message queues, 286, 291
pipes, 182–183
semaphores, 314
shared memory, 341

perror function, 398
phymap.c, 391–393
pid (process ID)

described, 217
waitpid function, 229–230

pipe call, 176
pipe function, 177–179
pipe1.c, 175
pipeline model, 274
pipes

creating new, 176, 177–179
dup.c, 180–181
fpipe.c, 178
functions for programming, 177
model, 173–174
named pipes, 174, 181
permissions, 182–183
pipe1.c, 175
simple example, 175–176
system commands, 182

platform virtualization, 28
plot command, Gnuplot, 132, 134

See also Gnuplot

662 Index

PNG (Portable Network Graphics)
format, 140

port numbers
basics of, 188
ephemeral ports, 189

portability, reading/writing binary
data, 164

Portable Network Graphics (PNG)
format, 140

ports and Sockets, 187–188
POSIX

environ variable, 241
signals APIs, 243–247
threads, see pthreads

posixsig.c, 245
preprocessing stage of compilation,

46–47
print (P) command, sed, 458
printf, file handling, 157, 158, 160
/proc filesystem, 250–252, 390
/proc/cpuinfo file, 552
process scheduler, 13
process.c, 216
processes

alarm function, 241–243
alarm.c, 242
API summary, 252
catching signals, 220, 221–222
creating subprocess with fork,

218–220, 226–227
default actions for signals,

231–232
exec function and variants, 226,

237–241
exit function, 243
first process example, 216–217
fork function, 218–220, 226–227
kernel threads, 215–216
kill API function, 226, 236–237
kill command, 249–250
pause function, 235
POSIX signals, 243–247
posixsig.c, 245
/proc filesystem, 250–252, 390
process ID, 217
process.c, 216
ps command, 247–248
raise function, 226, 237
raise.c, 223
raising signals, 222–226
role variable, 220
sigcatch.c, 222
signal demonstration with par-

ent/child, 233–234
signal function, 226, 230–235
sigtest.c, 233
simple shell interpreter using

execlp, 238–240
simpshell.c, 238

smplfork.c, 218
synchronizing with creator

process, 220–221
system commands, 247–250
top command, 248–249
user processes, 215–216
wait function, 226, 227–228
waitpid function, 226, 229–230
zombie processes, 220

processors
architectural optimizations, 55–56
architecture-dependent code, 17
cpuinfo file, 552
hardware, 17
hardware-assisted virtualization,

36–37
processes, 248–249
system information, 552
x86 virtualization, 36–37

procinfo, virtualization, 37
profiling, see gprof utility
programming-by-contract, 600
project files, 94
protocols

network interface, 15–16
SCTP, 207–209
Sockets programming paradigm,

187–188
TCP, 188, 189
UDP, 188, 189

ps command, 247–248
ptcond.c, 270–273
ptcreate.c, 257–259
pthread_cancel function, 270
pthread_cond_* functions, 266–274
pthread_create function, 256–258
pthread_detach function, 261–262
pthread_exit function, 256–258
pthread_join function, 260–261
pthread_mutex_* functions,

262–266
pthread_once function, 259
pthread_self function, 258–259
pthreads

APIs, 256–274, 276
building threaded applications,

274–275
condition variables, 266–274
creating, 254–255, 257–258
detaching, 261–262
joining, 260–261
library, 254, 274–275
management, 258–259
mutexes, 262–266
NPTL, 253, 258, 259
ptcond.c, 270–273
ptcreate.c, 257–259
ptjoin.c, 260–261
ptmutex.c, 265–266

synchronization, 260–262
terminating, 257–258
thread basics, 256–258
thread identifier, 255

ptjoin.c, 260–261
ptmutex.c, 265–266
PWD variable, 408–409
Python Enhancement Proposal (PEP),

520
Python language

advantages of, 520
applications using, 520
associative arrays, 531–532
attributes, 521
class example, 523–524
classes and methods, 532–535
compared to other languages,

