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Chapter 1

Linear vector spaces

The most general formulation of quantum mechanics can be made within the framework
of a linear vector space. This is a generalization of ideas we have about ordinary vectors
in three-dimensional Euclidean space. We will need vector spaces of higher dimensions.
In fact, ordinary quantum-mechanical wavefunctions will be found to be the components
of a state vector in a vector space with infinite dimensions. Another generalization will
be to consider vectors with components that are not real, but complex numbers. A new
scalar product must then be defined. In order to discuss the components, we need to
have a basis in the vector space. The values of the components depend on this choice
of basis vectors and are related by linear transformations to the components in another
basis. When such transformations conserve the lengths of vectors, they are said to be
rotations in a real vector space and unitary transformations in a complex vector space.

1.1 Real vector spaces

Let us consider a set V of vectors {x,y, z, . . .} which has the basic property that that
sum of any two vectors is a new vector in the same set,

x + y ∈ V (1.1)

Summation is assumed to be commutative, x+y = y+x and associative, (x+y)+z =
x + (y + z). There must also be is null vector 0 such that for any vector x we will have
x + 0 = x. The vector which adds to x to give the null vector, is called the inverse

vector. These are the basic definitions of a linear vector space.

Now to get any further, we must assume that we also have a set of scalars {a, b, c, . . .}
which we first take to be ordinary, real numbers. Multiplying a vector with such a scalar,
we find a new vector, i.e. ax ∈ V. The linear combination ax + by is therefore also
a vector. Multiplying with zero we get the zero vector. Thus we can write the vector
inverse to x to be −x.

A vector v is said to be linearly independent of the vectors {x,y, z, . . .} when it cannot
be written as a linear combination of these vectors. The maximum number of linearly
independent vectors is called the dimension N of the vector space which now can be

7



8 Chapter 1. Linear vector spaces

denoted as VN . Such a set is called a basis for the vector space. If this basis set is denoted
by {e1, e2, . . . , eN}, any vector x can therefore be written as the linear combination
x = x1e1 + x2e2 + . . .+ xNeN or

x =
N∑

n=1

xnen (1.2)

The scalar coefficients xn are called the components of the vector with respect to this
basis. It therefore follows that the components of the sum x + y of two vectors are just
the sum xn + yn of their components. Obviously, the components of the null vector are
all zero.

We have now constructed a linear vector space over real numbers. Measurements in
physics are represented by real numbers. For a mathematical construction like a vector
space to be physically useful, we must therefore be able to assign sizes or lengths to all
vectors in the space. This can be done by endowing the vector space with an inner or
scalar product. In analogy with standard vector analysis, we denote the scalar product
of a vector x with itself by x ·x which is then called its squared length and is a positive
number. Similarly, the scalar product of vector x with vector y is written as x ·y. When
this product is zero, we say that the two vectors are normal or orthogonal to each other.

All scalar products are given in terms of the scalar products between the vectors in the
basis set. It is most convenient to choose a very special set of such vectors where each
is orthogonal to all the others and all have the same length which we take to be one.
They are therefore unit vectors. In this orthonormal basis we thus have

em · en = δmn =
{

1, m = n
0, m 6= n

(1.3)

where we one the right have introduced the Kroenecker δ-symbol. The scalar product of
two vectors x and y is then

x · y =
N∑

m,n=1

xmynem · en =
N∑

n=1

xnyn (1.4)

and similarly for the squared length of the vector x,

|x|2 = x · x =
N∑

n=1

x2
n (1.5)

The length of the null vector is therefore null.

Multiplying the vector x with the basis vector en, we find the component of the vector
in this direction,

xn = en · x (1.6)

Inserting this back into the vector (1.2), we have

x =
N∑

n=1

enen · x
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Since this is valid for all possible vectors x, we must have that the object

I =
N∑

n=1

enen (1.7)

acts as a unit operator or identity in the sense that when it acts on any vector, it just
gives the same vector back. In fact, we have just shown that I ·x = x and obviously also
I · em = em for any basis vector. That the sum in (1.7) is just the identity, is usually
said to show that the basis vectors satisfy the completeness relation.

The unit operator I is just one special operator on this vector space. A general operator
S acting on a vector x gives a new vector x′, i.e. x′ = S ·x. We will only consider linear

operators defined by S · (x + y) = S · x + S · y. It is trivial to see from the definition
(1.7) that I is linear. Each operator S will have an inverse denoted by S−1 such that
S · S−1 = S−1 · S = I.

1.2 Rotations

A rotation of a vector x is a linear transformation of its components so that its length
stays the same. The transformed vector x′ =

∑N
n=1 x

′
nen will thus have components

e1

2

x’2

x2

x’ x1 1

e
x’

x

’
α

φ

φ

Figure 1.1: Rotation by an angle α of a two-dimensional vector x into the final vector x
′.

which in general can be written as

x′m =
N∑

n=1

Rmnxn (1.8)

where the coefficients Rmn are real numbers. This is illustrated in Fig.1 for the simplest
case when the vector space has only N = 2 dimensions. Since we require that |x′| = |x|
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it follows from (1.5) that we must have

|x′|2 =
N∑

m=1

x′mx
′
m =

N∑

m=1

N∑

n,n′=1

RmnRmn′xnxn′

which should equal |x|2 =
∑N
n=1 xnxn. For this to be the case we must therefore have

N∑

m=1

RmnRmn′ = δnn′ (1.9)

These relations impose N(N + 1)/2 constraints on the N2 rotation coefficients Rmn so
that a general rotation involves only N(N − 1)/2 independent parameters.

It’s very useful to write the transformation equation (1.8) on matrix form. We then
collect the components of the vector x in the column matrix

x =




x1

x2
...
xN




(1.10)

and all the rotation coefficients in the matrix

R =




R11 R12 . . . R1N

R21 R22 . . . R2N
...

...
. . .

...
RN1 RN2 . . . RNN




(1.11)

Using the rules for standard matrix multiplication we can therefore write the transfor-
mation (1.8) on the compact form

x′ = Rx (1.12)

where R is a N × N real rotation matrix. We say that it represents the corresponding
rotation operator. Similarly, introducing the transposed matrixRT with elements RT

nm =
Rmn, we can write the constraints (1.9) as

RTR = I (1.13)

where I is the N × N unit matrix with elements Imn = δmn, i.e. with ones along the
diagonal and zeros elsewhere.

If the rotation R is followed by another rotation R′, the resulting vector is x′′ = R′x′ =
R′Rx. This should also be obtainable by rotating the first vector x directly into x′′, i.e.
we must have x′′ = R′′x. It therefore follows that we must have R′′ = R′R. A rotation
R followed by the inverse rotation, which we denote by R−1, is equivalent to no rotation
at all, i.e. should be equal to the unit matrix. We thus have R−1R = I. For the same
reason we must also have RR−1 = I. From (1.13) we now see that the inverse rotation
matrix is just the transposed,

R−1 = RT (1.14)

Taking the determinant of the matrix equation (1.13) and remembering that the deter-
minant of the transposed matrix equals the determinant of the matrix itself, we see that
we must have det(R) det(R) = 1. Since the unit matrix has determinant det(I) = 1,
rotation matrices continuously connected to it must therefore also have det(R) = 1.
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1.3 Lie groups

With these properties we say that the rotations form a continuous group or a Lie group

after the Norwegian mathematician Sophus Lie. A general group is a set of elements
{e, g, g′, g′′, . . .} which can be combined together (= multiplied) in such a way that

• the product g′g of two group elements g and g′ is also a group element, g′′ = g′g.

• there is a unit element e so that eg = ge = g for all elements g.

• for each element there is also an inverse element g−1 so that gg−1 = g−1g = e.

When the number of elements in the group is finite, it is called a finite group. On the
other hand, it is a Lie group when it contains infinite elements continuously connected
to each other by variations of a certain set of finite parameters.

We have already been introduced to general rotations. The corresponding transforma-
tion matrices were found to have properties which show that they form a Lie group.
The usual name for this rotation group of N -dimensional vectors is SO(N) where the
O stands for orthogonal transformation and the S for the special case where the deter-
minant det(R) = 1. It was shown to have N(N − 1)/2 independent parameters.

As a simple example, consider again the rotation in Fig.1.1. If the length of the vector
is a, the initial vector before rotation is represented by the column vector

x =

(
a cosφ
a sinφ

)

where φ is the angle the vector makes with the 1-axis. The transformed vector has the
new angle φ′ = φ + α where α is the rotation angle. Since cos(φ + α) = cosφ cosα −
sinφ sinα and sin(φ+ α) = sin φ cosα + cosφ sinα, we can write

x′ =

(
cosα − sinα
sinα cosα

)(
a cosφ
a sinφ

)
(1.15)

Comparing with (1.12) we thus find the rotation matrix to be

R(α) =

(
cosα − sinα
sinα cosα

)
(1.16)

which is an element of the rotation group SO(2). It has only one parameter which is
the rotation angle and det(R) = cos2 α + sin2 α = 1. By direct multiplication we now
verify that R(α′)R(α) = R(α′′) where the resulting rotation angle is α′′ = α′ + α as it
should be.

Much more interesting is the rotation group in three dimensions, SO(3). It has 3(3 −
1)/2 = 3 parameters corresponding to rotations around the three space directions. We
will come back to several aspects of this group later in connection with the quantization
of spin without having to use any details of group theory. For rotations in spaces with
more than three dimensions, the number of independent parameters is larger than the
number of space dimensions. It is a good problem to understand why.
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1.4 Change of basis

So far we have considered an active transformation where the vector x is rotated while
the basis vectors {en} remains fixed. The components of the vectors thus takes on
the new values (1.8) after the rotation. Another possibility is to consider a passive

transformation where the vector x remains fixed, but the basis vectors {en} are rotated.
The components of the vector with respect to this new basis will then also be changed.

If we now consider the special passive rotation which is just the inverse of the previous,
active rotation we have just studied, the new components will again the given by (1.12).
Since the vector x remains fixed, we must have

x =
N∑

n=1

xnen =
N∑

m=1

x′me′
m (1.17)

Inserting here the values of x′m from (1.8) and comparing the coefficients of xn on both
sides, we find that the old basis vectors can be given in terms of the new ones by the
linear combinations

en =
N∑

m=1

e′
mRmn (1.18)

Since the rotation matrix is orthogonal, we can easily invert this set of equations to find
the transformed basis vectors expressed in terms of the original ones,

e′
m =

N∑

n=1

Rmnen (1.19)

It now follows that this transformed basis is also orthonormal, i.e. e′
m · e′

n = δmn as
it should be. Depending on the basis we choose to use, the same, abstract vector can
therefore be represented by different column vectors containing the components in the
relevant basis.

1.5 Complex vector spaces

In the previous sections we considered a linear vector space over real numbers. We will
now derive the properties of a complex vector space. It is most easily constructed from a
real vector space V2N with 2N dimensions and orthogonal basis {en}. A general vector
x ∈ V2N can then be written as

x = x1e1 + x2e2 + . . .+ x2Ne2N =
2N∑

n=1

xnen (1.20)

We now introduce the complex components

zk =

√
1

2

(
x2k−1 + ix2k

)
k = 1, 2, . . . , N (1.21)
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and their complex conjugates z∗k together with the new, complex basis vectors

ǫk =

√
1

2

(
e2k−1 − ie2k

)
k = 1, 2, . . . , N (1.22)

and their complex conjugates ǫ∗k. The above real vector (1.20) can now be expressed in
this complex basis as

x = z1ǫ1 + z∗1ǫ
∗
1 + z2ǫ2 + z∗2ǫ

∗
2 + . . .+ zNǫN + z∗Nǫ∗N

=
N∑

k=1

zkǫk +
N∑

k=1

z∗kǫ
∗
k (1.23)

The first part corresponds to a complex vector z with components zk in the basis {ǫk},

z =
N∑

k=1

zkǫk (1.24)

As previously, we easily see that they define a linear vector space which we denote by
HN . We thus have z ∈ HN . The second part describes the complex conjugate or dual

vector z∗ ∈ H∗
N where H∗

N is the dual vector space spanned by the dual basis {ǫ∗k}.
We therefore have x = z + z∗. Equivalently, the original vector space V2N is the direct
product of HN and its dual, i.e. V2N = HN ⊗H∗

N .

Since our derivation is based on a real vector space with an inner product between
vectors, we should also be able to define an inner vector product in the complex vector
space HN . But we cannot simply take ǫi · ǫj since these basis vectors have zero norm,
ǫk · ǫk = 0 as follows directly from the definition (1.22). Instead we must combine a
vector z from HN with its dual partner z∗ from H∗

N so that our complex basis vectors
have the scalar or inner product

ǫ∗i · ǫj = δij (1.25)

Although we cannot any longer so easily talk about angles between vectors, we still say
that this is an orthonormal basis. Two complex vectors z and z′ then have the scalar
product

z∗ · z′ =
N∑

i,j=1

z∗i z
′
jǫ

∗
i · ǫj =

N∑

k=1

z∗kz
′
k (1.26)

which is now in general a complex number. They are said to be normal or orthogonal to
each other when this product is zero. The squared norm or length of the vector (1.24)
is therefore

|z|2 =
N∑

k=1

|zk|2 =
2N∑

i=1

x2
i = |x|2 (1.27)

and this is obviously a positive number.

Given a vector z, it has the components

zk = ǫ∗k · z (1.28)
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in the basis {ǫk}. Inserting this back in the expression (1.24) for the vector, we see that
we must have the completeness relation

N∑

k=1

ǫkǫ
∗
k = I (1.29)

where I is the identity operator in the sense that I · z = z . This is equivalent to the
similar completeness relation we found in real vector spaces.

1.6 Unitary transformations

Having established the N -dimensional, complex vector space HN with the orthogonal
basis (1.25), we can now consider a linear transformation of the vector z in this space
which would correspond to a rotation in a real vector space. The components of the
transformed vector z′ can then in general be written as

z′i =
N∑

j=1

Uijzj (1.30)

where the coefficients Uij are complex numbers. In order for the length of the vector
to remain constant under this transformation, we find from (1.27) that we have the
following constraints

N∑

i=1

N∑

j,k=1

U∗
ijUikz

∗
j zk =

N∑

k=1

z∗kzk

which these coefficients must satisfy. Since they should hold for all vectors z, we must
have

N∑

i=1

U∗
ijUik = δjk (1.31)

Again we can write these equations on a more compact form by introducing the complex
N ×N matrix

U =




U11 U12 . . . U1N

U21 U22 . . . U2N
...

...
. . .

...
UN1 UN2 . . . UNN




(1.32)

Defining the adjoint or Hermitian conjugate matrix U † with elements

U †
ij = U∗

ji (1.33)

we see that the constraints (1.31) can be summed up in the simple matrix relation

U †U = I (1.34)
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Such matrices are said to be unitary and play the same role in complex vector spaces
as orthogonal matrices play in real vector spaces.

Introducing the complex column vector

z =




z1
z2
...
zN




(1.35)

the squared norm of the vector z is given by z†z. The unitary transformation (1.30) can
then be written on the matrix form

z′ = Uz (1.36)

exactly as the rotation of a real vector in the previous note.

These transformations also form a Lie group which for obvious reasons is called the
unitary group denoted by U(N). From (1.34) we see that the tranformation U has an
inverse which is just the adjoint matrix,

U−1 = U † (1.37)

It has N2 complex matrix elements, i.e. 2N2 real parameters. But they are not all
independent, the requirement (1.34) forms N2 real constraints. We thus find that the
unitary group U(N) has N2 independent and real parameters.

From the constraints (1.31) also follows det(U)∗ det(U) = 1 by taking the determinant
on both sides. Except for a phase factor, we can therefore require that the matrices
have det(U) = 1. This is then one more real constraint and the resulting special unitary
group is called SU(N) with N2 − 1 parameters.

As a first example, let us consider the simplest unitary group which is U(1). Its group
elements can all be written as

U(α) = eiα (1.38)

where the real parameter α takes value between zero and 2π. The combination of two
such elements U(α) and U(α′) gives the new group element

U(α′′) = U(α′)U(α) = U(α′ + α)

It acts in a complex vector space with only N = 1 dimension where the vectors have
only one component. As an axample, let it be the complex number z = x + iy which
also can be written as z = aeiφ = a(cosφ + i sinφ) with the angle φ between zero and
2π. The unitary transformation (1.36) then becomes simply

z′ = eiαaeiφ = aeiφ
′

with φ′ = φ+α. Writing z′ = x′ + iy′ and comparing real and imaginary parts on boths
sides, we see that U(1) is equivalent to the real rotation group SO(2) with elements
(1.16). Even if the group properties of U(1) are rather trivial, it plays an important role
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in quantum mechanics and what is called gauge transformations of the electromagnetic
field.

Mathematically much more interesting and physically just as important, is the unitary
group SU(2). It is defined by 2 × 2 unitary matrices with unit determinant and have
three real parameters. One can write a general group element as

U =

(
a −b
b∗ a∗

)
(1.39)

where a and b are complex parameters satisfying |a|2 + |b|2 = 1. This ensures that
det(U) = 1. It is then easy to find the inverse transformation

U−1 =

(
a∗ b
−b∗ a

)
(1.40)

which is also the adjoint matrix U † = U∗T .

We will later see that SU(2) is intimately related to the three-dimensional rotation group
SO(3) and gives rise to particles with half-integer spins. As a starter we notice that both
groups have the same number of independent parameters. In fact, the transformation
matrix (1.39) will rotate particles with spin S = 1/2.



Chapter 2

Basic quantum mechanics

In quantum mechanics all the information about the physical state of a system is con-
tained in a state vector. This is a vector in a complex vector space called the Hilbert

space H. It has an inner product which makes it possible to normalize all such vectors.
Physical observables correspond to operators acting in Hilbert space. Chosing a basis,
they can be represented by Hermetian matrices. The measured value of such an ob-
servable will be one of the eigenvalues of the corresponding matrix. This is one of the
three basic postulates of quantum mechanics. As time evolves, the state vector for a
system changes in a deterministic way according to the Schrödinger equation. Uncer-
tainty in quantum mechanics comes in via the components of the state vector which are
postulated to give the probability for measuring the corresponding eigenvalue.

2.1 Bra and ket vectors

It was shown by Dirac that a very elegant and compact formulation of the mathematics
describing quantum systems is obtained when we introduce a new notation for the
vectors and inner product in the previous chapter. A complex vector corresponding to
z in Eq. (2.5) will now be written as |Ψ〉 ∈ H. Here Ψ is just the name we have chosen
for this particular vector, we could just as well kept the old name z if we preferred that.
Dirac called it a ket vector. The sum of two such vectors |Ψi〉 and |Ψj〉 with complex
coefficients will be a new ket vector, i.e.

a|Ψi〉 + b|Ψj〉 = |Ψk〉 ∈ H (2.1)

There is also a dual space H∗ where the vectors are called bra vectors and denoted
by 〈Ψ | ∈ H∗. We say that 〈Ψ | is the adjoint of |Ψ〉 and corresponds to complex
conjugation in the previous note where the dual vector was instead denoted by an upper
star ∗. This operation is now indicated instead by an upper dagger †. The adjoint of
the linear combination (2.1) will therefore be

[a|Ψi〉 + b|Ψj〉]† = a∗〈Ψi | + b∗〈Ψj | ∈ H∗ (2.2)

To convince yourself that this is right, rewrite it in the notation of Chapter 1 and it
follows automatically.

17
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For the inner product between two vectors |Ψi〉 and |Ψj〉 which we could write as
〈Ψi | · |Ψj〉 in the old notation, Dirac wrote instead 〈Ψi |Ψj〉. We then also see why he
introduced the names bra and ket vectors since when combined in the inner product,
they form a bracket. The product has the following, basic properties

• 〈Ψi |Ψj〉 = 〈Ψj |Ψi〉∗

• 〈Ψi |Ψi〉 ≥ 0

• 〈Ψ |aΨi + bΨj〉 = a〈Ψ |Ψi〉 + b〈Ψ |Ψj〉

which also follow directly from the definition of the inner product in the previous note.
The squared norm or length of the vector |Ψ〉 is 〈Ψ |Ψ〉 and when this equals one, we
say that the vector is normalized to one. When the inner product of the vectors |Ψi〉
and |Ψj〉 is zero, we say that they are orthogonal to each other.

Introducing a basis |1〉, |2〉, . . . , |N〉 in the N -dimensional Hilbert space HN , the vectors
|Ψ〉 can be decomposed in the standard way as

|Ψ〉 =
N∑

n=1

ψn|n〉 (2.3)

where the complex numbers ψn are the components of the vector. When the basis vectors
satisfy 〈m |n〉 = δmn, they form an orthonormal basis. The squared length of the vector
is then

〈Ψ |Ψ〉 =
N∑

m,n=1

ψ∗
mψn〈m |n〉 =

N∑

n=1

ψ∗
nψn (2.4)

and is obviously positive.

Furthermore, from (2.3) we see that the components of the vector are given by the inner
products

ψn = 〈n |Ψ〉 (2.5)

Inserted back into (2.3), we then write it as

|Ψ〉 =
N∑

n=1

ψn|n〉 =
N∑

n=1

|n〉〈n |Ψ〉

with the components following the basis vectors instead. Since this holds for all vectors
|Ψ〉, the object multiplying it on the right must be a unit operator Î resulting from the
completeness sum

N∑

n=1

|n〉〈n | = Î (2.6)

such that for any vector |Ψ〉, we have Î|Ψ〉 = |Ψ〉. The completeness relation (2.6)
has exactly the same structure as in the two previous notes, but here the order of the
two vectors in the products of the sum is even more important than before. If they are
interchanged, the products look like inner products which they are not.
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2.2 Operators in Hilbert space

When the unit operator Î acts on a ket vector |Ψ〉, the result is the same vector. A
general operator Â acting on |Ψ〉 is defined to give another vector |Ψ′〉 in the same
Hilbert space,

Â|Ψ〉 = |Ψ′〉 ∈ H (2.7)

Operators can be linearly combined. For instance, if B̂ is another operator, then

[aÂ + bB̂]|Ψ〉 = aÂ|Ψ〉 + bB̂|Ψ〉
will also be a vector. There is also a zero operator 0̂ which always gives the null vector
as result, 0̂|Ψ〉 = |0〉.
The unit operator (2.6) is a linear combination of projection operators defined as

Π̂n = |n〉〈n | (2.8)

If such an operator acts on the general vector |Ψ〉 =
∑
m ψm|m〉, we see that it gives a

new vector which is the projection of |Ψ〉 along the basis vector |n〉,
Π̂n|Ψ〉 = ψn|n〉 (2.9)

and hence its name. When it acts once more on |Ψ〉, it just gives the same vector. We
therefore have Π̂2

n = Π̂n since Π̂2
n = |n〉〈n |n〉〈n | = |n〉〈n |. This can also be taken as

the definition of a projection operator.

Not only projection operators, but all operators can be multiplied together. If the action
of Â on |Ψ〉 in (2.7) is followed by the action of operator B̂, the result will be of the
form

B̂Â|Ψ〉 = B̂|Ψ′〉 = |Ψ′′〉 ∈ H
If the action of the operators Â and B̂ occured in the opposite order, then we would
in general find another result, i.e. ÂB̂|Ψ〉 is usually different from the vector B̂Â|Ψ〉.
This is expressed by the special product combination called the commutator of Â and
B̂

[Â, B̂] = ÂB̂ − B̂Â (2.10)

which is then a non-zero operator.

For each operator Â there is an inverse operator denoted by Â−1 which is defined to
give the unit operator when combined,

ÂÂ−1 = Â−1Â = Î (2.11)

The inverse (ÂB̂)−1 of a product ÂB̂ is the reversed product of inverses,

(ÂB̂)−1 = B̂−1Â−1 (2.12)

since then

(ÂB̂)−1ÂB̂ = B̂−1Â−1ÂB̂ = B̂−1B̂ = Î

For the unit operator the inverse is obviously the unit operator itself.
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2.3 Matrix representations

Given an orthonormal and complete N -dimensional basis {|n〉}, a general operator Â
can be written as a linear combination of the elementary operators |m〉〈n |,

Â =
N∑

m,n

Amn|m〉〈n | (2.13)

The coefficients Amn are in general complex numbers and are seen to be given as

Amn = 〈m |Â|n〉 (2.14)

We say that these numbers represent the abstract operator in this basis. They can be
grouped into the N ×N matrix

A =




A11 A12 . . . A1N

A21 A22 . . . A2N
...

...
. . .

...
AN1 AN2 . . . ANN




(2.15)

which is then said to give a matrix representation of the operator.

The actual calculation of |Ψ′〉 = Â|Ψ〉 is now most directly done by matrix calculation.
We represent the abstract vector |Ψ〉 by its components ψn = 〈n |Ψ〉 which we group
into the 1-column matrix

ψ =




ψ1

ψ2
...
ψN




and similarly for |Ψ′〉. It has the components

ψ′
m =

N∑

n=1

Amnψn

which corresponds to the matrix equation ψ′ = Aψ or




ψ′
1

ψ′
2
...
ψ′
N




=




A11 A12 . . . A1N

A21 A22 . . . A2N
...

...
. . .

...
AN1 AN2 . . . ANN







ψ1

ψ2
...
ψN




(2.16)

As a simple illustration, consider a 3-dimensional Hilbert space with basis vectors |1〉,
|2〉 and |3〉 in which there are the operators

Â = i|1〉〈3 | + |2〉〈2 | − i|3〉〈1 |

and

B̂ = 2|1〉〈2 | + 2|2〉〈1 | − 3|3〉〈3 |
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When acting upon the state vector

|Ψ〉 = 3|1〉 − 2|2〉 + |3〉

we find Â|Ψ〉 = i|1〉−2|2〉−3i|3〉 and B̂|Ψ〉 = −4|1〉+6|2〉−3|3〉. To check if these two
operators commute, we calculate ÂB̂|Ψ〉 = −3i|1〉+ 6|2〉+ 4i|3〉. Since this is different
from B̂Â|Ψ〉 = −4|1〉 + 2i|2〉 + 9i|3〉, we conclude that they have a non-vanishing
commutator. It can in fact be calculated directly and we obtain

[Â, B̂] = 2(|2〉〈1 | − |1〉〈2 |) − 3i(|1〉〈3 | + |3〉〈1 |) − 2i(|2〉〈3 | + |3〉〈2 |)

which is certainly not the zero operator.

From the above discussion we can now also find the matrix representations of these two
operators from using the formula (2.14) for the matrix elements. Or we can read them
directly off the abstract forms of the operators which is faster. Either way, we find for
the corresponding matrices

A =




0 0 i
0 1 0

−i 0 0


 , B =




0 2 0
2 0 0
0 0 −3




Since the operators Â and B̂ do not commute, we find equivalently that the matrices A
and B do not commute under matrix multiplication.

In terms of matrices, the equivalent calculation of Â|Ψ〉 = |Ψ′〉 will now be




0 0 i
0 1 0

−i 0 0







3
−2

1


 =




i
−2
−3i




which give the components of the transformed vector in agreement with what we found
above.

2.4 Adjoint operations

Previously we have called the bra vector 〈Ψ | the dual or adjoint of the ket vector |Ψ〉.
We can now introduce also the adjoint operator. Let |Ψ′〉 = a|Ψ〉 where a is a complex
number. The adjoint bra-vector is then 〈Ψ′ | = a∗〈Ψ | = 〈Ψ |a∗ since a∗ is just a number.
If now instead we have the vector |Ψ′〉 = Â|Ψ〉 where Â is some operator, it is then
natural to define the adjoint operator Â† by taking the adjoint of |Ψ′〉, i.e.

〈Ψ′ | = 〈Ψ |Â† (2.17)

where Â† here acts to the left. Thus we also have that (aÂ)† = a∗Â†.

Matrix elements of the adjoint operator are given by the inner product 〈Ψj |Â†|Ψi〉. If
we here introduce |Ψk〉 = Â|Ψj〉, we then have the important result

〈Ψj |Â†|Ψi〉 = 〈Ψk |Ψi〉 = 〈Ψi |Ψk〉∗ = 〈Ψi |Â|Ψj〉∗ (2.18)
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In an ortonormal basis we then have the matrix elements A†
mn = 〈m |Â†|n〉 = 〈n |Â|m〉∗ =

A∗
nm = AT∗mn. The adjoint operator is therefore represented by the adjoint or Hermitean

conjagated matrix A† = AT∗ first defined by (1.33) in the previous chapter. Letting
Â→ Â† in (2.18) it follows also that Â†† = Â.

The adjoint of a product of operators is the reversed product of the adjoint operators,
e.g. for two operators,

(ÂB̂)† = B̂†Â† (2.19)

This corresponds to (2.12) for the inverse of the product. It follows again from the
definition (2.17) of the adjoint operator by considering

〈Ψi |ÂB̂|Ψj〉∗ = 〈Ψj |(ÂB̂)†|Ψi〉

Now write |Ψk〉 = B̂|Ψj〉, use 〈Ψi |Â|Ψk〉∗ = 〈Ψk |Â†|Ψi〉 which equals 〈Ψj |B̂†Â†|Ψi〉
and we have the stated result.

A very important class of operators are those who have an adjoint which equals the
operator itself, i.e.

Â† = Â (2.20)

They are said to be self-adjoint or Hermitian. The matrix elements (2.14) of such an
operator will therefore have the property that

Amn = 〈m |Â|n〉 = 〈n |Â|m〉∗ = A∗
nm = A†

mn (2.21)

and is therefore said to be Hermitean or self-adjoint.

We see from this that diagonal matrix elements Ann = 〈n |Â|n〉 of a Hermitian operator
are always real numbers, or more generally 〈Ψ |Â|Ψ〉 = 〈Ψ |Â|Ψ〉∗ for any vector |Ψ〉.

2.5 Eigenvectors and eigenvalues

When an operator Â acts on some vector |Ψ〉, one usually obtains a new vector |Ψ′〉.
But one can easily imagine the special situation where the result is the same vector or
a vector proportional to the initial vector |Ψ〉. Then we have

Â|Ψ〉 = a|Ψ〉 (2.22)

where the number a is general is complex. We then say that |Ψ〉 is an eigenvector for
the operator Â and a is the corresponding eigenvalue.

The eigenvalues for Hermitian operators are real. This follows from the eigenvalue
equation (2.22) by multiplying with the bra vector 〈Ψ | in from the left, giving

〈Ψ |Â|Ψ〉 = a〈Ψ |Ψ〉

Now we have just seen that the left-hand side 〈Ψ |Â|Ψ〉 is a real number. Then the
eigenvalue a must also be real since the norm 〈Ψ |Ψ〉 is real.
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An operator can in general have many different eigenvectors. The eigenvectors of an
Hermitian operator Â belonging to different eiegnvalues are orthogonal to each other.
To demonstarte this very important property, consider the two eigenvectors |Ψm〉 and
|Ψn〉 with the corresponding eigenvalues am and an,

Â|Ψm〉 = am|Ψm〉, Â|Ψn〉 = an|Ψn〉
We multiply the first equation with 〈Ψn | from the left and then use 〈Ψn |Â = an〈Ψn |
which follows from taking the adjoint of the second equation. It then follows that
am〈Ψn |Ψm〉 = an〈Ψn |Ψm〉 or

(am − an)〈Ψn |Ψm〉 = 0 (2.23)

So, if am 6= an, we must have 〈Ψn |Ψm〉 = 0 and the eigenvectors are orthogonal.

If the eigenvalues am and an belonging to different eigenvectors happen to be equal, then
we say that they are degenerate. Then it is no longer necessary that the eigenvectors
satisfy 〈Ψn |Ψm〉 = 0 and they are in general not orthogonal to each other. But by
taking linear combinations of these degenerate eigenvectors, we can always arrange it so
that even in this case all the new eigenvectors are orthogonal to each other.

An important mathematical theorem, which we shall not try to prove, says that all the
eigenvectors of an Hermitian operator can be used to form a complete set of orthonormal
basis vectors in the corresponding Hilbert space. If the dimension of this space is N ,
then these orthonormalized eigenvectors will therefore satisfy the completeness relation
(2.6). Are there other Hermitian operators defined in the same Hilbert space, then their
eigenvectors will also form complete sets and can be used as basis vectors in the same
Hilbert space.

When a vector |Ψ〉 is simultaneously an eigenvector of two operators Â and B̂, these
operators must then commute with each other. This is easy to show. In addition to
(2.22), we then have the condition B̂|Ψ〉 = b|Ψ〉. Operating on this with Â, we get
ÂB̂|Ψ〉 = bÂ|Ψ〉 = ab|Ψ〉. Similarly, we find B̂Â|Ψ〉 = ab|Ψ〉. Subtracting these two
results from each other, it then follows that (ÂB̂ − B̂Â)|Ψ〉 = 0. This is now satisfied
for all eigenstates |Ψ〉 when [Â, B̂] = 0. The reverse statement has great practical use,
i.e. when two operators commute with each other, we can find eigenvectors which are
simultaneously eigenvectors of both operators.

2.6 The quantum postulates

Quantum mechanics cannot be derived from classical mechanics or any other branch of
physics. If that had been the case, quantum mechanics would be nothing new. It is
based on new ideas and must be formulated in a new language.

In the mathematical language of bra and ket evctors, the basic ingredients of quantum
mechanics can be stated in terms of the following three axioms:

1. For each physical observable A, there is a corresponding Hermitian operator Â.
Measured values of the observable will be the eigenvalues an of the operator where

Â|n〉 = an|n〉 (2.24)
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for the corresponding eigenvector |n〉. The energy is given by the eigenvalues of
the Hamiltonian operator Ĥ .

2. The observable properties of a physical system is at any time coded into a state
vector |Ψ〉 = |Ψ, t〉 in the Hilbert space for the system. The expectation value of
the observable A when the system is in this state, is given by

〈 Â 〉 = 〈Ψ |Â|Ψ〉 (2.25)

when the state vector is normalized to have unit norm, i.e. 〈Ψ |Ψ〉 = 1.

3. The state vector |Ψ, t〉 varies with time t according to the Schrödinger equation

ih̄
∂

∂t
|Ψ, t〉 = Ĥ|Ψ, t〉 (2.26)

where Ĥ is the Hamiltonian operator.

The only new parameter which is needed, is the Planck-Dirac constant h̄ = h/2π where
h is the original Planck constant.

To see a little of what this implies, let us express the state vector |Ψ〉 by its components
in the basis formed by the eigenvectors of Â. Since these form a complete, orthonormal
set of vectors, we have as before

|Ψ〉 =
∑

n

ψn|n〉

where the components ψn = 〈n |Ψ〉 and Â|n〉 = an|n〉. Since we assume that |Ψ〉 has
unit norm, the components satify the condition

∑

n

|ψn|2 = 1 (2.27)

The expectation value of the quantum observable Â is then

〈 Â 〉 =
∑

n

ψn〈Ψ |Â|n〉 =
∑

n

ψnanψ
∗
n =

∑

n

an|ψn|2

So the average value of the measurement is the weighted average of all the eigenvalues
of Â. The probability to measure eigenvalue an is seen to be Pn = |ψn|2. From the unit
norm of |Ψ〉 these probabilities sum up to one as they should. It is therefore natural
to call the complex number ψn = 〈n |Ψ〉 the probability amplitude to find this measured
value. Immediately after the measurement giving the eigenvalue an, the system is with
certainty in the state |n〉. We say that the state vector has collapsed from |Ψ〉 to |n〉.
This probability interpretation means that a measurement of the average value 〈 Â 〉,
also called the expectation value of the operator Â, really involves an infinite number
of single measurements. The first measurement gives a certain eigenvalue. Then the
measurement is repeated on an identical system prepared in the same state |Ψ〉. This
gives in general a different eigennvalue as result. Continuing this way on a large number
of identical systems in the same state, we then calculate the average value of all these
single measurements and thus get the expectation value 〈 Â 〉.
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2.7 Ehrenfest’s theorem

Just as a classical observable A(t) can explicitly depend on time, the corresponding
quantum operator Â(t) can also be time dependent. The expectation value

〈 Â, t 〉 = 〈Ψ, t |Â(t)|Ψ, t〉 (2.28)

therefore gets a time dependence both from Â(t), from |Ψ, t〉 and from 〈Ψ, t |. From the
Schrödinger equation (2.26) we know how the ket vector |Ψ, t〉 varies with time. Taking
the adjoint,

−ih̄ ∂
∂t

〈Ψ, t | = 〈Ψ, t |Ĥ (2.29)

we also can find how the corresponding bra vector varies. This now enables us to
calculate the time derivative of the full expectation value 〈A(t) 〉 which is

d

dt
〈 Â, t 〉 =

( ∂
∂t

〈Ψ, t |
)
Â(t)|Ψ, t〉 + 〈Ψ, t |Â(t)

( ∂
∂t

|Ψ, t〉
)

+ 〈Ψ, t |
( ∂
∂t
Â(t)

)
|Ψ, t〉

Now using the Schrödinger equation and its adjoint, the two first terms can be expressed
by the action of the Hamiltonian operator with the result

d

dt
〈 Â, t 〉 =

i

h̄
〈Ψ |[Ĥ, Â]|Ψ〉 + 〈Ψ |∂Â

∂t
|Ψ〉 (2.30)

This is called Ehrenfest’s theorem since the result on the right for the expectation value
bears a very close resemblance to what would be the result in classical mechanics. This
will become more clearer later. At this stage we can just say that the physical content
of this theorem, which we can write in a bit more compact form as

d

dt
〈 Â, t 〉 =

i

h̄
〈 [Ĥ, Â] 〉 + 〈 ∂Â

∂t
〉, (2.31)

is to show that the time variation of a quantum mechanical expectation value is the
same as the time variation of the corresponding classical variable.

When the operator Â has no explicit time dependence and also commutes with the
Hamiltonian operator, we see that the expectation value 〈 Â 〉 is constant in time. It is
therefore said to be conserved. We will later see that such an operator corresponds to a
symmetry of the physical system.

2.8 The time evolution operator

The Hamiltonian operator Ĥ can in general depend on time. When it does not, we say
we have a stationary system. From Ehrenfest’s theorem we then see that the average
energy of the system is constant, or to say it equivalently, it is conserved in time. In this
important case the Schrödinger equation (2.26) can then easily be integrated to give

|Ψ, t〉 = e−iĤt/h̄|Ψ〉 (2.32)
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where |Ψ〉 = |Ψ, t = 0〉. The exponential of the Hamiltonian is meant to mean the
standard expansion

e−iĤt/h̄ = Î +
1

1!

(
− i

h̄
Ĥt
)

+
1

2!

(
− i

h̄
Ĥt
)2

+ . . . (2.33)

Differentiating term by term, we verify that the derivative of the exponential is the
expected result

∂

∂t
e−iĤt/h̄ = − i

h̄
Ĥe−iĤt/h̄ (2.34)

This also shows that (2.32) is a formal solution of the Schrödinger equation,

ih̄
∂

∂t
|Ψ, t〉 = Ĥe−iĤt/h̄|Ψ〉 = Ĥ|Ψ, t〉,

which has great practical use.

From the above we see that that the time evolution of the quantum system lies in the
time development operator

Û(t) = e−iĤt/h̄ (2.35)

which moves the system forward in time. The inverse operator

Û−1(t) = eiĤt/h̄ = Û(−t) (2.36)

moves the system correspondingly back in time. Since the Hamiltonian operator is
Hermitian, we see that the adjoint of the time development operator equals it inverse,

Û †(t) = eiĤt/h̄ = Û−1(t) (2.37)

or Û Û † = Û †Û = Î. Such operators are said to be unitary. In fact, the time development
operator forms the unitary Lie group U(1) discussed in Note 2. Each element Û(t) has an
inverse Û−1(t), the unit element is Û(0) = Î and the product of two time developments
is a third, Û(t1)Û(t2) = Û(t3) where t3 = t1 + t2.

A short time ∆t after the initial time t = 0, the state vector has changed into

|Ψ,∆t〉 = Û(∆t)|Ψ〉
where

Û(∆t) = Î − i

h̄
Ĥ∆t+ O(∆t)2

and is caused by the Hamiltonian operator. We say that it is the generator of time
development. From the group property of the operator, we can now build up an evolution
over finite time t = N∆t as a product of N short ones, each of duration ∆t = t/N → 0.
Thus we can write Û(t) = Û(∆t)Û(∆t) · · · Û(∆t) or

Û(t) =
(
Î − i

h̄
Ĥ
t

N

)N

in the limit N → ∞. Now making use of the definition of the exponential function,

ex =
(
1 +

x

N

)N
(2.38)

when N → ∞, we see that we are back at the finite expression (2.35) for the time
development operator.
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2.9 Stationary states and energy basis

A stationary state |E, t〉 is defined to have a simple exponential time dependence,

|E, t〉 = |E〉e−iEt/h̄

where |E〉 is the state vector at time t = 0. Using this in the time-dependent Schrödinger
equation (2.26), we see that is must satisfy

Ĥ|E〉 = E|E〉 (2.39)

The stationary states are therefore the eigenvectors of the Hamiltonian with E being
the corresponding energy eigenvalue.

In a given ortonormal basis {|n〉} the eigenvectors in (2.39) will be of the form

|E〉 =
∞∑

n=1

un|n〉

with the amplitudes un = 〈n |E〉. As in the previous note we can then write the
eigenvalue eqaution on matrix form as Hu = Eu where H is the Hamiltonian matrix in
this basis and u is the 1-column matrix representing the vector |E〉. More explicitly, it
becomes




H11 H12 . . . H1N

H21 H22 . . . H2N
...

...
. . .

...
HN1 HN2 . . . HNN







u1

u2
...
uN




= E




u1

u2
...
uN




(2.40)

We thus have N equations for the unknown amplitudes un. Since this set of equations
is homogenous, we will only have non-trivial solutions when the determinant formed by
their coefficient is zero, i.e.

∣∣∣∣∣∣∣∣∣∣

H11 − E H12 . . . H1N

H21 H22 −E . . . H2N
...

...
. . .

...
HN1 HN2 . . . HNN − E

∣∣∣∣∣∣∣∣∣∣

= 0 (2.41)

Writing this out, we find a polynomial equation ofNth order. The energy eigenvalues are
then the zeros of the equation. Since the Hamiltonian is Hermitian, we are guaranteed
that they are all on the real axis. For each such eigenvalue En we can then solve for the
N amplitudes un which then forms the corresponding eigenvector |En〉.
It is most convenient to normalize all the eigenvectors to have length equal to one.
Different eigenvalues will have ortogonal eigenvectors. If some eigenvalues turn out
to be equal, they are said to be degenerate. The corresponding eigenvectors are not
necessarily automatically orthogonal to each other. But by taking linear combinations,
this can be achieved. In the end we then have a complete set

N∑

n=1

|En〉〈En | = Î
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of ortonormal eigenvectors 〈Em |En〉 = δmn which provides us with a new basis in the
Hilbert space we are working.

This new basis is particularly useful for describing the time evolution of an arbitrary
state vector |Ψ〉. Since we now can write

|Ψ〉 =
N∑

n=1

Cn|En〉

with Cn = 〈En |Ψ〉, we can use the time development operator (2.35) to find the corre-
sponding new state |Ψ, t〉 at a later time. It gives

|Ψ, t〉 = e−iĤt/h̄|Ψ〉 =
N∑

n=1

Cne
−iĤt/h̄|En〉

=
N∑

n=1

Cne
−iEnt/h̄|En〉 ≡

N∑

n=1

Cn(t)|En〉 (2.42)

which can now be used to answer specific questions about the properties of the system
as time goes by. For instance, the probability amplitude that this system is found in
one of the states |m〉 of the original basis set is

ψm(t) = 〈m |Ψ, t〉 =
N∑

n=1

Cne
−iEnt/h̄〈m |En〉 (2.43)

depending on the components 〈m |En〉 of the energy basis vectors onto the original basis
vectors.

2.10 Change of basis

In general we can have several basis sets to use for matrix calculations in Hilbert space.
Typically we have a a position basis {|n〉} corresponding to the available positions of a
particle in the system and also an energy basis provided by the eigenvectors {|En〉} of the
Hamiltonian Ĥ. Operators and state vectors will have different matrix representations
in these two bases. For example, in the position basis the Hamiltonian is generally given
by a non-diagonal matrix while in the energy basis it is diagonal with matrix elements
Hmn = 〈Em |Ĥ|En〉 = Emδmn.

Let us assume more generally that we have two orthonormal and complete basis sets
{|n〉} and {|n′〉}. A state vector |ψ〉 is then expressed as

|ψ〉 =
∑

n

ψn|n〉

with components ψn = 〈n |ψ〉 or

|ψ〉 =
∑

n′

ψn′ |n′〉

Here the components are ψn′ = 〈n′ |ψ〉 which can be written as

ψn′ =
∑

n

〈n′ |n〉〈n |ψ〉 =
∑

n

Un′nψn
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More compactly we write the result as the matrix product

ψ′ = Uψ (2.44)

where ψ′ is the one-column matrix with components ψn′ representing the vector |ψ′〉
and similarly for ψ. This is the wanted transformation of the vector components from
one basis to the other. It is given by the transformation matrix U = (Un′n) with matrix
elements Un′n = 〈n′ |n〉.
Since both basis sets are orthonormal, the transformation matrix U is unitary. This
follows from

〈m |n〉 = δmn =
∑

n′

〈m |n′〉〈n′ |n〉 =
∑

n′

U∗
n′mUn′n =

∑

n′

U †
mn′Un′n

or U †U = I where the adjoint matrix is U † = U∗T . Similarly, from 〈m′ |n′〉 = δm′n′

follows UU † = I. The inverse matrix U−1 = (U−1
nn′) thus has matrix elements U−1

nn′ =
〈n |n′〉 so that U−1 = U †. All this is just a repetion of linear transformations in complex
vector spaces as already discussed in Chapter 1.