520–522
comparing map to for loops, 529
control/conditionals, 527
creating method/function exam-

ple, 523
dictionary, 531–532
downloading, 525
dynamic code, 535–536
exception handling, 537–539
functional programming, 536–537
“Hello World” example, 522–523
higher order functions, 535–536
inheritance, 533–535
introduction, 519–520
iteration, 528–529
lambda functions, 536–537
language elements, 525
map function/iteration examples,

524–525
numeric types, 525
objects, 526–527
parsing, 530–531
PEP, 520
quick examples, 522–525
sequence types, 525–526
string handling, 529–531
types and variables, 525–527

Q
QEMU

booting from emulated floppy
disks, 40–41

installing/emulating guest OS,
39–40

virtualization through emulation
approach, 38–39

qemu-img command, 39–40, 42
QNX microkernel, 6, 11
Qt Public License (QPL), 22
Qt toolkit, 552
queues, see message queues
quit (q) command, sed, 459

Index 663

R
RAID (Redundant Array of Inexpen-

sive Disks), 30–31
raise function, 226, 237
raise.c, 223
raising signals, 222–226
randapi.c, 77
randapi.h, 75, 78
random access, 164–167
random number wrapper API, 75–78
ranlib utility, 91–92
RATS (Rough Auditing Tool for

Security), 603
Raymond, Eric, 19, 20
RCS (Revision Control System), 108
read command, bash, 441–442
read function

file handling, 168–171
pipes, 176
Sockets, 195

reading
in ASCII format, 158–162
binary data, 162–168
character interfaces, 153–155
files, fopen access modes, 151
messages from message queue,

282–283, 295–298
shared memory segments,

337–338
string interfaces, 153, 155–162

read-string, socket programming,
211

recv, Sockets programming, 191,
201–203

recvfrom, Sockets programming,
203–204

Red Hat, 7, 46
redirection

basics of, 405–406
descriptor routing test script, 408
standard in/out error, 406–408

redirtest.sh, 408
Redundant Array of Inexpensive

Disks, see RAID
refactoring, 600
registering

for catching a signal, 222
for inotify event, 370

registry, manipulating files in,
116–117, 123–124

regress.c, 563–565
regressing/regression testing, 557,

562–565
reliability issues with open source

development, 23
remove function, 374
removing

files from filesystem, 374

files from repository, 114,
120–121, 127

hidden lines, Gnuplot, 139
installed package, 548
messages from queues, 283–284
segments from shared memory,

338–339, 342–344
semaphores, 312, 317

repository
adding to, 109–110, 116, 122–123
centralized architectures, 106, 107
described, 106
distributed/hybrid, 106–108
manipulating files in, 110–111,

116–117, 123–124
merging changes from, 111, 117,

118, 124
removing files, 114, 120–121, 127
reverting to repository file, 118
setting up, 109, 114–116
setting up Git, 122
showing changes, 125
source control paradigm, 106–108
status of changes, 125–126
tagging, 113, 119–120, 126–127

_ret_from_sys_call, 12
return values, code hardening, 594
revert command, SVN, 118
Revision Control System (RCS), 108
revision model, 108

change-set architectures, 108
snapshot architectures, 108

revision numbers
CVS, 111, 118
SVN, 117–118

rewind, file handling, 164–165
Ritchie, Dennis, 4, 6, 8
rm option, Git, 127
rmmod tool, 16
rmtest.c, 374
role variable, 220
root (/) filesystem, 541–542
Root Makefile.am, 98
root users and Ubuntu, 83
Ruby language

advantages of, 500
associative arrays, 509
attributes, 500
case construct, 505
class example, 502
classes and methods, 509–513
compared to other languages,

500–501
control/conditionals, 504–506
creating method/function exam-

ple, 502
downloading, 503
dynamic code, 513–514

as embedded language, 518
error checking and class

method, 511
exception handling, 514–516
“Hello World” example, 501
inheritance, 510–511
instance variables and initializa-

tion, 511–512
interactive Ruby, irb, 501, 503
introduction, 499–500
introspection, 516–517
iteration, 506–508
language elements, 503
map method, 503
quick examples, 501–503
sockets programming, 209–210
string handling, 508–509
tarball distribution example,

543–546
types and variables, 503–504

rules in Makefile syntax, 62–63
pattern-matching rules, 67–69

runtime type identifier, 597

S
*.s files, 47
safe functions, 594–595
scheduler

architecture, 13
O(1) scheduler, 13
scheduling policy, 13

scheme language, Sockets program-
ming, 210–211

scripts
awk command line, 464–468
awk scripting applications,

468–472
bash, 425–428
directory archive script, 445–446
environment variables, 409
files updated/created today script,

446–448
Gnuplot, 133–134
invocation, 409–410
scripting languages, 449
sed utility, 452–454
shebang (#!), 425

SCTP (Stream Control Transmission
Protocol)
compared to TCP/UDP, 207
delivery order, 209
message framing, 209
multi-homing, 207
multi-streaming, 208

sed utility
append lines (a) command,

458–459
basics of, 451–452

664 Index

change lines (c) command,
458–459

command line options, 454
delete (D) command, 457–458
holding pattern space (h) com-

mand, 460
insert lines (i) command, 458–459
line numbering (=) command,

459–460
print (P) command, 458
quit (q) command, 459
ranges and occurrences, 456
regular expressions, 455
simple script, 452–454
spaces (buffers), 454
substitute(S) command, 457
transformation (y) command, 459
useful one-liners, 461

seek functions, 162–165
selfident.c, 598–599
selfprot.c, 601
self-protective functions, 600–601
semaacq.c, 325–326
semall.c, 319–321
semaphores

API, 313–316, 329
basics of, 304–305
binary, 303–304
configuring, 310–312, 316–324
counting, 303–304
creating, 305–306, 313–316
flag options, 326
getting/releasing, 306–310,

324–327
header files for, 305
internal values, 316
IPC, 16
operations performed using

semctl, 317
permissions, 314
removing, 312, 317, 324
semaacq.c, 325–326
semall.c, 319–321
semaphore array, 304, 313
semcrd.c, 310
semcreate.c, 305
semrel.c, 308
system-wide keys, 315
theory, 301–303
user utilities, 327–329

sembuf structure, 307–309
semcrd.c, 310
semcreate.c, 305
semctl function, 313, 316–324
semget function, 313–327
semop function, 313, 324–327
semrel.c, 308
send, Sockets programming, 191,

201–203

sendto, Sockets programming,
203–204

servers
client/server model, 190–191
Daytime protocol server, 191–195,

210
starting SVN server, 115
virtualization, 32

set command, Gnuplot, 131
shared data and threads, 255

See also pthreads
shared libraries, building, 82–83
shared memory

advantages/disadvantages of,
331–332

APIs, 339–350, 357
attaching/detaching segments,

335–336, 348–350
creating segments, 332–333, 339,

340–343
getting information on, 333–335,

339, 343–348
header files for, 332
ID, 340, 342
initializations, 342–343
local addresses, 349
permissions, 341
removing segments, 338–339,

342–344
shmattch.c, 335–336
shmcreate.c, 333
shmdel.c, 338–339
shmread.c, 337–338
shmset.c, 351–355
shmstat.c, 344–345, 346–347
shmszget.c, 334
shmwrite.c, 337
system-wide keys, 341–342
user utilities, 356–357
using segments, 336–338, 350–355
writable elements, 346

shebang (#!), 425
SHELL environment variable, 423–434
shells

bash, see bash shell
high-level architecture, 9–10
simple shell interpreter using

execlp, 238–240
shmat function, 348–349, 350
shmattch.c, 335–336
shmcreate.c, 333
shmctl function, 339, 343–348
shmdel.c, 338–339
shmdt function, 339, 349–350
shmget function, 339, 340–343
shmid_ds structure, 342
shmread.c, 337–338
shmset.c, 351–355
shmstat.c, 344–345, 346–347