An operator Â is represented by the matrix A = (Amn) with elements Amn = 〈m |Â|n〉.
Correspondingly, in the primed basis is is given by the matrix A′ with elements Am′n′ =
〈m′ |Â|n′〉. Inserting here un-primed basis sets, we find

Am′n′ =
∑

mn

〈m′ |m〉Amn〈n |n′〉 =
∑

mn

Um′mAmnU
−1
nn′

which in matrix notation is

A′ = UAU−1 (2.45)

In mathematics this is called a similarity transformation of the matrix A.

2.11 Schrödinger and Heisenberg pictures

So far we have pictured the basis vectors as fixed in Hilbert space while state vectors
will in general move with time. This is called the Schrödinger picture. But since it is
only the relative motion betwen basis vectors and state vectors that matters, we are
also allowed to consider the so-called Heisenberg picture where the basis vectors move
so that the state vectors stay fixed. When the Hamiltonian operator Ĥ has no explicit
time dependence, we already know that the state vector varies with time as

|Ψ, t〉 = Û(t)|Ψ〉 (2.46)

in the Schrödinger picture. Here Û(t) = exp (−iĤt/h̄) is the time development operator
already introduced. The constant vector |Ψ〉 can then be taken to be the state vector in
the Heisenberg picture, i.e. |Ψ〉H = |Ψ〉. If we now consider an observable corresponding

to the operator Â, the expectation value 〈 Â 〉 = 〈Ψ, t |Â|Ψ, t〉 is the value of physical
measurements and must be independent of which picture we make use of. Since

〈 Â 〉 = 〈Ψ |eiĤt/h̄Âe−iĤt/h̄|Ψ〉,
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we can then write it as 〈 Â 〉 = H〈Ψ |ÂH(t)|Ψ〉H where now

ÂH(t) = eiĤt/h̄Âe−iĤt/h̄ (2.47)

is the operator in the Heisenberg picture. This is like the above transformations between
different representations. But here it is the time development operator Û(t) which
provides the transformations of states and operators from one picture to the other. The
Hamiltonian operator itself is seen to be the same in the two pictures.

Taking the time derivative of the Heisenberg operator (2.47) we find

d

dt
ÂH(t) =

i

h̄
eiĤt/h̄ĤÂe−iĤt/h̄ − i

h̄
eiĤt/h̄ÂĤe−iĤt/h̄

=
i

h̄
[Ĥ, ÂH ] (2.48)

assuming there is no explicit time dependence in the operator Â. This is the equation
of motion for operators in the Heisenberg picture. Later we will see that the resulting
equations have exactly the same structure as in classical mechanics. In fact, taking the
expectation value of the equation, we recover Ehrenfest’s theorem as derived earlier.

In the above we have taken the derivative of an operator. Formally it is defined here in
the same way as in ordinary calculus, i.e.

d

dt
Â(t) = lim

ε→0

1

ε

[
Â(t+ ε) − Â(t)

]
(2.49)

For example, if Â(t) = etB̂ then Â(t+ ε) = e(t+ε)B̂ = etB̂(Î + εB̂ + . . .) and thus

d

dt
Â(t) = B̂etB̂ = etB̂B̂

as expected and already used. It also follows from expanding the exponential and taking
the derivative of each term as we did the first time we encountered an exponential of an
operator. From the same prescription one also obtains results like

d

dt

(
Â(t)B̂(t)

)
= Â

dB̂

dt
+
dÂ

dt
B̂

and

d

dt
Â−1(t) = −Â−1dÂ

dt
Â−1

Notice that an operator and its derivative don’t in general commute with each other.

Calculating with operators can be difficult since they generally don’t commute, Some
simplifications can often be made using the formulas

[X̂ + Ŷ , Ẑ] = [X̂, Ẑ] + [Ŷ , Ẑ] (2.50)

and

[X̂Ŷ , Ẑ] = X̂[Ŷ , Ẑ] + [X̂, Ẑ]Ŷ (2.51)
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Both are easily proven by explicitly writing out both sides of the equations using the
definition of the commutator. For example, (2.50) gives

[X̂ + Ŷ , Ẑ] = (X̂ + Ŷ )Ẑ − Ẑ(X̂ + Ŷ ) = X̂Ẑ + Ŷ Ẑ − ẐX̂ − ẐŶ

= X̂Ẑ − ẐX̂ + Ŷ Ẑ − ẐŶ = [X̂, Ẑ] + [Ŷ , Ẑ]

The important Jacobi identity

[X̂, [Ŷ , Ẑ]] + [Ŷ , [Ẑ, X̂]] + [Ẑ, [X̂, Ŷ ]] = 0 (2.52)

is also easily verified that way.

2.12 The Lie formula

More cumbersome is the evaluation of an expression on the form eX̂ Ŷ e−X̂ appearing in
the previous note when transforming an operator to the Heisenberg picture. We will
now show that it is given by the Lie formula

eX̂ Ŷ e−X̂ = Ŷ + [X̂, Ŷ ] +
1

2!
[X̂, [X̂, Ŷ ]] +

1

3!
[X̂, [X̂, [X̂, Ŷ ]]] + . . . (2.53)

To prove it, consider the operator function

F̂ (t) = etX̂ Ŷ e−tX̂

It has the first derivative

dF̂

dt
= etX̂X̂Ŷ e−tX̂ − etX̂ Ŷ X̂e−tX̂ = X̂F̂ − F̂ X̂ = [X̂, F̂ ]

The second derivative is similarly

d2F̂

dt2
= X̂

dF̂

dt
− dF̂

dt
X̂ = [X̂,

dF̂

dt
] = [X̂, [X̂, F̂ ]]

and so on. From the Taylor-expansion

F̂ (t) = F̂ (0) +
t

1!
F̂ ′(0) +

t2

2!
F̂ ′′(0) + . . .

we now get

F̂ (t) = Ŷ +
t

1!
[X̂, Ŷ ] +

t2

2!
[X̂, [X̂, Ŷ ]] + . . .

This gives the Lie formula for t = 1.
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2.13 Weyl and Cambell-Baker-Hausdorff formulas

More difficult is it to derive the Campbell-Baker-Hausdorff formula. In its simplest
version it states that

eX̂eŶ = eX̂+Ŷ+ 1

2
[X̂,Ŷ ] (2.54)

which is valid when [X̂, Ŷ ] = cÎ where c is a constant, i.e. when both X̂ and Ŷ commutes
with their commutator. Then it can be proven along the same lines as the Lie formula
by now taking the derivative of the function

F̂ (t) = etX̂etŶ

which gives

dF̂

dt
= X̂etX̂etŶ + etX̂ Ŷ etŶ = X̂F̂ + etX̂ Ŷ e−tX̂etX̂etŶ

=
(
X̂ + etX̂ Ŷ e−tX̂

)
F̂ =

(
X̂ + Ŷ + t[X̂, Ŷ ]

)
F̂

where we have used the Lie formula in the last step. It is now straightforward to show
that the solution of this differential equation is

F̂ (t) = et(X̂+Ŷ )+ 1

2
t2[X̂,Ŷ ]

and the result (2.54) follows by taking here again t = 1. In the literature this simple
result is also often called the Weyl formula.

In the more general case when X̂ and Ŷ do not commute with their commutator [X̂, Ŷ ],
we must use brute force in the calculation. Consider

Ẑ = log
(
eX̂eŶ

)

and make use of the standard expansion

log x = (x− 1) − 1

2
(x− 1)2 +

1

3
(x− 1)3 + . . . (2.55)

In the first term of the series we have

eX̂eŶ − 1 = X̂ + Ŷ +
1

2
(X̂2 + 2X̂Ŷ + Ŷ 2)

+
1

6
(X̂3 + 3X̂2Ŷ + 3X̂Ŷ 2 + Ŷ 3) + . . .

where we for simplicity keep only products involving three operators or less. Squaring
this, we get

(
eX̂eŶ − 1

)2
= X̂2 + X̂Ŷ + Ŷ X̂ + Ŷ 2

+
1

2

(
2X̂3 + 3X̂2Ŷ + 2X̂Ŷ X̂ + Ŷ X̂2 + Ŷ 2X̂ + 2Ŷ X̂Ŷ + 3X̂Ŷ 2 + 2Ŷ 3

)
+ . . .
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Multiplying these two expansions together, gives then the highest order term we need

(
eX̂eŶ − 1

)3
= X̂3 + X̂2Ŷ + X̂Ŷ X̂ + Ŷ X̂2 + Ŷ 2X̂ + Ŷ X̂Ŷ + X̂Ŷ 2 + Ŷ 3 + . . .

Inserting these results in (2.55) and collecting terms, we find

log
(
eX̂eŶ

)
= X̂ + Ŷ +

1

2

(
X̂Ŷ − Ŷ X̂

)

+
1

12

(
X̂2Ŷ + Ŷ X̂2 − 2X̂Ŷ X̂ + Ŷ 2X̂ + X̂Ŷ 2 − 2Ŷ X̂Ŷ

)
+ . . .

= X̂ + Ŷ +
1

2
[X̂, Ŷ ] +

1

12

(
X̂, [X̂, Ŷ ]] + [Ŷ , [Ŷ , X̂]]

)
+ . . . (2.56)

which is the Campbell-Baker-Hausdorff formula to third order. Higher order terms can
be derived the same way, but have little or zero practical use.
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Chapter 3

Discrete quantum systems

In the previous chapters we have assumed that the Hilbert spaces of quantum systems
have a finite dimension N . The corresponding matrix representations can then be
labelled by integers 1, 2, 3, . . . , N . Such a system is said to be discrete even in the
limit when the dimension N → ∞. These systems are from a mathematical point
usually the simplest to investigate. They also describe many important phenomena in
Nature.

3.1 Matrix mechanics

In order to solve the abstract Schrödinger equation

ih̄
∂

∂t
|Ψ, t〉 = Ĥ|Ψ, t〉, (3.1)

we need to introduce an orthonormal basis in the N -dimensional Hilbert space where
the Hamiltonian operator Ĥ acts. This can be the complete set of the eigenvectors
{|n〉} of an Hermitian operator Â we don’t have to specify at this stage. Projecting the
equation onto the bra vector 〈m | it becomes

ih̄
∂

∂t
〈m |Ψ, t〉 = 〈m |Ĥ|Ψ, t〉

On the right-hand side we introduce the identity operator so that we can write 〈m |Ĥ|Ψ, t〉 =
〈m |ĤÎ|Ψ, t〉. Expressing now Î by the completeness sum, we get

ih̄ψ̇m =
N∑

n=1

Hmnψn (3.2)

Here ψn(t) = 〈n |Ψ, t〉 is the component of |Ψ, t〉 in the m-direction andHmn = 〈m |Ĥ|n〉
gives the matrix elements of Ĥ in this basis. Since the state vector

|Ψ, t〉 =
N∑

n=1

ψn(t)|n〉 (3.3)

35
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varies with time, its components will also be time dependent. They are the probability
amplitudes for the system to be in state |n〉 at time t and therefore contain all the
quantum mechanical information about the system.

The set of first-order differential equation (3.2) are now equivalent to the abstract
Schrödinger equation in this basis. As we have seen previously, we can now repre-
sent the state vector by the column matrix ψ = (ψ1, ψ2, . . . , ψn)

T and the operator Ĥ
by the corresponding N × N matrix H = (Hmn). The equation then takes the matrix
form

ih̄ψ̇ = Hψ (3.4)

or more specifically

ih̄




ψ̇1

ψ̇2
...

ψ̇N




=




H11 H12 . . . H1N

H21 H22 . . . H2N
...

...
. . .

...
HN1 HN2 . . . HNN







ψ1

ψ2
...
ψN




(3.5)

Abstract quantum mechanics in Hilbert space thus becomes matrix mechanics where the
probability amplitudes are complex numbers and operators are represented by complex
matrices.

The simplest possible system has a one-dimensional Hilbert space and can be in only
one state with amplitude ψ1 = ψ. Since the Hamiltonian matrix then has only one
element H11 = E which is real, the Schrödinger equation simplifies to ih̄ψ̇ = Eψ. It has
the elementary solution

ψ(t) = Ce−iEt/h̄ (3.6)

where C is a integration constant. The probability |ψ(t)|2 = |C|2 to remain in this state
is therefore constant in time as it should be. This is just another way of saying that in
such a quantum system nothing happens as time goes by.

3.2 The hydrogen molecule

More interesting is the two-state system where the coupled Schrödinger equations (3.2)
become

ih̄ψ̇1 = H11ψ1 +H12ψ2

ih̄ψ̇2 = H21ψ1 +H22ψ2 (3.7)

Since the Hamiltonian is Hermetian H∗
mn = Hnm, we find that H11 = E1 and H22 = E2

are both real. The non-diagonal elements must be of the form H12 = −Aeiδ = H∗
21 with

the factor A being real. The phase factor δ we can choose to be δ = 0 since it depends
on the relative phase of the two states |1〉 and |2〉 which here can be adjusted freely.
The Hamiltonian matrix is therefore

H =

(
E1 −A
−A E2

)
(3.8)
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and involves only three real parameters. If A had been zero, we immediately see that
both ψ1(t) and ψ2(t) varies like the simple exponential in (3.6). If the system thus starts
in for instance state |2〉, it will remain there. But if A 6= 0 and the system starts in
state |2〉 so that the amplitude ψ2(0) = 1, we see that ih̄ψ̇1(0) = −A and the amplitude
ψ1(t) will start to build up from zero. The non-diagonal elements H12 = H21 therefore
cause transitions between the states |1〉 and |2〉 and are for this reason called transition

matrix elements.

We will first consider the slightly simpler problem where the diagonal elements are equal,
E1 = E2 = E0. This is the symmetric case and describes several interesting, physical
systems. One is the maser based on the ammonia molecule NH3. The three hydrogen
atoms form a plane and the nitrogen atom can be above the plane in state |1〉 or below it
in state |2〉. Needless to say, this is the most coarse-grained description of this complex
molecule where we ignore all degrees of freedom except the one decribing the N atom
as being above or below the hydrogen plane.

+ +++= =1 2
1 2 1 2

e e

Figure 3.1: Basis states for the 2-state problem of one electron tightly bound to one of two protons.

A mathematically identical system is the ionized hydrogen molecule H+
2 with two pro-

tons and one electron. Because of the Coulomb attraction, the electron can be in a state
near the first proton, i.e. in state |1〉 or near the second in state |2〉 as shown in the
Figure 6.1. Again this is a very rough description of the molecule, but it captures the
essential physics. We will have this charged molecule in mind in the following.

The first-order differential equations (3.7) now become

ih̄ψ̇1 = E0ψ1 − Aψ2

ih̄ψ̇2 = E0ψ2 − Aψ1

They are easily solved by taking linear combinations. Adding them, we find

ih̄
d

dt
(ψ1 + ψ2) = (E0 −A)(ψ1 + ψ2)

while subtraction gives

ih̄
d

dt
(ψ1 − ψ2) = (E0 + A)(ψ1 − ψ2)

The same, direct integration as gave (3.6), now gives the solutions

ψ1(t) + ψ2(t) =
√

2C−e
−iE−t/h̄

ψ1(t) − ψ2(t) =
√

2C+e
−iE+t/h̄,

where E± = E0 ± A and C± are integration constants. The sought-for amplitudes are
therefore

ψ1(t) =

√
1

2

(
C−e

−iE−t/h̄ + C+e
−iE+t/h̄

)

ψ2(t) =

√
1

2

(
C−e

−iE−t/h̄ − C+e
−iE+t/h̄

)
(3.9)
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The probabilities Pi = |ψi|2 for the system to be in state | i〉 are therefore in general
functions of time, depending on the value of the integration constants C±. Normally
these are determined by the initial conditions.

To be more concrete, let us again think of the H+
2 molecule. At time t = 0 let us

assume that the electron is found to be at proton 1, i.e. the electron is in the state |1〉
with certainty. Thus C− = C+ =

√
1/2, ignoring again an irrelevant phase, and the

probability amplitudes become

ψ1(t) = e−iE0t/h̄ cosAt/h̄, ψ2(t) = ie−iE0t/h̄ sinAt/h̄ (3.10)

From the corresponding probabilities P1(t) = cos2At/h̄ and P2(t) = sin2At/h̄ we see
that the electron oscillates between the two protons with frequency ω = A/h̄. For the
similar NH3 molecule this would be the maser frequency. Notice that P1 + P2 = 1 at
all times as it should for physical probabilities.

But we can also choose other initial conditions so that their is no time dependence in
the position of the electron. For both the cases (C− = 1, C+ = 0) and (C− = 0, C+ = 1)
we find that the probabilities P1 = P2 = 1/2 are constant in time. There is the same
probability to find the electron at either proton. It is then in one of two posssible
stationary states with well-defined energies E± = E0 ±A. Needless to say, these are the
eigenvalues of the Hamiltonian for the system.

Had we tried to calculate the parameters E0 and A from the given Coulomb interactions
between the electron and the protons, we would have found that they depended on the
distance r between the two protons giving rise to an effective potential V (r). Plotting the
stationary energies as in Fig. 6.2, we would then find that the lowest energy E− = E0−A
has a minimum at for a certain separation r0. This will then be the stable configuration
for the molecule and we say that the electron is in an bonding orbital. In the other state
corresponding to the energy E+ = E0 +A, there is no stable minimum and the electron
is in an anti-bonding orbital where the molecule is unstable.

3.3 The general two-state system

The general two-state system is given by the Hamiltonian matrix (3.8). Instead of
calculating again the time evolution of the two probability amplitudes, we will now first
find the corresponding energy eigenvalues. As explained in the previous chapter, the
corresponding eigenvectors are stationary states and form an othonormal basis which is
natural to call an energy basis. The energy eigenvalues follow from the matrix equation

(
E1 −A
−A E2

)(
u1

u2

)
= E

(
u1

u2

)

or (E1 − E)u1 = Au2 and (E2 − E)u2 = Au1 when written out. These two equations
can be solved for the amplitudes u1 and u2 when

∣∣∣∣∣
E1 −E −A
−A E2 − E

∣∣∣∣∣ = 0
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Figure 3.2: Effective potentials for an electron in the ionized hydrogen molecule as function of the
proton separation r.

This determinant gives the second order equation (E −E1)(E −E2) −A2 = 0 with the
two roots

E± =
E1 + E2

2
±
√

A2 +
(E1 − E2

2

)2
(3.11)

The eigenvector corresponding to E+ will then have amplitudes satisfying the equation
(E1 − E+)u1 = Au2. Defining ∆ = (E1 − E2)/2, we thus have u1/u2 = A/(∆ −√
A2 + ∆2). This can be simplified by introducing the mixing angle

tan 2θ =
2A

E1 − E2

=
A

∆
(3.12)

which gives u1/u2 = sin 2θ/(cos 2θ − 1) = − cot θ. We thus have for the normalized
eigenvector

|E+〉 = cos θ|1〉 − sin θ|2〉 (3.13)

Notice that the second equation (E2 − E+)u2 = Au1 is now automatically satisfied.
Similarly, for the eigenvalue E− the amplitudes follow from (E1 − E−)u1 = Au2 which
now gives u1/u2 = tan θ and therefore

|E−〉 = sin θ|1〉 + cos θ|2〉 (3.14)

It is seen to be orthogonal to the first eigenvector as it should be.
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If now the system at time t = 0 is in the state

|Ψ〉 = C+|E+〉 + C−|E−〉,

it will at a later time have the state vector

|Ψ, t〉 = C+e
−iE+t/h̄|E+〉 + C−e

−iE−t/h̄|E−〉

The amplitude ψn(t) = 〈n |Ψ, t〉 to be found in one of the first basis states |n〉 with
n = (1, 2) is therefore

ψn(t) = C+e
−iE+t/h̄〈n |E+〉 + C−e

−iE−t/h̄〈n |E−〉 (3.15)

and the corresponding probability Pn = |ψn(t)|2 will in general be time dependent.

In the special case that the system for example starts out in state |1〉, C+ = cos θ and
C− = sin θ. There will then be a non-zero amplitude ψ2(t) to be found in state |2〉 at a
later time. Since 〈2 |E+〉 = − sin θ and 〈2 |E−〉 = cos θ,

ψ2(t) = − sin θ cos θ
(
e−iE+t/h̄ − e−iE−t/h̄

)

= −i sin 2θ ei(E++E−)t/2h̄ sin
(E+ −E−)t

2h̄

The probability to make the transition |1〉 → |2〉 is therefore

P1→2 = sin2 2θ sin2 ωt (3.16)

where the oscillating frequency ω = (E+ − E−)/2h̄. The probability to remain in the
same state will be P1→1 = 1−P1→2 since the sum of these two probabilties must be one.

In the symmetric case when E1 = E2 ≡ E0, the eigenvalues become E± = E0±A. These
correspond to the stationary states we found in the previous note. The mixing angle is
seen from (3.12) to become θ = π/4 so that the two eigenstates are

|E+〉 =

√
1

2
(|1〉 − |2〉), |E−〉 =

√
1

2
(|1〉 + |2〉) (3.17)

The transition amplitudes follow now directly from (3.15) and are seen to be exactly
the same as we derived previously in (3.9) in the symmetric case describing the ionized
hydrogen molecule. This should not come as a surprise.

3.4 Neutrino oscillations

In the Standard Model of elementary particles there are three neutrinos νe, νµ and ντ
occuring primarily in weak interactions. For a long time it was thought that these were
massless. But observation during the last ten years have made it clear that this is not so.
They seem to have non-zero masses of sizes around 1 eV/c2 or below. More accurately,
they are not mass eigenstates of an underlying Hamiltonian, but there can be weak
transitions beween them. These effects have been seen in the neutrinos coming from
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the fusion processes in the Sun and also the atmosphere where they are produced by
incoming cosmic rays. Laboratory experiments have verified these observations.

In order to simplify the discussion, assume that the two neutrinos νµ and ντ can be
replaced by a single, effective neutrino νa. This turns out in many cases to be a very
good approximation. We then have a two-state system with νe and νa playing the roles
of the previous basis states labelled 1 and 2. If a νe neutrino is produced at time t = 0
it will then have a certain probability to be detected as a νa neutrino at a later time
given by (3.16). Since the states |E+〉 and |E−〉 are mass eigenstates, the oscillation
frequency ω is determined by the difference

E+ − E− =
√
p2c2 +m2

+c4 −
√
p2c2 +m2

−c4 =
c4

2E
(m2

+ −m2
−)

for very high energies E = pc. For the frequency we therefore find ω = ∆m2c4/4h̄E
where ∆m2 = m2

+ −m2
−. In the oscillation probability (3.16) one can express the time t

the neutrino has moved by the corresponding length L = ct. Measuring this in km, the
energy E in GeV and the mass difference ∆m2 in eV2/c4, it takes the form

P (νe → νa) = sin2 2θ sin2

(
1.27

∆m2L

E

)
(3.18)

This is often called Pontecorvo’s formula. After the νe neutrino has moved a distance
L ≈ E/∆m2 it thus has a maximum probability to be detected as a νa. The determi-
nation of mixing angles like θ and the neutrino mass differences ∆m2 is today a very
important part of research in elementary particle physics and cosmology.

3.5 Reflection invariance and symmetry transforma-

tions

The two-state systems considered in previous notes became especially simple in the sym-
metric case when the diagonal elements of the Hamiltonian (3.8) had the same vaule.
This is the case of the ionized hydrogen molecule which can be in the two states depicted
in Figure 6.3. Since the two protons are identical, we have reflection invariance in a plane
normal to the line connecting them and placed halfway between them when there is no
electron present to disturb the picture.

However, when an electron is present at for instance proton 1, it will correspond to an
electron near proton 2 under this reflection. These two quantum states |1〉 and |2〉 are
therefore related by an operator P̂ which is called an reflection or parity operator defined
by

P̂ |1〉 = |2〉, P̂ |2〉 = |1〉 (3.19)

Hence it has the composition

P̂ = |1〉〈2 | + |2〉〈1 | (3.20)
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++
1 2

Figure 3.3: System of two identical sites and reflection plane shown by dashed line.

which shows that it is Hermitean. Squaring it, we find P̂ 2 = |1〉〈1 | + |2〉〈2 | = Î which
also follows from P̂ 2|1〉 = P̂ |2〉 = |1〉. Thus P̂ = P̂−1 = P̂ † and it is therefore also
unitary.

Since the parity operator is Hermitean, it has real eigenvalues ε. Since P̂ 2 = Î, they
must satisfy ε2 = 1. Therefore we find the values ε = ±1. A state with ε = +1 is
said to have positive parity and is symmetric under the interchange of the two protons.
Similarly, the state with negative parity ε = −1 is antisymmetric under this interchange.

With the two states |1〉 and |2〉 as basis states, the Hamiltonian matrix is

H =

(
E0 −A
−A E0

)
(3.21)

while P̂ is seen from the definition (3.19) to be represented by the matrix

P =

(
0 1
1 0

)
(3.22)

Multiplying these two matrices together, it is easily seen thatHP = PH . They therefore
commute with each other as the corresponding operators also will do,

[Ĥ, P̂ ] = 0 (3.23)

In the previous chapter we showed that when two operators commute, one can then
find eigenvectors which are common to both. So in our case, the parity eigenvectors
will also be energy eigenvectors. This is also consistent with the eigenvectors (3.17) we
found in the symmetric case. The lowest energy state |E−〉 is symmetric and thus have
positive parity ε = +1 while the unbound state |E+〉 is antisymmetric and therefore has
negative parity.

Symmetry plays an important role in physics and especially in quantum mechanics.
From geometrical or other properties of a system, it follows that it can be in different
states which must be physically equivalent. This is like the two states describing the
position of the electron on identical protons in the hydrogen molecule. There will then
be an operator Ŝ which relates one such state |Ψ〉 to an other state |Ψ′〉, i.e.

|Ψ′〉 = Ŝ|Ψ〉 (3.24)
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Since these two states are equivalent, they must also have the same norm. From 〈Ψ |Ψ〉 =
〈Ψ′ |Ψ′〉 then follows that

Ŝ†Ŝ = Î (3.25)

and the symmetry transformation operator Ŝ must be unitary. It is only in the very
special case when Ŝ2 = Î that it is also Hermitean. In addition, the equivalence must
hold at all times for a stationary system and therefore |Ψ′, t〉 = Ŝ|Ψ, t〉. Since |Ψ, t〉 =
Û(t)|Ψ〉 where Û(t) = exp (−iĤt/h̄) is the time development operator, we find that the
operators Ŝ and Û(t) commute. As a consequence, it thus follows that

[Ĥ, Ŝ] = 0 (3.26)

The corresponding result (3.23) was found above for reflection symmetry by explicitly
commuting the two operators. But we now see that it is inherent in the definition of a
general symmetry transformation.

3.6 Lattice translation invariance

We will now extend the hydrogen molecule we have considered previously, to a giant,
one-dimensional crystal consisting of an infinite number of identical atoms or ions equally
spaced along a line. This is then a lattice and each atom is called a lattice site. The dis-
tance between two nearest neighbouring atoms is called the lattice constant a. Although

+ + + + + +
a a a a a

0−1 1 2 3 4

Figure 3.4: One-dimensional lattice of identical atoms or ions.

such a one-dimensional lattice can actually be made nowadays, here it primarily will
serve as a simple example of a system with translational symmetry. Real crystals are
three-dimensional and will be considered briefly at the end of the chapter.

The atoms in the lattice can be labeled by the integers n = (. . . ,−1, 0, 1, 2, 3, . . .) as
shown in the figure. The distance of atom numbered n from atom n = 0 is xn = na.
Since the lattice is infinite in size, this labelling is arbitrary in the way we assign the
position n = 0 to one particular atom. This atom could just as well be labelled n = 7 if
all the other atoms also got their label increased by the same amount. Such a relabelling
would physically correspond to all the atoms in the lattice be shifted to the left by seven
lattice spacings. Nothing in the physics of the system changes by this shift. We say that
the system is invariant under such translations to the left or to the right by a whole
number times the lattice constant a.

We now consider a quantum particle like an electron which exists on this lattice. It can
only be localized to one of the lattice sites as for the electron in the ionized hydrogen
molecule. When it is found at the site numbered n, we say that it is in the position
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eigenstate |n〉. These position eigenstates are again orthonormalized so that 〈n |n′〉 =
δnn′ with the completeness relation

∞∑

n=−∞

|n〉〈n | = Î (3.27)

All matrix representations will therefore be infinite-dimensional.

In the quantum description we can now introduce a unitary operator T̂ which will be
present because of the invariance of the system under the above lattice translations.
The simplest translation T̂ (a) is just an elementary shift of one lattice spacing defined
by

T̂ (a)|n〉 = |n+ 1〉 (3.28)

Since this operator is unitary, T̂ † = T̂−1 where the inverse operator T̂−1(a) = T̂ (−a)
acts like

T̂−1(a)|n〉 = |n− 1〉 (3.29)

Longer translations can now be built up from products of this fundamental operator. For
example, a translation of three lattice spacings will be given by the composite operator
T̂ (3a) = T̂ (a)T̂ (a)T̂ (a) = T̂ 3(a) and so on. In the same way as the unit operator can
be written as the complete sum in (3.27), we see that the basic translation operator is

T̂ (a) =
∞∑

n=−∞

|n+ 1〉〈n | (3.30)

From this abstract expression we easily verify the different physical properties we have
already assigned to it.

In order to study more properties of the translation operator, it is very useful to find
its eigenvalues. Since it is not Hermetian, these will in general be complex numbers.
But we know that the operator is unitary, so the eigenvalues are just phase factors like
exp (−if). Denoting the corresponding eigenvectors by |ψ〉, we thus have

T̂ (a)|ψ〉 = e−if(a)|ψ〉 (3.31)

where f(a) is so far some unknown function of the lattice spacing. But it can easily be
determined from considering composite translations. For instance, we must have

T̂ (2a)|ψ〉 = e−if(2a)|ψ〉

But now we have T̂ (2a)|ψ〉 = T̂ (a)T̂ (a)|ψ〉 = T̂ (a)e−if(a)|ψ〉 = e−2if(a)|ψ〉 and there-
fore f(2a) = 2f(a). Extending this reasoning, we similarly find f(na) = nf(a). This
functional equation is now uniquely solved by f(a) = ka where k is some undetermined,
real number which is usually called the wave number.

We thus have for the translationally invariant eigenstate

T̂ (a)|ψ〉 = e−ika|ψ〉 (3.32)
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In the basis defined by the position eigenstates |n〉, it has components ψn = 〈n |ψ〉.
These complex numbers are the probability amplitudes to find the particle at site n
when it is in the state |ψ〉. Writing

|ψ〉 =
∞∑

n=−∞

ψn|n〉 (3.33)

in the eigenvalue equation (3.32), we can write

e−ika|ψ〉 = e−ika
∞∑

n=−∞

ψn|n〉 = T̂ (a)|ψ〉 =
∞∑

n=−∞

ψnT̂ (a)|n〉

=
∞∑

n=−∞

ψn|n+ 1〉 =
∞∑

n=−∞

ψn−1|n〉

where we in the last term have changed summation index n → n − 1. Comparing
now the corresponding vector components on both sides of this equation, it is seen
that ψn = eikaψn−1. Iterating, we thus have ψn = eikaeikaψn−2 and so on. This gives
ψn = eiknaψ0 where ψ0 is just some complex normalization constant. We will here make
the choice ψ0 = 1 giving the probability amplitudes

ψn = eikna (3.34)

In other words, when the particle is in the translationally invariant eigenstate |ψ〉, it has
the same probability Pn = |ψn|2 = 1 to be in any of all the possible lattice positions. If
we really could understand what this physically means, we would also have understood
the basic mystery of quantum mechanics. The observant reader will also have noticed
that the normalization we have chosen here, implies that ket vector |ψ〉 has a norm or
length which is infinite. That is perhaps unexpected, but does not create any difficulties.
In the next chapter we will quantize the motion of a particle moving in a continuous
spacetime and find a corresponding state vector also with infinite norm.

The wave function (3.34) describes a harmonic wave along the chain with wave length
λ = 2π/k. When this becomes much longer than the lattice separation a, many neigh-
bouring sites will have approximately the same wave function or probability amplitude.
In this limit we expect the microscopic properties of the lattice not to be important and
one should be able to use a continuous description of the chain instead.

3.7 Lattice dynamics and energy bands

The motion of a particle on the lattice is given by its Hamiltonion. In the simplest case
we assume that it can only jump to the nearest neighbour sites with amplitude −A as
for the electron in the hydrogen molecule. A jump to the right would then be given by
the operator −AT̂ where T̂ is the translation operator (3.30). Similarly, a jump in the
opposite direction is given by −AT̂ †. If E0 is the energy of the particle sitting on a site
and unable to jump, then we can write the full Hamiltonian as

Ĥ = E0Î −A(T̂ + T̂ †) (3.35)
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In the lattice or position basis, it would be represented by an infinite-dimensional matrix
with E0 along the diagonal and −A along the two bidiagonals.

Even if the energy eigenvalue problem is now given by an infinite-dimensional matrix
equation, it can easily be solved. The reason is that the translation operator T̂ is a
symmetry operator which commutes with the Hamiltonian. This is easily verified since,
ĤT̂ = E0T̂ − A(Î + T̂ 2) = T̂ Ĥ. We therefore know that the eigenstates |ψ〉 of T̂ are
also energy eigenstates. In order to determine the eigenvalues E from Ĥ|ψ〉 = E|ψ〉 we
insert the expansion (3.33) and get

Ĥ|ψ〉 =
∞∑

n=−∞

ψn(E0|n〉 − A|n− 1〉 − A|n+ 1〉)

=
∞∑

n=−∞

(E0ψn −Aψn+1 − Aψn−1)|n〉

after shifting summation indices in the two last terms. Comparing terms on both sides,
it then follows that

Eψn = E0ψn − A(ψn+1 + ψn−1)

But the amplitudes ψn are already known from (3.34). After cancelling a common factor
eikna, we thus find the eigenvalues

E = E0 − A(eika + e−ika) = E0 − 2A cos ka (3.36)

They depend periodically on the wave number k as shown in Fig. 6.5. The energy can
take on all values between E0 ± 2A when |k| < π/a. This possible range of energies is
called an energy band. Maximum energy E0 + 2A is found when k = ±π/a which is
called the wave numbers for the boundaries of the first Brillouin zone.

At the center of the zone k = 0 and the energy takes the minimum value E0 −2A. Near
this bottom of the band the energy is seen to increase ∝ k2. In the next chapter we
will see that the wave number will be proportional to the momentum of the particle
moving on a lattice which seems continuous for these low-energy states. The particle
energy will therefore be proportional with its squared momentum as for non-relativistic
motion. It will therefore seem to have a mass given by the exchange energy A and the
lattice constant a. This is really a very deep result of quantum mechanics and is used in
modern theories of particles where our continuous spacetime is just an approximation
to a more fundamental description where space and even time are discrete.

Although this derivation of an energy band is highly idealized, one will find essentially
the same result in a more realistic description of a quantum electron moving in a one-
dimensional crystal. As soon has we have a periodic structure, there will be an energy
band. It lies at the root of all modern electronic devices which in general have several
such allowed bands. This comes about because the atoms at the lattice sites have in
general many eigenstates with energies E0, E1, . . . for a bound electron. We have here
considered only transitions of electrons between atoms all in the ground state with
energies E0. But the atoms can also be in the first excited state with energy E1. Since
all the atoms must be identical in order to have translation invariance, they are all in this
state. The hopping amplitude between sites with such excited atoms will in general be
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Figure 3.5: Energy band within the first Brillouin zone.

different from the hopping amplitude A between ground-state atoms. For each atomic
bound state we thus get an energy band as shown in Fig. 6.6 when the atoms are
brought together in the crystal. Between the bands there are forbidden energies which
an electron is not allowed to have. Depending on the relative position of these bands,
the system will be an insulator, semiconductor or a metal. These are phenomena studied
in quantum solid state theory and used in todays electronics.

3.8 Three-dimensional lattices

Let us for the sake of simplicity consider a cubic crystal with lattice spacing a in all
three directions. Every lattice site can then be labelled by a vector n = (nx, ny, nz) with
components that are positive or negative integers. It can be written as

n =
3∑

i=1

niei (3.37)

where ei are orthonormal unit vectors in the three directions. In the corresponding
Hilbert space we then have a basis of position states |n〉 = |nx〉|ny〉|nz〉 which is or-
thonormal in the ordinary sense that

〈n |n′〉 = δnn′ (3.38)

where δnn′ = δnxn′
x
δnxyn′

y
δnzn′

z
. They also form a complete set so that the unit operator

Î =
∑

n

|n〉〈n | ≡
∞∑

nx,ny,nz=−∞

|nx〉|ny〉|nz〉〈nz |〈ny |〈nx | (3.39)
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Figure 3.6: Energy bands in a periodic structure arising from atomic energies.

where we in the following will make use of the compact notation in the first sum.

There is now invariance under independent translations in three different directions.
Denoting the operators for a shift of just one lattice spacing in the direction i = (x, y, z)
by T̂i = T̂ (aei), we can build up a finite translation by products of such elementary
translations

T̂ (an) = T̂ nx

x T̂ ny

y T̂ nz

z (3.40)

They obviously commute with each other, [T̂i, T̂j] = 0. The effect of such a general
translation operator on the basis vector |n′〉 is then

T̂ (an)|n′〉 = |n + n′〉 (3.41)

Since all these translation operators are unitary, the inverse T̂−1(an) = T̂ (−an) equals
the adjoint operator T̂ †(an) as for the one-dimensional lattice.

We can now construct translationally invariant states, i.e. eigenstates |ψ〉 satisfying

T̂ (an)|ψ〉 = e−if(a,n)|ψ〉 (3.42)

where the exponential form of the eigenvalue again follows from unitarity. Since this
state must also be an eigenstate of the three separate operators T̂i, we can repeat the
arguments we went through in the one-dimensional case for each separate direction.
The arbitrary function f(a,n) is then seen to be a sum of the general form f(a,n) =
a(kxnx + kyny + kznz) where the numbers ki take real values. Grouping them into the
wave number vector k = (kx, ky, kz), we then have for the above eigenvalue problem

T̂ (an)|ψ〉 = e−iak·n|ψ〉 (3.43)

Expressing the eigenstate by its components ψn = 〈n |ψ〉 in the position basis so that

|ψ〉 =
∑

n

ψn|n〉 (3.44)
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we then find

ψn = eiak·n (3.45)

when we choose the normalization ψn=0 = 1 as in the one-dimensional case. It is easily
verified that this result satisfies the eigenvalue equation (3.43)

T̂ (an)|ψ〉 = T̂ (an)
∑

n′

eiak·n
′ |n′〉 =

∑

n′

eiak·n
′ |n + n′〉

=
∑

m

eiak·(m−n)|m〉 = e−iak·n
∑

m

eiak·m|m〉 = e−iak·n|ψ〉

after shifting summation variables a couple of times. The result (3.45) is the probabilty
amplitude for finding an electron at the lattice site n when it is in the translationally
invariant state |ψ〉 characterized by the wave number vector k.

If we want to find the energy of the electron in such a state, we must know the Hamil-
tonian. In the simplest case we again assume that an electron can only jump to one of
its six nearest neighbours with the amplitude −A. The resulting Hamiltonian is then
just the three-dimensional version of (3.35),

Ĥ = E0Î − A
3∑

i=1

(T̂i + T̂ †
i ) (3.46)

The above state |ψ〉 is then also an energy eigenstate satisfying Ĥ|ψ〉 = E|ψ〉. With
the expansion (3.44) this eigenvalue problem then reduces to

Eψn = E0ψn − A
3∑

j=1

(ψn+ej
+ ψn−ej

)

Since we know the probability amplitudes (3.45), we obtain

E = E0 − A
3∑

j=1

(eikja + e−ikja) (3.47)

= E0 − 2A(cos kxa + cos kya+ cos kza) (3.48)

after cancelling a common factor on both sides. Again we find an energy band varying
between E0 + 6A and E0 − 6A. Near the bottom of the band the energy is again seen
to increase like ∝ k2 as we discussed in the one-dimensional case. Outside the first
Brillouin zone defined by the wave numbers ki = ±π/a, the energy eigenvalues repeat
themselves periodically.
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Chapter 4

Schrödinger wave mechanics

In the limit when the spacing a → 0 the lattice becomes a continuum. A particle
which could previously only be found at lattice sites n, can then move freely around.
Correspondingly, the probability amplitudes ψn for such an observation now become a
continuous function of the particle position. It is called the wave function of the particle.

4.1 Coordinate basis

Introducing the coordinate distance x = na for the site labelled by n on a one-dimensional
lattice, we can denote the discrete basis vectors |n〉 in the previous chapter by |xn〉. The
normalization 〈n |n′〉 = δnn′ can then just as well be written as 〈xn |xn′〉 = δnn′. Simi-
larly, the completeness relation (3.27) becomes

Î =
∞∑

n=−∞

|xn〉〈xn |

When now the coordinate xn takes on all continuous values x, the natural generalization
of this relation is

Î =
∫ ∞

−∞
dx|x〉〈x | (4.1)

Here we must now consider |x〉 as the eigenvector for the position operator x̂ belonging
to the eigenvalue x,

x̂|x〉 = x|x〉 (4.2)

and correspondingly x̂|x′〉 = x′|x′〉. We can then write

|x′〉 = Î|x′〉 =
∫ ∞

−∞
dx|x〉〈x |x′〉

For consistency, we thus find that the matrix element 〈x |x′〉 which is a function of the
two coordinates x and x′, can be expressed as

〈x |x′〉 = δ(x− x′) (4.3)

51
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when we make use of the Dirac δ-function. For any smooth function f(x), it is in general
defined by the integral

∫ ∞

−∞
dxf(x)δ(x− a) = f(a) (4.4)

It contributes only in the point x = a and gives zero otherwise. We will say a bit more
about it in the following.

We thus see that in this basis Hilbert space not only has infinite dimension, but all
matrix representations are labelled by continuous indices. From (4.3) we also see that
the basis vectors have infinite norm. But luckily all these apparent complications change
very little of the mathematical structure we have previously bult up. The main difference
is that all summation over indices are now replaced by integrations.

4.2 The Dirac δ-function

From the definition (4.4) we see that the Dirac δ-function δ(x) which is zero when x 6= 0,
must satisfy the integral requirement

∫ ∞

−∞
dxδ(x) = 1 (4.5)

In some way it must then be infinite at the point x = 0. One possibility would therefore
be to define it by the limiting process

δ(x) = lim
ε→0

{
1/ε, |x| ≤ ε/2
0, |x| > ε/2

But for any small, but non-zero value of ε the expression on the right-hand side is very
discontinuous and mathematically repellent. A much more useful definition is to take
the equivalent expression

δ(x) =
1

π
lim
ε→0

ε

x2 + ε2
(4.6)

where now the right-hand side is a smooth function for any non-zero value of ε. The
factor 1/π in front is needed to satisfy the normalization (4.5) using the standard integral

∫ ∞

−∞

dx

1 + x2
= π

What makes this definition in particular so attractive, is that we can now rewrite the
above limit formula as the integral

δ(x) = lim
ε→0

∫ ∞

−∞

dk

2π
eikx−ε|k| =

1

2π
lim
ε→0

(
1

ε− ix
+

1

ε+ ix

)

which is what we want. Taking now the limit ε → 0 in the integral, we have the most
useful reresentation of the δ-function

δ(x) =
∫ ∞

−∞

dk

2π
eikx (4.7)
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As it is written now, it is no longer strictly convergent at the upper and lower limits.
However, whenever we meet it, we define it by this limiting procedure and thus end up
with the Dirac δ-function.

One can also make the integral (4.7) well defined by making the lower and upper limits
finite by introducing a cut-off and then later taking the cut-off to infinity,

δ(x) = lim
K→∞

∫ K

−K

dk

2π
eikx =

1

2πix
lim
K→∞

eikx
∣∣∣
K

−K

= lim
K→∞

sinKx

πx
(4.8)

There are obviously many other limiting expressions for this very special and important
function.

The δ-function is obviously an even function, δ(x) = δ(−x). Also, from the definition

∫ ∞

−∞
dxf(x)δ(x) = f(0)

where f(x) is a continuous function, follows directly that xδ(x) = 0 when we make the
special choice f(x) = x. It has the useful property

δ(ax) =
1

|a|δ(x) (4.9)

which is seen from a shift x → ax of the integration variable in the definition. Although
highly singular, we can also introduce the derivative δ′(x). It satisfies

xδ′(x) = −δ(x) (4.10)

as is seen from the integral

∫ ∞

−∞
dxf(x)xδ′(x) = f(x)xδ(x)|∞−∞

−
∫ ∞

−∞
dxδ(x) [f(x) + xf ′(x)] = −f(0)

since the term with xδ(x) in the last integral gives zero.

4.3 Continuous translations and momentum

In the previous chapter we introduced the translation operator T̂ (na) that moved the
lattice n lattice sites. In terms of the position eigenvectors, their action could be summed
up in T̂ (na)|n′〉 = |n+ n′〉. When we take the limit a→ 0, we end up with continuous
translations given by the corresponding operators T̂ (x) with the equivalent effect

T̂ (x)|x′〉 = |x+ x′〉 (4.11)

These are obviously also unitary in the sense that T̂ †(x) = T̂−1(x) = T̂ (−x) where
T̂ (0) = Î is the unit operator.
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The eigenstates |ψ〉 of these continuous translation operators will play a central role
in this chapter. From the discrete derivation summed up in (3.32), they will obey the
eigenvalue equation

T̂ (x)|ψk〉 = e−ikx|ψk〉 (4.12)

where we have labelled them by the corresponding wave number k. They can be ex-
panded in a complete set of coordinate eigenstates, i.e.

|ψk〉 =
∫ ∞

−∞
dxψk(x)|x〉 (4.13)

where ψk(x) = 〈x |ψk〉 is the amplitude for finding a particle in the state |ψk〉 at position
x. We call this the wave function for the particle. Applying now the operator T̂ (x) on
this equation and using (4.12), it follows that

ψk(x) = eikx
′

ψk(x− x′)

With the same normalization ψk(0) = 1 as in the previous chapter, we then have the
explicit result

ψk(x) = eikx (4.14)

for the wave function. It is a plane wave with wave number k which was also the reason
for originally giving it that name.