shmszget.c, 334
shmwrite.c, 337
show command

Git, 124, 125
Gnuplot, 131

show-branch option, Git, 126
showing repository changes, 125
sigaction function, 243–247
sigcatch.c, 222
signal function, 226, 230–235
signals for processes

catching, 221–222
default actions, 231–232
demonstration with parent/child

process, 233–234
kill API function, 226, 236–237
raising, 222–226
signal function, 226, 230–235
signal handler, 230–231

signatures, 597
SIGPIPE signal, 179
sigtest.c, 233
simpshell.c, 238
simpsyslog.c, 599
size utility, 57, 88–89
smoothing options, Gnuplot, 134–135
smplfork.c, 218
snapshot architectures for source

management, 108
sockaddr_in structure, 198–199
socket function, 195, 197
socket, Sockets programming, 190,

193
socket-connect procedure, 211
Sockets programming

address tuples, 188–189
addresses, 198–199
APIs, 212–213
basics of, 185
binding to well-known ports, 194
client/server model, 190–191
closing Sockets, 195, 197
connected Sockets functions,

201–203
creating/destroying Sockets, 197
daycli.c, 196
daycli.scm, 211
dayserv.c, 191
dayserv.rb, 210
Daytime protocol client, 195–196,

210–211
Daytime protocol server, 191–195,

210
element hierarchy, 186–187
ephemeral ports, 189
host name information, 206
host/network byte order, 193
hosts, 186–188
I/O, 201–204

Index 665

Sockets programming (continued)
layered model of networking, 186
linger time, 205
local socket information, 206
options, 204–205
paradigm, 186
peer socket information, 206–207
port numbers, 188
ports, 187–188
primitives, 199–201
protocols, 187–188, 207–209
Sockets, described, 189
unconnected sockets functions,

203–204
software control, see source control
software package management,

542–549
software testing

building unit test frameworks,
560–565

C unit test system, 565–570
embedded unit test, 570–574
expect utility, 574–576
introduction, 557
regressing/regression testing, 557,

562–565
unit testing basics, 558–559

sort utility, 417–418
sort.c, 620–622
source annotation, 625–626
source checking tools, 602–603
source control

CVS, 108–114
defining, 105–106
developer sandbox, 106–107
Git, 121–127
paradigms, 106
repository models, 106–108
revision model, 108
SVN, 114–121

source files, compiling with GCC,
47–48

SourceForge, 20, 21
Space Travel game, 4
splint (secure programming lint)

tool, 603
splot command, Gnuplot, 135, 137
sprintf, file handling, 159–160
sprintf function, 194
sscanf, file handling, 161
stack, examining, 586–587
stack module, testing, 560–565
stack.c, 560–561
stack.h, 562
stackTest.c, 571–573
Stallman, Richard, 5, 20
standard in/out error, 406–408
start_kernel, 13

stat command, 359–361
static libraries, building, 75–81
statshrd/test.c, 78
status command for source control,

113, 125
stderr descriptor, 406–408
stdin/stdout descriptors, 406–408
stdio.h header file, 12
stepping through source, 584–585
sterror function, 398
storage systems, virtualization, 30–31
strace utility, 603–605
Strategic Air Command missile data,

464
streams

fdopen function, 170–171
stream-client, 211

strftime function, 362
strin.c, 157
strings

bash comparison operators, 432
echoed, 441
handling, in Python, 529–531
handling, in Ruby, 508–509
manipulation and make utility,

65–67
reading/writing data, 155–162
search using grep command,

420–421
sed regular expressions, 455

strout.c, 156
strucin.c, 160
strucout.c, 158
substitute(S) command, sed, 457
Subversion, see SVN
summing application, awk, 468–469
Suse Linux, 7
SVN (Subversion)

adding to repository, 116
basics of, 114
blame command, 118–119
checkout command, 119
compared to CVS, 118
copy command, 119
create command, 115
delete command, 120
diff command, 117
import command, 116
lock command, 118
log command, 121
manipulating files in repository,

116–117
merge command, 118
merging changes from repository,

117, 118
removing files from repository,

120–121
repository tagging, 119–120

revert command, 118
setting up new repository,

114–116
starting server, 115
unlock command, 118
update command, 117

swapping and memory manager, 14
symbolic links, 410
sync function, 374–375
synchronization

data, 374–375
processes, 220–221
semaphores, 303, 307
threads, 260–262

syntactic sugar, 505–506
sys_call_table, 12
sysinfo command, 388–390
sysinfo.c, 389–390
system (end-to-end) testing, 558–559
system call interface, 12
system call tracing, 641–644
system emulation, 34
system information, gathering,

388–390
system log, 599–600
system-wide keys

message queues, 287
semaphores, 315
shared memory, 341–342

T
table.txt, 417
tabulate.awk, 468–469
tagging repository files

CVS, 113
Git, 126–127
SVN, 119–120

tail command, 421
“tainting” effect of GPL software, 21
tar command, 411, 543
tarball distribution, 543–546
target in Makefile syntax, 62–63
TCP (Transmission Control Proto-

col), 188
compared to SCTP, 207
Sockets, 189

Telnet, 194–195
temporary files, 416
test_1.c, 566–568
test_bc, 575
testapp.c, 578–580
test.c, 632
testing file types, 359–361
testing software, see software testing
text editing, see sed utility
text processing, see awk programming

language
T.H.E. operating system, 303

666 Index

Thompson, Ken, 4, 6, 8
threads

basics, 256–258
condition variables, 266–274
creating, 254–255
detaching, 261–262
identifiers, 255
joining, 260–261
management, 258–259
mutexes, 262–266
synchronization, 260–262
See also pthreads

three-dimensional plots, 135–139
time

API, 385–388
conversion example, 387–388
ctime function, 386
gmtime function, 386
localtime function., 386
mktime function, 386
quantum, 13
strftime function, 362
time function, 194, 385–386

time.c, 387–388
timelines

history of UNIX/Linux and GNU
development, 3–4

Linux development, 6
timeouts, scheduler, 13
timestamps, system call tracing, 643
tokenization, 476, 479
tools.txt, 415
top command, 248–249
Torvalds, Linus, 4, 5–6, 8
tracing

code, 603–605
system call, 641–644

transformation (y) command, sed,
459

TRIX kernel (MIT), 5
try clause, Python, 537–538
tuples, 188–189
two-dimensional plots, 132–134
type modifiers to find, 419

U
Ubuntu and root users, 83
UDP (User Datagram Protocol), 188

compared to SCTP, 207
sockets, 189

unconnected sockets functions,
203–204

unit testing
basics of, 558–559
building your own frameworks,

560–565

C unit test system, 565–570
embedded unit test, 570–574
main.c, 573
regress.c, 563–565
stack.c, 560–561
stack.h, 562
stackTest.c, 571–573
test_1.c, 566–568
test_bc, 575

units, 558
UNIX

AT&T development, 4
BSD operating system, 4
development timeline, 3–4

unlock command, SVN, 118
unlocking memory, 394–396
unsafe functions, 594–595
unset command, Gnuplot, 131
unset multiplot command, 141
update command for source control,

111, 117
upgrading Linux kernel, 550–554
usability issues with open source

development, 23
user processes, 215–216
user space architecture, 10–11
user utilities

message queues, 298–300
semaphores, 327–329
shared memory, 356–357

V
Valgrind utility, 632–635
van Rossum, Guido, 519
variables

awk, built-in, 467–468
bash scripting, 425–428
Makefile, see make utility
Ruby language, 503–504

VFS (Virtual File System), 14–15
viewing portions of file, 421
Virtual File System, see VFS
Virtual Machine Monitor, see VMM
virtual machines, 35
virtualization

advantages/benefits, 31–32
current use of, 27
defined, 28
emulation, 34–35
full virtualization, 32–33
hardware-assisted, 36–37
history of, 29–31
KVM, 7, 41–42
language VM, 35
open source solutions, 37
operating system, 35–36

paravirtualization, 33–34
QEMU, 38–41
specialized emulators, 35
system emulation, 34
x86, 36–37