While the evolution operator Û(t) = exp (−iĤt/h̄) translated a state from an intial
time t = 0 to the corresponding state at a later time t, the translation operator T̂ (x) is
the similar operator for translations in space, here along the x-axis. Both are unitary
and both equal the unit operator in the limit when their arguments go to zero. We saw
in Chapter 2 how the Hamiltonian is the generator of infinitesemal translations in time.
The corresponding generator for infinitesemal translations in space is the momentum

operator p̂ so that

T̂ (x) = e−ip̂x/h̄ (4.15)

The requirement of unitarity now implies that p̂ is a Hermitian operator. It thus has
real eigenvalues which follows from (4.12) which now can be written as

e−ip̂x/h̄|ψk〉 = e−ikx|ψk〉

The translationally invariant state |ψk〉 therefore must satisfy

p̂|ψk〉 = h̄k|ψk〉

and is thus an eigenstate of the momentum operator with eigenvalue p = h̄k. Introducing
the more convenient notation |ψk〉 → |p〉 for these momentum eigenstates, we then have
simply

p̂|p〉 = p|p〉 (4.16)
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We already know that a particle in this state have the wavefunction

ψp(x) = 〈x |p〉 = eipx/h̄ (4.17)

It follows in an equivalent way from the equation

T̂ (x)|p〉 = e−ipx/h̄|p〉
and projecting it on the bra vector 〈x | making use of 〈x |T̂ (x) = 〈0 |. We see again that
the probability to find the particle at a given position is constant and the same for all
values of the coordinate x.

Notice that this wave function (4.17) has a normalization which is different from the
usual one in standard textbooks. This will also show up in the normalization of the
momentum eigenstates (4.16). We see that from inserting a complete set of coordinate
eigenstates in the matrix element 〈p |p′〉 which gives

〈p |p′〉 =
∫ ∞

−∞
dx 〈p |x〉〈x |p′〉

The matrix elements under the integral sign are just the wave function (4.17) and its
complex conjugate so that

〈p |p′〉 =
∫ ∞

−∞
dx e−i(p−p

′)x/h̄ = 2πh̄δ(p− p′)

when we make use of the δ-function integral (4.7). Except for the factor 2πh̄ on the right-
hand side, this is the same and infinite norm we also had for the position eigenstates in
(4.3). The same factor also shows up in the corresponding completeness integral

∫ ∞

−∞

dp

2πh̄
|p〉〈p | = Î (4.18)

as is easily verified by inserting it into the coordinate basis norm 〈x |x′〉 and comparing
with the defining normalization (4.3). As a systematic rule, which is easy to remember,
we always have 2πh̄δ(p) in momentum δ-functions and correspondingly

∫
dp/2πh̄ in

momentum integrations. The last case is equivalent to what is found in statistical
mechanics when one sums up states in momentum or phase space.

4.4 Operators in the coordinate representation

For a particle moving in continuous space we now have two complete sets of basis vectors
we can use to provide a matrix representation of states and operators. Most useful is
the coordinate representation based on the position eigenvectors |x〉. An arbitraty state
|ψ〉 has the components

ψ(x) = 〈x |ψ〉 (4.19)

in this basis. This is just the corresponding wavefunction. Making use of the complete-
ness relation (4.1), we thus see that the inner product of two such states is given by the
integral

〈ψi |ψj〉 =
∫ ∞

−∞
dx 〈ψi |x〉〈x |ψj〉 =

∫ ∞

−∞
dxψ∗

i (x)ψj(x) (4.20)
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It is finite for wave functions localized to a finite region of space. We have already seen
that this is not the case for the momentum eigenstates.

Operators will be represented by continuous matrices in this basis. The simplest example
is

〈x |x̂|x′〉 = xδ(x− x′) (4.21)

since the basis vectors are eigenstates of the position operator x̂. For the same reason
we have 〈x |x̂n|ψ〉 = xn〈x |ψ〉 where now |ψ〉 is a general state. Using now the Taylor
expansion of general operator function f(x̂), it thus follows that

〈x |f(x̂)|ψ〉 = f(x)〈x |ψ〉 (4.22)

All operators involving the position operator alone are seen to be diagonal in this basis.

This is not the case with the momentum operator. But the non-diagonal matrix element
〈x |p̂|p〉 have an eigenstate on the right and therefore simplifies to

〈x |p̂|p〉 = p〈x |p〉 = peipx/h̄ = −ih̄ ∂
∂x

〈x |p〉

For an arbitrary state

|ψ〉 =
∫ ∞

−∞

dp

2πh̄
|p〉〈p |ψ〉

we then get the more general matrix element

〈x |p̂|ψ〉 = −ih̄ ∂
∂x

∫ ∞

−∞

dp

2πh̄
〈x |p〉〈p |ψ〉 = −ih̄∂x〈x |ψ〉 (4.23)

The coordinate matrix elements of the momentum operator is therefore

〈x |p̂|x′〉 = −ih̄∂x〈x |x′〉 = −ih̄δ′(x− x′) (4.24)

Similarly, more complex matrix elements follow from

〈x |p̂n|ψ〉 = (−ih̄∂x)n〈x |ψ〉

by the same reasoning. As consequence, one then has for the matrix element of a
function of the same operator

〈x |g(p̂)|ψ〉 = g(−ih̄∂x)〈x |ψ〉 (4.25)

which corresponds to (4.22). When both operators x̂ and p̂ are present in an operator
function F (x̂, p̂), we get the combined result

〈x |F (x̂, p̂)|ψ〉 = F (x,−ih̄∂x)ψ(x) (4.26)

Since the two operators don’t commute with each other, their mutual ordering is here
important. We thus have that in the coordinate representation we can replace the
position operator x̂ simply by the eigenvalue x while for the momentum operator we
must make the replacement p̂→ −ih̄∂x. This is known from more elementary courses.
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We are now in the position to actually calculate the commutator between x̂ and p̂. First
we have that

〈x |x̂p̂|ψ〉 = x〈x |p̂|ψ〉 = −ih̄x∂x〈x |ψ〉

since 〈x | is an eigenstate of x̂. Then, since 〈x |p̂x̂|ψ〉 = 〈x |p̂|ψ′〉 with |ψ′〉 = x̂|ψ〉, one
similarly obtains

〈x |p̂x̂|ψ〉 = −ih̄∂xψ′(x) = −ih̄∂x(xψ) = −ih̄(ψ + x∂xψ)

Subtracting these two partial results, it follows that

〈x |[x̂, p̂]|ψ〉 = ih̄〈x |ψ〉

Since this is now valid for any state ψ, we must have the general result

[x̂, p̂] = ih̄ (4.27)

This is the basic or canonical commutator and was derived by Heisenberg in his very
first paper on quantum mechanics. In our treatment it follows from the underlying
assumptions previously made while others impose it as the basic quantum postulate.
On the right-hand side of (4.27) and in other similar situations, we have simply dropped
the unit operator since it just gives a factor one when acting on a state.

From the above canonical commutator we can now evaluate other, related commutators.
As an example, consider [x̂, p̂2]. Using the ordinary rules for commutators, then follows
that

[x̂, p̂2] = p̂[x̂, p̂] + [x̂, p̂]p̂ = 2ih̄p̂

This is easily generalized to

[x̂, p̂n] = ih̄np̂n−1 (4.28)

which is thus true for n = 2. Now

[x̂, p̂n] = p̂[x̂, p̂n−1] + ih̄p̂n−1

and the result follows by induction. We see that the operator x̂ again acts like the
differential operator ih̄∂p. Therefore we will also have more generally

[x̂, g(p̂)] = ih̄∂pg(p)|p→p̂ (4.29)

An identical derivation will then also give the similar commutators

[x̂n, p̂] = ih̄nx̂n−1 (4.30)

and

[f(x̂), p̂] = ih̄∂xf(x)|x→x̂ (4.31)

which shows that the momentum operator p̂ acts like −ih̄∂x as expected.
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4.5 The momentum representation

We can now go through a similar derivation using instead the momentum basis. Pro-
jecting the state ψ upon these basis vectors, we get the wave function in momentum
space

ψ̃(p) = 〈p |ψ〉 (4.32)

It is directly related to the corresponding wavefunction ψ(x) in coordinate space as is
seen by inserting a complete set of coordinate basis vectors,

ψ̃(p) =
∫ ∞

−∞
dx 〈p |x〉〈x |ψ〉 =

∫ ∞

−∞
dxψ(x)e−ipx/h̄ (4.33)

This this just an ordinary Fourier integral. The inverse transformation

ψ(x) =
∫ ∞

−∞

dp

2πh̄
ψ̃(p)eipx/h̄ (4.34)

follows by inserting similarly a complete set of momentum eigenstates in the wavefunc-
tion ψ(x) = 〈x |ψ〉.
Repeating now what we did in coordinate space for matrix elements of operators, we
first get

〈p |x̂|x〉 = x〈p |x〉 = pe−ipx/h̄ = ih̄∂p〈p |x〉

and therefore

〈p |x̂|ψ〉 = ih̄∂p〈p |ψ〉

in analogy with (4.23). A few more steps then give the momentum version of (4.26),

〈p |F (x̂, p̂)|ψ〉 = F (ih̄∂p, p)ψ̃(p) (4.35)

The net result is that if we want to use the momentum basis, the position operator must
be replaced by x̂→ ih̄∂p.

4.6 Three dimensions

Most physical systems of particles are in three spatial dimensions. The generalization of
our previous, one-dimensional results is however straightforward. Positions of particles
are given by vectors

x =
3∑

i=1

xiei (4.36)

with orthonormalized basis vectors ei · ej = δij. These are eigenvalues of the vector
position operator

x̂ =
3∑

i=1

x̂iei (4.37)
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with eigenstates |x〉 = |x〉|y〉|z〉 satisfying the eigenvalue equation

x̂|x〉 = x|x〉 (4.38)

Notice that this actually represents three equations, one in each direction. The normal-
ization in each direction will be the same as in the one-dimensional case so that

〈x |x′〉 = δ(x − x′) (4.39)

where we define δ(x−x′) = δ(x−x′)δ(y−y′)δ(z−z′). Thus we can write the completeness
relation as

∫
d3x|x〉〈x | = Î (4.40)

Needless to say, this is consistent with the normalization (4.39) as is seen by inserting
this unit operator into the matrix element on the left.

There will ow be three independent translation operators, one in each direction. The
combined operator T̂ (x) = T̂ (x)T̂ (y)T̂ (z) can be defined by

T̂ (x)|x′〉 = |x + x′〉 (4.41)

and has the general form

T̂ (x) = e−ip̂·x/h̄ (4.42)

where the momentum vector operator has three components p̂ = (p̂x, p̂y, p̂z) that com-
mute with each other. Its eigenstates |p〉 have the normalization

〈p |p′〉 = (2πh̄)3δ(p − p′) (4.43)

and completeness relation

∫
d3p

(2πh̄)3
|p〉〈p | = Î (4.44)

also follow from what we have done before. These momentum eigenstates have the
coordinate wavefunctions

ψp(x) = 〈x |p〉 = eip·x/h̄ (4.45)

which are obviously three-dimensional plane waves. A general wave function in the
coordinate representation

ψ(x) = 〈x |ψ〉 (4.46)

can be expressed in terms of the momentum wavefunction ψ̃(p) = 〈p |ψ〉 by the Fourier
integral

ψ(x) =
∫

d3p

(2πh̄)3
ψ̃(p)eip·x/h̄ (4.47)
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which has the inverse

ψ̃(p) =
∫
d3xψ(x)e−ip·x/h̄ (4.48)

in analogy with (4.33).

Operator matrix elements will follow from the generalizations of (4.26),

〈x |F (x̂, p̂)|ψ〉 = F (x,−ih̄∂x)ψ(x) (4.49)

where ∂x is the ordinary nabla operator with components ∂x = (∂x, ∂y, ∂z). Similarly,
in momentum space we now have

〈p |F (x̂, p̂)|ψ〉 = F (ih̄∂p,p)ψ̃(p) (4.50)

from (4.35).

In each direction we have the canonical commutars (4.27). Since operators acting in
different directions, commute with each other, we can sum up all the three-dimensional
canonical commutators in the single equation

[x̂i, p̂j ] = ih̄δij (4.51)

We will make much use of it in the following.

4.7 The wave equation

A particle moving in three dimensions will in general have some Hamiltonian operator
Ĥ = H(x̂, p̂). It is described by a time-dependent state vector |Ψ, t〉 which is goverened
by the Schrödinger equation

ih̄
∂

∂t
|Ψ, t〉 = H(x̂, p̂)|Ψ, t〉 (4.52)

For actual calculations of the time development we need a basis in Hilbert space where
the state vector moves. Most used is the coordinate basis and the corresponding wave-
functions

Ψ(x, t) = 〈x |Ψ, t〉 (4.53)

Now projecting the above Schrödinger equation onto the basis vector |x〉, we get

ih̄
∂

∂t
Ψ(x, t) = 〈x |H(x̂, p̂)|Ψ, t〉

The matrix element on the right-hand side now follows from (4.49) resulting in the
differential equation

ih̄
∂

∂t
Ψ(x, t) = H(x,−ih̄∂x)Ψ(x, t) (4.54)
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For a non-relativistic particle with mass m moving in a potential V (x) the Hamiltonian
is

Ĥ =
1

2m
p̂2 + V (x̂) (4.55)

resulting in the differential wave equation

ih̄
∂

∂t
Ψ(x, t) =

[
− h̄2

2m
∇

2 + V (x)

]
Ψ(x, t) (4.56)

This is obviously just one special example of the more general Schrödinger equation
above.

There will also be a wavefunction Ψ̃(p, t) = 〈p |Ψ, t〉 in momentum space. Using now
the result (4.50), we see that it will satisfy a corresponding differential equation. With
the standard Hamiltonian (4.55) it will be

ih̄
∂

∂t
Ψ̃(p, t) =

[
1

2m
p2 + V (ih̄∂p)

]
Ψ̃(p, t) (4.57)

which is the Schrödinger wave equation in momentum space. For some special problems
this is easier to solve than the coordinate wave equation (4.56).

These wavefunctions now determine the expectation values of different physical observ-
ables for this system. These will then be vary according to Ehrenfest’s equation derived
in Chapter 2. In particular, the expectation values 〈 x̂ 〉 and 〈 p̂ 〉 are now easy to cal-
culate. In the first we need the commutator [p̂2, x̂] = −2ih̄p̂ from (4.28). Thus we get
from (2.31)

d

dt
〈 x̂ 〉 =

1

m
p̂ (4.58)

which is the quantum analogue of the classical relation between velocity and momentum.
Similarly, from (4.31) we have [V (x̂), p̂] = ih̄V ′(x̂) and therefore

d

dt
〈 p̂ 〉 = −V ′(x̂) (4.59)

This is the quantum version of Newton’s second law since −V ′(x) is the classical force
acting on the particle. We see here an aspect of what Bohr originally called the corre-

spondence principle - the expectation values of quantum operators follow the classical
equations of motion.

4.8 Algebraic solution of the harmonic oscillator

The Hamiltonian for a classical particle with mass m moving in a one-dimensional
harmonic oscillator potential with frequency ω is

H =
p2

2m
+

1

2
mω2q2 (4.60)
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Since it is quadratic in the coordinate q and momentum p, it can be factorized as

H = ω




√
mω

2
q − ip

√
1

2mω








√
mω

2
q + ip

√
1

2mω





This suggests that the in the corresponding quantum Hamiltonian

Ĥ =
1

2m
p̂2 +

1

2
mω2q̂2 (4.61)

a similar combination of the two operators q̂ and p̂ will be adventagious. And this is
indeed very much the case. If we define the operator

â =

√
mω

2h̄

(
q̂ +

i

mω
p̂
)

(4.62)

and the adjoint

â† =

√
mω

2h̄

(
q̂ − i

mω
p̂
)

(4.63)

we find by direct multiplication that

â†â =
1

2mh̄ω
p̂2 +

mω

2h̄
q̂2 +

i

2h̄
[q̂, p̂]

But the last term is non-zero and equal to the canonical commutator (4.27). So instead
of the above classical factorization of the Hamiltonian, we now have

â†â =
Ĥ

h̄ω
− 1

2
(4.64)

or

Ĥ =
(
â†â +

1

2

)
h̄ω (4.65)

Multiplying together the two operators in the opposite order, it similarly follows that

ââ† =
Ĥ

h̄ω
+

1

2
(4.66)

Therefore, by subtracting these two products, one obtains the commutator

[â, â†] = 1 (4.67)

which replaces the canonical commutator. The original operators q̂ and p̂ are now given
by

q̂ =

√
h̄

2mω

(
â† + â

)
(4.68)

and

p̂ = i

√
mh̄ω

2

(
â† − â

)
(4.69)
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Any calculation involving them can therefore be performed using the basic properties
of these ladder operators.

We can now establish an energy basis in the Hilbert space of the oscillator by solving
the energy eigenvalue problem

Ĥ|En〉 = En|En〉 (4.70)

in a purely algebraic way. It is equvalent to finding the eigenvalues of the so-called
number operator n̂ = â†â. In order to understand why this name arises, calculate the
commutator [n̂, â] or

[â†â, â] = â†[â, â] + [â†, â]â = −â

The state â|n〉 is now a new eigenstate of the Hamiltonian,

Ĥâ|En〉 = ([Ĥ, â] + âĤ)|En〉
= (−h̄ωâ+ âEn)|En〉 = (En − h̄ω)â|En〉

with energy En − h̄ω. We say that â acts as a lowering operator. Similarly, from
[n̂, â†] = â† it follows that the state â†|En〉 is also a new eigenstate with increased
energy En + h̄ω. It is therefore said to act like a raising operator. Together they are
ladder operators, allowing us to go up or down in energy in steps of h̄ω. This amount is
called a quantum of energy.

By the same arguments the state â2|En〉 will be an eigenstate of Ĥ with eigenvalue
En − 2h̄ω, i.e. reduced by two quanta. Continued application of the lowering operator
could then eventually result in a negative energy. But the harmonic oscillator cannot
have negative energy eigenstates. This follows from the fact that the norm of the state
â|En〉 is positive. Therefore

〈En |â†â|En〉 = 〈En |
Ĥ

h̄ω
− 1

2
|En〉 =

En
h̄ω

− 1

2
≥ 0

when the eigenstate |En〉 is normalized to one. Thus we must have En ≥ 1
2
h̄ω. In order

to avoid ending up with these forbidden, negative energies, it is necessary that in the
chain of states generated by â, the state |E0〉 corresponding to the lowest energy, is
annihilated when the operator â acts on it. It is said to be an empty state since it does
not contain any quanta. For this reason we can just as well denote it by |0〉 - which
should not be confused with the zero vector mentioned in the first chapters. In other
words, we must have

â|0〉 = 0 (4.71)

From the Hamiltonian (4.65) this lowest state has a non-zero ground state energy

E0 =
1

2
h̄ω (4.72)

which is also often called the zero-point energy. It is a quantum effect, coming basically
from the fact that the operators q̂ and p̂ don’t commute with each other.
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The first excited state is then |E1〉 = â†|0〉 with energy (3/2)h̄ω. In our slightly new
notation, we denote it by |1〉. Using the raising operator on this ground state, we can
then similarly construct the n′th excited state |n〉 with the energy

En =
(
n+

1

2

)
h̄ω (4.73)

It contains n quanta, each of energy h̄ω. Since now

n̂|n〉 = n|n〉 (4.74)

we say that the operator n̂ counts the number of quanta in the state,

The action of the ladder operators can be stated a bit more accurately. For instance,
we must have â|n〉 = An|n− 1〉 where the factor An is needed if the states on both
sides of the equation are normalized to one. Calculating now the norm, we find |An|2 =
〈n |â†â|n〉 = n. Therefore

â|n〉 =
√
n|n− 1〉 (4.75)

when we choose the phase factor to be one. In the same way from the norm of â†|n〉
follows

â†|n〉 =
√
n + 1|n+ 1〉 (4.76)

These two results are vey useful in practical calculations. For instance, we can now find
a closed expression for the n′th excited state built up directly from the ground state
using

|n〉 =

√
1

n
â†|n− 1〉 =

√
1

n · (n− 1)
(â†)2|n− 2〉 (4.77)

=

√
1

n!
(â†)n|0〉 (4.78)

We thus have algebraic results for all the energy eigenstates and the corresponding
eigenvalues. Using this complete set of states as a basis in Hilbert space, we can calcu-
lating all matrix representations of operators involving the original q̂ and p̂ operators.
Needless to stay, these will be infinite-dimensional matrices with indices given by the
natural numbers from zero to infinity.

In the case of the three-dimensional oscillator with Hamiltonian

Ĥ =
1

2m
p̂2 +

1

2
mω2x̂2 (4.79)

we can find quantized solutions using the same algebraic approach. Introduce the low-
ering operators

âk =

√
mω

2h̄
x̂k + i

√
h̄

2mω
p̂k (4.80)

and the corresponding adjoint raising operators â†k, the Hamiltonian becomes

Ĥ =
(
â†xâx + â†yây + â†zâz +

3

2

)
h̄ω (4.81)
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These new ladder operators commute with each other except for

[âi, â
†
j ] = δij (4.82)

The operators N̂k = â†kâk thus give the numbers of quanta excited in the three directions,
i.e. nx, ny and nz. In this way we obtain for the eigenvalues of the Hamiltonian (4.81)

Enxnynz
=
(
nx + ny + nz +

3

2

)
h̄ω (4.83)

From (4.78) follows the corresponding eigenstates as

|nxnynz〉 = |nx〉|ny〉|nz〉 =

√
1

nx!ny!nz!
(â†x)

nx(â†y)
ny(â†z)

nz |0〉 (4.84)

Notice that the excited states are now degenerate. The first excited energy level with
energy (5/2)h̄ω is triple degenerate consisting of the three states |100〉, |010〉 and |001〉.
Similarly we find that the second excited level is six-fold degenerate and so on.

So far we have worked in the Schrödinger picture where all operators are independent of
time. However, many calculations and in particular connections with classical mechanics
are simpler in the Heisenberg picture. Since all operators for the oscillator can be
expressed in terms of ladder operators, we need to find their time dependence in the
Heisenberg picture. It will follow from the basic Heisenberg equation (2.48) derived in
Chapter 2,

d

dt
â(t) =

i

h̄
[Ĥ, â]

Since here Ĥ = h̄ω(N̂ + 1/2), it simply gives

d

dt
â(t) = −iωâ(t)

or

â(t) = âe−iωt (4.85)

when integrated. The creation operator â† has similarly the complex conjugate time
dependence. We could have found these results just as easily using the basic transfor-
mation (2.47) to the Heisenberg picture combined with the Lie formula (2.53) which
was found in Chapter 2. Either way, for the position operator (4.68) we now have

q̂(t) =

√
h̄

2mω

(
âe−iωt + â†eiωt

)
(4.86)

Surprisingly enough, this expression will appear again when we quantize classical fields
as for electromagnetism in in Chapter 7.
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4.9 Hermite polynomials

The energy eigenstates (4.78) will in a coordinate representation be given by the eigen-
functions ψn(q) = 〈q |n〉 satisfying the differential wave equation

(
− h̄2

2m

d2

dq2
+

1

2
mω2q2

)
ψn(q) = Enψn(q) (4.87)

This is just the projection of (4.70) onto the coordinate basis. Using the general result
(4.26), the wavefunctions will now given by

ψn(q) =

√
1

n!
〈q |(â†)n|n〉

=

√
1

n!




√
mω

2h̄
q −

√
h̄

2mω

d

dq




n

〈q |0〉

On the right-hand side we find ψ0(q) = 〈q |0〉 which is the wave function of the ground

state. Introducing α =
√
mω/h̄ and the dimensional coordinate x = αq, we have

ψn(q) =

√
1

2nn!

(
x− d

dx

)n
ψ0(q) (4.88)

All the wavefunctions for excited states can in this way we calculated from knowledge of
the ground state wavefunction. This latter one follows from the definition (4.71) which
gives 〈q |â|0〉 = 0 or




√
mω

2h̄
q +

√
h̄

2mω

d

dq



ψ0(q) = 0

This is a simple differential equation with the solution

ψ0(q) = Ce−mωq
2/2h̄

Here C is an integration constant which is fixed by the normalization

〈0 |0〉 =
∫ ∞

−∞
dq|ψ0(q)|2 = 1

giving |C|2 =
√
mω/πh̄. The ground state function is therefore

ψ0(q) =
(
mω

πh̄

)1/4

e−mω
2q2/2h̄ (4.89)

when we again set an arbitrary phase factor equal to unity.

The result (4.88) for the excited wavefunctions now can be written as

ψn(q) =
(
mω

πh̄

)1/4
√

1

2nn!
Hn(x)e

−x2/2 (4.90)
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where the functions

Hn(x) = ex
2/2

(
x− d

dx

)n
e−x

2/2 = ex
2

(
− d

dx

)n
e−x

2

(4.91)

are the Hermite polynomials. From this formula of Rodriquez follow the lowest ones as

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 2 (4.92)

H3(x) = 8x3 − 12x
...

We see that these are even functions when n is even and odd functions when n is odd.
This just gives the parity quantum number under the reflection x→ −x corresponding
to the act of the parity operator discussed previously.

4.10 Coherent states

When the oscillator is in an energy eigenstate, the motion is stationary and there is
very little to be seen of the classical oscillations with fixed frequency ω. But we will
here show that a certain, infinite superposition of such states behave in many ways as
a clasical state. This is the coherent state defined as an eigenstate of the annihilation
operator, i.e.

â|α〉 = α|α〉 (4.93)

Since â is not an Hermitean operator, the eigenvalue α will in general be complex. The
eigenstate |α〉 must be of the form

|α〉 =
∞∑

n=0

cn|n〉

where the components cn can be determined from the above eigenvalue equation. One
finds, using (4.75),

â|α〉 =
∞∑

n=0

cnâ|n〉 =
∞∑

n=1

cn
√
n|n− 1〉

After the shift n− 1 → n of summation variable, this becomes

â|α〉 =
∞∑

n=0

cn+1

√
n+ 1|n〉

Comparing with the original expansion, we thus have obtained the recursion relation
cn+1 = αcn/

√
n+ 1. Iterating, it gives

cn+1 =
αn+1

√
n + 1!

c0
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and therefore for the coherent state

|α〉 = c0
∞∑

n=0

αn√
n!
|n〉 = c0

∞∑

n=0

αn

n!
(â†)n|0〉 = c0e

αâ† |0〉 (4.94)

It contains non-zero amplitudes for being in any of the excited states of the oscillator.

The component c0 is the probability amplitude for finding the the oscillator in the ground
state when this coherent state is normalized to 〈α |α〉 = 1. Now we have

〈α |α〉 = |c0|2〈0 |eα
∗âeαâ

† |0〉

We can here make use of the Weyl formula at the end of Chapter 2. It can be written
as

eÂeB̂ = eB̂eÂe[Â,B̂] (4.95)

when the operators Â and B̂ both commute with their commutator. This applies to the
above expectation value which then gives |c0|2 exp (|α|2) = 1 or

c0 = e−|α|2/2 (4.96)

when we set the phase factor equal to one. From (4.94) we can then read off the
probability

Pn = e−|α|2 |α|2n
n!

(4.97)

to find n quanta in the coherent state. This is just the Poisson distribution.

Applying the time evolution operator to the coherent state, it changes into the new state

|α, t〉 = e−iĤt/h̄|α〉 = c0
∞∑

n=0

αn√
n!
e−iĤt/h̄|n〉 (4.98)

Since |n〉 is an eigenstate of the Hamiltonian Ĥ with eigenvalue En = (n+ 1/2)h̄ω, we
have

|α, t〉 = c0
∞∑

n=0

αn√
n!
e−iωt(n+1/2)|n〉 = c0e

−iωt/2
∞∑

n=0

(
αe−iωt

)n

√
n!

|n〉

= e−iωt/2|αe−iωt〉

It therefore remains an eigenstate

â|α, t〉 = αe−iωt|α, t〉 (4.99)

of the annihilation operator at all times, but the corresponding eigenvalue oscillates with
the fundamental frequency.

It now instructive to calculate the expectation value 〈 q̂ 〉 of the position of the particle
in the oscillator potential. Using the relation (4.68), it is

〈 q̂ 〉 =

√
h̄

2mω
〈α, t |â+ â†|α, t〉 =

√
h̄

2mω

(
αe−iωt + α∗eiωt

)
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from (4.99). Writing now for the complex parameter α = |α|eiθ, we finally have

〈 q̂ 〉 =

√
2h̄

mω
|α| cos(ωt− θ) (4.100)

This is just the classical, oscillatory motion with an amplitude proportional to the
modulus |α| of the coherent parameter.
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Chapter 5

Rotations and spherical symmetry

Systems in two and three dimensions can not only be translated, but also rotated. In the
same way as the momentum operator arises as the generator of translations, we will now
see that the angular momentum or spin operator is the generator of rotations. When
the system has spherical symmetry, it is invariant under these transformations and the
angular momentum of the system is conserved. Quantization gives only discrete values
for this new spin quantum number. Of special interest will be systems with the lowest
spin value 1/2 described by the Pauli matrices. Before considering ordinary rotations in
three dimensions, we will first consider the simpler situation with rotations in the plane.

5.1 Cyclic molecules

Before we consider the ordinary continuous rotations in space, it is instructive to take a
closer look at discrete rotations in the plane. This has also direct applications to cyclic
molecules which are important in chemistry. Such a system is most easily constructed
from the one-dimensional lattice considered in Chapter 3 when it contains a finite num-
ber N of sites or atoms and the last atom is connected to the first so that it forms a ring.
An example of this is shown in Fig.5.1 which applies to the organic molecule benzene.
We will again consider a quantum particle on this lattice, assuming that it can only
be localized to one of the N different sites. This is what the chemists call the Hückel

approximation for such molecules.

There will now be N orthonormal basis states |n〉 where the cyclic property of the chain
requires |n+N〉 = |n〉. Instead of the distance a between nearest-neighbour lattice
sites which was called the lattice constant in Chapter 3, it is now more convenient
to describe this separation by the angle α. From the figure we see that it has the
magnitude α = 2π/N . For the same reason, we introduce the unitary rotation operator
R̂(α) defined by

R̂(α)|n〉 = |n+ 1〉 (5.1)

which replaces the fundamental translation operator T̂ (a) defined in (3.28). The product
of p such elementary rotations after each other will be equivalent to a single rotation by
an angle φ = pα so that R̂p(α)|n〉 = R̂(φ)|n〉 = |n+ p〉.

71
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α

5

6

4

3

21

Figure 5.1: Cyclic molecule with N = 6 sites or atoms. It has the same structure as benzene.

The molecule is invariant under these rotations. In the quantum description there will
be corresponding rotationally invariant states. These we now define as

R̂(α)|ψ〉 = e−imα|ψ〉 (5.2)

in analogy with (3.32). Here m is a new quantum number which so far can take on any
real value. Repeating these elementary rotations p times, we find

R̂(φ)|ψ〉 = e−imφ|ψ〉 (5.3)

for a rotation angle φ = pα.

Expanding the state in the site basis, we have

|ψ〉 =
N∑

n=1

ψn|n〉 (5.4)

where again the coefficient ψn is the probability amplitude to find the particle on site
n. From the definition in (5.2) now follows that this amplitude is

ψn = eimnα (5.5)

with an appropriate normalization. But since the atom at position n+N is the atom at n,
we now have the cyclic requirement ψn+N = ψn which gives the condition exp (imNα) =
1. With the above value for the angle α, we thus get exp(2πim) = 1 orm = 1, 2, 3, . . . , N .
Other positive or negative values will just reproduce the same states.

In order to calculate the energy of the particle in these rotation eigenstates, we need the
Hamiltonian. Assuming again as in Chapter 3 only quantum jumps between nearest-
neighbour sites, it is

Ĥ = E0Î − A(R̂+ R̂†) (5.6)

where E0 is the energy of the particle localized to one particular site and A gives the
amplitude to jump. The energy eigenvalues now follow from Ĥ|ψ〉 = E|ψ〉 which gives

E = E0 − 2A cosmα = E0 − 2A cos
2πm

N
(5.7)
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when the particle is in the state with rotational quantum number m as in the corre-
sponding result (3.36) for translations. Assuming A > 0, the state with lowest energy
has m = N which is equivalent to m = 0. For benzene with N = 6 this becomes
E = E0 − 2A cos(πm/3). As shown in Fig.5.2 we can geometrically presented these
eigenvalues as the projections onto the vertical energy axis of the corner sites of an
hexagon with radius 2A and centered at E0. This is called the dual or reciprocal lattice

m = 1

E

E

0

m = 2

2A

m = 0/6

m = 3

m = 4

m = 5

Figure 5.2: Cyclic molecule with N sites has N eigenstates on reciprocal lattice.

of the original lattice of the molecule. It is seen to have the same cyclic symmetry. The
ground state has energy E0 − 2A, there are two excited states with degenerate energies
E0 −A, two with energies E0 + A and one with the highest energy E0 + 2A.

5.2 Particle on a circle

In the continuous limit where N → ∞ and thus α → 0, our cyclic molecule becomes a
circle. But the rotation operator R̂(φ) will still act as in (5.3) on a rotationally invariant
state with the only difference that the quantum number m now can take on infinitely
many different values m = 0,±1,±2, . . . ,±∞. Introducing the new notation |ψ〉 → |m〉
for these eigenstates, we therefore have

R̂(φ)|m〉 = e−imφ|m〉 (5.8)

An infinitesemal rotation by an angle δφ will be slightly different from the unit operator
and we write it as

R̂(δφ) = Î − i

h̄
δφp̂φ (5.9)

where now p̂φ is the generator of rotations. It is a Hermitean operator called angular
momentum and corresponds to the linear momentum operator p̂x in Chapter 3. By
iterations we then get the full operator

R̂(φ) = e−iφp̂φ/h̄ (5.10)
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for a finite rotation by an angle φ. Comparing with (5.8) we see that the eigenstate |m〉
is also an eigenstate of this new generator,

p̂φ|m〉 = h̄m|m〉 (5.11)

i.e. with the eigenvalue pφ = h̄m. Thus the angular momentum for a particle on a circle
is quantized with these integral values. The corresponding wave function of the particle
is now

ψm(φ) = 〈φ |m〉 = eimφ (5.12)

which is seen to satisfy periodicity ψm(φ+ 2π) = ψm(φ) as it should. In this coordinate
representation, or rather angle representation, the angular momentum operator becomes
the differential operator

p̂φ → −ih̄ ∂
∂φ

(5.13)

as we showed for linear momentum.

If the particle with mass µ moves on a circle with radius a and angular momentum
pφ, it would have the classical energy E = p2

φ/2µa
2. The quantum motion is therefore

determined by the Hamiltonian operator

Ĥ =
p̂2
φ

2µa2
(5.14)

where p̂φ is the above angular momentum operator. From the eigenfunctions (5.12)
we find the corresponding discrete energy eigenvalues Em = (h̄2/2µa2)m2. The ground
state has the quantum number m = 0 while every excited state is double degenerate.

We can make use of this result for particle having a wave function which is required to
be periodic in a direction x with period L. This is equivalent to having the particle on
a circle with radius R = L/2π. Now since φ = x/R = 2πx/L, we can write the wave
function as

ψk(x) = e2πimx/L ≡ eikx (5.15)

It is thus a plane wave with wave number quantized as k = 2πm/L. By construction,
it satisfies ψk(x+ L) = ψk(x).

5.3 Axial symmetry

The operator p̂φ generates rotations by an angle φ around an axis normal to the plane of
motion for the particle. When it can move on a circle, the system is rotational invariant
around this axis and is said to have axial symmetry or invariance. In a more general
case the particle can move in the plane not confined to a circle, but by a potential V (r)
which only depends on the radial length r = x2 + y2)1/2 and not the polar angle φ.
Obviously, the system still has axial symmetry.
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If the particle again has mass µ, the Hamiltonian will now be

H = − h̄2

2µ
∇2 + V (r) (5.16)

in the coordinate representation. In polar coordinates x = r cos φ and y = r sinφ we
have

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ2
(5.17)

and the energy eigenvalues E will be given by the stationary Schrödinger equation
[
− h̄2

2µ

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ2

)
+ V (r)

]
ψ(r, φ) = Eψ(r, φ) (5.18)

From the structure of this differential equation for the eigenfunctions ψ(r, φ), we see that
it allows us to separate the dependence on the variables r and φ by writing ψ(r, φ) =
R(r)Y (φ). It can then be rewritten as

r2

R

[
d2R

dr2
+

1

r

dR

dr
+

2µ

h̄2 (E − V )R

]
= − 1

Y

d2Y

dφ2

For this to be satsified for all values of the coordinates, each side of the equation must
equal a constant which we call −m2. From the right-hand side we then get the simple
differential equation

d2Y

dφ2
= −m2Y (5.19)

with solutions of the form Ym(φ) = eimφ when we ignore any normalization. For this
to be invariant under the full rotation φ → φ + 2π, we see that m must be an integer,
m = 0,±1,±2, . . . ,∞. It is therefore just the quantized values of the planar angular
momentum. From our previous knowledge, we could have assumed this form of the
angular part of the wave function right from the beginning.

The remaining, radial equation now becomes

− h̄2

2µ

[
d2R

dr2
+

1

r

dR

dr
− m2

r2

]
R = (E − V )R (5.20)

and can in general for an arbitrary potential V (r) not be solved analytically. But in
the case of a free particle, i.e. when V = 0 it simplifies to a well-known equation.
Introducing k2 = 2µE/h̄2, it can then be written as

x2R′′ + xR′ + (x2 −m2)R = 0 (5.21)

where the dash represents derivation with respect to the dimensionless radial variable
x = kr. This is Bessel’s differential equation. Requiring the corresponding solutions
to be regular as x → 0, these are given by the Bessel functions Jm(x). The full wave
functions for a free particle are then of the form

ψm(r, φ) = Nme
imφJm(kr) (5.22)
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where Nm is a normalization constant. Except for J0(x) which is non-zero at x = 0, the
other Bessel function Jm(x) are all zero there and have like J0(x) an infinite number
of other zeros at the nodes xmn. For J0(x) these are at x01 = 2.405, x02 = 5.520, x03 =
8.654, . . ., for J1(x) at x11 = 3.832, x12 = 7.016, . . . and so on.

We can now make use of these simple results for the more physical situation of a particle
confined within an infinite and circular well in the plane described by the potential

V (r) =
{

0, r < a
∞, r > a

(5.23)

where a is the radius of the well. The radial wave function R(r) must therefore be zero
for r = a resulting in the quantization condition ka = xmn for a solution with angular
momentum m. Since the wave number k is given by the energy, we thus find that the
energy eigenvalues are

Emn =
h̄2

2µa2
x2
mn (5.24)

For each value of the angular quantum number m there is therefore an infinite number
of excited states labelled by the quantum number n. This also gives the number of zeros
in the radial wave function. The higher the number of such roots is, the higher the
energy of the corresponding state is.

5.4 Planar harmonic oscillator

We saw in Chapter 4 that the harmonic oscillator can be quantized algebraically in any
dimension using Cartesian coordinates. In two dimensions where the harmonic potential
is

V (x, y) =
1

2
µω2(x2 + y2) =

1

2
µω2r2 (5.25)

we would therefore expect that the radial equation (5.20) also allows exact solutions. It
now becomes

d2R

dr2
+

1

r

dR

dr
− m2

r2
R+ (k2 − λ2r2)R = 0

where we have introduced λ = µω/h̄. Again we want to find solutions which are regular
when r → 0. In this region the angular momentum term dominates and we have
approximately

d2R

dr2
+

1

r

dR

dr
− m2

r2
R = 0

with the simple solution R = r|m|. Similarly, for large distances r → ∞ the potential
term dominates and the equation becomes

d2R

dr2
+

1

r

dR

dr
− λ2r2R = 0
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Again there is a simple solution which is bounded in this region, namely R = e−λr
2/2. We

can now separate out these two asymptotic solutions from the general, radial function
and write

R(r) = r|m|e−λr
2/2u(r)

where the unknown function u(r) must be well-behaved both when r → 0 and r → ∞.

Introducing now the dimensionless radial variable t = λr2, we can rewrite the above
differential equation as

tu′′ + (1 + |m| − t)u′ − 1

2

(
1 + |m| − k2

4λ

)
u = 0 (5.26)

after a calculating a few derivatives in this new variable. This is Kummer’s differential
equation of the general form

xy′′ + (1 +m− x)y′ − ay = 0 (5.27)

For the function y(x) not to blow up when x → ∞, the coefficient a = −n with
n = 0, 1, 2, . . . ,∞. It then goes over into the Laguerre differential equation xy′′ + (1 +
m− x)y′ + ny = 0 with the Rodrigues solutions

y(x) = Lmn (x) =
1

n!
exx−m

( d
dx

)n
(xm+ne−x) (5.28)

called associated Laguerre polynomials. The ordinary Laguerre polynomials are Ln(x) =
L0
n(x) or

Ln(x) =
1

n!
ex
( d
dx

)n
(xne−x) (5.29)

so that they are polynomials of order n. One can demonstrate that

Lmn (x) =
(
− d

dx

)m
Lm+n(x) (5.30)

which shows that these polynomials are also of order n. The lowest Laguerre polynomials
are

L0 = 1

L1 = 1 − x

L2 = 1 − 2x+
1

2
x2

L3 = 1 − 3x+
3

2
x2 − 1

6
x3

L4 = 1 − 4x+ 3x2 − 2

3
x3 +

1

24
x4

It then follows that Lm0 (x) = 1, L1
1 = 2 − x, L2

1 = 3 − x while L2
2 = 6 − 4x + x2/2 and

so on.

Returning now to the two-dimensional oscillator described by the radial differential
equation (5.26), it has regular solutions in terms of associated Laguerre polynomials
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L|m|
n (t) when 1+|m|−k2/4λ = −2n where the radial quantum number n = 0, 1, 2, . . . ,∞

for every value of the angular momentum quantum numberm. Expressing the parameter
k2 by the energy E, we then have the quantized energy eigenvalues

Emn = (2n+ |m| + 1)h̄ω (5.31)

while the corresponding unnormalized eigenstates are

ψmn(r, φ) = eimφr|m|e−µωr
2/2h̄L|m|

n (µωr2/h̄) (5.32)

This should be compared with the results in Cartesian coordinates. The eigenfunctions
were then products of Hermite polynomials for each direction while the eigenvalues
became Enxny

= h̄ω(nx + ny + 1). We can easily convince ourselves that this agrees
with what we have just found in polar coordinates even when we check the degeneracy
of each energy level.

We can link these two derivations of the spectrum for the planar oscillator by introducing
the new operators

â± =

√
1

2

(
âx ∓ iây

)
(5.33)

having the non-zero commutators [â±, â
†
±] = 1. Since the Cartesian ladder operators

(âx, ây) and their adjoints are lowering and raising operators for the energy, so are also
these circular operators â± and their adjoints. In fact, we find that the Hamiltonian can
be written as

Ĥ = (â†+â+ + â†−â− + 1)h̄ω (5.34)

so that [Ĥ, â±] = −â± and [Ĥ, â†±] = â†±. But they are also seen to change the angular
momentum

L̂z = x̂p̂y − ŷp̂x = h̄(â†+â+ − â†−â−) (5.35)

of the particle. So while both these circular raising operators increase the energy by h̄ω,
it follows from the same reasoning that â†+ increases the angular momentum by h̄ while
â†− decreases it by the same amount. Since we said the number operators â†xâx and â†yây

count the number of quanta in the x and y directions, we can say that â†+â+ and â†−â−
count the number of ’up’ quanta with spin along the z-axis and ’down’ quanta with spin
opposite to the z-axis. For this reason one could call these chiral ladder operators since
they relate directly to quanta with a definite handedness.

Introducing now the dimensionless coordinate z =
√
λ(x+iy) and its complex conjugate

z∗ where λ = µω/h̄ as above, we can write these new ladder operators in the coordinate
representation as

a+ =
z∗

2
+

∂

∂z
, a− =

z

2
+

∂

∂z∗
, (5.36)

Since the ground state wave function of the oscillator ψ0,0 is defined by a±ψ0,0 = 0, it
will have be

ψ0,0 =

√
1

π
e−z

∗z/2 (5.37)
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where the factor in front is a normalization factor. This is just the product of the
ground-state wave functions in the x and y directions respectively. Since we can write
the circular raising operators as

a†+ = −ez∗z/2 ∂

∂z∗
e−z

∗z/2, a†− = −ez∗z/2 ∂
∂z
e−z

∗z/2

we now find the excited state with angular momentum +h̄m where the quantum number
m is positive, to be

ψm,0 =

√
1

π

a†m+√
m!
e−z

∗z/2 =

√
1

π

zm√
m!
e−z

∗z/2 (5.38)

Using instead the operator a†− we find the state with angular momentum −h̄m where z
will be replaced by z∗ in the wave function.

Radial exitations can now be obtained by the operator b̂† = â†+â
†
− which increase the

energy with 2h̄ω but does not change the angular momentum. A general excited state
will therefore be

ψm,n(z, z
∗) =

√
m!

n!(m+ n)!
(b†)nψm,0

=
(−1)n

√
πn!(m+ n)!

ez
∗z/2

(
∂

∂z

)n
(zm+ne−z

∗z) (5.39)

This should now be compared with the solution (5.32). In fact, they are seen to agree
when we introduce the scalar variable t = z∗z = λr2 so that we can write our newly
constructed eigenfunction as

ψm,n =
(−1)n

√
πn!(m+ n)!

e−z
∗z/2zmett−m

(
d

dt

)n
(tm+ne−t) (5.40)

Comparing with the definition of the Laguerre polynomials in (5.28), we thus have

ψm,n(z, z
∗) = (−1)n

√
n!

π(m+ n)!
e−z

∗z/2zmLmn (z∗z) (5.41)

which is just our previous solution (5.32), but now with even correct normalization.

5.5 Spherical rotations and the generators

Let us first consider a particle in the xy-plane at position r = xex + yey as shown in
the figure. It has coordinates x = r cosφ and y = r sinφ. Under a rotation by an
angle α around the z-axis, the vector changes into the new vector r′ = x′ex + y′ey with
components

x′ = r cos (α + φ) = r(cosα cosφ− sinα sin φ) = x cosα− y sinα
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Figure 5.3: Rotation by an angle φ of a two-dimensional vector r into the final vector r
′.

and

y′ = r sin (α + φ) = r(sinα cosφ+ cosα sin φ) = x sinα + y cosα

which becomes on matrix form
(
x′

y′

)
=

(
cosα − sinα
sinα cosα

)(
x
y

)
(5.42)

For general rotation r → r′ = Rr around an arbitrary axis the matrix R would be 3× 3
and would be parametrized by three rotation angles. These could for instance be the
three Euler angles α, β and γ used in classical mechanics.

Returning now to the 2-dimensional rotation (5.42) in the infinitesemal limit where
α→ δα we thus have x′ = x−yδα and y′ = y+xδα when we neglect higher order terms.
The change in the original vector r is therefore be written as δr = r′ − r = δα ez ∧ r.
Introducing now the vector δα = δα ez which is along the rotation axis and has a
magnitude equal to the rotation angle, we have the compact result

δr = δα ∧ r (5.43)

A little geometrical thinking will convince us that this expression is valid for an infinite-
semal rotation around any axis n, i.e. δα = nδα when n is a unit vector. Similarly,
a finite rotation by the angle α around the same axis is given by the rotation vector
α = nα.

In a quantum description a particle at position r is in the position eigenstate |r〉. Under
a rotation by a finite angle φ it changes into

|r′〉 = R̂(α)|r〉 (5.44)
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where R̂ is the rotation operator. Since the norm of this ket vector is conserved under
this transformation, it is unitary in the sense that

R̂†(α) = R̂−1(α) = R̂(−α) (5.45)

as the corresponding translation operator was in Chapter 3.

Again we can build up a finite rotation by combining many infinitesemal ones of the
form (5.9) in the plane. We thus write

R̂(δα) = Î − i

h̄
δα · L̂ (5.46)

where the three Hermitean generators L̂ = (L̂x, L̂y, L̂z) will be shown to be the three-
dimensional angular momentum operators. Iterating many such infinitesemal rotations,
we thus can write for a finite rotation

R̂(α) = e−iα·L̂/h̄ (5.47)

for a general rotation α = (αx, αy, αz). Writing instead α = nα where n is the rotation
axis and α is the amount of rotation, we can equivalently denote the same rotation by

R̂n(α) = e−iαn·L̂/h̄ (5.48)

It is generated by the differential operator

n · L = −ih̄ ∂

∂α
(5.49)

in complete analogy with (5.13).

Rotations by the same angle around different axes are said to be similar or equivalent.
Let us again consider the general rotation (5.48). This can now be used to find the
operator R̂n′(α) for the rotation about another axis n′ by the same angle α. For that
we need the rotation operator Ŝn→n′ which takes the unit vector n into the new rotation
axis n′. From the resulting geometry of this operation, we see that we then have the
equality

R̂n′(α) = Ŝn→n′R̂n(α)Ŝ†
n→n′ (5.50)

The mathematical name of this equivalence is a similarity transformation.

Just as the position eigenvectors transform as (5.44) under rotations, any other general
state vector |ψ〉 is defined to transform the same way, i.e.

|ψ〉 → |ψ′〉 = R̂(α)|ψ〉 (5.51)

The corresponding wave function ψ(r) = 〈r |ψ〉 will thus change into the transformed
wave function ψ′(r) = 〈r |ψ′〉. Its dependence on the original function follows from

ψ(r) = 〈r |ψ〉 = 〈r |R̂†(α)R̂(α)|ψ〉 = 〈r′ |ψ′〉 = ψ′(r′) (5.52)
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It is thus said to transform as a scalar function where the new function at the new point
equals the original function at the original point. The change in the function under an
infinitesemal rotation as measured at the same point is therefore

δψ = ψ′(r) − ψ(r) = ψ(r− δr) − ψ(r) = −δr · ∇ψ

= −(δα ∧ r) · ∇ψ = −δα · (r ∧ ∇ψ) = − i

h̄
δα · Lψ

Here we have written the operator L = −ih̄r∧∇ = r∧p in the coordinate representation
where the momentum operator p̂ is represented by the differential operator p = −ih̄∇.
But at the same time we have from (5.46) that this change in the wave function is given
by

δψ = 〈r |R̂(δα)|ψ〉 − 〈r |ψ〉 = − i

h̄
δα · 〈r |L̂|ψ〉

Comparing these two expressions, we therefore find that

〈r |L̂|ψ〉 = −ih̄r ∧ ∇〈r |ψ〉

which proves that the rotation generators are just the quantized angular momentum
operator L̂ = r̂ ∧ p̂.

Since the operators r̂ and p̂ don’t commute in general, so will also the different compo-
nents L̂i of the angular momentum operator not commute with each other in general. In
order to calculate these non-zero commutators, it is very convenient to introduce Ein-

stein’s summation convention. It says that in any expression where there are two equal
indices, they should be summed over. For instance, the scalar product of two vectors
A and B we write simply as A · B = AiBi = AkBk when expressed by their Cartesian
components. The vector A can therefore be written as A = Aiei where the unit basis
vectors satisfy ei · ej = δij when expressed in terms of the Kroenecker δ-symbol. More
detailed, we then have A · B = AiBjδij = AiBi.

We can similarly express the vector or wedge product between two vectors A and B as

C = A ∧B = ǫijkAiBjek (5.53)

when we make use of the ǫ-symbol of Levi-Civita. It is defined to be antisymmetric
under interchange of any two indices. It is therefore zero when any two indices are
equal. The only non-zero values then follow from ǫ123 = +1 which gives ǫ312 = ǫ231 = 1
while ǫ132 = ǫ321 = −1 and so on. For example, the third component of the above vector
C is then C3 = ǫij3AiBj = A1B2 − A2B1 making use of the summation convention.
Needless to say, this is the correct result.

With these new tools, we can now write the components of the angular momentum
operator as L̂i = ǫikmx̂kp̂m and we can start to calculate. First we consider

[L̂i, x̂j ] = ǫikm[x̂kp̂m, x̂j ] = ǫikm(x̂k[p̂m, x̂j ] + [x̂k, x̂j ]p̂m)

Since the last commutator is zero and [p̂m, x̂j ] = −ih̄δmj , we get

[L̂i, x̂j ] = −ih̄ǫikmδmj x̂k = ih̄ǫijkx̂k (5.54)
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In the same way we find [L̂i, x̂j ] = ih̄ǫijmp̂m. Since both these vector operators transform
the same way, we might think that vector operator transforms this way and in particular
the angular momentum operator it self. We thus expect

[L̂i, L̂j ] = ih̄ǫijkL̂k (5.55)

This is easy to verify. For instance, making use of the above commutators, we find

[L̂x, L̂y] = [L̂x, ẑp̂x − x̂p̂z] = [L̂x, ẑ]p̂x − x̂[L̂x, p̂z] = −ih̄ŷp̂x + ih̄x̂p̂y = ih̄L̂z (5.56)

and correspondingly for other components.

The basic angular momentum commutator (5.55) is sometimes written other ways in
the literature. For instance, introducing the angular momentum along the unit vector
a defined as L̂a = a · L̂ = aiL̂i, we find from (5.55) by multiplying both sides by ai and
the components bi of another unit vector b,

[L̂a, L̂b] = ih̄L̂a∧b (5.57)

using the expression for the wedge product written in terms of the Levi-Civita symbol.
Equivalently, since (L̂ ∧ L̂)k = ǫijkL̂iL̂j = ih̄L̂k, we also have

L̂ ∧ L̂ = ih̄L̂ (5.58)

We will later meet other non-zero wedge products between a vector and itself when the
components don’t commute with each other.

5.6 Quantization of spin

Since the three components of the angular momentum operator don’t commute with
each other, we cannot find eigenstates of angular momentum which are simultaneously
eigenstates for all three components. However, since the total angular momentum L̂2

commutes with the components,

[L̂2, L̂j ] = [L̂iL̂i, L̂j ] = L̂i[L̂i, L̂j] + [L̂i, L̂j ]L̂i (5.59)

= ih̄ǫijk(L̂iL̂k + L̂kL̂i) = 0 (5.60)

so its eigenvalues can be determined together with the eigenvalues of one of the com-
ponents. It is customary to take this component to be L̂z. Denoting these eigenvalues
with λ and µ, we will then have eigenstates |λ, µ〉 satisfying

L̂2|λ, µ〉 = λ|λ, µ〉, L̂z|λ, µ〉 = µ|λ, µ〉

Since L̂2 = L̂2
x + L̂2

y + L̂2
z and the operator L̂2

x + L̂2
y is always positive or zero, we must

have the condition λ ≥ µ2 always satisfied bewteen these eigenvalues.

It is now very convenient to replace the two remaining component operators L̂x and L̂y
with the linear combinations

L̂± = L̂x ± iL̂y (5.61)
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These are no longer Hermitian, but L̂†
± = L̂∓. It then follows that the product L̂+L̂− =

L̂2
x + L̂2

y + i[L̂x, L̂y] or

L̂+L̂− = L̂2 − L̂2
z + h̄L̂z (5.62)

and similarly

L̂−L̂+ = L̂2 − L̂2
z − h̄L̂z (5.63)

By subtraction we then have

[L̂+, L̂−] = 2h̄L̂z (5.64)

The commutators between L̂z and the two other components, are now replaced by

[L̂z, L̂±] = ±h̄L̂± (5.65)

It thus looks like L̂± are raising and lowering operators for the eigenvalues of L̂z. And
indeed, consider the above eigenstate |λ, µ〉 multiplied by L̂+. It is a new eigenstate
since

L̂zL̂+|λ, µ〉 = (L̂+L̂z + h̄L̂+)|λ, µ〉 = (µ+ h̄)L̂+|λ, µ〉

and the eigenvalue has increased with +h̄. It is therefore natural to measure the eigen-
value µ in units of h̄ and write µ = h̄m where the quantum number m is so far unknown.
In the same way L̂− is found to lower the eigenvalue by h̄. We therefore have

L̂±|λ,m〉 = |λ,m± 1〉

when we ignore normalization constants. Since the commutator (5.60) is zero, the state
L̂±|λ,m〉 is still an eigenstate of L̂2 with the same eigenvalue λ.

When we now continue to apply the raising operator L̂+ to the state |λ,m〉 the eigenval-
ues of L̂z will increase and eventually the above bound λ ≥ h̄2m2 will be violated since
λ doesn’t change. There must therefore be an upper state |λ, l〉 so that L̂+|λ, l〉 = 0.
This state is often also called the highest state. Applying now the lowering operator to
it and using the product(5.63), one obtains

L̂−L̂+|λ, l〉 = 0 = (L̂2 − L̂2
z − h̄L̂z)|λ, l〉 = (λ− h̄2l2 − h̄2l)|λ, l〉

and therefore the important result λ = h̄2l(l + 1).

So far l is just some real number. It can now be determined by applying the lowering
operator L̂− to this highest state. Each time the eigenvalue m is decreased by 1 and
eventually we obtain a state |λ, l− n〉 where n is a positive integer or zero. This lowest

state must now obey L̂−|λ, l − n〉 = 0 in order for the same bound not to be violated.
Multiplying this condition by L̂+ and now using the product (5.62), we have

L̂+L̂−|λ, l − n〉 = 0 = (L̂2 − L̂2
z + h̄L̂z)|λ, l− n〉

= [λ− h̄2(l − n)2 − h̄2(l − n)]|λ, l − n〉
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Since we already have found that λ = h̄2l(l + 1), it follows that

l(l + 1) − (l − n)2 + (l − n) = 0

or 2l(n + 1) = n(n + 1) which gives l = n/2. The magnitude of the angular momen-
tum is therefore quantized and given by the possible values l = 0, 1/2, 1, 3/2 · · · of the
corresponding quantum number.

We can therefore sum up our results for the quantization of angular momentum by the
two eigenvalue equations

L̂2| l,m〉 = h̄2l(l + 1)| l,m〉 (5.66)

L̂z| l,m〉 = h̄m| l,m〉 (5.67)

where the quantum number l is an integer or half integer while the other quantum
number can take on one of the values m = (l, l− 1, l− 2, · · · ,−l + 1,−l) corresponding
to 2l + 1 possible directions of the quantized angular momentum with respect to the
z-axis. It is very practical to have these eigenstates orthonormalized in the sense that
〈l,m | l′, m′〉 = δll′δmm′ . We must thus have a relation like L̂+| l,m〉 = Nlm| l,m+ 1〉
with some unknown coefficient Nlm. The normalization condition then requires that
|Nlm|2 = 〈l,m |L̂−L̂+| l,m〉. Using now the result (5.63) for the product L̂−L̂+, it follows
that |Nlm|2 = h̄2[l(l + 1) −m2 −m] and therefore

L̂+| l,m〉 = h̄
√
l(l + 1) −m(m+ 1)| l,m+ 1〉 (5.68)

when we set a possible phase factor equal to one. Similarly one finds

L̂−| l,m〉 = h̄
√
l(l + 1) −m(m− 1)| l,m− 1〉 (5.69)

These are very useful in practical calculations. A simple way to remember both, is to
combine them in the single expression

L̂±| l,m〉 = h̄
√

(l +m>)(l −m<)| l,m± 1〉 (5.70)

where m> is the largest of the two m-values appearing in the expression while m< is the
smallest of the two. The largest appears with a plus sign and the smallest with minus.

Within this basis of eigenstates corresponding to a value l of the total quantum num-
ber, we can now easily find matrix representations of the angular momentum operators
defined by

(Li)mm′ = 〈l,m |L̂i| l,m′〉 (5.71)

These will be (2l+1)×(2l+1) matrices satifying the fundamental commutator [Li, Lj ] =
ih̄ǫijkLk. We have derived it using the commutators of the orbital angular momentum

operators L̂ = r̂∧ p̂. But we will in the following generalize the above results to any set
of three operators having the same commutators. In this situation it is more appropriate
to call these operators for general spin operators.
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5.7 Spin-1/2 and the Pauli matrices

The smallest, non-trivial spin value is obtained for l = 1/2. This is a special and very
important case and it is customary to denote the corresponding spin operators by Ŝ
with [Ŝx, Ŝy] = ih̄Ŝz. Corresponding to (5.66) and (5.67), we then have the eigenvalue
equations

Ŝ2|1/2, m〉 = (3/4)h̄2|1/2, m〉 (5.72)

Ŝz|1/2, m〉 = mh̄|1/2, m〉 (5.73)

where now the second quantum number can only take the two values m = ±1/2. Since
the basis vectors |1/2,±1/2〉 are eigenstates for Ŝz, the corresponding matrix Sz is
diagonal,

Sz = h̄

(
1/2 0
0 −1/2

)
=

1

2
h̄σz (5.74)

where

σz =

(
1 0
0 −1

)
(5.75)

The two other matrices Sx and Sy follow from (5.70) which yield only two non-zero
matrix elements from

Ŝ+|1/2,−1/2〉 = h̄|1/2,+1/2〉, Ŝ−|1/2,+1/2〉 = h̄|1/2,−1/2〉

corresponding to

S+ = h̄

(
0 1
0 0

)
, S− = h̄

(
0 0
1 0

)
(5.76)

We can therefore write the two Cartesian components Sx = (S+ +S−)/2 = (h̄/2)σx and
Sy = (S+ − S−)/2i = (h̄/2)σy in terms of the two fundamental matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
(5.77)

All the representation matrices for spin S = 1/2 thus form the vector

S =
1

2
h̄σ (5.78)

where the components of the vector σ = (σx, σy, σz) are the three Pauli matrices. Since

the spin operator Ŝ is self-adjoint, they are Hermitean matrices.

In terms of these fundamental matrices the basic commutator [Ŝi, Ŝj ] = ih̄ǫijkŜk will be
represented by the matrix commutator

[σi, σj ] = 2iǫijkσk (5.79)
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or [σx, σy] = 2iσz which is easily seen to be satisfied. Indeed, we find

(
0 1
1 0

)(
0 −i
i 0

)
=

(
i 0
0 −i

)

or σxσy = iσz and similarly σyσx = −iσz . This means that σx and σy anticommute in
the sense that σxσy + σyσx = 0. One easily verifies that this is the case for any product
of two different Pauli matrices. On the other hand, the product of two equal Pauli
matrices is always given by the unit matrix, σ2

x = σ2
y = σ2

z = I, which we usually write
equal to one. The general anticommutator of two Pauli matrices is therefore

σiσj + σjσi = 2δij (5.80)

Combining this with the commutator in (5.79), we have

σiσj = δij + iǫijkσk (5.81)

It should be stressed that these relations are only valid for the representation matrices
of the spin-1/2 operators and don’t hold for other spins.

If we now are given a vector a = (ax, ay, az), we can call the product matrix

σ · a = σxax + σyay + σzaz =

(
az a−
a+ −az

)

where a± = ax ± iay, for the spin along this vector. Squaring it, one finds

(
az a−
a+ −az

)(
az a−
a+ −az

)
=

(
a2
x + a2

y + a2
z 0

0 a2
x + a2

y + a2
z

)
= a · a

or (σ · a)2 = a · a. This important result also follows directly as a special case from the
general product (5.81). Given a second vector b = (bx, by, bz), we multiply both sides
by aibj . Now using again the Einstein summation convention and the definition of the
vector product in terms of the Levi-Civita symbol, we get immediately

(σ · a)(σ · b) = a · b + iσ · (a ∧ b) (5.82)

In addition to its elegance, this beautiful formula has many applications as we will later
see.

Since this spin representation space is two-dimensional, the corresponding state vectors
will be two-component column matrices

χ =

(
χ1

χ2

)
(5.83)

called Pauli spinors. The components χ1 and χ2 are in general complex numbers so
that the norm becomes

χ†χ = χ∗
1χ1 + χ∗

2χ2 (5.84)
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We can write the general Pauli spinor (5.83) as χ = χ1α + χ2β where the unit-norm
spinors

α =

(
1
0

)
, β =

(
0
1

)
(5.85)

provide an orthogonal basis in this space. These are seen to represent the basis ket
vectors as |1/2,+1/2〉 → α and |1/2,−1/2〉 → β. They are therefore eigenspinors of σz
as is also verified by σzα = +α and σzβ = −β.

A general rotation of a spinor χ is now given by the matrix version of (5.51), i.e.

χ→ χ′ = R(α)χ (5.86)

where now R is a 2 × 2 rotation matrix

R(α) = e−iα·S/h̄ = e−iα·σ/2 (5.87)

Introducing the unit vector n for the direction of rotation, we then have

Rn(α) = e−iασ·n/2

= 1 − i
α

2
σ · n +

1

2!

(
− i

α

2
σ · n

)2
+

1

3!

(
− i

α

2
σ · n

)3
+ . . .

Now using (σ · n)2 = 1 so that (σ · n)3 = σ · n, one obtains

e−iα·σ/2 =
[
1 − 1

2!

(α
2

)2
+

1

4!

(α
2

)4
+ . . .

]
− iσ · n

[α
2
− 1

3!

(α
2

)3
+ . . .

]

= cos
α

2
− iσ · n sin

α

2
(5.88)

which can now be used to calculate all rotations of spin-1/2 spinors.

As a first application, consider the rotation (5.86) by a full turn, i.e. α = 2π. Since
sin π = 0 and cosπ = −1, we then find the surprising result χ → −χ. For rotations
of ordinary objects we would here expect to get back the original object, i.e. without
the minus sign. So in this respect aspin-1/2 system is a very special object due to its
quantum nature. We must make two full rotations in order to get back the original
spinor, i.e. for a rotation angle α = 4π. In many cases this extra minus sign has no
physical importance like any other phase factor. But in some special situations it will
have observable consequences which are very interesting and important.

A rotation of α = π/2 around the y-axis is now given by the matrix

Ry

(π
2

)
= cos

π

2
− iσy sin

π

2
=

√
1

2

(
1 −1
1 1

)
(5.89)

If we then initially have a particle or other system with its spin along the z-axis so that
it is described by the spin-up spinor α, it will after this rotation be in state described
by the spinor

χ′ =

√
1

2

(
1 −1
1 1

)(
1
0

)
=

√
1

2

(
1
1

)
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But this is an eigenspinor of σx since
(

0 1
1 0

)(
1
1

)
=

(
1
1

)

and we say that the spin points along the x-axis. This is also what we expected from a
classical picture.

Under the transformation (5.86) the inner spinor product χ†χ remains constant,

χ†χ→ χ†R†Rχ = χ†χ

since the transformation is unitary. But if we instead consider χ†σχ, it transforms
as a 3-vector. Consider a rotation by the angle α around the z-axis. Then Rz(α) =
exp(−iασz/2) and therefore

χ†σxχ → χ†eiασz/2σxe
−iασz/2χ

= χ†
[
σx +

1

2
(iα)[σz, σx] +

1

8
(iα)2[σz , [σz, σx]] + . . .

]
χ

using the Lie formula (2.53). Using now [σz , σx] = 2iσy and its cyclic cousins, we obtain

χ†σxχ → χ†
[
σx
(
1 − α2

2!
+ . . .

)
− σy

(
α− α3

3!
+ . . .

)]
χ

= χ†σxχ cosα− χ†σyχ sinα

In the same way it follows that

χ†σyχ→ χ†σxχ sinα + χ†σyχ cosα

while χ†σzχ remains invariant under this particular rotation. Thus the real object χ†σχ
behaves like a 3-vector and will return to itself after a full rotation. Such objects are
said to belong to the fundamental representation of the ordinary rotation group SO(3).
But the 2-dimensional spinor χ is complex and belongs to the fundamental represen-
tation of the complex rotation group SU(2). It contains SO(3) as a subgroup and has
fundamental spinor representation that changes sign under a full rotation. The vector
χ†σχ provides a spin-1 representation of SU(2) which is equivalent to the fundamental
representation of SO(3). All higher representations of the extended rotation group, i.e.
describing higher spins, can be found as higher products of spinor representations.

5.8 Orbital angular momentum and spherical har-

monics

A little thought shows that it is only rotations of systems with half-integer spins which
pick up an extra minus sign after a full rotation. Integer-spin systems don’t do that. For
these systems we can also calculate the representation matrices using the same procedure
as for spin-1/2. For instance for spin-1, the representation space is three-dimensional
and we find for the three angular momentum generators

Lx = h̄

√
1

2




0 1 0
1 0 1
0 1 0


 Ly = h̄

√
1

2




0 −i 0
i 0 −i
0 i 0


 Lz = h̄




1 0 0
0 0 0
0 0 −1


 (5.90)
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The matrix Lz follows directly from the eigenvalues in (5.67) while Lx and Ly follow
from using (5.70) in the same way as we did for spin-1/2. We notice the useful relation
(Lz/h̄)

3 = Lz/h̄ which is also seen to be satisfied for Lx and Ly. Again it should be
stressed that it is only valid here for a spin-1 system.

It is tempting to relate this three-dimensional representation space to the one provided
by the three components of the position vector r = xex + yey + zez of a particle.
We have already seen that in the coordinate representation the rotation generators are
given by the differential operators Lx = −ih̄(y∂z − z∂y), Ly = −ih̄(z∂x − x∂z) and
Lz = −ih̄(x∂y − y∂x) where ∂i ≡ ∂/∂xi. Using instead spherical coordinates with
x = r sin θ cosφ, y = r sin θ sinφ and z = r cos θ we can express the partial derivatives
∂x, ∂y and ∂z in terms of ∂r, ∂θ and ∂φ after some work. It then follows that Lz = −ih̄∂φ
while the ladder operators become

L± = h̄e±iφ
(
± ∂

∂θ
+ i cot θ

∂

∂φ

)
(5.91)

From (5.63) we then also find for the total angular momentum operator

L2 = −h̄2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
(5.92)

All dependence on ∂r goes away since r remains constant under rotations. The angular
momentum eigenfunction 〈r | l,m〉 are therefore functions of only the two angles θ and
φ. They are the spherical harmonics

Ylm(θ, φ) = 〈θ, φ | l,m〉 (5.93)

we shall now derive. The eigenvalue equation (5.67) now becomes the simple differential
equation −ih̄∂φYlm = h̄mYlm with the solution

Ylm(θ, φ) = eimφyl(θ) (5.94)

This remaining function yl(θ) will folow from the highest state which as defined by
L̂+| l, l〉 = 0. The corresponding wave function Yll therefore satisfies the differential
equation (∂θ + i cot θ∂φ)Yll(θ, φ) = 0 or

(∂θ − l cot θ)yl(θ) = 0 (5.95)

using the raising operator in (5.91) and the split (5.94). Rewriting it as dyl/yl =
l cot θdθ, we can easily integrate both sides to give ln yl = l ln sin θ + lnNl where Nl is
an integration constant. We thus have the result yl(θ) = Nl sin

l θ where Nl now appears
as a normalization constant determined by

〈l,m | l′, m′〉 =
∫
dΩY ∗

lmYl′m′ = δll′δmm′ (5.96)

where dΩ = sin θdθdφ is the solid angle differential. For our solution we therefore have

|Nl|2
∫ 2π

0
dφ
∫ π

0
dθ sin θ sin2l θ = 1
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where we can use the tabulated integral

∫ π

0
dθ sinp θ =

√
π

Γ
(
p+1
2

)

Γ
(
p+2
2

) (5.97)

When p = 2l + 1 is a positive integer, this can be simplified to

∫ π

0
dθ sin2l+1 θ =

2l+1l!

(2l + 1)!!
=

2(2ll!)2

(2l + 1)!
(5.98)

since Γ(1/2) =
√
π. The normalization constant is thus found to be

Nl =
(−1)l

2ll!

√
(2l + 1)!

4π
(5.99)

where the phase factor in front is a standard convention.

Having found the highest angular momentum eigenfunction, the others will now follow
from using the lowering operator L− together with the master formula (5.70). It gives

L−Yll = h̄
√

2l · 1Yl,l−1

from which Yl,l−1 is obtained. One more step down gives

L2
−Yll = h̄2

√
2l · (2l − 1)

√
1 · 2Yl,l−2

and in general

Ll−m− Yll = h̄l−m
√

2l · (2l − 1) · · · (l +m+ 1)
√

1 · 2 · 3 · · · (l −m) Ylm

Thus one has

Ylm(θ, φ) =

√√√√ (l +m)!

(2l)!(l −m)!

(
L−

h̄

)l−m
Yll(θ, φ) (5.100)

where the differential operator L− is given by (5.91) and Yll as above.

One can simplify somewhat this result by observing that

(
L−

h̄

)
yle

imφ = e−iφ
(
− ∂

∂θ
+ i cot θ

∂

∂φ

)
yle

imφ

= −ei(m−1)φ
(
y′l +myl cot θ

)

is quite similar to
(

d

d cos θ

)
yl sin

m θ = −
(
y′l +myl cot θ

)
sinm−1 θ

where the dash derivative is with respect to θ. Repeating now this operation l − m
times, one thus obtains

(
L−

h̄

)l−m
eimφ sinl θ = eimφ sin−m θ

(
d

d cos θ

)l−m
sin2l θ (5.101)
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which is what we need in (5.94). Including the normalization constant (5.99) in Yll, we
get the final result for the spherical harmonic functions

Ylm(θ, φ) =
(−1)l

2ll!

√√√√2l + 1

4π
· (l +m)!

(l −m)!
eimφ sin−m θ

(
d

d cos θ

)l−m
sin2l θ (5.102)

From this construction it can be shown that Yl,−m(θ, φ) = (−1)mY ∗
lm(θ, φ) which is a

useful symmetry relation.

The l = 0 spherical harmonic is just the constant Y00 = 1/
√

4π. When l = 1 there are
three functions

Y1,0 =

√
3

4π
cos θ =

√
3

4π

z

r
(5.103)

Y1,±1 = ∓
√

3

8π
e±iφ sin θ = ∓

√
3

8π

x± iy

r
(5.104)

We thus see that the three coordinates (x, y, z) provide a three-dimensional represen-
tation space for angular momentum l = 1, just as advertised in the beginning of this
section.

When the azimuthal quantum number m = 0 the spherical harmonics are seen to be
polynomials in cos θ. More accurately, writing

Yl0(θ, φ) =

√
2l + 1

4π
Pl(cos θ), (5.105)

the Legendre polynomials are defined by

Pl(x) =
1

2ll!

(
− d

dx

)l (
1 − x2

)l
(5.106)

when comparing with (5.102). Their normalization follows from (5.96) which now gives

∫ 1

−1
dxPl(x)Pl′(x) =

2

2l + 1
δll′ (5.107)

It is straightforward to calculate the lowest of these functions from (5.106). One finds
P0(x) = 1 while

P1(x) = −1

2

d

dx
(1 − x2) = x

P2(x) =
1

8

d2

dx2
(1 − x2)2 =

1

8

d

dx
(4x3 − 4x) =

1

2
(3x2 − 1)

and so on. We see from here that Pl(1) = 1 which is true also for all higher values of
l . These functions are even in x when l is even and odd when l is odd. This can be
summed up in the relation

Pl(−x) = (−1)lPl(x) (5.108)

which we will return to in the following section.
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5.9 Spherical symmetric potentials

We now have the tools to investigate the quantum mechanics of a particle with mass µ in
a spherical symmetric potential V = V (r). Using spherical coordinates, the Hamiltonian

H = − h̄2

2µ
∇

2 + V (r) (5.109)

will act on wave function ψ(r) = ψ(r, θ, φ). We thus need

∇
2 =

∂2

∂r2
+

2

r

∂

∂r
+

1

r2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
(5.110)

The last, angular part is seen to be just the total angular momentum operator L2 in
(5.92). This can be understood from the composition of the classical momentum p into
a radial part and an angular part which follows from (r ∧ p)2 = r2p2 − (r · p)2 so that

p2 = p2
r +

1

r2
L2 (5.111)

where the radial part pr = (r · p)/r. In the quantum theory p becomes the differential
operator p = −ih̄∇ which no longer commutes with the radius r. In order for the
operator pr to be Hermitean, it must therefore be defined as

pr =
1

2

(
1

r
r · p + p · r1

r

)
= −ih̄1

r

∂

∂r
r (5.112)

A similar, short calculation then shows that

p2
r = − h̄

2

r2

∂

∂r

(
r2 ∂

∂r

)
= −h̄2

(
∂2

∂r2
+

2

r

∂

∂r

)

which is the first part of the Laplacian (5.110). Its structure therefore corresponds to
the classical decomposition (5.111).

The stationary states of the particle in this potential will now be given by the solutions
of the differential equation

[
− h̄2

2µ

(
∂2

∂r2
+

2

r

∂

∂r

)
+

L2

2µr2
+ V (r)

]
ψ(r) = Eψ(r) (5.113)

It can be solved along the same lines as the cylindrical symmetric systems considered
earlier in this chapter. Since the Hamiltonian is rotational invariant so that [H,L] =
0, the energy eigenfunctions ψ(r) are also eigenfunctions of the angular momentum
operator L. We can therefore write ψ(r) = R(r)Ylm(θ, φ) where the radial function R(r)
is seen to satisfy

[
− h̄2

2µ

(
d2

dr2
+

2

r

d

dr

)
+
l(l + 1)h̄2

2µr2
+ V (r)

]
R(r) = ER(r) (5.114)

Now since

d2

dr2
(rR) = r

d2R

dr2
+ 2

dR

dr
,
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the equation simplifies by introducing the new function u(r) = rR(r) satisfying the
simpler equation

− h̄2

2µ

d2u

dr2
+

[
V (r) +

l(l + 1)h̄2

2µr2

]
u = Eu (5.115)

It has exactly the same form as the one-dimensional motion of a particle in the effective
potential

Veff (r) = V (r) +
l(l + 1)h̄2

2µr2
(5.116)

The last term here is the contribution from the centrifugal motion. If the potential V (r)
is less singular than 1/r2, this centrifugal part will therfore determine the wave function
as the radius r → 0. In fact, if we neglect the E and V compared with the centrifugal
term, the differential equation (5.115) simplifies to

d2u

dr2
=

1

r2
l(l + 1)u

This has solutions of the form u ∝ rs which is verified by substution. This leads to
the condition s(s − 1) = l(l + 1) with the two solutions s = −l or s = l + 1. But the
negative solution means that the wave function diverges in the limit r → 0 which we
want to avoid. We must therefore choose the other solution, giving u ∝ rl+1 in this
region. Separating out this part from the general solution, it must of the form

u(r) ∝ rl+1v(r) (5.117)

where now v(r) remains to be determined.

Only for a few special potentials V (r) can the differential equation (5.115) be solved
analytically. The simplest case is a free particle for which V = 0. Writing then the
energy as E = h̄2k2/2µ so that it is expressed by the unknown quantity k, the radial
equation (5.115) becomes

d2u

dx2
− l(l + 1)

x2
u+ u = 0 (5.118)

where now x = kr is a dimensionless radial variable. For l = 0 this is now just an
ordinary, harmonic equation with the solutions u = sin x or u = cosx. Again we reject
this last possibilty since it gives a radiel function R = u/r diverging when r → 0. The
regular solution is therefore

R0(r) =
sin kr

kr
(5.119)

when we ignore any normalization constants.

Solutions with higher angular momentum l > 0 can be derived by rewriting (5.118) as a
differential equation for the function v = u/xl+1. One then finds the equivalent equation

v′′ +
2

x
(l + 1)v + v = 0 (5.120)
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This now gives a recursion relation when we introduce the new function w = −v′/x and
taking the derivative, i.e.

(xw)′′ +
2

x
(l + 1)(xw)′ +

[
1 − 2

x2
(l + 1)

]
xw = 0

Simplifying, one then obtains

w′′ +
2

x
(l + 2)w + w = 0

which is just the same as (5.120), but now for l+1. In this way we have established the
recursion relation

vl+1 = −1

x

dvl
dx

(5.121)

with v0 = sin x/x as calculated above. It gives immediately

vl =

(
−1

x

d

dx

)l
sin x

x

and from (5.117) therefore for the full radial function

Rl(x) = xl
(
−1

x

d

dx

)l
sin x

x
(5.122)

These functions are called spherical Bessel functions and denoted by jl(x). For the first
ones we have

j0(x) =
sin x

x

j1(x) =
sin x

x2
− cosx

x

j2(x) =
(

3

x3
− 1

x

)
sin x− 3

x2
cos x

and so on. That they are solutions to the Bessel equation (5.21) is not so surprising.
When we write the radial equation (5.114) with V = 0 and using the dimensionless
radius x = kr, it becomes x2R′′ + 2xR′ + (x2 − l(l+ 1))R = 0 which show that they are
quite similar. In fact, they are related by

jl(x) =

√
π

2x
Jl+1/2(x) (5.123)

For this reason the spherical Bessel function are sometimes also called half-integer Bessel

functions.

In spherical coordinates we now have found the general form

ψk(r) =
∑

l,m

cl,mjl(kr)Ylm(θ, φ)

for the wave function of a free particle with energy E = (h̄k)2/2µ. The expansion
coefficients are determined from the requirement that this infinite sum must describe
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the plane wave ψk = eik·r in Cartesian coordinates. They are simplest to calculate when
the wave number k is along the z-axis. The right-hand side can then not depend on
the azimuthal angle φ so that the quantum number m = 0. From (5.105) we can then
express the spherical harmonic Yl0 by the Legendre polynomial Pl giving

eikz =
∞∑

l=0

Cljl(kr)Pl(cos θ)

with z = r cos θ. Using the orthogonality relation (5.107) between Legendre polyno-
mials and the behaviour of jl(kr) in the limit r → 0, one can calculate the expansion
coefficients Cl. In this way we end up with the plane-wave expansion

eikr cos θ =
∞∑

l=0

il(2l + 1)jl(kr)Pl(cos θ) (5.124)

It has many useful applications as in the theory of particle scattering.

5.10 The spherical well

A model for protons and neutrons confined within the nucleus, is to assume that they
move freely within the spherical well potential

V (r) =
{

0, r < a
∞, r > a

(5.125)

More realistically one should assume a finite depth, but that problem is bit more difficult
to investigate. Inside the well where the potential V = 0, a confined particle will be
described by the the radial wavefunctions R(r) = jl(kr). When the potential becomes
infinite at the wall of the well at radius r = a, the wave function must be zero resulting
in the condition jl(ka) = 0. The wave number k for the mode with angular momentum
l is therefore quantized with the possible values k = xln/a where xln is the n’th root of
the Bessel function jl(x). As a result we immediately have the energy spectrum given
as

Enl =
h̄2

2µa2
x2
ln (5.126)

It is customary to call nr = n − 1 for the radial quantum number, giving the number
of zeros in the radial wave function. The s-states have l = 0 and therefore the wave
function (5.119) with zeros for x0n = nπ, i.e. x01 = 3.14, x02 = 6.28 and so on. For the
p-states with l = 1 the lowest zeros are at x11 = 4.49 and x12 = 7.73, the lowest l = 2
or d-state is given by x21 = 5.76 while the first f -level with l = 3 has x31 = 6.99. These
energy levels are shown in Fig. 5.4 with labels (n, l).

This spherical well potential is quite similar to the three-dimensional harmonic oscillator
potential V = µω2r2/2 which also gives an analytically solvable problem. One then
proceeds along the same lines as for the planar oscillator in the beginning of this section.
The eigenfunctions will have a form similar to the two-dimensional solution (5.32), but
now in terms of an associated Laguerre polynomial of half-integer order. From the
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Figure 5.4: Lowest energy levels in a spherical well in units of E0 = h̄2/2µa2.

formula for the energy levels Enl = (2nr + l + 3/2)h̄ω where the quantum number
nr = n − 1 again gives the number of zeros in the radial wave function, we see that
the 2s level now is degenerate with 1d, while 2p is degenerate with 1f . Needless to
say, the resulting energy level diagram is the same as obtained previously in Cartesian
coordinates.

Central potentials are also invariant under the discrete symmetry r → −r which is
now the parity operation. This is also an invariance of the full Hamiltonian and we
can thus assign the parity eigenvalue P = ±1 to each energy eigenstate. Under this
transformation the spherical angles change as θ → π − θ and φ → π + φ. From the
definition (5.102) of the spherical harmonics, we therefore see that they change as Ylm →
(−1)m(−1)l−mYlm = (−1)lYlm. The radial wave function is unchanged. We thus find
that the parity quantum number of a state with angular momentum quantum number
l is simply (−1)l.

5.11 Hydrogen atoms

In a hydrogen-like atom we have one particle with charge e and mass m1 interacting
with the nuclues with mass m2 via the Coulomb potential. If Z is the number of positive
charges on the nucleus, the full Hamiltonian of the atom is then

Htot =
p2

1

2m1
+

p2
2

2m2
− Ze2

4πǫ0|r1 − r2|
(5.127)
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As in classical mechanics, this is separated into the motion of the center-of-mass with
coordinates

R =
m1r1 +m2r2

m1 +m2
(5.128)

and momentum P = p1+p2 plus a relative motion described by the coordinate difference
r = r1 − r2. The Hamiltonian then becomes Htot = HCM + H where HCM = P2/2M
governs the motion of the center of mass. It will therefore move as a free particle with
mass M = m1 +m2. Of more interest is the relative motion described by

H =
1

2µ
p2 − Ze2

4πǫ0r
(5.129)

where µ is the reduced mass

µ =
m1m2

m1 +m2

(5.130)

In an ordinary hydrogen atom with an electron bound to a proton m1 = me and m2 =
mp ≫ me so that µ ≈ me, while in positronium µ = me/2.

The Hamiltonian (5.129) is spherical symmetric and can be solved within the framework
already established. The reduced radial equatiom (5.115) now becomes

h̄2

2µ

d2u

dr2
+

[
E +

Ze2

4πǫ0r
− l(l + 1)h̄2

2µr2

]
u = 0 (5.131)

From (5.117) we already know know that a physical meaningful solution of this dif-
ferential equation for small separations r → 0 must behave as u(r) ∝ rl+1 since the
centrifugal term then dominates in the effective potential. Since the Coulomb potential
is negative, and goes to zero at large separations, any bound state must have negative
energy. In this region it simplifies to

d2u

dr2
+

2µE

h̄2 u = 0

The bound state has a wave function which must go to zero when r → ∞. We thus find
the acceptable solution u(r) ∝ e−κr in this region when introducing κ2 = −2µE/h̄2.

In order to simplify the differential equation (5.131), we now first introduce a dimen-
sionless radial variable ρ = 2κr. It then becomes

d2u

dρ2
+

[
λ

ρ
− l(l + 1)

ρ2
− 1

4

]
u = 0 (5.132)

where

λ =
Ze2

4πǫ0h̄

√
µ

−2E
(5.133)

Next, we separate out the established behaviour of the wave function in the limits ρ→ 0
and ρ→ ∞ by writing

u(r) = ρl+1e−ρ/2L(ρ)
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We are then left with a differential equation for the function L(ρ) which is found by
substituting this expression into (5.131). The result is

ρL′′ + (2l + 2 − ρ)L′ + (λ− l − 1)L = 0 (5.134)

Luckily, this is Kummer’s equation (5.27) we already have met in connection with the
quantization of the planar oscillator. It has solutions which are associated Laguerre
polynomials bounded in the limit ρ → ∞ only when the coefficient λ − l − 1 ≡ nr is
a positive integer or zero, i.e. nr = 0, 1, 2, 3, · · ·. This is the radial quantum number,
giving the number of zeros in the corresponding polynomial L(ρ).

The quantity (5.133) is now an integer, λ = l+ 1 +nr ≡ n called the principal quantum

number, with values n = l + 1, l + 2, l + 3, · · ·. It results in the quantized energy levels

En = −1

2
µ

(
Ze2

4πǫ0h̄

)2
1

n2
(5.135)

which is the result found by Bohr ten years before modern quantum mechanics. Denoting
each each eigenstate by the quantum numbers (nl), the lowest levels are shown in Fig.5.5.
All states with the same principal quantum number n and angular momentum quantum
number in the interval 0 ≤ l ≤ n− 1 have the same energy. Since each eigenstate with

1s

l
s

0

E

2s

1

p

2

d

2p

3s 3p 3d

Figure 5.5: Lowest energy levels in the hydrogen atom.

a definite value of l, has a degeneracy of 2l + 1, the total degeneracy of an energy level
En is

n−1∑

l=0

(2l + 1) = 2
n−1∑

l=0

l + n = n(n− 1) + n = n2 (5.136)
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This accidental degeneracy is due to some extra symmetry in the Coulomb potential on
top of the three-dimensional, rotational invariance. In fact, the full symmetry corre-
sponds to rotations in an abstract, four-dimensional space.

A more compact and useful version of the Bohr formula (5.135) is

En = −1

2
µc2α2Z

2

n2
(5.137)

when we introduce the velocity of light c and the fine structure constant

α =
e2

4πǫ0h̄c
=

1

137.036 . . .
(5.138)

In a later chapter we will understand better why this name is appropriate. The corre-
sponding eigenfunctions are

ψnlm(r) = Nnlρ
le−ρ/2L2l+1

n−l−1(ρ)Ylm(θ, φ) (5.139)

where Nnl is a normalization constant. Notice that the lower index on the Laguerre
polynomial is the radial quantum number.

We are here most interested in the case of ordinary atoms where the bound particle
is an electron with mass me. Taking the nuclear mass to infinity, we will then have a
reduced mass µ = me. The dimensionless coordinate ρ = 2κr then becomes

ρ = 2r

√
−2meE

h̄2 =
2r

na
(5.140)

where a = a0/Z is called the radius of the atom in its ground state. It equals the Bohr
radius a0 = h̄/αmec = 0.53 × 10−10 m in the ordinary hydrogen atom with Z = 1 for a
proton. Notice that the larger Z is, the smaller the atom becomes. The electron is then
pulled more in towards the nucleus.

For hydrogen the ground state energy is E1 = −mec
2α2/2 = −e2/8πǫ0a0 = −13.60 eV

from the valueme = 0.511 MeV /c2 of the electron mass. This sets the scale for all atomic
energies. In this state the kinetic energy of the electron is p2/2me = e2/8πǫ0a0 and it
therefore has a velocity v/c = p/mec = α. With the above value for the fine structure
constant, this is an enormous velocity, slightly less than one percent of the velocity
of light. Relativistic corrections are therefore expected to come in at a magnitude
(v/c)2 = α2 ≈ 10−5 smaller than the ground state energy. Such corrections will be
considered in more detail in a later chapter.

Writing now the eigenfunction in (5.139) as

ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ) (5.141)

with the radial function

Rnl(r) = Nnl(2r/na)
le−r/naL2l+1

n−l−1(2r/na), (5.142)

the constant is determined from the orthonormality condition
∫
d3r ψ∗

nlm(r)ψn′l′m′(r) = δnn′δll′δmm′ (5.143)
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Using the normalization (5.96) of the spherical harmonics, this simplifies to
∫ ∞

0
drr2R2

nl(r) = 1 (5.144)

with the result

Nnl =
2

n2

√√√√(n− l − 1)!

a3(n+ l)!
(5.145)

for the normalization constant. In this way we find for the lowest radial functions

R1s =

√
4

a3
e−r/a (5.146)

R2s =

√
1

8a3

(
2 − r

a

)
e−r/2a (5.147)

R2p =

√
1

24a3

r

a
e−r/2a (5.148)

using definition (5.28) of the associated Laguerre polynomials.

Later we will need the wave function at the origin r = 0. From (5.142) we see that it
is only the s-states with l = 0 which are non-zero at this point. It involves the value
of the Laguerre polynomial L1

n−1(0) = n which follows from the definition (5.30). As a
result we obtain

ψn00(r = 0) =
2

n2

√
(n− 1)!

a3n!

n√
4π

=

√
1

πa3n3
(5.149)

5.12 Rotation matrices and Euler angles

So far we have only considered rotations being performed on a particle with coordinates
(x, y, z). in a fixed coordinate system. These are called active transformations. If the
particle is initially in the state |ψ〉, it will then after the rotation R(α) be in the state
|ψ′〉 with the corresponding wavefunction ψ′(r) = 〈r |ψ′〉 = 〈r |R̂(α)|ψ〉. But now we
can consider this expression in the passive sense where the system |ψ〉 remains fixed,
but the coordinate system is rotated in the opposite way so that r → R−1(α)r. The
wavefunction ψ′(r) represents then the same state, but in this new coordinate system.

If the quantum system under consideration is a single particle in the angular-momentum
eigenstate | l,m〉, it will before the passive rotation be described by the wavefunction
Ylm(θ, φ) = 〈θ, φ | l,m〉 and afterwards by Ylm(θ′, φ′) = 〈θ′, φ′ | l,m〉 since it is found with
the spherical angles (θ′, φ′) in the new coordinate system. Inserting a complete set of
angular-momentum eigenstates in this last matrix element, we then have

Ylm(θ′, φ′) = 〈r′ | l,m〉 = 〈r |R̂(α)| l,m〉 =
l∑

m′=−l

〈r | l,m′〉〈l,m′ |R̂(α)| l,m〉

=
l∑

m′=−l

Ylm′(θ, φ)D
(l)
m′m(α) (5.150)
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Figure 5.6: Definition of the three Euler angles.

where the (2l + 1) × (2l + 1) matrix with elements

D
(l)
m′m(α) = 〈l,m′ |R̂(α)| l,m〉 = 〈l,m′ |e−iα·L̂/h̄| l,m〉 (5.151)

is called the rotation matrix or Wigner function for spin l. Since the rotation operators
R̂(α) are unitary, these matrices will also be unitary. Their physical content is perhaps
more easily seen from the equivalent definition

R̂(α)| l,m〉 =
l∑

m′=−l

| l,m′〉D(l)
m′m(α) (5.152)

The ket vector on the left-hand side is an eigenvector of L̂z with the eigenvalue mh̄ in the
direction of the rotated z-axis. On the right-hand side this vector is decomposed onto
basis eigenvectors for L̂z in the original z-direction. Thus D

(l)
m′m(α) is the amplitude

to measure the value m′h̄ along the z-axis when we know that the spin points in the
direction of the rotated z-axis with component mh̄. This observation enables many
simple explanations of spin effects in different experimential situations in nuclear and
elementary particle physics.

Calculation of the above rotation matrices is most easily done parametrisizing the ro-
tations with the three Euler angles used in classical mechanics instead of the rotation
vector α = αn corresponding to a single rotation of α around the axis n. A general
rotation of the original axis system (x, y, z) is then defined by the three Euler rotations

1. A counter-clockwise rotation of α around the z-axis so that the original axis system
goes into the new system (x′′, y′′, z′′ = z).

2. A counter-clockwise rotation of β around the y′′-axis. This carries the z′′-axis into
the z′-axis.
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3. A counter-clockwise rotation of γ around the z′-axis. This carries the x′′-axis into
the x′-axis and y′′-axis into the y′-axis.

The final axis system (x′, y′, z′) is thus obtained by the combined rotations

R̂(α, β, γ) = e−iγL̂z′/h̄e−iβL̂y′′/h̄e−iαL̂z/h̄ (5.153)

But now since the second rotation is around the rotated y-axis, we can make use of
(5.50) to write it as a rotation about the original y-axis, i.e.

e−iβL̂y′′/h̄ = e−iαL̂z/h̄e−iβL̂y/h̄eiαL̂z/h̄

Similarly, e−iγL̂z′/h̄ is the transform of e−iγL̂z/h̄ under the previous rotation that carried
the z-axis into the z′-axis, i.e.

e−iγL̂z′/h̄ = e−iβL̂y′′/h̄e−iγL̂z/h̄eiβL̂y′′/h̄

Thus we find for the full rotation (5.153)

R̂(α, β, γ) = e−iβL̂y′′/h̄e−iγL̂z/h̄e−iαL̂z/h̄

= e−iαL̂z/h̄e−iβL̂y/h̄e−iγL̂z/h̄ (5.154)

It corresponds to three separate rotations now performed in the original and fixed axis
system (x, y, z). This represents a big simplification.

In the Euler parametrization the inverse rotation defined by R̂R̂−1 = R̂−1R̂ = 1 is now
R̂−1(α, β, γ) = R̂(−γ,−β,−α) which is easily verified. These operators are elements
of the three-dimensional rotation group SO(3) where the product of two rotations is
equivalent to a new rotation, i.e.

R̂(α, β, γ)R̂(α′, β ′, γ′) = R̂(α′′, β ′′, γ′′) (5.155)

where the angles (α′′, β ′′, γ′′) are in general non-linear functions of the angles (α, β, γ) and

(α′, β ′, γ′). The rotation matrices D
(l)
mm′(α, β, γ) provide a (2l+1)× (2l+1)-dimensional

matrix representation of the rotation group.

Multiplying the defining expansion (5.150) by the inverse rotation matrix and using the
fact that these are unitary, we obtain the corresponding expression

Ylm(θ, φ) =
l∑

m′=−l

D
(l) ∗
mm′(α, β, γ)Ylm′(θ′, φ′) (5.156)

Now we consider the special rotation where the new angles θ′ = φ′ = 0. This is obtained
when the axis system is rotated by α = φ and β = θ as is seen from Fig.5.4 showing the
situation the xy-plane. In this special case (5.156) gives

Ylm(β, α) =
l∑

m′=−l

D
(l) ∗
mm′(α, β, γ)Ylm′(0, 0)



104 Chapter 5. Rotations and spherical symmetry
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Figure 5.7: Passive rotation by α in the xy-plane.

But from the previous section we know that the spherical harmonics Ylm vanish in the
forward direction θ = 0 except for m = 0. More accurately we have

Ylm′(0, 0) =

√
2l + 1

4π
δm′0

from (5.105). Inserted in the above sum, we then have the useful result

Ylm(β, α) =

√
2l + 1

4π
D

(l) ∗
m0 (α, β, γ) (5.157)

This is seen when we now take the m = 0 component of the expansion (5.150),

Yl0(θ
′, φ′) =

l∑

m′=−l

Ylm′(θ, φ)D
(l)
m′0(α, β, γ)

Now using our result for D
(l)
m0 and expressing the left-hand side in terms of a Legendre

polynomial by (5.105), we have

Pl(cos θ′) =
4π

2l + 1

l∑

m=−l

Ylm(θ, φ)Y ∗
lm(β, α) (5.158)

This special relation is called the addition theorem for spherical harmonics. An equiva-
lent form is obtained by introducing the two unit vectors n and k in the directions (θ, φ)
and (β, α) respectively. Then it can be written as

Pl(n · k) =
4π

2l + 1

l∑

m=−l

Ylm(n)Y ∗
lm(k) (5.159)
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where cos θ′ = n · k = cos θ cos β + sin θ sin β cos(φ − α). For θ′ = 0 is reduces to a
completeness sum for spherical harmonics.

With the Euler parametrization the general rotation matrix element (5.151) becomes

D
(l)
mm′(α, β, γ) = 〈l,m |e−iαL̂z/h̄e−iβL̂y/h̄e−iγL̂z/h̄| l,m′〉 (5.160)

= e−i(mα+m′γ)d
(l)
mm′(β) (5.161)

where

d
(l)
mm′(β) = 〈l,m |e−iβL̂y/h̄| l,m′〉 (5.162)

is the reduced rotation matrix. For the lowest spins they are easily found. The simplest
case is spin S = 1/2. From (5.88) we then have

e−iβŜy/h̄ = e−iσyβ/2 = cos
β

2
− iσy sin

β

2

so that

d(1/2)(β) =

(
cos β/2 − sin β/2
sin β/2 cosβ/2

)
(5.163)

With β = π/2 we recover the special result (5.89).

For spin S = 1 we take the generator Ly from (5.90). As noted there, it has the property
that (Ly/h̄)

3 = Ly/h̄. Expanding and combining even and odd terms, one can then write

e−iβL̂y/h̄ = 1 − i sin β(Ly/h̄) − (1 − cos β)(Ly/h̄)
2 (5.164)

Now we have

(
Ly
h̄

)2

=
1

2




1 0 −1
0 2 0

−1 0 1




and thus one obtains the rotation matrix

d(1)(β) =




(1 + cosβ)/2 − sin β/
√

2 (1 − cosβ)/2

sin β/
√

2 cosβ − sin β/
√

2

(1 − cosβ)/2 sin β/
√

2 (1 + cosβ)/2


 (5.165)

Wigner has derived a compact formula which allows the calculation of all higher spin
rotation matrices.

In the same way as the spherical harmonics are eigenfunctions for the rigid rotator,
these new rotation functions give the eigenfunctions for a general rigid body in rotation.
That is the only motion it can have in its own center-of-mass system. To see this, we
attach the rotated axis system (x′, y′, z′) to the body. The orientation of the body will
then at any instant be given by the three Euler angles.

From classical mechanics we know that the Hamiltonian of such a rotating body is

H =
L2

1

2I1
+
L2

2

2I2
+
L2

3

2I3
(5.166)
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where I1, I2 and I3 are the three principal moments of inertia. Similarly, L1, L2 and
L3 are the components of the conserved angular momentum vector L along the same
axes, i.e. along the unit basis vectors (e1, e2, e3) of the body-fixed coordinate system
(x′, y′, z′).

In a quantum description of this motion described by the Euler angles, the components
of the angular momentum become differential operators in these variables. We can find
them from the different rotation vectors involved in each seprate rotation. The first
rotation by α was around the laboratory-fixed z axis so we have nα = ez. From the
defining expression (5.49) it then follows

Lz = −ih̄ ∂

∂α
(5.167)

The second rotation by β was around the y′′-axis which is in the xy-plane an angle α
away from the original y-axis. Thus nβ = − sinαex + cosαey giving

−ih̄ ∂

∂β
= − sinαLx + cosαLy

After a little more geometry we find the third rotation of γ around the z′ axis to be in
the direction nγ = sin β cosαex + sin β sinαey + cosβez. We therefore have, again from
(5.49),

−ih̄ ∂
∂γ

= sin β cosαLx + sin β sinαLy + cosβLz

Together with (5.167) we can now solve for Lx and Ly with the results

Lx = ih̄ cosα

(
cot β

∂

∂α
− 1

sin β

∂

∂γ

)
+ ih̄ sinα

∂

∂β
(5.168)

Ly = ih̄ sinα

(
cot β

∂

∂α
− 1

sin β

∂

∂γ

)
− ih̄ cosα

∂

∂β
(5.169)

Some more work then verifis that [Lx, Ly] = ih̄Lz holds in this parametrization. Since
the energy of the body is independent of its orientation with respect to the laboratory-
fixed coordinate system (x, y, z), both the eigenvalues of

L2 = −h̄2

[
∂2

∂β2
+ cotβ

∂

∂β
+

1

sin2 β

(
∂2

∂α2
+

∂2

∂γ2
− 2 cosβ

∂2

∂α∂γ

)]
(5.170)

and Lz in (5.167) are conserved quantum numbers, corresponding to the magnitude and
direction of L as seen in the laboratory system.

But what we need in order to find the quantized energy from the Hamiltonian (5.166)
are the components of the angular momentum in the body-fixed system of axes, i.e.
Li = ei ·L in the three directions i = (1, 2, 3). Similar geometric considerations as above
then give nγ = e3 and nβ = sin γe1 + cos γe2. Combined with the more cumbersome
nα = − sin β cos γe1 +sin β sin γe2 +cosβe3 we then have the equivalent, linear relations
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between the generators

−ih̄ ∂
∂γ

= L3

−ih̄ ∂

∂β
= sin γL1 + cos γL2

−ih̄ ∂

∂α
= − sin β cos γL1 + sin β sin γL2 + cosβL3

Solving for L1 and L2 now gives

L1 = −ih̄ cos γ

(
cot β

∂

∂γ
− 1

sin β

∂

∂α

)
− ih̄ sin γ

∂

∂β
(5.171)

L2 = +ih̄ sin γ

(
cot β

∂

∂γ
− 1

sin β

∂

∂α

)
− ih̄ cos γ

∂

∂β
(5.172)

The total angular momentum operator L2 = L2
1 + L2

2 + L2
3 is as expected the same as

in (5.170). But when we calculate the commutators between these last components, we
find the same result but now with opposite sign,

[L1, L2] = h̄2

(
cot2 β +

∂

∂β
cotβ

)
∂

∂γ
= −h̄2 ∂

∂γ
= −ih̄L3 (5.173)

It is a bit surprising, but is basically due to the fact that rotations from the body-fixed
frame seem to take place in the opposite direction compared with observations in the
laboratory-fixed frame. Also it should be noted that all these body-fixed components
of the angular momentum commute with the components (Lx, Ly, Lz) in the laboratory
system.

We can now write out the Hamiltonian (5.166) in terms of these operators. But instead
of solving the resulting differential eigenvalue equation, which is very difficult, we can
make use of the rotation functions we have found. If the body has an orientation given
by three Euler angles (φ, θ, χ), the wavefunction will be of the form Ψlm(φ, θ, χ). Here
the subscripts indicate the two conserved quantum numbers corresponding to the total
angular momentum and its component along the z-axis.

If we now perform a passive rotation (α, β, γ) of the coordinate system, the wavefunction
will change into

Ψlm(φ′, θ′, χ′) =
l∑

k=−l

Ψlk(φ, θ, χ)D
(l)
km(α, β, γ) (5.174)

in complete analogy with (5.150). Following the same line of reasoning, we again consider
the special rotation α = φ, β = θ and χ = γ resulting in φ′ = θ′ = χ′ = 0. Multiplying
the above equation with the rotation matrix for the inverse rotation and making use of
its unitary property, we then have

Ψlm(α, β, γ) =
l∑

k=−l

ClkD
(l) ∗
mk (α, β, γ) (5.175)
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where the constants Clk = Ψlk(0, 0, 0). This result corresponds to (5.157) for the spher-
ical harmonics. Thus we see that the rotation functions provide a basis for the eigen-
functions of a rotating, rigid body.

A symmetric top corresponds to such a body with a symmetry axis which we take to be
the z′ or 3-axis. In the Hamiltonian (5.166) the two moments of inertia I1 = I2 and it
thus takes the form

H =
1

2I1
L2 +

(
1

2I3
− 1

2I1

)
L2

3 (5.176)

Since an eigenfunction can at most pick up a phase factor under rotations around this
axis, it must also be eigenstates of L3 and therefore correspond to just one term in the
sum (5.176). We then have the nice result that the eigenfunctions for the symmetric
top are simply the complex rotation matrices,

Y l
mk(α, β, γ) = NlD

(l) ∗
mk (α, β, γ) (5.177)

The normalization constant in front turns out to be Nl =
√
l + 1/2/2π. These functions

are obviously also eigenfunctions of Lz and L3

LzY l
mk = mh̄Y l

mk, L3Y l
mk = kh̄Y l

mk

as follows from the expression (5.167) for Lz and the corresponding expression for L3.
The ladder operators L± = Lx ± iLy will raise or lower the first index as before. Also
L′
± = L1 ± iL2 act as raising and lowering operators, but on the last index of the

wavefunction. In fact, due to the minus sign in (5.173), L′
− will act as a raising operator

and L′
+ as a lowering operator.

For the corresponding eigenvalues of the Hamiltonian (5.176) we then have

Elk =
h̄2

2I1
l(l + 1) +

(
1

2I3
− 1

2I1

)
h̄2k2 (5.178)

Each energy level specified by the quantum numbers (l, k) has a degeneracy of 2l + 1
corresponding to the different quantized directions of the angular momentum in the lab-
oratory system. An example of such a system would be a rotating ammonium molecule
NH3 where the 3-axis goes through the nitrogen atom and normal to the plane with
hydrogen atoms.

In the special case of a spherical top when the three principal moments are the same,
I1 = I2 = I3, the energies are independent of the quantum number k. As a consequence,
the degeneracy of each level is increased by a factor of 2l + 1 corresponding now to the
different quantized directions of the angular momentum in the body-fixed refererence
system. The total degeneracy is therefore (2l+ 1)2. A rotating methane CH4 molecule,
where the carbon atom is symmetrically surounded by four hydrogen atoms, exhibits
such a rotational spectrum.



Chapter 6

Approximation schemes

The harmonic oscillator is one of the few systems in quantum mechanics which allows
us to find exact solutions both for the eigenvalues and eigenstates. For essentially all
other systems it is necessary to make use of approximation methods in order to calculate
these quantities from a given Hamiltonian. There are basically two different classes of
such methods. The first is based on the variational principle and is especially suited for
investigations of the ground state and the lowest excited states. In the other scheme
one assumes that the real system is is approximately equal to another system which
allows exact solutions. Then using perturbation theory one can systematically calculate
corrections to this lowest and often crude approximation. This method can be applied
to any state and makes it possible to calculate any quantity as accurately as is needed,
at least in principle.

6.1 The variational method

Let the system under consideration be described by a Hamiltonian operator Ĥ. It has
eigenvalues En and corresponding eigenstates |EN〉 satisfying

Ĥ|En〉 = En|En〉 (6.1)

The problem is that in most cases this equation cannot be solved exactly, we only know
that in principle there are solutions to it.

Consider now some general state |ψ〉 which always can be expanded in the basis provided
by the unknown eigenstates |En〉 as

|ψ〉 =
∞∑

n=0

Cn|En〉 (6.2)

with components Cn. We assume that the states are labelled so that the ground state
corresponds to n = 0, the first excited has n = 1 and so on. If the state is normalized
to one, the components will satisfy

∞∑

n=0

|Cn|2 = 1 (6.3)

109
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since the eigenstates |En〉 are orthonormalized. If we now the calculate the matrix
element Eψ = 〈ψ |Ĥ|ψ〉, we obtain

Eψ =
∞∑

n=0

Cn〈ψ |Ĥ|En〉 =
∞∑

n=0

|Cn|2En

On the right-hand side we can now replace all the energies En with the lowest energy
E0. Since En ≥ E0 for all n > 0, we then find the fundamental inequality

Eψ ≥ E0

∞∑

n=0

|Cn|2 = E0

using the normalization (6.3). So for any choice of the state |ψ〉 we will always find a
result which is above the true ground state energy E0. The exact value is obtained only
by constructing this trial state vector to be the correct ground state, something which
is generally impossible.

Any choice for the state |ψ〉 will involve one or more unknown parameters ai. These
can now be determined by requiring that the resulting energy Eψ is as small as possible,
i.e. we have

∂Eψ
∂ai

= 0 (6.4)

With this choice of parameters we then have the best upper bound for the true ground
state energy E0.

In order to illustrate the use of this variational method, consider a particle with mass
m moving in one dimension described by the Hamiltonian operator

Ĥ =
1

2m
p̂2 + V̂

where the potential energy is

V (x) =
{∞, x < 0
kx, x ≥ 0

(6.5)

in the coordinate representation. The ground state wave function must then be zero for
x = 0 since the probability to find the particle for x ≤ 0 must be zero. Likewise it must
go to zero when x → ∞. We therefore choose the trial wavefunction ψ(x) = 〈x |ψ〉 to
be

ψ(x) = 2a3/2xe−ax

where the prefactor is determined by the normalization
∫ ∞

0
dx|ψ(x)|2 = 1

The unknown quantity a can then be taken as the variational parameter. Here and in
similar integrals we make use of Euler’s gamma-function defined by

∫ ∞

0
dxxse−x = Γ(s+ 1) = sΓ(s) (6.6)
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When s = n is a postive integer, then Γ(n+ 1) = n! with 0! = 1. In addition it is useful
to remember that Γ(1/2) =

√
π as follows from the Gaussian integral

∫ ∞

0
dxe−x

2

=
1

2

√
π (6.7)

With the above choice for the trial wave function, we then find the matrix kinetic element

〈ψ | p̂
2

2m
|ψ〉 = 4a3

∫ ∞

0
dxxe−ax

(
− h̄2

2m

d2

dx2

)
xe−ax

= −4a3 h̄
2

2m

∫ ∞

0
dx(−2ax+ a2x2)e−2ax =

h̄2

2m
a2

and similarly for the potential energy

〈ψ |V̂ |ψ〉 = 4a3k
∫ ∞

0
dxx3e−2ax =

3k

2a

We thus have

Eψ =
h̄2

2m
a2 +

3k

2a

which has a minimum for a = (3km/2h̄2)1/3. Calculating the corresponding value of
Eψ, we find that the ground state energy will therefore satisfy the bound

E0 ≤
3

4
62/3

(
h̄2k2

2m

)1/3

(6.8)

The numerical prefactor 3 · 62/3/4 = 2.48 while an exact solution using Airy functions
gives 2.34. Our variational result is therefore within 6% of the correct value. We can
get much closer to this value by choosing a more complex trial function with more
parameters but with the same general properties as we imposed on our simple choice
above.

It is possible to use the variational method to estimate also the energy of the first
excited state with a similar accuracy. We must then use a trial wave function which is
orthogonal to the true ground state. This is achieved by taking

|ψ〉 =
∞∑

n=1

Cn|En〉 (6.9)

instead of (6.2). Since now we have the normalization
∑∞
n=1 |Cn|2 = 1, we get

〈ψ |Ĥ|ψ〉 =
∞∑

n=1

|Cn|2En ≥ E1

which can then be minimized by the variational method. In practice the general form of
trial wave function for the first excited state is often determined by having a symmetry
like parity different from what the ground state has.
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6.2 Rayleigh-Ritz scheme

The above variational method is useful for accurate calculations of the lowest two states
of a quantum system. An alternative scheme is due to Rayleigh and Ritz and was
developed before quantum mechanics. It can in many cases be used to determine also
the higher excited states in a systematic way and especially with the use of modern
computers.

It is based on the assumption that one can find a similar system with the same variables
but simpler dynamics so that it has an exact and known solution. This model system
and the real system under consideration will then have the same Hilbert spaces. In the
example with the wedge potential (6.5) in the previous section, the simpler system could
then have a harmonic potential in the region x > 0 instead of the linear potential.

Denoting the Hamiltonian of the simpler or ideal system by Ĥ0, we therefore assume
that the eigenvalue problem Ĥ0|n〉 = E0

n|n〉 is solved. The orthonormalized eigenstates
|n〉 thus form a complete set. A general state |ψ〉 of the real system with Hamiltonian
Ĥ can therefore be expanded as

|ψ〉 =
∞∑

n=0

an|n〉 (6.10)

where the components an = 〈n |ψ〉 are unknown and will be considered as variational
parameters in the following. Since this vector is normalized to one, they satisfy the
constraint

〈ψ |ψ〉 =
∞∑

m=0

a∗mam = 1 (6.11)

Calculating now the expectation value Eψ = 〈ψ |Ĥ|ψ〉, one obtains

Eψ =
∞∑

m,n=0

a∗manHmn

where the matrix element Hmn = 〈m |Ĥ|n〉. These can now all be calculated since the
states |n〉 are known. We can now minimize Eψ under variations of the parameters
an. Since these are not all free, but are restricted by (6.11), we introduce a Lagrange
multiplier E and minimize instead

Fψ = Eψ −E〈ψ |ψ〉

=
∞∑

m,n=0

a∗m(Hmn − Eδmn)an (6.12)

Since the parameters an in general are complex, we should now minimize this with
respect to both the real an imaginary parts. But this is equivalent to minimizing with
respect to an and a∗n. Thus we must have

∂Fψ
∂a∗m

=
∞∑

n=0

(Hmn − Eδmn)an = 0
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Figure 6.1: Energy-levels obtained in the Rayleigh-Ritz scheme are upper bounds for the true eigen-
values obtained for N = ∞.

and the corresponding compex conjugated equation which doesn’t give anything new.
Writing out this matrix equation, we find an infinite set of linear and homogenous
equations for the unknown parameters an. Non-trivial solutions are then found only
when

det(Hmn − Eδmn) = 0 (6.13)

The zeros of this ∞×∞ determinant are then the energy eigenvalues En we are seek-
ing. And if we could actually perform the calculation, these would also be the exact
eigenvalues.

In practice we can only include a finite number N of the lowest eigenstates |n〉 so
that the determinant (6.13) has dimension N × N . Writing it out, the characteristic

polynomial in E will have N zeros E
(N)
0 , E

(N)
1 , E

(N)
2 , . . . , E

(N)
N which will be upper limits

to the corresponding true eigenvalues. In fact, the Norwegian physicists Hylleraas and
Undheim showed in th 30’s that these approximate values will all satisfy the bounds
E

(n)
k ≥ E

(n+1)
k as indicated in the figure. The larger the number N of states included in

the calculation, the closer the approximation will be.

6.3 Static perturbations

It should be pretty obvious that the Rayleigh-Ritz method will converge faster towards
the correct eigenvalues the closer the reference system described by Ĥ0 is to the real
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system described by the Hamiltonian Ĥ. We can then write

Ĥ = Ĥ0 + V̂ (6.14)

where the effect of the operator V̂ is in some sense small. It is said to perturb the
dynamics described by Ĥ0 which we again will assume can be calculated exactly. In-
troducing here a slightly different notation, we denote these eigenstates by |n〉 so that
Ĥ0|n〉 = En|n〉. The eigenstates of the full Hamiltonian Ĥ we denote by |n′〉 with the
corresponding eigenvalues E ′

n = En′ satisfying

Ĥ|n′〉 = E ′
n|n′〉 (6.15)

Since the effect of the perturbation V̂ is assumed to be small, the differences ∆En =
E ′
n − En betweeen corresponding eigenvalues will ordinarily also be small. This is

schematically illustrated in Fig.6.2. Assuming that the perturbation V̂ is independent

E’

E’

E’

E’

E

E

E

E

0
0

1
1

3
3

2 2

V = 0 V # 0

E

Figure 6.2: Unperturbed and perturbed energy levels.

of time, we will now calculate the first corrections of these energy shifts in a systematic
way appropriately called static perturbation theory.

Since the eigenstates of the ’free’ system described by Ĥ0 form a complete set, we can
expand an ’interacting’ state |n′〉 as

|n′〉 =
∑

m

|m〉〈m |n′〉 =
∑

m

amn′ |m〉 (6.16)

where the coefficient amn′ = 〈m |n′〉. We expect that ann′ → 1 and otherwise when
m 6= n that amn′ → 0 as V → 0.
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Letting the Hamiltonian (6.14) act on state |n′〉 and projecting the resulting equation
onto 〈m |, one has

〈m |Ĥ − Ĥ0|n′〉 = 〈m |V̂ |n′〉

Since these vectors are eigenstates of Ĥ and Ĥ0 respectively, we obtain

〈m |En′ − Em|n′〉 = (En′ −Em)〈m |n′〉 = 〈m |V̂ |n′〉 (6.17)

When m 6= n we therefore have for the expansion coefficients

amn′ =
〈m |V̂ |n′〉
En′ − Em

(6.18)

On the other hand, in the special case m = n we get for the sought-for energy difference

E ′
n − En = ∆En =

〈n |V̂ |n′〉
〈n |n′〉 (6.19)

It is now convenient to normalize the state |n′〉 so that ann′ = 〈n |n′〉 = 1. The perturbed
energy is then given by the simple expression

E ′
n = En + 〈n |V̂ |n′〉 (6.20)

which we can make good use of.

In the lowest approximation, we can write that the perturbed state |n′〉 = |n〉 + . . .
where the dots are higher order corrections. We then get the result

E ′
n = En + 〈n |V̂ |n〉 (6.21)

which is always simple to use and gives the dominant effect. Since in this lowest ap-
proximation the level shift is proportional to V , it is said to be correct to the first order
in the perturbation.

Some times the first-order shift is zero or we want better accuracy. We must then
calculate to next order in the perturbation. From the general formula (6.20) we see that
this can be obtained by including the first-order correction in the perturbed state |n′〉.
Using that ann′ = 1, we can write the expansion (6.16) as

|n′〉 = |n〉 +
∑

m6=n

amn′ |m〉

Here we can use (6.18) for the coefficients amn′ when m 6= n. Since we now want the
level shift to second order in V , we only need amn′ to first order in V . We can therefore
replace En′ with En and |n′〉 with |n〉 in (6.18) giving

|n′〉 = |n〉 +
∑

m6=n

〈m |V̂ |n〉
En −Em

|m〉 (6.22)

and therefore for the second-order level shift

E ′
n = En + 〈n |V̂ |n〉 +

∑

m6=n

|〈m |V̂ |n〉|2
En − Em

(6.23)
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from (6.20). Higher order corrections can be calculated from the same perturbative
expansion.

As a very simple example consider a 2-dimensional Hilbert space with

H0 =

(
0 −3

−3 8

)

and the perturbation

V =

(
0 1
1 −5

)

We easily find the two unperturbed eigenvalues E1 = 9 and E2 = −1 with the corre-
sponding normalized eigenvectors

ψ1 =

√
1

10

(
1

−3

)
, ψ2 =

√
1

10

(
3
1

)

To first order we need the matrix elements 〈1 |V̂ |1〉 = −51/10 and 〈2 |V̂ |2〉 = 1/10
giving the perturbed energies E ′

1 = 9 − 5.1 = 3.9 and E ′
2 = −1 + 0.1 = −0.9. To

second order we also need the matrix element 〈1 |V̂ |2〉 = 7/10 which gives the improved
eigenvalues

E ′
1 = 3.9 +

(0.7)2

9 + 1
= 3.9 + 0.05 = 3.95

and

E ′
2 = −0.9 +

(0.7)2

−1 − 9
= −0.9 − 0.05 = −0.95

The second order correction is thus already pretty small. From (6.22) we can now find
the corresponding, approximate eigenstates. Here we can also easily calculate the exact
energies which are the eigenvalues of the matrix

H = H0 + V =

(
0 −2

−2 3

)
(6.24)

i.e. E ′
1 = 4 and E ′

2 = −1. Our perturbative results are thus accurate to around 5%.

6.4 Degeneracy

In the above we have assumed that the energy level under consideration is not degener-
ate. If that is the case, we must be a bit more careful. For instance, the result (6.18) for
the expansion coefficients becomes meaningless if the unperturbed levels Em and En are
the same. A way out of the problem can be seen from (6.17). Since the left-hand side
then would go to zero with degeneracy, we will only have consistency if the right-hand
side also goes to zero, i.e. the non-diagonal matrix element 〈m |V̂ |n〉 must also approach
zero.
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To make this consideration a bit more systematic, one can isolate the g states degenerate
with the state |n〉 under consideration. For this purpose we write the expansion (6.16)
as

|n′〉 =
g∑

s=1

as|ns〉 +
∑

m6=n

amn′ |m〉 ≡
g∑

s=1

as|ns〉 + |n⊥〉

where the state |n⊥〉 is orthogonal to all the states |ns〉. This state is now an eigenstate
of Ĥ0 + V̂ with eigenvalue En + ∆En. Writing out this condition, we get to 0th order

Ĥ0

g∑

s=1

as|ns〉 = En

g∑

s=1

as|ns〉

which is trivially satisfied. However, to 1st order we get the more interesting equation

(Ĥ0 − En)|n⊥〉 + (V̂ − ∆En)
g∑

s=1

as|ns〉 = 0

Multiplication from the left with one of the degenerate states 〈nr | results in

〈nr |Ĥ0 − En|n⊥〉 + 〈nr |V̂ − ∆En

g∑

s=1

as|ns〉 = 0

But the first term here is zero since 〈nr |Ĥ0 = 〈nr |En. We are thus left with the second
term which can be written as

g∑

s=1

(Vrs − ∆Enδrs)as = 0 (6.25)

with the matrix elements Vrs = 〈nr |V̂ |ns〉. This set of g linear and homogeneous

E n ∆ E n

Figure 6.3: Degenerate energy level is split up by perturbation.

equations for the unknown coefficients as has a solution only when the determinant

det(Vrs − ∆Enδrs) = 0 (6.26)

It has g roots which are the sought-for perturbations ∆En.

Not all of these level shifts are necessarily different, some degeneracy can still remain.
We see that even with degeneracy we can use non-degenerate perturbation theory if we
choose a basis among the degenerate states so that the perturbation is diagonal.
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Let us consider an example. An unperturbed rotor is given by the standard Hamiltonian
Ĥ = AL̂2 where A is a constant. The corresponding energy levels are Eℓ = Ah̄2ℓ(ℓ+ 1)
where each level consists of 2ℓ + 1 degenerate states. We now place the rotor in a
crystal field where the rotational invariance is broken and we take the corresponding
perturbation to be V̂ = aL̂2

x+bL̂2
y+aL̂2

z . With a remaining rotational symmetry around
the z-axis the parameters a = b. Now we want to see how this effects the energy levels of
the system. Let us consider the level with ℓ = 1. Since it is 3-fold degenerate, we must
now calculate the matrix representation of the perturbation in the unperturbed basis.
For the last term involving L̂2

z, this is trivial. In the two first terms we can make use of the
ladder operators L̂± and write L̂2

x = (L̂2
+ + L̂2

− + L̂+L̂− + L̂−L̂+)/4 and correspondingly

for L̂2
y. For the matrix elements we can then make use of L̂−|1,+1〉 = 2h̄2|1,−1〉

and correspondingly L̂+|1,−1〉 = 2h̄2|1,+1〉. The operators L̂−L̂+ and L̂+L̂− will not
change the z-component of the spin, i.e. will not change the states they act upon. We
find that they just give 2h̄2 times the same state in this case. In this way we obtain for
the perturbing matrix

V = h̄2



α 0 γ
0 β 0
γ 0 α




where the entries are α = c+(a+b)/2, β = a+b and γ = (a−b)/2. Remarkably enough,
the eigenvalues of this matrix come out simply as a + b, a+ c and b+ c. These are the
amounts the three degenerate levels are shifted by the perturbation. With rotational
symmetry around the z-axis, we see that two of the levels remain degenerate. This is as
expected. With full rotation symmetry, i.e. a = b = c all three levels remain degenerate,
but are shifted by the common amount 2ah̄2. The perturbation is then simply V̂ = aL̂2

which just equals 2ah̄2 when ℓ = 1.

6.5 Time-dependent perturbations

So far we have considered static perturbations. However, in many important physical
situations the perturbing interaction depends on time so that the full Hamiltonian

Ĥ = Ĥ0 + V̂ (t) (6.27)

will also depend on time. The evolution of the state vector will still be governed by the
Schrödinger equation

ih̄
∂

∂t
|Ψ, t〉 = Ĥ|Ψ, t〉, (6.28)

but will no longer be given by the simple time-evolution operator (2.35) in Chapter 2.
Instead, we proceed as in Chapter 3 and expand the state vector in a complete and
orthonormal set so that

|Ψ, t〉 =
∑

n

cn(t)|n〉 (6.29)
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where now the expansion coefficients cn(t) = 〈n |Ψ, t〉 are the components of the vector
along the basis vector |n〉. The single equation (6.28) is then transformed into the
coupled, first-order differential equations

ih̄ċm =
∑

n

Hmncn (6.30)

exactly as in (3.2) with Hmn = 〈m |Ĥ|n〉. These equations are valid also when the
Hamiltonian depends on time. Describing the time evolution of the system is now
equivalent to calculating the amplitudes cm(t). They give us the probability |cm(t)|2
that the system is in the state |n〉 at time t.

When we now have the perturbative problem decribed by (6.27), it is natural to use the
eigenstates of Ĥ0 as the basis in the above expansion of the state vector. Then Ĥ0|n〉 =
En|n〉 where En is the unperturbed energy of the system. The Hamiltonian matrix
element in (6.30) then becomes Hmn = Emδmn +Vmn(t) where Vmn(t) = 〈m |V̂ (t)|n〉. In
the resulting Schrödinger matrix equations

ih̄ċm = Emcm +
∑

n

Vmn(t)cn

the first term will dominate on the right-hand side since magnitude of the perturbation
is assumed to be small compared to the unperturbed energies. We can separate out this
dominant term by writing

cm(t) = am(t)e−iEmt/h̄ (6.31)

Inserting now the time derivative

ih̄ċm = (ih̄ȧm + Emam)e−iEmt/h̄

into the above equations of motion for the amplitudes cm, we see that the energy term
cancels out and we are left the differential equations

ih̄ȧm =
∑

n

Vmn(t)e
i(Em−En)t/h̄an (6.32)

for these reduced amplitudes. They still give the probability for the system to be found
in state |m〉 since |cm(t)|2 = |am(t)|2 from (6.31).

So far we have not made any approximations. The coupled equations (6.32) are still
exactly equivalent to the original Schrödinger equation and just as difficult to solve. But
they are now ideally suited to describe a typical physical situation where the system is
in some stationary state | i〉 until some time ti when a weak perturbation starts to act
and we want to find out what happens to the system later. At the initial moment we
know that the amplitudes are given by an(ti) = δni, i.e. zero probability to be found in
any other state than | i〉. When the perturbation then starts to act, all these amplitudes
will change, but not so much since the perturbation is assumed to be small. We can then
solve the set of equations (6.32) in a systematic way by inserting the 0th order solution
an(t) = δni on the right-hand side and then integrate to find the 1st order amplitudes.
The amplitude which gives the probability for a quantum transition to a state |f〉 6= | i〉
at a time t > ti is therefore

af (t) = − i

h̄

∫ t

ti
dt′Vfi(t

′)eiωfit
′

(6.33)
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where the frequency ωfi = (Ef − Ei)/h̄. This is the basic equation in first-order, time-
dependent perturbation theory. It is valid as long as the transition amplitude |af | ≪ 1.
Higher order corrections can similarly be derived by using this result on the right-hand
side of (6.32). This would have given us the second order transition amplitudes and so
on. We will not pursue that here.

As a simple example, consider the one-dimensional harmonic oscillator with the usual
Hamiltonian

Ĥ0 =
1

2m
p̂2 +

1

2
mω2x̂2 (6.34)

perturbed by a small potential

V̂ (t) = kx̂e−t
2/τ2

(6.35)

It describes a force which starts initially out to be zero, grows to a maximum value
k at time t = 0 and then goes to zero again. The parameter τ gives the duration of
this impuls. As intial condition we assume that the oscillator is in its ground state |0〉.
Let us now calculate the amplitude af to an excited state |n〉. Expessing the position
operator x̂ in terms of ladder operators as in (4.68), we find for the transition matrix
element

Vfi = k

√
h̄

2mω
〈n |â† + â|0〉e−t2/τ2

But â|0〉 = 0 by definition and â†|0〉 = |1〉 so that it will be non-zero only for n = 1.
We thus get only transitions to the first excited state of the oscillator with ωfi = ω.
The transition amplitude (6.33) becomes

af (t) = − i

h̄
k

√
h̄

2mω

∫ ∞

−∞
dte−t

2/τ2

eiωt

We can do the integral using

∫ ∞

−∞
dxe−

1

2
ax2+bx =

√
2π

a
eb

2/2a (6.36)

even when the parameter b is complex. It then gives

P (0 → 1) = |af(∞)|2 =
πk2τ 2

2mh̄ω
e−ω

2τ2/2 (6.37)

for the transition probability.

The change in excitation number |∆n| = 1 we find here is seen to result for any initial
state. It is an example of a selection rule which says which final states can be reached
for a given interaction. Had the interaction instead varied like V̂ ∝ x̂2, we would have
found the selection rules |∆n| = 2 or ∆n = 0. In the last case it is said that we have an
elastic transition since the initial and final states have the same energy.
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6.6 Harmonic perturbations

In many real situations the time-dependency of the perturbation will be harmonic of
the form

V̂ (t) = 2V̂ cosωt = V̂ (e−iωt + eiωt) (6.38)

It differs from the situations considered in the previous section in that it doesn’t go
away at very early or late times t→ ±∞. And we want to have unperturbed intial and
final states in order to have a well-defined problem. This we can attain by assuming
that the potential is slowly turned on at very early times and then slowly turned off
again at very late times after the interaction is over. Mathematically, these adiabatic
changes are achieved by modifying the perturbating potential to

V̂ (t) → V̂ ′(t) = e−ǫ|t|V̂ (t) (6.39)

where ǫ is a very small frequency. For times |t| ≫ 1/ǫ the perturbation is then zero as
we want.

Both exponential terms will contribute to the transition amplitude (6.33). Let us con-
sider the first term alone. If it is turned on at an early time −T ≪ −1/ǫ and turned off
at a much later time T ≫ 1/ǫ, we have from (6.33) the transition amplitude

afi = − i

h̄

∫ T

−T
dtVfi(t)e

iωfit−ǫ|t| = − i

h̄
Vfi

∫ T

−T
dtei(ωfi−ω)t−ǫ|t|

From the last integral we have pulled out the time-independent matrix element Vfi. It
is now well-defined and finite. Splitting it up,

afiafi = − i

h̄
Vfi

[∫ 0

−T
dtei(ωfi−ω−iǫ)t +

∫ T

0
dtei(ωfi−ω+iǫ)t

]

the two terms are easy to integrate,

afi = − i

h̄
Vfi

[
1 − e−i(ωfi−ω−iǫ)T

i(ωfi − ω − iǫ)
+
ei(ωfi−ω+iǫ)T − 1

i(ωfi − ω + iǫ)

]

The exponentials in the numerators now disappear in the limit T → ∞ and we are left
with

afi = −1

h̄
Vfi

(
1

ωfi − ω − iǫ
− 1

ωfi − ω + iǫ

)

= − i

h̄
Vfi

2ǫ

(ωfi − ω)2 + ǫ2

We can now take the limit ǫ → 0 in which we recover the Dirac δ-function defined
in Chapter 4 by the expression (4.6). It gives the final expression for the transition
amplitude

afi = − i

h̄
Vfi2πδ(ωfi − ω) = −2πiVfiδ(Ef −Ei − h̄ω) (6.40)
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when we make use of δ(ax) = (1/a)δ(x). Now it is clear that this δ-function ensures
that energy is conserved in the process in the sense that the final state energy Ef =
Ei + h̄ω. So we can conclude that the first term in the perturbation (6.38) corresponds
to absorption of energy by the system, taken out of the perturbation by the quantum
amount h̄ω. Similarly, the last term in (6.38) will give a transition rate proportional
with δ(Ef − Ei + h̄ω) which corresponds to emission of energy by the same amount.
These relations between the frequencies of the perturbations and the quantized energy
differences is just the mathematical proof of Bohr’s frequency rules he had to assume in
his atomic model for emission and absorption of light.

From the above transition amplitude we can now also calculate the probability for the
quantum transition | i〉 → |f〉 under the perturbation (6.38). Squaring the amplitude,
we get a result involving a squared δ-function. But expressiing one of them by the
integral (4.7), we can write

Pfi = |afi|2 =
1

h̄2 |Vfi|22πδ(ωfi − ω)
∫ T

−T
dte(ωfi−ω)t

again in the limit T → ∞. But the first δ-function now sets ω = ωfi in the integral for
the second, thus giving simply the full time 2T the perturbation has lasted, i.e.

Pfi =
2π

h̄2 |Vfi|2δ(ωfi − ω)2T

Since this probability increases linearly with time, there is a constant number of transi-
tions per unit time. This is expressed by a constant transition rate Γfi = Pfi/2T which
is therefore

Γfi =
2π

h̄
|Vfi|2δ(Ef −Ei − h̄ω) (6.41)

Including higher order terms in the perturbative expansion, this rate will have exactly
the same form except for the matrix element Vfi being replaced by a more general
transition matrix element Tfi = Vfi + · · ·. It is the starting point for many different
practical applications and is called Fermi’s Golden Rule. From the way it is derived one
can understand why it is also valid in relativistic quantum theories.

One might get the impression from that the transition rate is either zero or infinite
depending on the frequency ω having the right value or not compared to the energy
difference Ef − Ei. But in practice both the initial and/or the final state will contain
a continuum of sub-states in a real situation. Integrating over these, one will have a
finite and thus physical result for the transition rate. We will see examples of this in
the following.

6.7 Rutherford scattering

In a scattering experiment the motion of the free, incoming particles is changed by their
mutual interaction. This depends on their relative distance which varies with time.
Assuming that the interaction is weak enough, the process can thus be described by
time-dependent perturbation theory in quantum mechanics,
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When the particles have non-relativistic velocities, we can usually describe this interac-
tion by their mutual, potential energy V (r) where r is their relative separation. Probably
the most famous of such scattering experiments were the ones performed by Rutherford
and his assistants Marsden and Geiger in 1911. They measured how moving α-particles
were deflected by heavy atoms like Ag and Au. They observed a surprisingly large num-
ber of particles that scattered far away from the incoming direction, This could only be
explained by assuming that all the positive charge of the atom was concentrated in a
very small nucleus at the center of the atom and holding on to the much lighter electrons
moving around at larger distances. This was Rutherford’s model for the atom. A few
years later it lead N. Bohr to explain the observed spectra of light emission. This was
the first triumph of his quantum mechanics.

A schematic illustration of Rutherford’s experimental setup is shown in Fig.3.4. The
α-particles with mass m and velocity v come in from the left towards the atom which we
can assume with no loss of generality remains at rest during the process. In the absence
of any interactions, each particle would in a classical description pass the nucleus at
some shortest distance b shown in the figure. This is the so-called impact parameter

θφ
rb

V(r)

Figure 6.4: Elastic scattering of a classical particle against a potential. The scattering angle θ is fixed
by the impact parameter b and the incoming particle velocity.

related to the angular momentum L = mvb of the particle. Due to the repulsive nuclear
Coulomb potential V (r) = Ze2/4πǫ0r acting on the particle at distance r, its path is
deflected from this straight line by an angle θ which is the scattering angle. While the
momentum p of the particle now changes both direction and magnitude, the angular
momentum L = r ∧ p and the energy E = p2/2m+ V (r) remain constant.

In the special case when the impact parameter b = 0, the particle heads straight towards
the nucleus with kinetic energy E = mv2/2. The Coulomb repulsion slows it down and
at a distance R = Ze2/4πǫ0E it stops completely up. All its energy is now in the
potential part. It then traces the same path back to infinity. The scattering angle is in
this very special case θ = π.

More interesting is the more general case when the impact parameter is non-zero. The
classical trajectory of the particle is then a hyperbola as for unbound Kepler motion. If
we denote the direction of the incoming particle seen from the nucleus by the angle φ



124 Chapter 6. Approximation schemes

shown in the figure, the equation for the trajectory becomes

1

r
=

1

b
sinφ− R

b2
(1 − cosφ) (6.42)

When the particle has moved away from the nuclues, it continues as a free particle
towards the detector at r → ∞. The corresponding direction is therefore given by
cos(φ/2) = (R/2b) sin(φ/2) or in terms of the scattering angle θ = π − φ,

cot
θ

2
=

2b

R
(6.43)

In the limit where b → 0 it follows that θ → π in agreement with what we already have
found.

Because of the axial symmetry around the direction of the incoming particles, the distri-
bution of scattered particles will only be a function of the angle θ. Let now dN(θ) denote
the differential number of particles being scattered into the solid angle dΩ = 2π sin θdθ
between the axial directions θ and θ + dθ. If I0 then is the flux of incoming particles,
we have the relation

dN = 2πbdb I0 (6.44)

since these particles must initially have had impact parameters between b and b + db
related to the corresponding scattering angles by (6.43). If we divide this number with
the incoming flux, we get a quantity with dimension of area,

dσ(θ) =
dN(θ)

I0
(6.45)

which is called the differential scattering cross-section. It gives an expression for the
number of particles scattered into this particular direction. More explicitly, it can be
obtained from

dσ

dΩ
=

b

sin θ

∣∣∣∣∣
db

dθ

∣∣∣∣∣ (6.46)

Now using the relation (6.43) one obtains

dσ

dΩ
=

(
Ze2

16πǫ0E

)2
1

sin4(θ/2)
(6.47)

This is Rutherford’s famous result for the differential cross-section measured in Coulomb
scattering. It is seen to diverge in the forward direction where θ = 0. This corresponds
to particles with very large or infinite impact parameters. All particles in the incoming
beam are therefore scattered and we say that the total or integrated cross section

σ =
∫ 4π

0
dΩ

dσ

dΩ
(6.48)

is infinite for a pure Coulomb potential. In a real situation for scattering on a neutral
atom, the negatively charged electrons will screen off the positive potential from the
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atomic nucleus. At large distance the interaction is therefore much weaker and the total
scattering cross section is finite. This will be shown in the next section when we consider
the same process using quantum mechanics.

The total scattering cross-section gives a quantitative measure for the number of particles
scattered out of the incoming beam. If it is along the x-axis, the flux I(x) of particles is
reduced by an amount dI = −Iσndx by traversing an infinitesemal distance dx of the
target with a density of n scattering centers per unit volum. Integrating, this gives a
decreasing flux

I(x) = I0e
−σnx (6.49)

after the beam has traversed a macroscopic distance x of the target. In this way one
can measure the total cross-section.

6.8 Quantum potential scattering

Let us again consider the situation in Fig,3.4 where a particle with mass m is scattered
by the potential V (r). The full Hamiltonian describing the situation is the usual

Ĥ =
1

2m
p̂2 + V (r̂) (6.50)

where now the potential term induces transitions between the free states described by
the first, kinetic part. These are plane waves ψ = eip·r/h̄ with definite momentum p.
We can calculate the rate for transitions between these states using the Golden-Rule
(6.41). But since now the perturbing potential is static, the frequency ω = 0 and there
is therefore no change in the total energy of the scattered particle. This is as in classical
mechanics.

To be more specific, consider the sitation where the incoming particle has momentum
pi. We now want to calculate the rate for transitions to a final state defined by the
momentum pf , i.e.

Γfi =
2π

h̄
|Vfi|2δ(Ef −Ei) (6.51)

Remember that the energies in the δ-function are those in the initial and final states
when the potential is zero. It simply ensures energy conservation Ei = Ef which thus
corresponds to |pi| = |pf |. The magnitude of the momentum of the particle is therefore
the same in the initial and final states, it is just rotated by the scattering angle θ as
shown in the figure.

Since the apparatus which detects the particle in the final state has a finite opening
angle dΩ = sin θdθdφ, it will register all particles with momenta within this range. It
corresponds to a density of states

dρf =
d3pf

(2πh̄)3
=
p2
fdpfdΩ

(2πh̄)3
(6.52)
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and leads to the differential transition rate

dΓ =
2π

h̄
|Vfi|2δ(Ef −Ei)

p2
fdpfdΩ

(2πh̄)3

into this continuum of states. It is a direct expression for the number of particles that
are scattered out of the initial beam. If we divide by the flux I0 of incoming particles,
we obtain a quantity with dimension of area. This is just the differential cross-section
from the definition in the previous section, i.e. dσ = dΓ/I0. Since the final energy
E2
f = p2

f/2m, it follows that mdEf = pfdpf and we have

dσ =
2π

h̄I0
|Vfi|2δ(Ef −Ei)

mpfdEf
(2πh̄)3

dΩ

If the incoming particles move along the x-axis, the corresponding flux I0 is given by

I0 =
h̄

2mi

(
ψ∗
i ∂xψi − ψi∂xψ

∗
i

)

which for the plane wave ψi = eipix/h̄ simply gives I0 = pi/m. This is as expected the
velocity vi of the particles in their initial state. Finally, we must integrate over the final
energy Ef since the detector also has a finite energy resolution in addition to its angular
resolution. From the δ-function this just isolates those particles with energy Ef = Ei.
For the differential cross-section we then have the final result

dσ

dΩ
=

2π

h̄
|Vfi|2

m2

(2πh̄)3

pf
pi

(6.53)

Since the process is elastic, pi = pf ≡ p and cancel out. In addition, for plane waves the
matrix element becomes

Vfi =
∫
d3re−ipf ·r/h̄V (r)eipi·r/h̄ =

∫
d3rV (r)e−iq·r/h̄ (6.54)

where q = pf −pi. It is just the 3-dimensional Fourier transform Ṽ (q) of the potential.

The differential cross-section can thus be written as

dσ

dΩ
=

∣∣∣∣
m

2πh̄2 Ṽ (q)

∣∣∣∣
2

(6.55)

When the potential is rotational invariant, i.e. V = V (r), the Fourier transform will only
depend on the magnitude q = |q|. The cross-section will then be symmetric around the
direction of the incoming particles and thus depend only on the polar scattering angle
θ. It is then convenient to introduce the scattering amplitude f(θ) = mṼ (q)/2πh̄2 so
that dσ/dΩ = |f(θ)|2. All the angular dependence lies now in the momentum transfer

q = pf−pi. Taking the square, one obtains q2 = p2
i +p

2
f−2pf ·pi = 2p2(1−cos θ). Thus

we have q = 2p sin(θ/2) which also follows geometrically from the kinematics shown in
the figure.

In the above we found a flux of incoming particles I0 = vi which has usual the dimension
of length mer unit time. But a proper flux should have a dimension equal to a number
per area per and unit time. This apparent problem arises when we don’t insist on using
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p

p q

θ/2

i

f

Figure 6.5: Geometrical determination of the momentum transfer q.

correctly normalized states. We should have exactly one particle in the initial state and
one in the final. If our system is located within a large, but finite volume V , the correct
wave functions would be ψ = eip·r/h̄/V . The density of states (6.52) would then be
multiplied by V and just be the number of states within the solid angle dΩ in the final
state. Similarly, the flux would then become I0 = vi/V which has the correct dimension.
But at the same time we see that these two volume factors cancel out when included in
the calculation, and our final result for the cross-section remains unchanged.

A physical important example is to consider the screened Coulomb potential

V (r) =
Ze2

4πǫ0r
e−κr/h̄ (6.56)

For distance r ≪ R where R = h̄/κ is the screening length, it has the standard value
while for larger distances it is exponentially damped. This has the same radial depen-
dence as the Yukawa potential which arises in nuclear physics due to the interactions
of pions between the nucleons in the nucleus. The screening constant is then κ = mπc
where mπ is the mass of the pion.

In order to find the differential cross-section for scattering on this potential we need the
Fourier transform

Ṽ (q) =
Ze2

ǫ0

∫
d3r

e−κr/h̄

4πr
e−iq·r/h̄ =

Ze2

2ǫ0

∫ ∞

0
drre−κr/h̄

∫ π

0
dβ sin βe−iqr cos β/h̄

Integrating first over the polar angle β, one obtains

Ṽ (q) =
Ze2ih̄

2qǫ0

∫ ∞

0
dr
[
e−(κ+iq)r/h̄ − e−(κ−iq)r/h̄

]

Both of these two remaining exponential integrals are now straightforward and give

Ṽ (q) =
Ze2

ǫ0

h̄2

q2 + κ2
(6.57)

when combined. From (6.55) we then immediately have the cross-section for scattering
on the screened Coulomb potential

dσ

dΩ
=

(
Ze2m

2πǫ0

)2
1

(4p2 sin2(θ/2) + κ2)2
(6.58)
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after using q = 2p sin(θ/2). When there is no screening, κ = 0 and we recover the
standard Rutherford cross-section (6.47) where the energy E = p2/2m.

One should notice that the Planck-Dirac constant h̄ cancels out in the above quantum
calculation of the Rutherford cross-section. Needless to say, this is necessary if it is to
be in agreement with the classical result. But this calculation is only in lowest order
of perturbation theory. Would not the higher quantum correstions modify the classical
result? In fact, one can calculate all these in the special case of a pure Coulomb potential.
And they do indeed depend on the quantum constant h̄. But for very deep reasons all
these corrections form a geometric series that add up to a simple phase factor in the
scattering amplitude. When squared in the cross-section, this factor disappears and one
is again left with exactly the classical result.

The differential cross-section (6.58) is finite in the forward direction θ = 0 as long as
the screening constant κ is non-zero. Since it is symmetric in the azimuthal direction,
the differential solid angle dΩ = 2π sin θdθ and the total cross-section will follow from
the integral

σ =

(
Ze2m

2πǫ0

)2 ∫ π

0

2π sin θdθ

(4p2 sin2(θ/2) + κ2)2

Now using q2 = 4p2 sin2(θ/2) as a new integration variable with dq2 = 2p2 sin θdθ, it
simplifies to

σ =

(
Ze2m

2πǫ0

)2
π

p2

∫ 4p2

0

dq2

(q2 + κ2)2
=

(
Ze2m

2πǫ0κ

)2
π

p2 + κ2/4

As expected, it diverges in the limit κ→ 0 of a pure Coulomb potential.

In the low-energy limit p→ 0, the momentum transfer q → 0 for a potential with finite
range as above. The scattering amplitude f(θ) then becomes a constant

a =
m

2πh̄2 Ṽ (0) (6.59)

independent of the scattering angle θ. It is called the scattering length. The differential
cross-section is then simply dσ/dΩ = a2 and is uniform in all directions. In the special
case of a screened Coulomb potential, we see that a = Ze2m/2πǫ0κ

2. Generally, it is of
the same order as the range of the potential or less.

A physical explanation of this simple behaviour of low-energy scattering on finite-range
potentials, is obtained by noticing that the incoming particles will then have a de Broglie
wave length λ = h̄/p ≫ a and the detailed shape of the potential at short distances is
therefore no longer ’seen’ by the particles. The only observable property of the scattering
potential is one parameter, its scattering length.
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Electromagnetic interactions

Electrons bound in atoms are held together by the electrostatic Coulomb potential.
But there are also important magnetic effects in atoms which will perturb this picture.
From classical electrodynamics we know that a charged particle in motion will generate
a magnetic field. This will give rise to new interactions in an atom which we will
consider here. But the same motion will also in general cause emission of electromagnetic
radiation which can cause transitions between the different stationary states of the atom.
In the end we will also quantize the electromagnetic field and see how the quanta emerge
as massless particles which are the photons.

7.1 Magnetic moments

A particle with mass m and electric e moving in an external magnetic field B feels the
Lorentz force

F = ev ∧ B (7.1)

Since it is normal to the velocity v, it will bend the motion of the particle, but not do
any work. As a result, the particle will move along a circle with radius determined by
evB = mv2/r and angular velocity ω = v/r which is the cyclotron frequency ωc = eB/m.

We now consider the same particle, but now constrained to move in a circle by some
other means. It will then generate a magnetic moment µ with direction normal to
the circle and magnitude µ = IA. Here I = e/T is the current in the loop where
T is the time the particle needs to traverse it. It is related to the radius r of the
loop and the particle velocity by v = 2πr/T . For the magnetic moment we thus find
µ = (e/T )πr2 = erv/2 = (e/2m)L where L = rmv is the angular momentum of the
motion. We thus have

µ =
e

2m
L (7.2)

which can be shown to be more generally valid than this simple derivation is.

Let us next place this current loop in the external field B. The particle will still feel the
Lorentz force (7.1). But now the force will twist the loop with a torque N = µ × B.

129
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Thus the angular momentum will change according to the standard, mechanical law

dL

dt
= µ × B = ωL × L (7.3)

where

ωL = − e

2m
B (7.4)

is the Larmor frequency. In magnitude, it is one half of the cyclotron frequency ωc. The
magnitude of L will not change because of this, but its direction will precess around
the direction of the magnetic field B with a rate given by Larmor frequency. This
precessional motion is equivalent to the classical interaction energy

HB = −µ ·B (7.5)

which we also expect to find in a corresponding version from a quantum derivation.

7.2 Vector potentials and gauge invariance

The electric field is the gradient of the scalar potential, E = −∇Φ. From Maxwell’s
equations we know that the magnetic field always must satisfy ∇ ·B = 0. It is therefore
natural to write it as a curl of a vector potential, B = ∇ ∧ A so that this condition
is automatically satisfield. Since it is the electric potential Φ which appears in the
Schrödinger equation for a particle with charge e through its potential energy V = eΦ,
we should not be surprised to see also the magnetic vector potential A appear in the
quantum description of a charged particle moving in a magnetic field. This is in contrast
to classical mechanics where it is the electric E and magnetic field B that enter the
equation of motion via the full Lorentz force

F = e(E + v ∧B) (7.6)

In quantum mechanics this is not a fundamental quantity, but a derived one as we now
will see.

Since the curl of a gradient is always zero, we can always add a gradient to the vector
potential without changing the magnetic field. More formally, if the vector potential A
is changed into

A → A′ = A + ∇χ (7.7)

for a scalar function χ = χ(x), the magnetic field stays the same,

B → B′ = B + ∇ ∧ ∇χ = B (7.8)

The modification (7.7) of the vector potential is called a local gauge transformation and
is seen to be a symmetry in the classical theory. It represents the very first encounter
with a new, fundamental principle in modern physics from which a basic understanding
of the interactions of all particles in Nature can be derived and has been formulated in
the Standard Model of elementary particle physics.
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As a simple example of a gauge transformation, consider a constant, magnetic field along
the z-axis, i.e. represented by the vector B = (0, 0, B). It corresponds to the vector
potential

A =
1

2
B ∧ r (7.9)

with components A = (−yB, xB, 0)/2 which is easily verified. Let us now perform
a gauge transformation given by χ = −Bxy/2. It results in the transformed vector
potential A′ = (−yB, 0, 0) which obviously cannot be written on the form (7.9). There
are in infinity of different potentials corresponding to a given, magnetic field. When we
decide to work with one particular of these, we say that we choose a gauge. One such
gauge choice is therefore (7.9) which we will make use of later. It is seen to satisfy

∇ · A = 0 (7.10)

which specifies this particular gauge, called the Coulomb gauge. But even with this
condition, the gauge is not completely fixed since the above A′ and many other potentials
also satisfy it.

We are now in the position to consider the quantum mechanics of a charged particle in a
magnetic field. The question is how to modify the free Hamiltonian H = p2/2m so that
it includes the interaction with the field. There is only one requirement, namely that it
should reproduce the Lorentz force (7.1) in the classical limit. The correct answer turns
out to be the magnetic Hamiltonian

Ĥ =
1

2m
(p̂− eÂ)2 (7.11)

where Â = A(x̂). It shows that the coupling to the field is found via the simple
replacement p̂ → p̂−eÂ in the free Hamiltonian. This is often called minimal coupling.
We will soon see how this follows from imposing gauge invariance also in the quantum
theory.

In external field problems it is usually simplest to work in the coordinate representation
where the above Hamiltonian takes the form

H =
1

2m
p2 − e

2m
(p · A + A · p) +

e2

2m
A2

with p = −ih̄∇. This operator is now supposed to act on some wavefunction ψ(x) to
the right. Then

p · Aψ = −ih̄∇ · (Aψ) = −ih̄(∇ ·A)ψ − ih̄A · ∇ψ

= −ih̄A · ∇ψ = A · pψ

working in the Coulomb gauge (7.10) where the first term vanishes. Thus A and p
commute in this gauge, which is one reason why it is particularly useful. In the resulting
Hamiltonian

H =
1

2m
p2 − e

m
A · p +

e2

2m
A2 (7.12)
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we now insert the vector potential (7.9) in the middle term with the result

H =
1

2m
p2 − e

2m
B · L +

e2

2m
A2 (7.13)

since the triple vector product B∧ r · p = B · r∧p. We have thus recovered the analog
of the classical coupling (7.5) of the magnetic moment (7.2) to the field. The last term
in the Hamiltonian is a genuine quantum term, giving rise to atomic diamagnetism.

When the magnetic field is constant along the z-axis and using the gauge where the
corresponding vector potential is (7.9), the Hamiltonian takes the form

Ĥ =
1

2m

(
p̂2
x + p̂2

y

)
+
e2B2

8m

(
x̂2 + ŷ2

)
− eB

2m
L̂z +

1

2m
p̂2
z (7.14)

in terms of abstract operators. The motion in the z-direction is therefore free as ex-
pected. In the xy-plane we have an harmonic oscillator with the frequency ω = −eB/2m,
i.e. the Larmor frequency. Also there is a contribution to the energy from the orbital
motion via the angular momentum operator Lz. In order to disentangle these two ef-
fects, it is convenient to introduce the chiral harmonic ladder operators (5.33) â± from
Chapter 5. Then we have L̂z = h̄(â†+â+ − â†−â−) with the result that the Hamiltonian
simplifies to

Ĥ = h̄ω(2â†+â+ + 1) (7.15)

when we ignore the motion in the z-direction. It only depends on the eigenvalue n+

of the number operator â†+â+ which counts the number of quanta in the up-direction,
i.e. along the z-direction. Each energy level is thus given by just this single quantum
number. But since the number n− of ’down’ quanta can be arbitrary with no effect on
the energy, each such energy level has an infinite degeneracy. It is called a Landau level.
There is also a non-zero groundstate energy of E0 = h̄ω as if the motion was confined
to a finite region of space even if the xy-plane is infinite. This is related to the classical
motion in circles. Since the center of such a circle can be everywhere, we also have an
intuitive understanding of the infinite degeneracy.

As an extra check we can also now verify that the precessional motion of the magnetic
moment comes out right. In the quantum description we must then use the Heisenberg
equation of motion

dL̂i
dt

=
i

h̄
[Ĥ, L̂i]

Here we now need the Hamiltonian (7.5) for a magnetic moment at rest in a field. It
follows from (7.5) as ĤB = −(e/2m)B · L̂ which is consistent with the same term we
derived above from the requirement of gauge invariance. Using Einstein’s summation
convention, we then find follows

dL̂i
dt

= − i

h̄

e

2m
Bj[L̂j , L̂i] = − e

2m
ǫijkBjL̂k = − e

2m
(B ∧ L̂)i

in full agreement with the classical result (7.3).
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7.3 Gauge transformations in quantum theory

It is natural to expect that the invariance of classical physics under the gauge transfor-
mation (7.7) is also seen in the quantum theory. But a first look at the Hamiltonian
(7.11) is discouraging since it obviously will change. But then we realize that the Hamil-
tonian always acts on wavefunctions so there may be a way out. In fact, let us consider
the stationary Schrödinger equation

1

2m
(p− eA)2ψ(x) = Eψ(x) (7.16)

combined with the local phase transformation

ψ(x) → ψ′(x) = eiθ(x)ψ(x) (7.17)

Then we find

(p− eA)ψ′(x) = (−ih̄∇ − eA)eiθ(x)ψ(x)

= eiθ(x)(−ih̄∇ + h̄∇θ − eA)ψ(x)

and therefore also

(p − eA)2ψ′(x) = eiθ(x)(p + h̄∇θ − eA)2ψ(x)

But if we now replace the vector potential A with the transformed vector potential
A′, use the gauge transformation (7.7) with the until-now arbitrary phase chosen to be
θ(x) = (e/h̄)χ(x), we simply obtain

(p − eA′)2ψ′(x) = eieχ(x)/h̄(p− eA)2ψ(x) (7.18)

The Schrödinger equation (7.16) can therefore be made gauge invariant in the sense that
it reproduces itself under the simultaneous transformations

{
A(x) → A(x) + ∇χ(x)
ψ(x) → eieχ(x)/h̄ψ(x)

(7.19)

They represent local gauge transformations in the quantum theory. Any change of
the vector potential of the form (7.7) can be compensated by a simultaneous position-
dependent phase transformation of the wave function.

Gauge invariance is actually even deeper. So far we have assumed that the gauge func-
tion χ is independent of time so that the transformed magnetic field remains constant.
Only then is the Hamiltonian (7.11) time-independent so that the stationary Schrödinger
equation (7.16) have physical content. In the more general case when χ = χ(x, t) we
must look for invariance in the time-dependent Schrödinger equation

ih̄
∂

∂t
Ψ(x, t) =

[
1

2m
(p − eA)2 + eΦ

]
Ψ(x, t) (7.20)

Here we have also introduced the interaction with an external, electric potential Φ =
Φ(x, t) in order to be more general. We now perform the time-dependent gauge trans-
formation

{
A(x, t) → A(x, t) + ∇χ(x, t)
Ψ(x, t) → eieχ(x,t)/h̄Ψ(x, t)

(7.21)
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Going through the same steps as above, it is then straightforward to show that equation
(7.20) is transformed into

ih̄
∂

∂t
Ψ′(x, t) =

[
1

2m
(p− eA′)2 + eΦ′

]
Ψ′(x, t) (7.22)

where now the scalar potential also must undergo a gauge transformation

Φ(x, t) → Φ′(x, t) = Φ(x, t) − ∂χ

∂t
(7.23)

The last term here is needed in order to cancel a corresponding term on the left-hand
side coming from the time derivative of the phase factor in Φ′. We thus have established
gauge invariance also in the time-dependent Schrödinger theory.

One may think that this scalar transformation will change the electric field given by
the gradient of the scalar potential. But in the time-dependent case the electric field is
given as

E = −∇Φ − ∂A

∂t
(7.24)

where the last term is equivalent to Faraday’s law. It is also seen to ensure that the
electric field remains unchanged under local gauge transformations where now both A
and Φ will change.

In a covariant description of the electromagnetic field one can combine the transforma-
tion of the magnetic vector potential in (7.21) with the transformation of the electric
scalar potential in (7.23) into a single transformation of an electromagnetic four-vector
potential. That must be left for a later treatment.

7.4 The Pauli equation

From Chapter 5 we know that an electron is decribed by a two-component spinor

ψ(x, t) =

(
ψ↑(x, t)
ψ↓(x, t)

)
= ψ↑(x, t)α+ ψ↓(x, t)β (7.25)

where α is the eigenspinor for spin along +z-axis and β for spin in the opposite direction.
We can thus interprete ψ↑(x, t) as the probability amplitude for finding the electron with
spin up at position x at time t. Similarly, ψ↓(x, t) is the corresponding amplitude for
finding the opposite spin direction. This position-dependent spinor replaces the ordinary,
one-component wave function.

Having only one electron in space corresponds to the normalization
∫
d3xψ†ψ =

∫
d3x

(
|ψ↑|2 + |ψ↓|2

)
= 1 (7.26)

In order to perform these integrals, we must know the space dependence of the spinor
ψ. It is given by a simple generalization of the Schrödinger equation called the Pauli

equation. Recall that the Hamiltonian of a free particle is H = p2/2m which we can
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write as the diagonal 2 × 2 matrix H = (σ · p)2/2m. The spin has no influence on the
motion of a free electron.

However, when it moves in an electromagnetic field the situation is more interesting.
Requiring also now gauge invariance, we must again make use of minimal coupling
p → p− eA. This results in the Pauli Hamiltonian H = [σ · (p− eA)]2/2m. Including
also an electric potential, we thus have the resulting Schrödinger equation

ih̄
∂

∂t
ψ(x, t) =

[
1

2m
[σ · (p − eA)]2 + eΦ

]
ψ(x, t) (7.27)

which is called the time-dependent Pauli spinor equation. This Hamiltonian is no longer
diagonal, but can be made much more transparent. In order to do that, introduce the
vector operator Π = p−eA. It has three components which in general do not commute
with each other since A = A(x). In fact,

[Πi,Πj ] = [−ih̄∂i − eAi,−ih̄∂j − eAj ]

= ieh̄(∂iAj − ∂jAi) = ieh̄Fij

which is just curl of the vector potential, i.e. Fij = ǫijkBk. We thus have the result
[Πi,Πj ] = ieh̄ǫijkBk which has the same form as the angular momentum commutator
(5.55) in Chapter 5. It can also be written as

Π ∧Π = ieh̄B (7.28)

in the same way as the angular momentum commutator was written as the simple vector
product (5.58).

We can now make use of this result in the simplification of the Pauli Hamiltonian (7.27)
with help of the general formula (5.82) for the multiplication of sigma-matrices. It gives

(σ · Π)2 = Π · Π + iσ · Π ∧ Π (7.29)

and thus

H =
1

2m
(p− eA)2 − eh̄

2m
σ · B + eΦ (7.30)

for the full Hamiltonian. While the first part is the same as for a spinless particle in
(7.11), there is now a new term where the intrinsic spin S = (h̄/2)σ couples directly
to the magnetic field as a magnetic moment. There is also a magnetic moment coming
from the first part due to the orbital motion and derived in (7.13). The total magnetic
moment of the electron is therefore

µ =
e

2m
(L + 2S) (7.31)

The intrinsic part has magnitude µe = eh̄/2me along the z-axis. More completely, it
can be written as

µe =
1

2
geµBσ (7.32)

where µB = eh̄/2me = 5.66 × 10−5 eV/T is a Bohr magneton and ge = 2 is the electron
g-factor. It shows that the intrinsic spin contributes twice as much as the orbital part.
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This value was historically very important in the establishment of modern quantum
mechanics. It is seen here to be a direct consequence of the Pauli Hamiltonian. But
at a deeper level it follows from special relativity as formulated in the relativistic Dirac
equation for the electron.

More accurate measurements of the magnetic moment of the electron just after the end
of WW II showed that its g-factor had a slightly different value, ge/2 = 1.00116. This
was explained around the same time by Schwinger who derived the result

ge = 2
(
1 +

α

2π
+ · · ·

)
(7.33)

using quantum electrodynamics, or QED for short. The electromagnetic field is then
quantized along with a relativistic spinor field having electrons as quanta. We will say
a little more about these theories later.

In a magnetic field the intrinsic spin vector will precess according to the equation of
motion (7.3) which is valid for any angular momentum. But since the g-factor is close to
two, the precessional rate will be twice the Larmor frequency (7.4) and thus very close
to the cyclotron frequency ωc. If the electron is in a circular motion with this orbital
frequency, the spin vector S will then rotate with approximately the same angular
velocity so that the angle between the momentum and spin is almost constant. Any
deviation from the value ge = 2 will cause this angle to increase with time. This effect
allows for a practical measurement of the difference ge − 2. Nowadays it is put to great
use especially for the µ-lepton which is like a heavy, but unstable electron.

One might think that also the proton would be described by the Pauli Hamiltonian
(7.30). This is true except for magnetic coupling of the spin. It corresponds to an
intrinsic magnetic moment which we can write as

µp =
1

2
gpµNσ (7.34)

where µN = eh̄/2mp is a nuclear magneton in analogy with the Bohr magneton. Notice
that the charge e is here positive while it was implicitly negative in the corresponding
formulas for the electron. But the measured value of this magnetic moment corresponds
to a g-factor for the proton gp/2 = 2.7928 which is so different from the ideal value of
one that it was a big mystery for many years. This is compounded by the fact that the
neutron also has a magnetic moment corresponding to gn/2 = −1.9135 even if it has no
overall charge.

Today we understand these magnetic moments by the discovery that the nucleons not
are fundamental particles, but composed of quarks which are really elementary like the
electron. The u-quark has charge 2/3 while the d-quark has charge −1/3 in units of
the positron charge. In this quark model the proton is composed as p = uud while the
neutron is n = ddu. Assuming non-relativistic motion of the quarks and no angular
momentum, one then finds a magnetic moment for the proton µp = eh̄/2mq and for the
neutron µn = −eh̄/3mq where mq is the mass of a quark. In this non-relativistic model
it is simply given by mp = mn = 3mq. Thus we obtain µp = 3µN and µn = −2µN which
are within 5% of the measured values. Why this crude model gives such good results is
still not understood.
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7.5 Zeeman effect

An electron bound in an H-atom which is placed in a magnetic field B, will be perturbed
by the dipole interaction (7.5) where the magnetic moment is given by (7.31). If the
field is along the z-axis, the perturbation becomes

ĤB =
eB

2me

(
L̂z + 2Ŝz

)
(7.35)

when we let e → −e for an electron with negative charge. The unperturbed states
where found in Chapter 5. They are given by the eigenstates |nlml〉 of the Coulomb
Hamiltonian and the spin eigenstates |sms〉 of the electron spin with s = 1/2. Combined
they form the basis states |nlml〉|sms〉 which we write more compactly as |nlml;ms〉.
They are eigenstates of L̂z and Ŝz with respective eigenvalues h̄ml and h̄ms where ms =
±1/2. Since the perturbation is diagonal in this basis, we don’t have to worry about
the degeneracy among the unperturbed states as explained in the previous chapter. In
lowest order perturbation theory, each level is then shifted by the amount

EB =
e

2me
〈nlmlms |L̂z + 2Ŝz|nlmlms〉 = µBB(ml + 2ms) (7.36)

which is called the Zeeman effect. The effect is simplest for the ground state 1s. Since it

µ
B
B

µ
B
B

sm

sm = −1/2

= +1/2

1s

Figure 7.1: Zeeman splitting of the ground state in hydrogen.

has ℓ = 0, it is simply split into two, depending on the spin quantum number ms = ±1/2
and shown in Fig. 7.2. The difference between the two perturbed levels is ∆EB = 2µBB
which is of the order 10−4 eV for an external field of magnitude B = 1 T. For the 2p
state the splitting is a bit more complex as shown in in the same figure. Here the orbital
quantum number ml will also contribute. The original level is split into four leaving the
original level doubly degenerate.

From a physical point of view the effect should be independent of the direction of
the magnetic field. Let us illustrate this for the 1s state with the field along the x-axis.
Neglecting the orbital part, the Hamiltonian is then simply HB = µBBσx. It is therefore
not diagonal in the standard spin-up α and spin-down β basis from Chapter 5 which we
have chosen here, i.e.

HB = µBB

(
0 1
1 0

)

We must therefore use degenerate perturbation theory as explained in the previous
chapter. The shifts of the unperturbed levels are then given by the eigenvalues of this
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Figure 7.2: Zeeman splitting of the 2p state in hydrogen. Perturbed levels are labelled by (ml, ms).

matrix which are easily found to be ∆E = ±µBB. So the spliting of the 1s level is
unchanged as it should be. But the corresponding eigenspinors α ± β now represent
states where the spin is along and opposite to the x-axis, i.e. parallel and anti-parallel
to the magnetic field. This situation is therefore exactly the same as when the field was
along the z-axis.

Originally one tried to explain these magnetic level shifts by classical physics, but it soon
emerged that the effect was much more subtle. A full explanantion was first possible
with the advent of quantum mechanics. In fact, the above formula is only correct for
very strong magnetic fields B ≫ 1 T. In the next chapter we will see that the motion
of the electron in the atom sets up a magnetic field of magnitude Bi ≈ 1 T giving rise
to the so-called LS-splitting of the levels. It is only when the external field overwhelms
this internal field that the formula applies.

7.6 Absorption and emission of light

When the external field that perturbs the atom is no longer static, but depends on time,
we have an even more important system corresponding to atoms absorbing and emitting
electromagnetic radiation. So far we don’t have a quantum theory of light so let us first
consider electromagnetic radiation which can be described by classical theory. In certain
limits this should correspond to a full quantum treatment we will come back to later.

Free, electromagnetic radiation is described by the vector potential A(x, t) alone. The
electric E and magnetic fields B will then be given by

E(x, t) = − ∂

∂t
A(x, t), B(x, t) = ∇ ∧ A(x, t) (7.37)

A homogeneous radiation field will be made up of unpolarized waves in all directions. So
let us first consider one of these waves with a definite wave number k and polarization
vector eλ so that

A(x, t) = aeλ cos(k · x − ωt) (7.38)
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where a is the amplitude and ω = c|k|. The Coulomb gauge condition ∇ · A = 0 now
implies that k · eλ = 0 so that the polarization vector is normal to the wavevector.
There are two such independent polarization vectors and it is convenient to take them

E

B

k

Figure 7.3: Polarization vectors for wave in direction of the wave number k can be along the electric
and magnetic fields, but always normal to the wavevector.

to be orthonormal to each other, i.e. eλ · eλ′ = δλλ′ . Notice that the directions of the
polarization vectors depend intimately on the direction of the wave number. For the
electric field we now find

E = −aωeλ sin(k · x − ωt)

It is along one of the polarization vector while the magnetic field

B = −ak ∧ eλ sin(k · x − ωt)

is normal to it, i.e. along the other one.

In general the energy density in the radiation is

u =
1

2
〈 ǫ0E2 + B2/µ0 〉 (7.39)

where the average is over time and space. Since we are considering a single wave with
a definite frequency ω, this will in our case be a spectral density. Using now that
〈 sin2 〉 = 〈 cos2 〉 = 1/2, we get 〈E2 〉 = a2ω2/2 and 〈B2 〉 = a2k2/2 and therefore

u =
1

2
· a

2

2

(
ǫ0ω

2 +
1

µ0
k2
)

=
1

2
ǫ0a

2ω2

since c2 = 1/ǫ0µ0. We thus find for the amplitude a =
√

2u/ǫ0ω2 when expressed in
terms of the spectral energy density.

For simplicity we again consider an atom with a single electron bound to a nuclear
charge Ze in the presence of such electromagnetic radiation. Ignoring here the spin of
the elctron, the corresponding Hamiltonian is

H =
1

2me
(p + eA)2 − Ze2

4πǫ0r
(7.40)
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It can be written as H = H0 + V with the unperturbed part

H0 =
1

2me

p2 − Ze2

4πǫ0r
(7.41)

with eigenstates |n〉 and corresponding energies En plus the perturbing part

V =
e

me
A · p +

e2

2me
A2 (7.42)

We are again in the the Coulomb gauge where A · p = p · A. The perturbing part
is driven by the vector potential A which we will consider in first order perturbation
theory. It is therefore consistent to neglect the term ∝ A2 which would give second
order effects. Writing the vecor potential (7.38) as

A(x, t) =
1

2
aeλ

[
ei(k·x−ωt) + ei(k·x−ωt)

]
(7.43)

we know from the previous chapter on time-dependent perturbation theory that the
first term will induce transitions in the atom corresponding to absorption of an energy
amount h̄ω, while the second term corresponds to emission of the same energy amount.
To be specific, assume the atom is initially in a state |n〉 and we want to find the

hω

m

n

Figure 7.4: When radiation is absorbed, the atom makes a transition from a lower state to a higher
state.

transition rate to a higher energy state |m〉 as illustrated in the Fig.7.4. The absorption
rate is then given by Fermi’s Golden Rule as

Γmn =
2π

h̄
|Vmn|2δ(Em − En − h̄ω) (7.44)

where the transition matrix element is

Vmn =
e

me
a〈m |eik·x̂eλ · p̂|n〉

Now we have 〈 eik·x 〉 = 1 + i〈k · x 〉 + . . . where 〈k · x 〉 ≤ 〈 k 〉〈 r 〉. Since 〈 r 〉 is of the
order of the Bohr radius a = Z/αmec and k = ω/c, we see that 〈k · x 〉 ≈ (Zα)3 ≪ 1.
Thus we can ignore the exponential term. We have then made the dipole approximation

which is seen to be very accurate here. The simplified transition element

Vmn =
e

me
aeλ · 〈m |p̂|n〉
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we can now either calculate directly from the known hydrogen eigenfunctions or make
use of the Heisenberg equation of motion p̂ = ime[Ĥ0, x̂]. It allows us to write the
matrix element

〈m |p̂|n〉 = ime〈m |Ĥ0x̂ − x̂Ĥ0|n〉/h̄ (7.45)

= ime(Em − En)〈m |x̂|n〉h̄ = imeωxmn (7.46)

where xmn = 〈m |x̂|n〉. Here we have made use of the δ-function in (7.44) which fixes
the frequency ω in terms of the atomic energy difference Em−En. This is just the Bohr
frequency formula. For these two particular initial and final states, only radiation with
this frequency will be absorbed.

With these simplifications the absorption rate can now be written as

Γmn =
πe2

2h̄
(aω)2|eλ · xmn|2δ(Em − En − h̄ω)

or

Γmn =
πe2

ǫ0h̄
u(ω)|eλ · xmn|2δ(Em − En − h̄ω) (7.47)

when we use our previous result for the wave amplitude a expressed in terms of the
spectral energy density u(ω).

It is now easy to generalize this result for the absorption rate from a single wave to more
general radiation. We must then average over all directions of the wavenumber k and
integrate over all frequencies ω. While this integration simply picks out the frequency
ω = (Em −En)/h̄, the first average corresponds to an average over all directions of the
polarization vector eλ. This simply gives

〈 |eλ · xmn|2 〉 =
1

3
|xmn|2 (7.48)

since all three directions contribute equally for isotropic radiation. For a more elaborate,
mathematical proof, choose coordinate axes so that the wavenumber k is along the z-
axis and the vector |xmn| in the yz-plane at an angle θ away from the z-axis.. The
polarization vector eλ is then in the xy-plane forming an angle φ with the x-axis. Then
|eλ · xmn| = |xmn| sin θ sin φ. Averaging over all directions of k, now corresponds to
integrating these spherical angles over the unit sphere, i.e.

〈 |eλ · xmn|2 〉 =
1

4π

∫ π

0
dθ sin θ

∫ 2π

0
dφ (|xmn| sin θ sin φ)2

=
1

4π
|xmn|2

∫ π

0
dθ sin3 θ

∫ 2π

0
dφ sin2 φ

=
1

4π
|xmn|2 ·

4

3
· π =

1

3
|xmn|2

Introducing again the fine-structure constant α = e2/4πǫ0h̄c, the resulting rate valid for
isotropic radiation is then

Γmn =
4π2αc

3h̄
|xmn|2u(ω) (7.49)
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where again it should be remembered that the frequency is fixed by the above Bohr
condition.

Emission of radiation will be caused by the second term of the vector potential in (7.43).
The atom is then initially in the upper state |m〉 and can go to the lower state |n〉 at

hω

m

n

Figure 7.5: When radiation is emitted, the atom makes a transition from an upper state to a lower
state.

the rate

Γnm =
2π

h̄
|Vnm|2δ(En − Em + h̄ω) (7.50)

where now the transition matrix element is

Vnm =
e

me
a〈n |e−ik·x̂eλ · p̂|m〉 (7.51)

Again making use of the dipole approximation and the Heisenberg equation of motion,
it gives

Γnm =
4π2αc

3h̄
|xnm|2u(ω) (7.52)

for the emission rate after averaging over polarizations. But now we see that this equals
the absorption rate (7.49). This follows from |xnm|2 = 〈n |x̂|m〉〈n |x̂|m〉∗. Now using
that the operator x̂ is Hermitean, we have |xnm|2 = 〈m |x̂|n〉〈m |x̂|n〉∗ = |xmn|2 and
therefore

Γmn = Γnm (7.53)

This important result is called detailed balance. It can be generalized to other quan-
tum transitions and has important implications in subatomic physics and statistical
mechanics.

7.7 Einstein A and B coefficients

That the ratse for emission and absorption of electromagnetic radiation are equal, ex-
presses a form of equilibrium. This was also on Einstein’s mind in 1917 when he con-
templated the processes going on with atoms in thermal equlibrium with blackbody
radiation with temperature T . According to the atomic model of Bohr from 1913, he
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knew that the atoms could be stable in stationary states with quantized energies. Con-
sidering the numbers Nm and Nn of atoms with energies Em and En, these had to be
related by the Boltzmann distribution

Nm

Nn
= e−β(Em−En) (7.54)

where β = 1/kB and kB is the Boltzmann constant. This ratio had to remain constant
even if there constantly were transitions between these two states. He furthermore
assumed that the transition rate for absorption could be written as Γmn = Cu(ω)
where the factor C should be independent of temperature while u(ω) was the blackbody
spectral energy density

u(ω) =
ω2

π2c3
h̄ω

eβh̄ω − 1
(7.55)

found by Planck in 1900. The total rate for upward transitions n → m is therefore
Γ(n → m) = NnCu. In thermal equlibrium this must equal the total downward rate
Γ(m→ n) = NmΓnm. But now he discovered that the equilibrium condition

Γ(n→ m) = Γ(m→ n) (7.56)

can only be satisfied when the emission rate has the form Γnm = A +Bu(ω) where the
coefficients A and B again are independent of temperature and determined purely by
atomic physics. Since the transitions caused by A is independent of the radiation, it is

m

n

Cu A + Bu

Figure 7.6: When radiation is emitted, the atom makes a transition from an upper state to a lower
state.

said to describe the rate for spontaneous emission. The coefficient B, on the other hand,
induces downward transitions because of radiation already being present and is therefore
said to be the rate for induced emission. It corresponds to the rate we calculated in the
previous section. These different transitions and accompanying coefficients lay at the
heart of modern laser physics and can be illustrated as in the above figure.

We can now write the equilibrium condition as

Nn

Nm
=
A+Bu

Cu
=

A

Cu
+
B

C

Since h̄ω = Em − En, we can write the left-hand side as exp(βh̄ω) and therefore

eβh̄ω =
A

C

π2c3

ω2

eβh̄ω − 1

h̄ω
+
B

C



144 Chapter 7. Electromagnetic interactions

Needless to say, this must be true at all temperatures. The exponential term on the
left must therefore match the expontial term on the right which implies the first result
Aπ2c3 = Ch̄ω3 or

A =
h̄ω3

π2c3
C (7.57)

The remaining two terms on the right must cancel and therefore give B = C. This just
expresses the same result of detailed balance (7.53) as we derived in in the previous
section from the machinery of quantum mechanics. Remember that Einstein in 1917
didn’t know anything of that sort.

But he also had the new result (7.57) which gives the rate for emission from an atom
in the absence of any other initial radiation. If we now extract the coefficient C from
the absorption rate (7.49), we thus find for the spontaneous emission rate the important
result

Γspontnm = A =
4αω3

3c2
|xmn|2 (7.58)

In the following section we will explicitly calculate this rate for the lowest transition in
the hydrogen atom which is the simplest case.

A general excited state can make such radiative transitions to many lower states. We
call the sum over all these partial transition rates for the total decay rate Γ. If the
number of atoms in this excited state is N , a number dN = −NΓdt will decay in an
infinitesemal time interval dt. Integrating, this gives the exponential decay law

N = N0e
−Γt (7.59)

where N0 is the initial number at time t = 0. After a time τ = 1/Γ called the lifetime

of this state, the number has fallen to N0/e. It is easy to make a rough estimate of this
lifetime in hydrogen with Z = 1. Since the matrix element |xmn| ≈ a0 = 1/αmec and
ω ≈ mec

2α2/h̄, it follows that Γ ≈ α5mec
2/h̄ ≈ 10−7 eV/h̄ which gives τ ≈ 10−10 sec.

The lifetime is very short, but still long to what we are used to in the macroscopic world.

Before we present a more accurate calculation, we will give a quantum description of
the electromagnetic field itself. It will give us a more fundamental understanding of why
these spontaneous transitions take place after all. This is at the core of the quantum
mystery.

7.8 Quantization of the electromagnetic field

It simplest to consider the vector field A(x, t) within a cubic box of volume V = L3 and
satisfying periodic boundary conditions. The field can then be expanded in a Fourier
series

A(x, t) =

√
1

V

∑

k

Ak(t)e
ik·x (7.60)
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where the allowed wavenumbers can be written as k = 2πn/L where the direction
vector n = (nx, ny, nz) with ni = 0,±1,±2, . . .. To verify this, let for example one
coordinate x be increased to x→ x+ L. The mode function exp(ikx) will then change
to exp(ikx) → exp(ikx+ ikL) = exp(ikx) since exp(ikL) = exp(2πin) = 1. These mode
functions are also orthonormalized as seen from

∫ L

0
dxei(k−k

′)x =
ei(k−k

′)x

i(k − k′)

∣∣∣∣∣

L

0

=
ei(k−k

′)L − 1

i(k − k′)
=
{
L, k = k′

0, k 6= k′
(7.61)

since k − k′ = 2π(n− n′)/L.

In the limit when the volume V = L3 becomes very large, we can replace the discrete
sum over modes my a corresponding integral, noticing that

∑
k =

∑
n ∆nx∆ny∆nz with

∆ni = 1. We thus have

∑

k

=
(
L

2π

)3∑

k

∆kx∆ky∆kz → V
∫

d3k

(2π)3
(7.62)

This is a very useful formula in statistical physics and quantum mechanics.

The Fourier modes Ak in (7.60) are in general complex, but satisfy simple reality con-
ditions. This follows from the requirement that the field A(x, t) is real so that

A∗(x, t) =

√
1

V

∑

k

A∗
k(t)e

−ik·x = A(x, t)

Making here the replacement k → −k in the sum, it follows that A∗
k = A−k. We will

often make use of it in the following.

The total energy in the field is now

E =
∫
d3x

(
1

2
ǫ0E

2 +
1

2µ0
B2

)
(7.63)

where the electric and magnetic fields are given by (7.37). For the electric field we find

E(x, t) = − ∂

∂t
A(x, t) = −

√
1

V

∑

k

Ȧk(t)e
ik·x

and therefore
∫
d3xE2 =

1

V

∑

k,k′

ȦkȦk′

∫
d3xeik·xeik

′·x

But now we make use of the periodic boundary conditions satisfied by the exponential
mode functions. Indeed, the generalized version of (7.61) is now

∫
d3xei(k−k′)·x = V δk,k′ (7.64)

which now allows us to obtain
∫
d3xE2 =

∑

k

ȦkȦ−k =
∑

k

ȦkȦ
∗
k =

∑

k

|Ȧk|2
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Similarly, for the magnetic field

B(x, t) = ∇ ∧ A(x, t) =

√
1

V

∑

k

ik ∧Ak(t)e
ik·x

it follows that
∫
d3xE2 =

∑

k

(ik ∧Ak) · (−ik ∧ A−k)

Using now the vector identity (A ∧ B) · (C ∧ D) = (A · C)(B · D) combined with the
Coulomb gauge requirement ∇ · A = 0 which gives k · Ak = 0, it then follows that
(k ∧ Ak) · (k ∧ A−k) = k2Ak · A−k which then gives the magnetic energy. The total
energy (7.63) then becomes

E =
ǫ0
2

∑

k

(
ȦkȦ

∗
k + ω2

kAk · A∗
k

)
(7.65)

when we again make use of c2 = 1/ǫ0µ0. Here ωk = c|k| is the frequency associated with
the wavevector k.

We have already made use of the fact that the field mode Ak is orthogonal to the
wavevector k. That is always the case in the Coulomb gauge. The vector Ak is therefore
situated in a plane normal to k. It is then convenient to introduce two orthogonal, unit
vectors eλ = eλ(k) in this plane. They can in general be complex and thus satisfies

e∗
λ · eλ′ = δλλ′ (7.66)

Needless to say, these are the polarization vectors already introduced earlier in this
chapter. Together with the unit vector k̂ in the direction of the wavevector k they form
a complete set. Thus we have

∑
λ eλieλj + k̂ik̂j = δij or

∑

λ

eλieλj = δij − kikj/k
2 (7.67)

which is a very useful result in practical calculation.

With these polarization vectors we have the decomposition

Ak(t) =
∑

λ

Akλ(t)eλ

where the field mode Ak,λ now is scalar, but still complex. This allows us to rewrite the
product

Ak · A∗
k =

∑

λλ′
Akλeλ · e∗

λ′A
∗
kλ′ =

∑

λ

AkλA
∗
kλ

and therefore also the energy as

E =
ǫ0
2

∑

kλ

(
ȦkλȦ

∗
kλ + ω2

kAkλA
∗
kλ

)
(7.68)
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Each mode specified by (k, λ) contributes a term to the energy which has exactly the
same form as the energy of a 2-dimensional, harmonic oscillator,

E =
1

2
mżż∗ +

1

2
mω2zz∗

where z = (x + iy)/
√

2. We can therefore consider the field component Akλ(t) as a
dynamical variable like the oscillator coordinate z(t). The conjugate momentum variable
is Πkλ = ǫ0Ȧ

∗
kλ. Quantization of the electromagnetic field is now achieved by letting

these two variables become quantum operators,

Akλ(t) −→ Âkλ(t), Πkλ(t) −→ Π̂kλ(t) (7.69)

with the canonical commutators

[Âkλ, Âk′λ′ ] = 0, [Âkλ, Π̂k′λ′ ] = ih̄δλλ′δkk′ (7.70)

exactly as for coordinates and momenta in earlier chapters. The dynamics is then given
by the quantum version of the above energy which becomes the Hamiltonian

Ĥ =
∑

kλ

[
1

2ǫ0
Π̂†

kλΠ̂kλ +
ǫ0
2
ω2

kÂ
†
kλÂkλ

]
(7.71)

similar to the harmonic oscillator in higher dimensions. In fact, the field has exactly the
same dynamics as an infinite set of free oscillators. By this promotion of the classical
field variables to quantum operators, we say that the electromagnetic field has been
quantized. The classical field (7.60) has become a quantum field operator Â(x, t). The
field at two different points will have non-trivial commutators which can be calculated
from the above fundamental commutators (7.70) between the mode operators.

As for the simple harmonic oscillator, we can now introduce ladder operators in order to
facilitate the construction of eigenstates and energy eigenvalues in the most direct way.
In analogy with the (4.68) for the position operator and (4.69) the momentum operator
in Chapter 4, we now write the field mode as

Âkλ =

√
h̄

2ωkǫ0

(
âkλ + â†−kλ

)
(7.72)

and the conjugate momentum mode as

Π̂kλ = i

√
h̄ωkǫ0

2

(
â†kλ − â−kλ

)
(7.73)

The −k in the last term of these operators is needed in order to satisfy the requirement
Â†

kλ = Â−kλ which comes from the corresponding reality condition of the classical field.
It is now straightforward to show that the canonical field commutators (7.70) are satisfied
when these new ladder operators obey

[âkλ, âk′λ′ ] = 0, [âkλ, â
†
k′λ′] = δλλ′δkk′ (7.74)

Thus âkλ is a lowering operator and â†kλ is a raising operator. They lower and raise the
number of exitations or quanta in the mode (kλ). This is given by the eigenvalue nkλ =
0, 1, 2, . . . of corresponding number operator n̂kλ = â†kλâkλ. It has the commutators

[n̂kλ, âk′λ′] = −δλλ′δkk′ âkλ, [n̂kλ, â
†
k′λ′ ] = +δλλ′δkk′ âkλ (7.75)
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in complete analogy with what we had for a single oscillator. With help of these new
ladder operator we can now write the Hamiltonian (7.71) as

Ĥ =
1

2

∑

kλ

h̄ωk

(
â†kλâkλ + âkλâ

†
kλ

)
=
∑

kλ

h̄ωk

(
n̂kλ +

1

2

)
(7.76)

From (4.78) in Chapter 4 we know that the states

|nkλ〉 =

√
1

nkλ!

(
â†kλ

)nkλ |0〉 (7.77)

are eigenstates of the number operator, i.e N̂kλ|nkλ〉 = nkλ|nkλ〉. Here |0〉 is the very
special state without any excitations or quanta. This empty state is called the vacuum

state in quantum field theory and satisfies the fundamental requirement

âkλ|0〉 = 0 (7.78)

by definition for all modes (k, λ). As expected, when the ladder operators actin on an
excited state (7.77), they give

âkλ|nkλ〉 =
√
nkλ|nkλ − 1〉 (7.79)

and

â†kλ|nkλ〉 =
√
nkλ + 1|nkλ + 1〉 (7.80)

like the ordinary oscillator operators act in (4.75) and (4.76). Thus âkλ removes a
quant from the state |nkλ〉 while â†kλ creates one. In quantum field theories like here
for the electromagnetic field, these ladder operators are called annihilation and creation

operators.

The complete eigenstate of the Hamiltonian (7.76) can now be written as

|nk1λ1
, nk2λ2

· · ·〉 = Πkλ|nkλ〉 (7.81)

where the product goes over all available modes in the volume occupied by the field. It
has quantized energies given by the eigenvalues

E =
∑

kλ

(
nkλ +

1

2

)
h̄ωk (7.82)

We see that the energy is uniquely given by the number nkλ of quanta in each mode
(k, λ). For this reason they are often called occupation numbers. An arbitrary eigenstate
of the quantized electromagnetic field is completely specified by giving the value of all
the occupation numbers.

In the empty or vacuum state all the ocupation numbers are zero. The energy of this
state is therefore

E0 =
1

2

∑

kλ

h̄ωk (7.83)
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Since all the mode energies h̄ωk are positive and there is an infinite number of modes,
we get the surprising result that the quantized vacuum energy is infinite! It is due to
the quantum fluctuations of the electromagnetic field in the vaccuum state which are
exactly like the non-zero fluctuation 〈0 |x̂2|0〉 of the oscillator in its ground state. And
in the field there is an infinity of such oscillators. Remember that in classical physics the
vacuum doesn’t contain anything and therefore we can take its energy to be zero. This
is a very big and deep problem! We will come back to it later, but just say here that in
most instances we only measure energy differences and then this infinite constant will
cancel out. But still...

The first excited state contains one quantum with wavenumber and polarization (k, λ).
It is decribed by the state vector |kλ〉 = â†kλ|0〉 and is seen from (7.82) to have the
energy E = h̄ωk measured with respect to the zero-point energy E0. More formally, this
follows as the eigenvalue of the Hamiltonian (7.76) since

Ĥ|kλ〉 =
∑

k′λ′
h̄ωk′ â†k′λ′ âk′λ′ |kλ〉 =

∑

k′λ′
h̄ωk′ â†k′λ′[âk′λ′ , â

†
kλ]|0〉

using the definition (7.78) of the vacuum state. With the last commutator in (7.74) this
now becomes

Ĥ|kλ〉 = h̄ωkâ
†
kλ|0〉 = h̄ωk|kλ〉

This electromagnetric quantum of energy E = h̄ωk is the photon. It is a particle since
it also has the momentum p = h̄k as we will show in a minute. Since mass and energy
for a relativistic particle is related by the Einstein equation E2 = p2c2 + m2c4, it is in
fact a massless particle, i.e. with mass m = 0. Since all the knowledge we have about
the particle is contained in the state evctor |kλ〉, there is at this stage no obvious way
to say where the particle is situated, or if it is meaningful at all to expect a well-defined
position for it as for a classical particle. This would be equivalent to trying to find a
wavefunction for the photon as for a non-relativistic particle. But this massless particle
is really different and does not have an ordinary wavefunction.

The momentum density of the electromagnetic field is given by Poynting’s vector ǫ0E∧B.
Using again the mode expansion and integrating over space, one thus finds the total
momentum in the field as

P = −iǫ0
∑

k

Ȧ∗
k ∧ (k ∧ Ak)

Here we recognize Πk = ǫ0Ȧ
∗
k as the canonical momentum of the field. Using now the

triple vector product formula A∧ (B∧C) = (A ·C)B− (A ·B)C and the transversality
condition k · Ak = 0 from the Coulomb gauge condition, one obtains

P = −i
∑

k

(Πk · Ak)k

As expected, the momentum of the mode with wavenumber k is along that same direc-
tion. Decomposing these vectors onto the two polarization vectors and quantizing by
replaceming of the classical field variables with the quantum operator (7.72) and (7.73),
we find

P̂ =
1

2

∑

kλ

h̄k
(
â†kλâkλ + â†kλâ

†
−kλ − â−kλâkλ − â−kλâ

†
−kλ

)
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The two middle terms are odd under k → −k and thus each gives zero in the sum. With
the same shift of summation variable in the last term combined with a commutation, it
gives the same as the first. We therefore have the simple result

P̂ =
∑

kλ

h̄kâ†kλâkλ (7.84)

for the momentum operator. This explains why the one-photon eigenstate |kλ〉 not
only has the energy eigenvalue E = h̄ωk but also the momentum eigenvalue p = h̄k.
Similarly, the two-photon state |kλ,k′λ′〉 has the energy E = h̄ωk + h̄ωk′ and the
momentum p = h̄k + h̄k′.

One can also derive an operator which gives the spin of a photon state. Instead of going
through the derivation, it is simpler to note that the electromagnetic field is decribed
by the vector A(x). It will then as all other 3-vectors, transform as a spin-1 object
under rotations. The photon thus has spin S = 1. But since it is massless and thus does
not have any restframe, the spin has only two components. These correspond to the
spin pointing along or opposite to the direction of the wavevector k. The component
of the spin of a massless particle in this direction is called the helicity of the particle
and thus can take the values λ = ±1 for the photon. It is intimately connected with
the polarization state of a classical, monochromatic electromagnetic wave in the same
direction and with the same frequency ω = kc. If the motion is along the z-axis, the
two polarization vectors

eR/L =

√
1

2
(ex ± iey) (7.85)

correspond to the electric field vector E (or magnetic field B) rotationg around the z-
axis in the positive, respectively negative sense with frequency ω. Thus helicity λ = +1
corresponds to right-handed polarization and helicity λ = −1 corresponds to left-handed
polarization

What remains is to fully write out the electromagnetic field operator which follows from
the expansion (7.60) when the modes Ak(t) are replaced by the quantum operators
(7.72). Writing these in the Heisenberg picture as for each oscillator mode like (4.86) in
Chapter 4, one gets

Â(x, t) =
∑

kλ

√
h̄

2ωkǫ0V
eλ
[
âkλe

−iωkt + â†−kλe
iωkt

]
eik·x

=
∑

kλ

√
h̄

2ωkǫ0V

[
eλâkλe

i(k·x−ωkt) + e∗
λâ

†
kλe

−i(k·x−ωkt)
]

(7.86)

after making the replacement k → −k in the last sum. Notice that we then have
eλ(−k) → e∗

λ(k) since the polarization vectors can in general be complex, corresponding
to circular polarization. The first term can be interpreted as annihilating a photon
at position x at time t while the last term describes the creation of a photon at the
same spacetime point. These localized photons are seen to be infinite superpositions of
photons with well-defined wavenumbers or momenta, as expected from the Heisenberg
uncertainty relations.
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Each term of the electromagnetic qyantum field operator (7.86) has the same structure
as the classical wave (7.43) or mode with a given wavevector. An obvious question is
now what the correspondence is between the above field operator describing annihilation
and creation of a single photon, and a classical wave. From the correspondence principle
we know that a quantum system can be described in classical terms when its quantum
numbers become large. In our case that corresponds to having a large number of photons
in the system. A classical, electromagnetic wave can then be thought of as made up
of many photons in a particular way. In fact, from the existence of coherent states
for the harmonic oscillator in Chapter 4, we know that in a coherent state of photons
with a definite wavenumber and polarization, the expectation value of the quantum field
operator will be exactly a classical wave. But what is then the static Coulomb potential
in terms of photons? Apparently there must be more to quantum electromagnetism than
just these massless field quanta. The full theory of quantum electrodynamics (QED)
answers these remaining questions in a more satisfactory way.

7.9 Spontaneous emission

Let us now return to the process of emission of light from an excited state of an atom
illustrated in Fig. 7.5. When the electromagnetic field now is quantized, we can calculate
the rate for emission of one or several photons. The simplest process is the emission of
just one photon which we will consider here. Nothing has changed in the interaction
Hamiltonian (7.42) except for the vector potential now being a quantum field operator.
In lowest order perturbation theory the transition matrix element is therefore

Vfi =
e

me
〈f |p̂ · Â(x̂, 0)| i〉 (7.87)

In the argument of the field operator we find the position operator x̂ of the electron
since it is there the field acts.

We will consider an initial state of nkλ photons in the mode (kλ) and the atom in the
initial state |m〉. The full initial state can therefore be written as | i〉 = |m;nkλ〉. For
the emission of one photon, it is the first part of the field operator (7.86) which will
contribute. It creates one additional photon in the same mode so that the final state of
the coupled system is |f〉 = |n;nkλ + 1〉 when the atom itself is found in the state |n〉.
Inserting for the field operator, we thus have for the transition matrix element

Vfi =
e

me

√
h̄

2ωkǫ0V
〈n |e−ik·x̂e∗

λ · p̂|m〉〈nkλ + 1 |â†kλ|nkλ〉

The photonic matrix element is simply
√
nkλ + 1 from (7.80) and the atomic part is

exactly the same as in the previous, semi-classical case (7.51). In the dipole approxi-
mation we can use (7.46) to write the matrix element pnm = −imeωkxnm. With help of
the Fermi Golden Rule, we thus get for the transition rate

Γemnm =
2π

h̄

(
e

me

)2 h̄

2ωkǫ0V
(meωk)

2(nkλ + 1)|e∗
λ · xnm|2δ(En − Em + h̄ωk) (7.88)
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The total rate is now obtained by summing over all wavenumbers k and the two polar-
ization vector eλ of the final photon. In the large-volume limit we write the first sum
as in (7.62), giving for the total transition rate

Γemnm =
e2π

ǫ0

∑

λ

∫ d3k

(2π)3
|e∗
λ · xnm|2ωk(nkλ + 1)δ(En −Em + h̄ωk) (7.89)

where d3k = k2dkdΩk. The integration over the photon frequency ωk = kc = ω fixes it
to the value ω = (Em − En)/h̄. Therefore

Γemnm =
e2ω3

8π2ǫ0h̄c3
∑

λ

∫
dΩk|e∗

λ · xnm|2(nkλ + 1)

For the combined integration over photon directions and polarization sum, we proceed
as in the derivation of (7.48), i.e.

∑

λ

∫
dΩk|e∗

λ · xnm|2 = 8π · 1

3
|xnm|2

since each of the two polarization directions give the same. But we can also now obtain
this result by first summing over the two polarization vectors using the relation (7.67),

∑

λ

|e∗
λ · xnm|2 = |xnm|2 − |k̂ · xnm|2 (7.90)

where again k̂ is a unit vector along k. If this makes the angle θ with xnm considered
as a fixed vector, we thus get by integration over all directions

∑

λ

∫
dΩk|e∗

λ · xnm|2 = 2π|xnm|2
∫ π

0
dθ sin θ(1 − cos2 θ) =

8π

3
|xnm|2 (7.91)

which is seen to agree with what we found above.

Including now all the factors and rearranging, we thus have for the full transition rate

Γemnm =
e2ω3

8π2ǫ0h̄c3
8π

3
|xnm|2(nk + 1) (7.92)

where nk is the number of photons in each polarization mode. For thermal radiation it
is given by the Bose-Einstein distribution function

nk =
1

eβh̄ωk − 1
(7.93)

We see that the total emission rate splits into two parts. The first part is proportional
to the number of photons in the initial state. One says that the emission is induced by
these photons. The corresponding induced emission rate can then be written as

Γinducnm =
4π2αc

3h̄
|xnm|2u(ω) (7.94)

where u(ω) = (ω2/π2c3)h̄ωnk as for the Planck distribution (7.55). This is seen to be
in complete agreement with the semi-classical result (7.52), derived in the limit where
the electromagnetic field could be treated classically.
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But there is an additional term arising from the correct quantum treatment of the field
given here. From the full rate (7.92), setting the number nk of initial photons equal to
zero, we get the spontaneous emission rate. It is seen to be

Γspontnm =
4

3
αω

∣∣∣∣
ω

c
xnm

∣∣∣∣
2

(7.95)

and is also in agreement with what followed from the Einstein equilibrium argument in
(7.58).

We will now calculate this spontaneous emission rate for the simplest transition in the
hydrogen atom from the first excited state |2p〉 to the ground state |1s〉. The matrix
element xnm is most simply calculated by expressing the electron position operator x̂ in
terms of the spherical components x̂± = (x̂± iŷ)/

√
2 so that

|xnm|2 = |〈1s |x̂|2p〉|2

= |〈1s |x̂−|2p〉|2 + |〈1s |x̂+|2p〉|2 + |〈1s |ẑ|2p〉|2 (7.96)

In the coordinate representation the corresponding wavefunctions ψnlm(r, θ, φ) are

ψ100 = R1s(r)Y00(θ, φ), ψ21m = R2p(r)Y1m(θ, φ)

where the radial functions were calculated in Chapter 5. We can then also write

x± =

√
1

2
r sin θe±iφ = ∓

√
4π

3
rY1,±1(θ, φ) (7.97)

and z = r cos θ =
√

4π/3 rY10(θ, φ). Since now Y00 = 1/
√

4π is just a constant, we

see from the orthogonality of the spherical harmonics in (5.96) that the matrix ele-
ment 〈1s |x̂−|2p〉 will be non-zero only when the atom is in the initial 2p-state with Lz
eigenvalue equal to m = +1. It will then take the value

〈1s |x̂−|2p,+1〉 = −
√

1

4π

∫
d3rR∗

1sr

√
4π

3
Y ∗

1,+1Y1,+1R2p

= −
√

1

3

∫ ∞

0
drr3R1sR2p

∫
dΩY ∗

1,+1Y1,+1 = −
√

1

3
I (7.98)

since the angular integral is one. The radial integration gives

I =
∫ ∞

0
drr3R1sR2p =

√
4

a3
0

√
1

24a3
0

∫ ∞

0
drr3e−r/2a0

r

a0
e−r/a0

= a0

√
1

6

(
4

3

)4

(7.99)

If we instead had considered the atom to be intially in the state with m = −1, then the
middle term in (7.96) would have contributed with the same value. Similarly, the last
term would have contributed also the same if the atom was initially in the state with
m = 0. When these three initial states have the same probability, we should take the
average, i.e. the sum of the three terms in (7.96) and divide by three. This is then the
same as (7.99) again.
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Besides the matrix element (7.98), the transition rate (7.95) also involves the frequency
ω of the emitted photon. Here it has the value

h̄ω = E2p − E1s = −1

2
α2mec

2
(

1

22
− 1

12

)
=

3

8
α2mec

2 (7.100)

which gives for the rate

Γ(2p→ 1s+ γ) =
4αω3

3c2
1

3
I2 = α5

(
2

3

)8 mec
2

h̄
(7.101)

Putting in numbers, we find Γ = 4.13 × 10−7 eV/h̄ corresponding to the lifetime τ =
1/Γ = 1.61 × 10−9 sec. It is short as already mentioned, but much longer than many
unstable nuclear states and elementary particles.

What about the other excited state |2s〉? It would have a one-photon decay to the
ground state given by the matrix element 〈1s |x̂|2s〉. But writing it out, we see that
it is zero from the angular integration. More generally, since both |1s〉 and |2s〉 have
wavefunctions that are rotationally invariant and with even parity, and x̂ is a vector
operator and therefore has odd parity, the matrix element must be zero. The same
argument holds even if we had not done the dipole appoximation. Thus the transition
rate is exactly zero in first order perturbation theory. But in second order we must also
include the two-photon operator stemming from the second term in the perturbation
(7.86) and we will get a non-zero result. Since it involves more powers of the fine-
structure constant, the transition rate will be smaller and the lifetime of this state
correspondingly longer. In fact, a rather difficult calculation gives a lifetime of around
eight seconds. It is almost an eternity compared with the lifetime for the |2p〉 state.

7.10 Angular distributions

Having now established a quantum theory of photons, we can ask more detailed questions
about the what happens in the decay. For instance, if the atom was initially in the |2p〉
with its angular momentum along the z-axis so that the azimuthal quantum number
m = +1, what is then the probability for observing the photon from the decay coming
out in a certain direction? Or we can be even more specific, what is the probability
to observe a right-handed photon in this direction? We can then no longer use the
averaged transition rate (7.95), but must use the more basic formula (7.88) where we
only consider the spontaneous part.

If the created photon has polarization (or helcity) λ with wavenumber k in the direction
Ωk and forming the angle β with the z-axis as shown in the Fig.7.7, then we have for
the differential transition rate

dΓ = πe2
d3k

(2π)3

ω

ǫ0
|e∗
λ · xnm|2δ(En − Em + h̄ω)

We have here assumed that the quantization volume is so large that we can replace
the sum over modes with an integral according to the general prescription (7.62) with
d3k = k2dkdΩk. Integrating over all frequencies ω = kc, we then again fix the frequency
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|1,+1>

k

e1

x

z

β

Figure 7.7: Photon with wavevector k being emitted in the xz-plane. Initial atomic spin is along the
z-axis.

to be ω = (Em − En)/h̄ and get

dΓ

dΩ
=
αω3

2πc2
|e∗
λ · xnm|2 (7.102)

Choosing the wavenumber vector to be in the xz-plane as shown in the figure so that
k = k(ez cosβ + ex sin β), the two linear and independent polarization vectors can be
taken to be e1 = −ez sin β + ex cos β and e2 = ey. Notice that defining conditions
k · e1 = k · e2 = 0 both are satisfied. A right-handed photon in this direction thus has
the polarization vector eR = (e1 + ie2)/

√
2 so that

e∗
R · x̂ =

√
1

2
(−ẑ sin β + x̂ cosβ − iŷ) (7.103)

We then use (7.97) to express the components of the vector x in terms of the three
spherical harmonics Y1± and Y10. The transition amplitude for the emission of a right-
handed photon from the atom in the initial state |2p,+1〉 is then

〈1s |e∗
R · x̂|2p,+1〉 =

√
1

6

∫ ∞

0
drr3R1sR2p ×

∫
dΩ [−Y10 sin β +

√
1

2
(−Y1,+1 + Y1,−1) cosβ +

√
1

2
(Y1,+1 + Y1,−1)



Y1,+1

in analogy to (7.98). The angular integration picks out a non-zero contribution from∫
dΩY1,−1Y1,+1 = −1 since Y1,−1 = −Y ∗

1,+1. It gives the result

〈1s |e∗
R · x̂|2p,+1〉 = −

√
1

12
I(1 + cosβ) (7.104)
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where the factor I is again the angular integral (7.99). Substituting this result into
(7.102) with the frequency (7.100), we find the angular distribution

dΓ

dΩ
(2p+1 → 1s+ γR) =

mec
2α5

2πh̄

(
2

3

)6 1

12
(1 + cosβ)2 (7.105)

for the emission of a positive-helicity photon. It is zero when β = π when the photon
moves in the negative z-direction. This is due to spin conservation since the initial,
atomic spin of m = +1 was along the positive z-direction.

An almost identical calculation also gives the result

dΓ

dΩ
(2p+1 → 1s+ γL) =

mec
2α5

2πh̄

(
2

3

)6 1

12
(1 − cosβ)2 (7.106)

when the emitted photon is coming out in the same direction, but now with negative
helecity. This transition rate is now zero when the photon comes out along the positive z-
direction, again from spin conservation. We if now don’t observe the photon polarization,
we must add these two partial results to get the full differential transition rate. One
then obtains

dΓ

dΩ
(2p+1 → 1s+ γ) =

mec
2α5

2πh̄

(
2

3

)6 1

6
(1 + cos2 β) (7.107)

If we now don’t even observe the direction of the out-going photon, we must integrate
over all photon directions to obtain the full emision rate. It becomes

Γ(2p+1 → 1s+ γ) =
mec

2α5

h̄

(
2

3

)6 1

6

∫ π

0
dβ sin β(1 + cos2 β)

=
mec

2α5

h̄

(
2

3

)8

(7.108)

Needless to say, it is in full agreement with the result (7.101) from the previous calcu-
lation.

The transition amplitudes for emission of photons from the other states like |2p, 0〉
and |2p,−1〉 can be read out directly from (7.104). For instance, the amplitude for
emitting a right-handed photon from |2p, 0〉 is seen to be ∝ sin β while the amplitude
from |2p,−1〉 is the same as for a left-handed photon from |2p,+1〉 leading to the same
angular distribution as in (7.106). In fact, we can write down the results immediately
by using the rotation matrices in Chapter 5. Using the fact that the photon is a spin-1
particle with helicity λ = ±1 which is the value of the spin along its wavevector in
direction β from the z-axis and the initial atom is in the state |2p,m〉, the amplitude
for the emission |2p,m〉 → |2s〉 + γλ has an angular dependency simply given by the

rotation matrix element ∝ d
(1)
mλ(β). This is easily verified by comparing the above results

with the entries in the spin-1 rotation matrix (5.165).

7.11 Magnetic transitions

In the above we have considered electric transitions which doesn’t involve the intrinsic
spin of the electron. But from the Pauli-equation (7.30) there results also a coupling
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ĤB = −µ̂ · B where the magnetic moment operator is µ = (eh̄/2m)σ when expressed
in terms of the Pauli matrices. This will induce magnetic transitions between atomic
levels.

Let us now consider such a transition | i〉 → |f〉 + γ in the hydrogen atom. The lowest
order transition matrix element is then

Vfi = − eh̄

2me
〈f |σ · B(x̂)| i〉 (7.109)

Since the magnetic field B = ∇∧A and denoting the photon wave vector by k, we find

Vfi =
ieh̄

2me

√
h̄

2ωǫ0V
〈f |σ · (k ∧ e∗

λ)e
−ik·x̂| i〉

as we did in the previous chapter for spontaneous emission caused by the usual elctric
interaction. For optical transitions we are again allowed to make the dipole approxima-
tion so we can drop the exponential term in the matrix element. From the Golden Rule
we then have the transition rate

Γ =
2π

h̄

(
eh̄

2me

)2
h̄

2ωǫ0V
|e∗
λ · (k ∧ σfi)|2δ(Ef −Ei + h̄ω)

where now σfi = 〈f |σ| i〉 is an atomic spin matrix element. The total transition rate
with the photon within d3k = k2dkdΩ thus becomes

Γ =
2π

h̄

(
eh̄

2me

)2∑

λ

∫ d3k

(2π)3

h̄

2ωǫ0
|e∗
λ · (k ∧ σfi)|2δ(Ef − Ei + h̄ω)

=

(
eh̄

2me

)2
ω

8π2ǫ0h̄c3
∑

λ

∫
dΩ|e∗

λ · (k ∧ σfi)|2 (7.110)

Summing over the two polarization vectors eλ using (7.67) as in (7.90), gives
∑

λ

|e∗
λ · (k ∧ σfi)|2 = |k ∧ σfi|2 − |k̂ · (k ∧ σfi)|2

where the the last term is zero since k̂∧ k = 0. After having integrated over all photon
directions, we are then left with

∑

λ

∫
dΩ|k ∧ σfi|2 = k2

∫
dΩ(|σfi|2 − (k̂ · σfi)

2) =
8π

3
k2|σfi|2

as in the previous derivation of (7.91). Using this in the above expresion for the rate,
we thus get the final result

Γ =

(
eh̄

2me

)2
ω

8π2ǫ0h̄c3
8π

3
k2|σfi|2 =

4

3
αω

∣∣∣∣∣
h̄ω

2mec2
σfi

∣∣∣∣∣

2

(7.111)

It should be compared with the spontaneous rate (7.95) for electric transitions. They
take place between states with different values of the orbital angular momentym. But
since this magnetic rate involves matrix element of the intrinsic spin σ, it describes
transitions btween states where this spin changes. We will come back to it in the next
chapter when we consider the hyperfine splitting in atoms.
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7.12 Photo-electric effect

We have just seen how to calculate the rate for photon absorption where the electron
bound in an atom is raised to an excited level. If the photon energy h̄ω is sufficiently
high, the excited electron gets so much energy that it can escape the ionized atom as a
free particle. This is the photo-electric effect. The simplest version is for a hydrogen-like
atom initially in the ground state with energy E0 = −α2Z2mec

2/2 when the nucleus has
the charge Ze. For the ejected electron in the final state to be free from the Coulomb
attraction to the remaining ion, its kinetic energy Ef = p2/2me = h̄ω + E0 must be
much larger than the ionization energy −E0. This implies that the velocity v = p/me of
the final electron is sufficiently high so that the constraint Zα/β ≪ 1 with β = v/c, is
satisfied. Then the final electron momentum follows directly from the photon energy by
p2/2me = h̄ω. At the same time we also want this electron to be non-relativistic. For
our calculation to be valid, the allowed photon energies must thus be within the range
13.6 eV ≪ h̄ω ≪ 0.511 MeV.

The transition matrix element from a general, initial initial state | i〉 follows from the
first term in the interaction Hamiltonian(7.42) as

Vfi = − e

me

√
h̄

2ωǫ0V
〈f |eλ · p̂ eik·̂r| i〉 (7.112)

where eλ is the polarization vector for the photon with wave vector k. The electron in
the final state has the wave function ψf = eip·r/h̄/

√
V when the quantization is done

within a large volume V . Thus

Vfi = − e

me

√
h̄

2ωǫ0V 2

∫
d3x eip·r/h̄(−ih̄eλ · ∇) eik·rψi(r)

where ψi(r) is the wave function for the bound electron. A partial integration now allows
us to write this as

Vfi =
e

me

√
h̄

2ωǫ0V 2
(eλ · p) ψ̃i(q) (7.113)

when we introduce the remaining integral

ψ̃i(q) =
∫
d3xψi(r)e

−iq·r/h̄ (7.114)

where q = p − h̄k is the momentum transfer to the final electron. We recoqnize the
integral as the Fourier transform of the initial state wave function ψi(r).

We now specialize to the simplest case with the initial electron in the ground state
ψ0(r) = e−r/a/

√
πa3 where a is the Bohr radius as derived in Chapter 5. The integral

(7.114) is then very similar to the one we encountered in Chapter 6 when we calculate
the scattering amplitude for a Yukawa potential. In fact, we can now do the needed
integral

ψ̃0(q) =

√
1

πa3

∫
d3x e−r/ae−iq·r/h̄ (7.115)
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by writing it as

ψ̃0(q) = −4π

√
1

πa3

∂

∂κ

∫
d3x

e−κr

4πr
e−iq·r/h̄

with κ = 1/a and take over directly the screened Coulomb integral (6.57), giving

ψ̃0(q) = −4π

√
1

πa3

∂

∂κ

1

κ2 + q2/h̄2 =

√
1

πa3

8πκ

(κ2 + q2/h̄2)2

=

√
1

πa3

8πa3

(1 + a2q2/h̄2)2
(7.116)

It depends on the squared momentum transfer q2 = p2 + (h̄k)2 − 2h̄kp cos θ where θ is
the angle between the photon momentum h̄k and the electron momentum p. With our
kinematical constraints we can ignore the middle term and set p2 = 2meh̄ω. Thus we
can take q2 = 2meh̄ω(1−β cos θ) in the following. Since the Bohr radius a = h̄/Zαmec,
it follows also that aq/h̄ ≫ 1 from the same assumptions, and we can thus ignore the
first term in the numerator of (7.116).

Using now the matrix element (7.113) in the Golden Rule, we find for the differential
transition rate into a final state defined by the electron momentum p the result

dΓ =
2π

h̄

(
e

me

)2 h̄

2ωǫ0V 2
(eλ · p)2|ψ̃0(q)|2δ(Ef − h̄ω − Ei)

V d3p

(2πh̄)3

If the final electron is detected in the solid angle dΩ, we can write d3p = p2dpdΩ. Inte-
grating now over the final momentum using dEf = pdp/me, the δ-function disappears.
Using then the result (7.116) for aq/h̄≫ 1, one is left with

dΓ

dΩ
=

2π

h̄

(
e

me

)2 h̄pme

2ωǫ0V
(eλ · p)2 8h̄5

π2a5q8

We see that the electron prefers to be ejected along the polarization vector eλ, i.e.
normal to the incoming photon direction k. No electrons are produced exactly along
this direction.

From here we obtain the differential cross-section by dividing by the incoming flux
I0 = c/V of photons. Assuming that they are unpolarized, we take the average by
summing over the two possible polarization vectors using (7.67) and divide by two,
resulting in

dσ

dΩ
=

2π

h̄

(
e

me

)2 h̄pme

2ωǫ0c
(p2 − (p · k̂)2)

4h̄5

π2a5q8

where p2−(p · k̂)2 = p2 sin2 θ when k̂ is a unit vector in the direction of k. Inserting here
our approximation for q2 and simplifying, we finally have for the differential cros-section

dσ

dΩ
= 2

√
2Z5α4r2

0

(
mec

2

h̄ω

)7/2
sin2 θ

(1 − β cos θ)4
(7.117)
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where r0 = e2/4πǫ0mec
2 is called the classical radius of the electron. Putting in num-

bers, it has the magnitude r0 = 2.82×10−13 cm which for some strange reason is almost
equal to the radius of a nucleus. The denominator in the result increases the photopro-
duction of electrons towards the forward direction. This effect is seen to become more
pronounced at higher energies where the cross-section becomes smaller.

Since the cross-section varies like Z5, it follows that the stronger the electron is bound
to the nucleus, the easier it is to eject it. This seems somewhat paradoxical since one
would naively think that the stronger the electron is bound, the more energy is needed
to eject it. That is partially true, but at the same time the cross-section decreases with
higher energy. Anyway, the net result is that photoproduction is most likely to take
place for electrons in K shell which is nearest to the nucleus. This also applies to more
complex atoms than hydrogen we have considered here. Good agreement is then found
when comparing with experiments.

7.13 Thomson scattering

When a photon hits a free electron, it cannot be absorbed and continue as a free elec-
tron. This follows from energy and momentum conservation. On the other hand, if
the absorption is followed by re-emission of a new photon, we have an allowed process.
Then we say that the photon has been scattered by the electron. We will now calculate
the cross-section for this process.

Again we can use the basic interaction Hamiltonian (7.42) when we ignore the Pauli
spin term in (7.30). There will be one photon in the initial state and also one in the
final state. It will thus involve altogether two photons. Using perturbations theory, we
can then calculate the scattering amplitude by considering the first term ∝ p · A in
(7.42) in a second-order calculation or the last term ∝ A2 to first order in perturbation
theory.

The electron causing the scattering, can in general be bound in an atom or free. The
first case has very many important consequences, but is more elaborate to calculate. So
we will here consider the simpler case of scattering on a free electron initially at rest,
i.e. pi = 0. Due to the interaction, it will receive a kick from the photon and recoil
with a momentum pf that follows from energy and momentum conservation. But if
we now simplify even more and assume that the photon has an energy h̄ωi much less
than the electron rest energy mec

2, then we see that the maximum energy (h̄ωi)
2/2mec

2

which the kicked electron can carry away, will be much less than the incoming photon
energy. The photon thus suffers no energy loss in the scattering process. Only the
photon momentum will change direction, from the initial value h̄ki to the final value
h̄kf . This low-energy, elastic scattering of photons is called Thomson scattering and is
important in many places. For instance, it is the driving meachanism in creating the
characteristic spectrum for the cosmic microwave background temperature fluctuations.

Since we now can neglect the electron momentum, only the second term ∝ A2 in (7.42)
will contribute. And we only need to calculate its contribution in lowest order of per-
turbation theory. The initial state is then | i〉 = |kiλi〉 when we include the photon
polarization. It is detected in the corresponding final state |f〉 = |kfλf〉 so that transi-
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tion matrix element can be written as

Vfi =
e2

2me
〈kfλf |Â · Â|kiλi〉 (7.118)

when we place the electron at position x = 0. Squaring the photon field operator (7.86),
there will now two terms which contribute equally giving the simple result

Vfi =
e2

me

√√√√ h̄

2ωfǫ0V

√
h̄

2ωiǫ0V
e∗
λ′ · eλ (7.119)

This we can understand from considering the relevant matrix element which contains the
factor 〈kf |âkâ

†
k′ + â†kâk′ |ki〉 when we suppress the polarizations. It is obviously equal to

〈0 |âkf
âkâ

†
k′ â

†
ki
|0〉 + 〈0 |âkf

â†kâk′ â†ki
|0〉. In the first term we find one contribution from

the commutator of âkf
with â†k′ while âk is commuted with â†ki

which gives δkfk′ δkik.

There is also a contribution coming from the commutator between âkf
and â†ki

and âk

commuted with â†k′ , thus giving δkfki
δkk′ and therefore only contributing when ki = kf .

This implies no scattering, and we can ignore it. Similarly, from the second term we
find a non-zero contribution resulting in δkfk δkik′ . It is exactly the same as we just
found from the first term, only with k and k′ interchanged. But since we sum over these
wavevectors, both terms give exactly the same.

Using again Fermi’s Golden Rule, we then have for the differential transition rate

dΓ =
2π

h̄

( e2

me

)2
(e∗
f · ei)2

(
h̄2

2ωfǫ0V · 2ωiǫ0V

)
δ(h̄ωf − h̄ωi)

V d3kf
(2π)3

in analogy with what we did with particle scattering in Chapter 6. If the initial photon
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Figure 7.8: Scattering of light coming in along the z-axis and with initial polarization along bfei.

momentum is along the z-axis and the final photon is scattered an angle θ in the xz-plane
as shown in Fig.7.8, then we have d3kf = k2

fdkfdΩ where dΩ = 2π sin θdθ. Dividing by
the incoming flux I0 = c/V of photons and integrating over ωf = ckf , the differential
cross-section dσ = dΓ/I0 becomes

dσ

dΩ
= r2

0(e
∗
f · ei)2 (7.120)
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where r0 = e2/4πǫ0mec
2 again is the classical electron radius. Since the result is in-

dependent of the Planck-Dirac constant h̄, it should also be derivable from classical
electrodynamics which in fact J.J. Thomson did a hundred years ago after he had dis-
covered the electron in 1898.

For a given direction of the incoming polarization vector ei, the Thomson result gives
a differential cross-section which varies with the direction of the polarization vector of
the scattered photon. If this final polarization is not observed, we must then sum over
the two possible directions of ef using the basic formula (7.67). It then follows that

dσ

dΩ
= r2

0[(ei · ei) − (ei · k̂f)(ei · k̂f )]

where k̂f is the unit vector along the final photon momentum h̄kf . From the above

figure we see that εi · k̂f = cosα = sin θ cosφ where φ is the angle in the xy-plane of the
initial photon polarization. Thus we get

dσ

dΩ
= r2

0 sin2α (7.121)

for the differential cross-section. This is also the classical result for scattering of polarized
light.

When the incoming photon is unpolarized, we must average over the two possible direc-
tions of the polarization vector ei. From (7.120) we then obtain the cross-section

dσ

dΩ
=
r2
0

2

[
(ef · ef) − (ef · k̂i)(ef · k̂i)

]
(7.122)

The scattering plane formed by the photon momenta ki and kf , is just the xz-plane
with normal n = ki∧kf along the y-axis for our choice of coordinates. If we now choose
the two directions of the polarization vector ef to be in or normal to this plane, the
polarized cross-sections becomes

dσ

dΩ
=
r2
0

2

{
1 for ef ‖ n
1 − sin2 θ for ef ⊥ n

(7.123)

In the special case when the photon is scattered by θ = 90◦, it is completely polarized
normal to the scattering plane.

When we don’t observe the polarization of the final photon, we must sum over these
two contributions and find

dσ

dΩ
=
r2
0

2

(
1 + cos2θ

)
(7.124)

It has a minimum for θ = 90◦ and maxima in the forward and backward directions.

The above unpolarized cross-section can also be obtained directly from the master for-
mula (7.67) when summing over ef in the result (7.122). We then obtain

dσ

dΩ
=
r2
0

2

[
2 − (k̂i · k̂i) + (k̂i · k̂f )2

]
(7.125)
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which gives the same result since k̂i · k̂f = cos θ. The total cross-section is now found
by integrating over all directions of the scattered photon. It becomes

σ = πr2
0

∫ 1

−1
d cos θ

(
1 + cos2θ

)
=

8

3
πr2

0 (7.126)

which is the total Thomson cross-section. Had we included the non-relativistic correc-
tions of the order h̄ωi/mc

2, it would have been multiplied by the factor 1 − 2h̄ωi/mc
2.

The cross-section thus decreases with increasing energy. At higher energies this pro-
cess is called Compton scattering and must be calculated using relativistic quantum
mechanics for the electron.

As already advertised, the above Thomson cross-section can also be derived from clas-
sical electrodynamics. Then one consideres an incoming light wave along the z-axis
with an electric filed Ei in the xy-plane making an angle φ with the x-axis. It gives an
acceleration v̇ = eEi/me to the electron. This again generates a new electric field which
in the radiation zone is

Ef(r) =
e

4πǫ0c2r
r̂ ∧ (r̂ ∧ v̇) (7.127)

where r̂ is a unit vector in the direction of the field point r. The electric field is

accompanied by the corresponding magnetic field Hf =
√
ǫ0/µ0Ef and is radiated away.

The resulting Poynting vector S = Ef ∧Hf has then the magnitude

|S| = I0

(
r0
r

)2

sin2α

where I0 =
√
ǫ0/µ0E

2
i is the incoming energy flux. In this classical calculation the angle

α is now between the initial electric vector Ei and the field point defined by r. In the
quantum description illustrated in Fig.7.8 there is no final state field point, but instead
the wave vector kf of the outgoing photon. From the Poynting vector one now finds the
scattered light intensity dI = r2|S|dΩ into the solid angle dΩ to be dI = I0r

2
0 sin2α dΩ.

The differential cross-section dσ = dI/I0 then follows as

dσ

dΩ
= r2

0 sin2 α (7.128)

in agreement with (7.121) when the incoming light is polarized. Writing now sin2α =
1− cos2φ sin2θ and averaging over this polarization with 〈 cos2φ 〉 = 1/2, one then easily
finds the result (7.124) for unpolarized light.

7.14 Vaccum energies and the cosmological constant

We have already seen that the quantization of the electromagnetic field leads to a di-
vergent value for the vacuum energy. This is a very surprising and disturbing result.
Not so much perhaps when we don’t include the effects of gravitation since then we
just have to consider energy differences where such an infinite contribution would cancel
out. But including gravitation and Einstein’s equivalence between energy and mass, it
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would have disastrous consequences. This is simplest to discuss within cosmology where
Einstein introduced the so-called cosmological constant Λ. In the last few it has been
measured by astronomers using different different methods and they have found a value
close to Λ = 10−54 cm−2. It results in an acceleration of the expansion of the Universe.
Had this constant been much bigger, the acceleration would have been much larger and
we would not have been here.

The cosmological constant corresponds to the vacuum energy density EΛ = Λc4/8πG of
the Universe. Here G is Newton’s gravitational constant. We don’t know where this
energy is coming from and it is often called dark energy. With the above value for Λ we
find that EΛ = 10−29 gc2/cm3 which is equivalent to the energy of two hydrogen atoms
per cubic meter. It’s very close to the density of real matter in the Universe. But this is
not made up of ordinary atoms, but of so-called dark matter which we also don’t know
anything about. But that is a different story.

Let us now compare this with the contribution from the vaccum fluctuations of the
electromagnetic field. Considering the energy in a very large volume V so that we can
replace the summation in the expression (7.83) by an integration and including the
contributions from the two polarization directions, we have

E0 = V h̄c
∫

d3k

(2π)3
k = V

h̄c

2π2

∫ ∞

0
dkk3 (7.129)

since the frequency ω = ck. This integral certainly gives an infinity in the upper limit
where k → ∞, i.e. at very small distances. The simplest way to make it finite is to
accept that our theory is not valid up to arbitrary high momenta, but only up to wave
number K. This new quantity will act as a cut-off in the integration. Physically it means
that the present quantum theory is only valid down to distances of size L = 1/K. For
the equivalent vacuum energy density E0 = E0/V we then have

E0 =
h̄c

2π2

∫ K

0
dkk3 =

h̄c

8π2
K4 (7.130)

So what can the size of this new quantity K be? In high energy physics experiments up
to several hundred GeV we have seen no trace of such a cut-off. Thus K > 10−16 cm.
Probably it is much smaller. We thus get the limit

E0 >
h̄c

8π2
× 1064 cm−4

for the quantum-induced vacuum energy. Since h̄c = 197 eV × 10−7 cm we thus have
the limit E0 > 1057 eV/cm3. To compare it with the cosmological, dark energy, we make
use of the conversion factor 1eV/c2 = 1.783 × 10−33 g which gives E0 > 1024 gc2/cm3.
We then have then have the chocking result that it is larger than the observed vacuum
energy density by a factor 1053 !! So here there is something fundamentally wrong with
the theory and nobody knows why. This is probably the most important, unsolved
problem in theoretical physics today.

We would like to iknow if there is some upper theoretical limit the size of the cut-off K?
A quantum fluctuation on this scale will have a corresponding momentum P = h̄K and
therefore also energy E = cP = h̄cK. This can be considered to be a direct consequence
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of the Heisenberg uncertainty principle. For the resulting mass M = E/c2 = h̄K/c to
manifest itself and not form a black hole, its Compton wavelength h̄/Mc must be larger
than the size of the black hole it can form, i.e. h̄/Mc > GM/c2. We thus have the

limit M > MP . Here MP =
√
h̄c/G = 1019 GeV/c2 is called the Planck mass after

the same Max Planck we know from the theory of blackbody radiation and who also
was the first to dicover this limiting mass. This now corresponds to a smaller length

LP = 1/KP =
√
h̄G/c3 = 10−33 cm. Fluctuations with smaller wavelengths will be so

massive that they will form black holes and our whole concept of a classical spacetime
breaks down on these short scales.

Assumung now that standard physics is valid down this small Planck length, we must use
the corresponding cut-off KP in the expression (7.130) for the quantum-induced vacuum
energy. The result is obviously even bigger than before. In fact, the discrepancy with
the observed value is now seen to be factor 1053 × 1017·4 = 10121. Never in the history of
physics have there been a result so totally wrong!!! This is one reason why many hope
that new physics like string theory will be needed to solve this conundrum. In many ways
the situation is very similar to the problems with blackbody radiation a hundred years
ago before Planck postulated that the energy of a system could not change continuously,
but in discrete quanta. Thus quantum mechanics was born. Today we probably need a
similar revolution in our understanding of the world.

Apparently the problem lies in the quantum result (7.83) for the vacuum energy. One
immediate way out of the conundrum is to conclude that there is something wrong with
this expression. From the way it appeared in our calculation, it’s origin can be traced
back to the zero-point energy of the harmonic oscillator. This is equivalent to the non-
zero, canonical commutator of the position and conjugate momentum operators. And
to abondon this, would be a total collapse of what we know as quantum mechanics.

7.15 The Casimir force

But there is good physics in the expression (7.83) for the quantum-induced vacuum
energy. This is the Casimir effect. Consider two parallel plates with separation L. Take
their common normal n be along the z-axis as shown in the figure. Assume that they
are made by metal so that whatever electric and magnetic fields are present, they must
satisfy the corresponding boundary conditions n × E = 0 and n · B = 0 which follow
from standard electromagnetic theory. These force the plane wave modes (7.60) to be
replaced by more complicated functions. In order to simplify the calculation, we assume
instead that the vector potential A must be zero at the plates. We then make a small
mistake, which we will came back to in a moment. The classical modes will thus contain
a standing wave in the z-direction, i.e.

AnkT
(x, t) = sin(nzπ/L)ei(kT ·xT−ωt) (7.131)

before we normalize them. Here kT = (kx, ky) is the wave number parallel to the xy-
plane while xT = (x, y) is the position vector in the same plane. The wave number
along the z-axis is kz = nπ/L where the quantum number n = 1, 2, 3, . . .. For such a
mode the frequency is therefore ω = c(k2

T + k2
z)

1/2. The resulting cacuum energy can
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z

L
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n

Figure 7.9: Two parallel plates are attracted to each other by the Casimir force.

then be written as

E0 = Ah̄
∞∑

n=1

∫ d2kT
(2π)2

√
k2
T + (nπ/L)2 (7.132)

as follows from (7.83) and (7.129). Here A is the cross-sectional area of the plates
in the limit where it becomes very large. We have also included a factor 2 from the
two polarization directions. Again we see a divergence both in the integration and the
summation. In order to understand this better, we introduce ωdω = c2kTdkT in integral
so that it becomes

E0 =
A

2πc2

∞∑

n=1

∫ ∞

κcn
dω ω2

where κ = π/L. We can now dampen the divergence in the upper limit where ω → ∞
by multiplying the integrand by an exponential regulator,

Ereg
0 =

Ah̄

2πc2

∞∑

n=1

∫ ∞

κcn
dω ω2e−ωε/c

Here ε is very small length. As long as it is finite, the integral is also finite. At the
end of the calculation we must then consider the limit ε→ 0. The integral can now be
evaluated by standard methods, giving

Ereg
0 =

Ah̄

2π

∞∑

n=1

∂2

∂ε2

∫ ∞

κcn
dω e−ωε/c

=
Ah̄

2π

∂2

∂ε2

c

ε

∞∑

n=1

e−κnε =
Ah̄c

2π

∂2

∂ε2

1

ε

1

eκε − 1
(7.133)

Since we are eventually interested in the limit ε→ 0, we can here use the expansion

x

ex − 1
=

∞∑

n=0

Bn

n!
xn = 1 − x

2
+
x2

12
− x4

720
+ · · · (7.134)
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based on the Bernoulli numbers Bn. The lowest ones are B0 = 1, B1 = −1/2, B2 = 1/6
and B4 = −1/30. It is now straightforward to take the double derivative and calculate
the regulated vacuum energy. For the energy density Ereg0 = Ereg

0 /AL we then obtain
the result

Ereg0 =
3h̄c

π2ε4
− h̄c

2πε3L
− π2h̄c

720L4
(7.135)

when we neglect all term involving positive powers of ε.

We are seen to still have a divergent in vacuum energy, but it is now isolated in the
two first terms. Having no plates in the vacuum corresponds to taking them away from
each other so that L → ∞. Then we are left with just the first term. It is seen to
correspond to the previous vacuum energy (7.130) where the wave number cut-off is
now replaced by K ∝ 1/ε. The two next terms in (7.135) thus correspond to a change
in the vacuum energy induced by the presence of the plates. Of these the first is still
divergent in the limit ε → 0 and could be worrisome. But a more careful calculation
taking into account the correct boundary conditions mentioned above, shows that this
term will then actually be absent. Thus, the net effect of the two plates is just the last
term in (7.135) and is called the Casimir energy density,

EC = − π2h̄c

720L4
(7.136)

The closer the plates are to each other, the more the energy decreases. Since this system
strives towards an energy minimum, the two plates are therefore attracted towards each
other by what is now called the Casimir force after H. Casimir who derived this result in
1948. Its size F is given by the derivative of the energy ALEC between the plates with
respect to the plate separation L. Per unit area it corresponds to the pressure P = F/A
which therefore becomes

P = − π2h̄c

240L4
(7.137)

Putting in numbers it gives

P = −40
(

100 nm

L

)4

N/m2 (7.138)

The effect was first experimentally verified by M. Sparnay in 1958 and confirmed with
much greater accuracy during the last few years. So there is no longer any doubt that the
quantum-induced vacuum energy exists, but its relation to the cosmologically observed
value is still a big mystery.
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Chapter 8

Spin interactions

In chapter 5 it was shown how the bound motion of a non-relativistic, charged particle
in a Coulomb potential could be obtained exactly in quantum mechanics. This solution
provides the framework for all atomic physics, both in hydrogen when higher order effects
are included and in atomes with more than one electron. These higher order effects are
of two main types, both of basically relativistic origin. There will be a higher order
kinematic correction because the electron moves with a velocity close to one percent of
the velocity of light. In addition, the motion of both the charged electron and nucleus
sets up magnetic fields which will couple to the spins of these particles. These effects
must be calculated in perturbation theory. Degeneracies forces us two find new basis
states for the atom which are eigenstates of the total electron angular momentum. Rules
for addition of spins are derived and the new states defines the corresponding Clebsch-
Gordan cofficients. A more realistic calculation of the Zeeman effect and the magnetic
moment of the atom can then be obtained.

8.1 Relativistic velocity correction

The energy of a relativistic particle with mass m and momentum p is according to
Einstein E = (p2c2 +m2c4)1/2. When p < mc it thus gives by the binomial expansion

E = mc2
[
1 +

1

2

(
p

mc

)2

− 1

8

(
p

mc

)4

+ · · ·
]

= mc2 +
p2

2m
− p4

8m3c2
+ · · · (8.1)

While the rest energy in the first term usually is of no interest in atomic physics, the
second term is the standard kinetic energy while the third term is the lowest, kinematic
correction to the energy. For the electron bound in a hydrogen atom, it thus gives the
perturbation

Ĥvel = − 1

8m3
ec

2
(p̂ · p̂)2 (8.2)

Since the velocity of the electron is close to one percent of the speed of light, it will give
a significant shift of the energy levels in hydrogen calculated in Chapter 5. Fortunately
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it is seen to have diagonal matrix elements in the non-perturbed basis so that these
shifts are directly obtainable from

Evel = 〈nlml |Ĥvel|nlml〉 = − 1

2mec2
〈nlml |

( p̂2

2me

)2|nlml〉 (8.3)

since the spin parts of the full state vectors |nlml;ms〉 just factors out to give one. Now
we can express the kinetic operator p̂2/2me by the unperturbed atomic Hamiltonian Ĥ
so that

Evel = − 1

2mec2
〈nlml |

(
Ĥ +

Ze2

4πǫ0r̂

)2|nlml〉

Since the external states in the matrix element are eigenstates of the Hamiltonian with
eigenvalues which can be written as En = −Ze2/8πǫ0a when expressed by the effective
Bohr radius a = a0/Z, we immediately have the result

Evel = − 1

2mec2

(
Ze2

4πǫ0

)2 〈(
1

r
− 1

2an2

)2
〉

= − 1

2mec2

(
Ze2

4πǫ0a

)2 [〈
a2

r2

〉
− 1

n2

〈
a

r

〉
+

1

4n4

]

The radial expectation values here and in the following are then defined by

〈
1

rs

〉
=
∫
d3x|Rnl|2r−s (8.4)

and must be calculated for s = 1 and s = 2.

Since we know the exact wave functions, such expectation values can be obtained by
direct integration for each particular energy level. To find a general formula valid for
all the states, is more difficult. A first step is to calculate 〈 a/r 〉 which is like the
expectation value of the Coulomb potential V = −Ze2/4πǫ0r. This can be obtained
from the quantum mechanical virial theorem. It follows from the observation that for
any operator Â without any explicit time dependence, the expectation value of the time
derivative dÂ/dt is zero. This follows from the Heisenberg equation of motion which
gives for a general energy eigenstate |n〉

〈n |dÂ
dt

|n〉 =
i

h̄
〈n |[Ĥ, Â]|n〉 =

i

h̄
En〈n |Â− Â|n〉 = 0

Now with A = x · p in the coordinate representation it follows

dA

dt
= ẋ · p + x · ṗ =

1

m
p2 − x · ∇V

Thus we have the virial result 〈p2 〉 = m〈x ·∇V 〉. If the spherical potential varies like
V ∝ rk, it gives the relation

〈K 〉 =
k

2
〈 V 〉 (8.5)
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between the expectation values of the kinetic energy K = p2/2m and the potential
energy V . In this form the virial theorem also exists in classical mechanics.

For the Coulomb potential k = −1 and therefore 〈K 〉 = −〈 V 〉/2 as we already have
observed to be valid for the ground state. Since the full energy En = −Ze2/8πǫ0an2

now equals En = 〈 V 〉/2 in general, we get the wanted expectation value
〈
a

r

〉
=

1

n2
(8.6)

Combining this result with the radial Schrödinger equation, one can calculate all other
similar expectation values. We will here need

〈
a2

r2

〉
=

1

n3(l + 1/2)
(8.7)

which also can be checked for the lowest levels by using the corresponding wave functions.

Using now these results in the above relativistic correction, we obtain the final result

Evel = − 1

2mec2

(
Ze2

4πǫ0a

)2
1

n4

(
2n

2l + 1
− 3

4

)

= −mec
2
(
Zα

n

)4 ( n

2l + 1
− 3

8

)
(8.8)

Since the last term is just a constant and therefore the same for all levels, the splitting
between them is to be found in the first term. It lifts all levels slightly above the
unperturbed levels of typical magnitudes set by mec

2(Zα)2. Relative to these energies,
the relativistic shifts are therefore of the order of (Zα)2 smaller which is factor ≈ 10−5

in hydrogen. From the previous chapter we know that this corresponds to the effect of
a magnetic field of typical size 1T acting on the electron spin. Accepting this point of
view, it is a pretty big effect.

8.2 Spin-orbit splitting

In the rest frame of the nucleus its positive charge Ze sets up the electric field

E =
Ze r

4πǫ0r3
(8.9)

which binds the negatively charged electron moving with velocity v . This is also present
with the same magnitude in the rest frame of the electron. But here the nucleus is seen
to move with velocity −v creating an additional small magnetic field given by the Biot-
Savart formula

B = −µ0

4π

Zev ∧ r

r3
= − 1

c2
v ∧E (8.10)

when introducing the velocity of light c2 = 1/ǫ0µ0. It couples to the spin S of the
electron by the standard dipole coupling

Hel = −µ · B =
ege
2me

S · B
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From the beginning of the chapter we know that it causes the spin to precess around
the field with the angular velocity ω = egeB/2me in this rest frame. But we want to
describe the motion of the electron in the rest frame of the nucleus. Then there comes in
an extra and purely relativistic effect called the Thomas precession, which reduces the
overall precessional rate by an amount corresponding to the replacement ge → ge− 1 in
the above formulas. Since we can here take ge = 2, this corresponds to half the original
value for the precessional rate. We thus find the resulting interaction energy

HLS =
e

2me

S · B =
Ze2

4πǫ0r3

L · S
2m2

ec
2

(8.11)

when we insert the electric field (8.9) into the magnetic field (8.10) and express the
result in terms of the angular momentum L = r∧mev of the electron. This is called for
obvious reasons the spin-orbit coupling. One might perhaps be sceptical to this semi-
classical derivation, but it follows exactly from a fully relativistic derivation from the
Dirac theory with the effect of the Thomas precession automatically taken care of.

The spin-orbit Hamiltonian contains a radial part times the part Ĥ = 2L̂ · Ŝ coupling
the orbital spin L̂ to the intrinsic spin Ŝ. It will later turn out to be convenient to
keep the factor 2 here. These operators act on the angular momentum product states
| lml〉|sms〉 with s = 1/2. We write them for short as |ml;ms〉 where the Z-component
of the orbital spin is given by ml = (l, l − 1, . . . ,−l) and ms = ±1/2. These can be
taken as basis states in the corresponding 2(2l + 1)-dimensional spin Hilbert space. In
order to see the action of the Hamiltonian, we write it as

Ĥ = 2L̂ · Ŝ = 2L̂zŜz + L̂+Ŝ− + L̂−Ŝ+ (8.12)

It will obviously not be diagonal in this basis because of the raising and lowering spin
operators present here. Since the 2(2l + 1) states within the energy level specified by
|ml, ms〉 have the same unperturbed energy, we must use degenerate perturbation theory
to calculate the effect of the spin-orbit interaction. In practice, that means calculating
the matrix of the Hamiltonian (8.12) in this basis and then diagonalize it.

Almost always it is simplest to start with the state with highest z-component of the
angular momentum. That was the case with quantization of a single spin in Chapter 5
spin and is also true here. This state is now | l; +1/2〉. Since neither spin can be raised
higher here, it is an eigenspinor of the Hamiltonian with eigenvalue lh̄2,

Ĥ| l; +1/2〉 = h̄2[2l(+1/2) + 0 + 0]| l; +1/2〉 = lh̄2| l; +1/2〉 (8.13)

However, when applying this operator to a lower state with ml < l, we obtain

Ĥ|ml; +1/2〉 = h̄2ml|ml; +1/2〉
+ h̄2

√
(l + 1 +ml)(l −ml)|ml + 1;−1/2〉

using the master formula (5.70) for the action of the spin ladder operators. The state
|ml; +1/2〉 is seen to mix in with the state |ml + 1;−1/2〉. We must therefore apply the
Hamiltonian also to this new state with the result

Ĥ|ml + 1;−1/2〉 = −h̄2(ml + 1)|ml + 1;−1/2〉
+ h̄2

√
(l + 1 +ml)(l −ml)|ml; +1/2〉
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No additional states are generated. The Hamiltonian can therefore be represented as a
2× 2 matrix in this sub-space spanned by |ml; +1/2〉 and |ml + 1;−1/2〉. We can read
off the matrix elements from the last two equations and the corresponding eigenvalues
λh̄2 are then seen to follow from

∣∣∣∣∣∣
ml − λ

√
(l + 1 +ml)(l −ml)√

(l + 1 +ml)(l −ml) −(ml + 1) − λ

∣∣∣∣∣∣
= 0 (8.14)

It looks a bit complicated, but reduces to simply λ(λ + 1) = l(l + 1). There is no
dependence on the azimuthal quantum number ml in the two eigenvalues λ+ = l and
λ− = −(l + 1) since the Hamiltonian (8.12) is rotational invariant. We notice that the
positive eigenvalue is the same as for the highest state in (8.13).

Having the eigenvalues, the corresponding eigenstates are straightforward to find. They
must be of the form a|ml; +1/2〉 + b|ml + 1;−1/2〉 with |a|2 + |b|2 = 1 when they are
normalized. With the eigenvalue λ+ = l we then find the relation

a

b
=

√
l + 1 +ml

l −ml

between these two coefficients. The corresponding normalized eigenstate is therefore

|λ+〉 =

√
l + 1 +ml

2l + 1
|ml; +1/2〉 +

√
l −ml

2l + 1
|ml + 1;−1/2〉 (8.15)

when we choose all phase factors equal to one. For the other eigenvalue we can repeat
the calculation or simply use that this new eigenstate must be orthogonal to the first.
Then we have immediately

|λ−〉 = −
√
l −ml

2l + 1
|ml; +1/2〉+

√
l + 1 +ml

2l + 1
|ml + 1;−1/2〉 (8.16)

There are 2l of these states while there are 2l+2 eigenstates with the higher eigenvalue
λ+. The extra two comes from the previously considered highest state | l; +1/2〉 and
corresponding lowest state |−l;−1/2〉 with the same eigenvalue λ+ = l. We thus see

(m l
+l

−(l + 1)
λ

λ+

−

;m s)

Figure 8.1: Spin-orbit splitting of energy level in hydrogen.

that the total number of states 4l + 2 = 2(2l + 1) remains constant under this split as
it should. What happens to one of the original unperturbed energy levels with l ≥ 1
under the action of this spin-orbit perturbation is illustrated in Fig.8.1. Before we finish
a more quantitative evaluation of its absolute magnitude in the hydrogen atom, we will
develop an easier, more systematic and physical motivated method in treating systems
with coupled spins.
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8.3 Addition of spins

Degenerate perturbation theory gives us two ways to calculate the first order energy shift.
We can choose an arbitrary basis and then diagonalize the matrix of the perturbation.
This is the approach we have just completed. Or we can find a particular basis in which
the perturbation will be diagonal. As we will now see, this method is simpler and gives
a better physical understanding of the obtained results.

It is based on constructing the operator Ĵ = L̂ + Ŝ for the total angular momentum of
the electron and finding its eigenstates. It is almost trivial to see that it has the correct
commutator to be a new spin operator. Indeed,

[Ĵi, Ĵj] = [L̂i, L̂j] + [Ŝi, Ŝj] = ih̄ǫijk(L̂k + Ŝk)

= ih̄ǫijkĴk

since the components of orbital and intrinsic spins always will commute with each other,
[L̂i, Ŝj ] = 0, since they are independent operators acting in different Hilbert spaces.

Futhermore, all components of the total spin Ĵ commute with the spin-orbit operator
L̂ · Ŝ. This follows from

[L̂i, L̂jŜj] = [L̂i, L̂j ]Ŝj = ih̄ǫijkL̂kŜj

and

[Ŝi, L̂jŜj] = L̂j [Ŝi, Ŝj] = ih̄ǫijkL̂jŜk

Adding these two results and using the anti-symmetry of the Levi-Civita symbol, the
two terms on the right-hand side cancel and thus [Ĵi, L̂ · Ŝ] = 0. This implies that also
[Ĵ2, L̂ · Ŝ] = 0 in addition to [L̂2, L̂ · Ŝ] = [Ŝ2, L̂ · Ŝ] = 0. Since both Ĵz and the squared
total spin

Ĵ2 = L̂2 + Ŝ2 + 2L̂ · Ŝ (8.17)

thus commute with the spin-orbit opertor L̂ · Ŝ, we know that the eigenstates of these
spin operators also will be eigenstates of the spin-orbit Hamiltonian (8.12). It will
therefore be diagonal in the basis provided by these eigenstates defined by

Ĵ2|j,m〉 = h̄2j(j + 1)|j,m〉 (8.18)

Ĵz|j,m〉 = h̄m|j,m〉 (8.19)

Since Ĵz = L̂z + Ŝz, the three azimuthal quantum numbers will always be related by
m = ml +ms where L̂z and Ŝz act on the previous product states |ml;ms〉.
In this new basis it is now straightforward to find the eigenvalues of the spin-orbit
operator 2L̂ · Ŝ. From (8.17) we have 2L̂ · Ŝ = Ĵ2− L̂2 − Ŝ2. Since the basis states |j,m〉
are also eigenstates of L̂2 and Ŝ2, we get

2L̂ · Ŝ|j,m〉 = h̄2[j(j + 1) − l(l + 1) − 1/2(1/2 + 1)]|j,m〉 (8.20)

With j = l ± 1/2 we therefore immediately have the eigenvalues

2L̂ · Ŝ = h̄2
{

+l, j = l + 1/2
−(l + 1), j = l − 1/2

(8.21)
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in this new basis. They are obviously the same as those we found in the previous section
by diagonalization of the 2L̂ · Ŝ operator in the |ml;ms〉 basis.

These states are now straightforward to find for the case under consideration with intrin-
sic spin s = 1/2. Again we start with the highest state | l,+1/2〉. Since here m = l+1/2,
this state has also total angular momentum j = l+1/2. In the |j,m〉 basis we therefore
have

| l + 1/2, l + 1/2〉 = | l; +1/2〉 (8.22)

The next state in this ladder is then obtained by applying the lowering operator Ĵ− on
the left of (8.22) and L̂− + Ŝ− on the right-hand side. The results of these different
operations all follow from the master formula (5.70). It gives

√
2l + 1| l + 1/2, l − 1/2〉 =

√
2l| l − 1; +1/2〉 + | l;−1/2〉

and therefore for the normalized state

| l + 1/2, l− 1/2〉 =

√
2l

2l + 1
| l − 1; +1/2〉 +

√
1

2l + 1
| l;−1/2〉 (8.23)

Applying Ĵ− = L̂− + Ŝ− once more gives the next state down the spin ladder. It is

| l + 1/2, l− 3/2〉 =

√
2l − 1

2l + 1
| l − 2; +1/2〉+

√
2

2l + 1
| l − 1;−1/2〉 (8.24)

Continuing this way, we can reach all the states down to the lowest. It is just the
reflection of the highest state (8.22), i.e. | l + 1/2,−l − 1/2〉 = |−l;−1/2〉. Any state in
this ladder can be written as

| l + 1/2, m〉 =

√
l +m+ 1/2

2l + 1
|m− 1/2; +1/2〉

+

√
l −m+ 1/2

2l + 1
|m+ 1/2;−1/2〉 (8.25)

They all have total angular momentum j = l + 1/2 and there are 2j + 1 = 2l + 2 of
them.

In order to construct the remaining 2l states, we observe that there is just one other
state orthogonal to (8.23). It is

| l − 1/2, l− 1/2〉 = −
√

1

2l + 1
| l − 1; +1/2〉+

√
2l

2l + 1
| l;−1/2〉 (8.26)

and has total azimuthal quantum number m = l − 1/2. Since there are no other states
now with a higher value, this must be the highest state in a new spin ladder with total
spin j = l−1/2. The remaining states in this ladder can again be obtained by applying
Ĵ−. But we know that the results are all orthogonal to the general j = l + 1/2 state
(8.25) and are therefore given by

| l − 1/2, m〉 = −
√
l −m+ 1/2

2l + 1
|m− 1/2; +1/2〉

+

√
l +m+ 1/2

2l + 1
|m+ 1/2;−1/2〉 (8.27)
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It should by now be clear that the eigenstates (8.25) and (8.27) are just the same as the
previously found states in (8.15) and (8.16) since m = ml + ms. Their components in
the |ml;ms〉 basis are called Clebsch-Gordan coefficients. For the addition of spin l to
spin s = 1/2, these can now be read off from (8.25) and (8.27).

Addition of spins with different values and construction of the corresponding eigenstates,
can be performed exactly along the same lines as above. For example adding intrinsic
spin s = 1 to orbital spin l ≥ 1 will give 3(2l + 1) = 6l + 3 states in total. The highest
state has m = l + 1 and therefore total spin j = l + 1. In this spin ladder there will
thus be 2j + 1 = 2l + 3 states. After applying Ĵ− once, we find the state | l + 1, l〉. As
above, there will be another state orthogonal to it, i.e. the state | l, l〉. This will be
the highest state in a new ladder with total angular momentum l and therefore 2l + 1
states altogether. We thus have constructed 2l + 3 + 2l + 1 = 4l + 4 new eigenstates.
But this number falls short of the total number 6l + 3 states we started out with. The
reason is now that when we apply Ĵ− to the state | l,+l〉, we generate the eigenstate
| l, l − 1〉. But together with | l + 1, l − 1〉 these two states don’t make up all the states
with m = l − 1. There is now a third one | l − 1, l − 1〉, orthogonal to these two. It
will be the highest state in a new ladder with j = l − 1 and therefore containing 2l − 1
states. In this way we have found all the 6l + 3 eigenstates. In summary, adding spin l
to spin s = 1 gives total spins j = (l + 1, l, l − 1).

This result is easily generalized to the addition of arbitrary spins l and s ≤ l. There will
result a total spin with values j = (l + s, l + s− 1, . . . , l− s). In a classical picture, the
maximum value l+ s corresponds to the two spin vectors pointing in the same direction
while the minimum value l− s happens when they are in opposite directions. There are
now in total (2s + 1)(2l + 1) states which split up into these new spin multiplets, each
with 2j + 1 sub-states. The total number of these new spin eigenstates is therefore

l+s∑

j=l−s

(2j + 1) =
2s∑

k=0

[2(l − s+ k) + 1] = [2(l − s) + 1](2s+ 1) + 2s(2s+ 1)

= (2s+ 1)(2l + 1) (8.28)

as it should be. For each value of l and s one can calculate the corresponding Clebsch-
Gordan coefficients as we have already done for s = 1/2. They can also be looked up in
many textbooks and physical tables.

As a concrete example, lets work out the addition of s = 1/2 and l = 1. This comprises
2 × 3 = 6 product states of which the highest is |3/2,+3/2〉 = |+1; +1/2〉. We have
here already indicated that it has total spin j = 3/2. We then apply the lowering
operator Ĵ− = L̂− + Ŝ− on both sides with the result

√
3|3/2,+1/2〉 = |+1;−1/2〉 +√

2|0; +1/2〉 from which we can read off the new eigenstate |3/2,+1/2〉. Applying now

Ĵ− to this state, gives similarly 2|3/2,−1/2〉 =
√

8/3|0;−1/2〉 +
√

4/3|−1; +1/2〉 from

which |3/2,−1/2〉 follows. The last state in this ladder can be obtained by using Ĵ−
once more with the result |3/2,−3/2〉 = |−1;−1/2〉 which we also could have written
down without any calculation. We thus find the quartet of spin-3/2 states:

|3/2,+3/2〉 = |+1; +1/2〉

|3/2,+1/2〉 =

√
1

3
|+1;−1/2〉 +

√
2

3
|0; +1/2〉
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|3/2,−1/2〉 =

√
2

3
|0;−1/2〉 +

√
1

3
|−1; +1/2〉

|3/2,−3/2〉 = |−1;−1/2〉 (8.29)

The two states in the j = 1/2 doublet now follows from orthogonality with the two
quartet states with z-components m = ±1/2:

|1/2,+1/2〉 =

√
2

3
|+1;−1/2〉 −

√
1

3
|0;−1/2〉 (8.30)

|1/2,−1/2〉 =

√
1

3
|0;−1/2〉 −

√
2

3
|−1; +1/2〉 (8.31)

Althogether we then have a new basis involving 4 + 2 = 6 eigenstates of total angular
momentum and have thus exhausted all the 6 available product states. As a bonus, we
can now read off directly the explicit Clebsch-Gordan coefficients for adding spin-1/2 to
spin-1.

8.4 Fine structure

Let us now return to the spin-orbit Hamiltonian (8.11) for the electron in the hydrogen
atom. It is no longer described by the wave functions (5.141) in the |nlml;ms〉 basis.
Instead we now have new, spinorial wave functions

Ψnljm(r, θ, φ) = Rnl(r)Yjm(θ, φ) (8.32)

with the same radial functions Rnl. The previous eigenstates Ylm of orbital angular
momentum L̂ are replaced by the spinor eigenfunctions Yjm of total angular momentum

Ĵ = L̂ + Ŝ. For j = l + 1/2 these can be read off (8.25) and become

Yjm =

√
l +m+ 1/2

2l + 1
Yl,m−1/2α +

√
l −m+ 1/2

2l + 1
Yl,m+1/2β (8.33)

where α and β are the eigenspinors for intrinsic spin up or down as introduced in Chapter
5. Similarly, for j = l − 1/2 from (8.27) follows

Yjm = −
√
l −m+ 1/2

2l + 1
Yl,m−1/2α +

√
l +m+ 1/2

2l + 1
Yl,m+1/2β (8.34)

Needless to say, they are eigenstates of the spin-orbit operator 2L̂·Ŝ with the eigenvalues
(8.21). The energy level shift caused by this coupling (8.11) follows now directly from

ELS =
∫
d3xΨ†

nljmHLSΨnljm =
Zαh̄

4m2
ec

〈
1

r3

〉
〈2L · S〉 (8.35)

The radial expectation value here is again given by the integral (8.4) which is

〈
a3

r3

〉
=

2

n3l(l + 1)(2l + 1)
(8.36)
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for the power s = 3. Here a = a0/Z is the ground-state radius of the atom in terms of
the Bohr radius a0 = h̄/αmec. The expectation value of the spin-orbit operator follows
now directly from (8.20) with the final result

ELS =
(Zα)4

2n3
mec

2

[
j(j + 1) − l(l + 1) − 3/4

l(l + 1)(2l + 1)

]
(8.37)

The states with j = l+1/2 will be shifted up and the states with j = l−1/2 are pushed
slightly more down with respect to the unperturbed levels as sketched in Fig.8.1. Com-
paring with the relativistic velocity shift (8.8), we see that these two shifts have similar
absolute magnitudes. That should not be so surprising since the spin-orbit coupling
arising from the Biot-Savart law is also a first-order effect in relativistic electrodynam-
ics.

Needless to say, the spin-orbit shift formula (8.37) is not valid for l = 0, i.e. s-states.
For these there are no shifts since there is no orbital angular momentum to couple to.
However, there is an extra contribution to these states called the Darwin term. It is a
subtle quantum effect not easily explained in a quantitative way but comes naturally
out of the Dirac equation for the electron. It will perhaps derived in a later chapter
when we consider relativistic quantum mechanics.

Combining now the velocity and spin-orbit perturbations, we get for fine structure shift
Efine = Evel + ELS the simpler result

Efine =
(Zα)4

2n3
mec

2

[
j(j + 1) − l(l + 1) − 3/4

l(l + 1)(2l + 1)
− 2

2l + 1
+

3

4n

]

= −
(
Zα

n

)4

mec
2

[
n

2j + 1
− 3

8

]
(8.38)

for a general energy level specified by the quantum numbers nlj . It is valid both for
j = l+1/2 and for j = l−1/2. It is now also valid for the s-states including the Darwin
term. We notice that it has exactly the same form as the velocity perturbation (8.8)
but with the replacement l → j. This indicates that there must be a deeper theory
underneath our treatment here. An unperturbed level whose energy is specified by
the principal quantum number n alone, will therefore split up into several components.
Those with same value of total spin j, remain degenerate. For example, the n = 2
level gives rise to the perturbed states 2s1/2, 2p1/2 and 2p3/2 which are all shifted as
seen in Fig.8.2. But 2s1/2 and 2p1/2 are shifted by the same amount and therefore stay
degenerate. Similarly, at n = 3 we get the perturbed states 3s1/2, 3p1/2, 3p3/2, 3d3/2 and
3d5/2. Here 3s1/2 and 3p1/2 remain degenerate as well as 3p3/2 and 3d3/2. This level is
thus split into three sublevels where 3d5/2 has the highest energy as follows from (8.38).

It should be obvious that the fine structure also will give rise to a more complex optical
spectrum from radiative transitions between these levels. For instance, the leading
line Hα in the Balmer series arises from the (n = 3) → (n = 2) transition and will
now be split up into several nearby lines determined by the selection rules. It was
accurate measurements of the frequencies of all these lines that historically showed that
quantum mechanics was the correct theory. However, with better experimental methods
it was found that the degeneracy between the 2s1/2 and 2p1/2 levels was not perfect, but
corresponded to a frequency of 1057 MHz. This is around 10% of the splitting between
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n = 1

n = 2

n = 3E

l/21s

2s

2p3/2

l/2

3d

l/23s
3p

3/2

5/2

3pl/2
3/2

2pl/2

3d

Figure 8.2: Fine structure in the hydrogen spectrum. (not to scale)

the j = 1/2 and j = 3/2 levels and is called the Lamb shift. It can only be understood
within QED which also explained the anomalous g-factor for the electron.

8.5 Anomalous Zeeman effect and Landé g-factor

Let us now consider again the Zeeman effect when the electron is in an external magnetic
field B. In the previous chapter it was calculated without caring about the fine structure
of the atomic states. That result therefore applies only in very strong fields B ≫ 1 T
which overwhelms the relativistic effects. When the field is much weaker, the atom is
described by the new eigenstates nlj of total angular momentum. When the field is
along the z-axis, the interaction Hamiltonian (7.35) gives the expectation value

〈 ĤB 〉 = EB =
e

2me
〈j,m |L̂z + 2Ŝz|j,m〉B (8.39)

for the energy. The magnetic moment operator (7.31) is not diagonal in this basis.
However, since Ĵz = L̂z + Ŝz and Ĵz|j,m〉 = h̄m|j,m〉, it simplifies to

EB =
e

2me
(mh̄ + 〈j,m |Ŝz|j,m〉)B (8.40)

This last term gives rise to what is called the anomalous Zeeman effect and is caused
by the intrinsic spin.

We obtain the needed matrix element from the states |j,m〉 derived in (8.25) and (8.27).
In the case j = l + 1/2 we find

Ŝz|j,m〉 = (+1/2h̄)

√
l +m+ 1/2

2l + 1
|m− 1/2; +1/2〉

+ (−1/2h̄)

√
l −m+ 1/2

2l + 1
|m+ 1/2;−1/2〉
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and therefore

〈j,m |Ŝz|j,m〉 = h̄
(l +m+ 1/2)(+1/2) + (l −m+ 1/2)(−1/2)

2l + 1
=

h̄m

2l + 1
(8.41)

Similarly, when j = l − 1/2 the same result is obtained, but with opposite sign. As a
result, we can write EB = gµBBm where

g = 1 ± 1

2l + 1
=

2

2l + 1
×
{
l + 1, j = l + 1/2
l, j = l − 1/2

(8.42)

is called the Landé g-factor. We can write the matrix element (8.41) more compactly
as 〈j,m |Ŝz|j,m〉 = 2h̄m(j − l)/(2l + 1) so that the result for the g-factor becomes

g =
2j + 1

2l + 1
(8.43)

It is g = 2 for the 2s1/2 level as for a free electron, g = 2/3 for 2p1/2 and g = 4/3 for the
2p3/2 level.

It is customary to define the measured magnetic moment µ of the atom as given by the
above interaction energy when the azimuthal quantum number has the maximum value
m = j. In a semi-classical picture this corresponds to having the total spin vector along
the z-axis. Then we can write EB = µB with the magnetic moment µ = gjµB. One
can also define an effective magnetic moment vector operator

µ̂eff =
eg

2me
Ĵ (8.44)

which has the same expectation values as found above. Semi-classically, it points in the
same direction as the total angular momentum.

The result (8.41) is an example of a more general result which is summarized in the
Wigner-Eckart theorem. It can be proven for any vector operator V̂i which is defined to
have the commutator

[Ĵi, V̂j ] = ih̄ǫijkV̂k (8.45)

From the beginning of Chapter 5 we know that both the position operator x̂i and
momentum operator p̂i are such operators. Then it follows that also the orbital spin
L̂i is such a vector operator as is the intrinsic spin Ŝi. For all such vector operators
the theorem says that the matrix element 〈j,m |V̂|j,m〉 is proportional to the matrix
element 〈j,m |Ĵ|j,m〉. More formally, this can be summarized in the equation

〈j,m |V̂|j,m〉 = Vjj〈j,m |Ĵ|j,m〉 (8.46)

where Vjj is called the reduced matrix element. It is independent of the azimuthal
quantum number m. We have verified it for the operator Ŝz. A similar calculation will
also show that it holds for matrix elements of L̂z.

Accepting the theorem, we then have 〈j,m |Ŝz|j,m〉 = h̄mSjj where the reduced spin
matrix element now can be obtained from 〈j, j |Ŝz|j, j〉 = h̄jSjj. This is achieved by
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writing 2Ĵ · Ŝ = 2ĴzŜz + Ĵ−Ŝ+ + Ĵ+Ŝ− = 2ĴzŜz + Ĵ−Ŝ+ + Ŝ−Ĵ+ + 2h̄Ŝz where we in the
last equality make use of the commutator [Ĵ+, Ŝ−] = [Ŝ+, Ŝ−] = 2h̄Ŝz. Thus

〈j, j |Ĵ · Ŝ|j, j〉 = h̄(j + 1)〈j, j |Ŝz|j, j〉

since the terms involving Ĵ− and Ĵ+ give zero when sandwiched between highest states.
On the other hand, we have 2Ĵ · Ŝ = Ĵ2 + Ŝ2 − L̂2 from squaring L̂ = Ĵ− Ŝ. Combining
these two results, it follows that

Sjj =
j(j + 1) + s(s+ 1) − l(l + 1)

2j(j + 1)
(8.47)

This now also gives the matrix element 〈j,m |Ŝz|j,m〉. From (8.39) we can then read
off original expression for the Landé g-factor,

g = 1 +
j(j + 1) + s(s+ 1) − l(l + 1)

2j(j + 1)
(8.48)

Taking here j = l ± 1/2, we recover the previous version (8.42) of the same result.

With the result (8.47) for the reduced spin matrix element Sjj we can write the Wigner-
Eckart theorem (8.46) for this operator as

〈j,m |Ŝ|j,m〉 =
〈j,m |Ŝ · Ĵ|j,m〉

j(j + 1)h̄2 〈j,m |Ĵ|j,m〉 (8.49)

On this form the theorem is in fact valid for any vector operator V̂. To prove it,
consider the matrix element 〈j,m |V̂ · Ĵ|j,m〉 and insert a complete set of total angular
momentum states between the two operators. Then

〈j,m |V̂ · Ĵ|j,m〉 =
j∑

m′=−j

〈j,m |V̂|j,m′〉 · 〈j,m′ |Ĵ|j,m〉

= Vjj

j∑

m′=−j

〈j,m |Ĵ|j,m′〉 · 〈j,m′ |Ĵ|j,m〉

using the definition (8.46) of the theorem. Now we undo the completeness sum and
obtain

〈j,m |V̂ · Ĵ|j,m〉 = Vjj〈j,m |Ĵ · Ĵ|j,m〉 = Vjjj(j + 1)h̄2

Thus we have the reduced matrix element Vjj and therefore Wigner-Eckart theorem on
the very useful form

〈j,m |V̂|j,m〉 =
〈j,m |V̂ · Ĵ|j,m〉

j(j + 1)h̄2 〈j,m |Ĵ|j,m〉 (8.50)

It will serve us well in the next section.



182 Chapter 8. Spin interactions

8.6 Hyperfine splitting

The spin-orbit interaction can be understood by the motion of the nuclear electric charge
creating a magnetic field which couples to the spin of the electron. Considering a nucleus
with charge Ze and mass mN , we write the magnetic moment as

µN =
ZegN
2mN

I (8.51)

where gN is the nuclear g-factor and I the spin of the nucleus. For a single proton we
had gp/2 = 2.78. The magnetic moment creates a vector potential

A =
µ0

4π
µN ∧ r

r3
= − 1

4πǫ0c2
µN ∧ ∇

1

r
(8.52)

and thus a magnetic field B = ∇ ∧ B. It gives rise to a standard magnetic coupling
Hmag = −µe · B to the electron. Making use of the vector identity

∇ ∧ (V ∧ ∇S) = V∇2S − ∇(V · ∇S)

it is found to be

Hmag =
1

4πǫ0c2

[
(µe · µN)∇21

r
− (µe · ∇)(µN · ∇)

1

r

]

The last term here can now be simplified using

∂i∂j
1

r
= 3

xixj
r5

− δij
( 1

r3
− 1

3
∇2 1

r

)

Collecting terms, we thus have

Hmag =
1

4πǫ0c2

(
2

3
µe · µN∇21

r
+

1

r3

[
µe · µN − 3

(µe · r)(µN · r)
r2

])
(8.53)

We recognize the last two terms as the dipole-dipole interaction between the proton and
electron magnetic moments. It is also called a tensor interaction and will not contribute
to states with orbital angular momentum l > 0.

For s-states only the first term gives a non-zero result. We can write this part as

HF = − 1

4πǫ0c2
8π

3
µe · µNδ(r) (8.54)

when we make use of the relation

∇21

r
= −4πδ(r) (8.55)

It is just the Poisson equation for a unit point charge satisfying Coulomb’s law. Since
the magnetic moment of the electron is µe = −(ege/2me)S with electric charge which
is now −e, we thus get

HF =
Ze2

4πǫ0c2
gN

2memN

8π

3
δ(r)I · S (8.56)
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when we set ge = 2 for the electron. This is the Fermi Hamiltonian describing the
hyperfine interaction of l = 0 states in the hydrogen atom.

Let us now calculate the expectation value of the Fermi operator (8.56). The spin
part Ĥ = 2Î · Ŝ is of exactly the same type as for the spin-orbit interaction previously
considered in this chapter. It is simplest evaluated in a basis where this operator is
diagonal, i.e. formed by the eigenstates of the total spin operator F̂ = Î + Ŝ. Denoting
these states by |f,mf〉, we thus have

F̂2|f,mf〉 = h̄2f(f + 1)|f,mf〉 (8.57)

F̂z|f,mf〉 = h̄mf |f,mf〉 (8.58)

The highest of these new spin states is obviously |mi = +1/2〉|ms = +1/2〉 which we
write as |+1/2; +1/2〉 ≡ |1,+1〉 in the same notation as before when we added spins.
We have already indicated that it corresponds to total spin f = 1. Applying as before
the lowering operator F̂− = Î− + Ŝ− on both sides, we construct the other states in the
same ladder,

|1, 1〉 = |+1/2; +1/2〉

|1, 0〉 =

√
1

2

[
|+1/2;−1/2〉+ |−1/2; +1/2〉

]
(8.59)

|1,−1〉 = |−1/2;−1/2〉

These three states form a spin-1 triplet. Of the original four product states there is one
left. It must be orthogonal to |1, 0〉 and is therefore

|0, 0〉 =

√
1

2

[
|+1/2;−1/2〉 − |−1/2; +1/2〉

]
(8.60)

Obviously it must correspond to spin f = 0 which also can be verified by a direct
calculation. It is the spin-0 singlet state. In summary, adding spin 1/2 to spin 1/2
forms four states of which three constitute a spin-1 multiplet and one represents a spin-
0 state.

Instead of constructing these states in the abstract language of ket vectors, we could
also use the spinor representation for spin 1/2 introduced in Chapter 5. The eigenstates
for the electron spin S would then be the spinors αe and βe while for the proton spin I
it would be αp and βp. The triplet states (8.59) would then be written as

T+ = αeαp

T0 =

√
1

2

(
αeβp + βeαp

)
(8.61)

T− = βeβp

while the singlet becomes

S =

√
1

2

(
αeβp − βeαp

)
(8.62)

Needless to say, these composite spin eigenstates for the total spin will be the same for
the addition of any two spin-1/2 systems.
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In this new basis the operator 2Î·Ŝ = F̂2−Î2−Ŝ2 is now diagonal. Since both the nuclear
spin is i = 1/2 and the electron spin is s = 1/2, it takes the values h̄2[f(f+1)−3/4−3/4]
or

2Î · Ŝ = h̄2
{

+1/2, f = 1
−3/2, f = 0

(8.63)

Each unperturbed energy level will therefore be split into two sublevels by an amount

EF =
Ze2

4πǫ0c2
gN

2memN

8π

3

∫
d3xψ∗

nlmδ(r)