Visual Editor Project, 20
VMM (Virtual Machine Monitor), 28
VPATH feature, make utility, 67, 69,

95

W
wait function, 226, 227–228
waitpid function, 226, 229–230
walking directories, 365–366
-Wall warning options, 49–50, 602
warnings

compiler, enabled in -Wall,
49–50, 602

compiler, enabled outside of -
Wall, 50–51

wc command, 174, 419–420
Web servers, 7
Weinberger, Peter, 463
Wheeler, David, 603
while loops

awk, 473
bash, 437–438
Python, 528
Ruby, 506

writing
in ASCII format, 158–162
binary data, 162–168
character interfaces, 153–155
file access modes, 151
file handling, 168–171
messages to message queues,

280–282
pipes, 176
shared memory segments, 337
Sockets, 210
Sockets programming in Ruby,

210
string interfaces, 153, 155–162
write-string, 211

X
x86 assembly, coverage testing, 613
x86 virtualization, 36–37
Xen project, 7

Y
yamd (yet another malloc debugger)

utility, 635–638

Z
zombie processes, 220

Index 667

License Agreement/Notice of Limited Warranty

By opening the sealed disc container in this book, you agree to the following terms and
conditions. If, upon reading the following license agreement and notice of limited
warranty, you cannot agree to the terms and conditions set forth, return the unused
book with unopened disc to the place where you purchased it for a refund.

License:
The enclosed software is copyrighted by the copyright holder(s) indicated on the software
disc. You are licensed to copy the software onto a single computer for use by a single user
and to a backup disc. You may not reproduce, make copies, or distribute copies or rent or
lease the software in whole or in part, except with written permission of the copyright
holder(s). You may transfer the enclosed disc only together with this license, and only if
you destroy all other copies of the software and the transferee agrees to the terms of the
license. You may not decompile, reverse assemble, or reverse engineer the software.

Notice of Limited Warranty:
The enclosed disc is warranted by Course Technology to be free of physical defects in
materials and workmanship for a period of sixty (60) days from end user’s purchase of the
book/disc combination. During the sixty-day term of the limited warranty, Course Tech-
nology will provide a replacement disc upon the return of a defective disc.

Limited Liability:
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL
CONSIST ENTIRELY OF REPLACEMENT OF THE DEFECTIVE DISC. IN NO
EVENT SHALL COURSE TECHNOLOGY OR THE AUTHOR BE LIABLE FOR ANY
OTHER DAMAGES, INCLUDING LOSS OR CORRUPTION OF DATA, CHANGES
IN THE FUNCTIONAL CHARACTERISTICS OF THE HARDWARE OR OPERATING
SYSTEM, DELETERIOUS INTERACTION WITH OTHER SOFTWARE, OR ANY
OTHER SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES THAT
MAY ARISE, EVEN IF COURSE TECHNOLOGY AND/OR THE AUTHOR HAS
PREVIOUSLY BEEN NOTIFIED THAT THE POSSIBILITY OF SUCH DAMAGES
EXISTS.

Disclaimer of Warranties:
COURSE TECHNOLOGY AND THE AUTHOR SPECIFICALLY DISCLAIM ANY
AND ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING
WARRANTIES OF MERCHANTABILITY, SUITABILITY TO A PARTICULAR TASK
OR PURPOSE, OR FREEDOM FROM ERRORS. SOME STATES DO NOT ALLOW FOR
EXCLUSION OF IMPLIED WARRANTIES OR LIMITATION OF INCIDENTAL OR
CONSEQUENTIAL DAMAGES, SO THESE LIMITATIONS MIGHT NOT APPLY TO
YOU.

Other:
This Agreement is governed by the laws of the State of Massachusetts without regard to
choice of law principles. The United Convention of Contracts for the International Sale
of Goods is specifically disclaimed. This Agreement constitutes the entire agreement
between you and Course Technology regarding use of the software.

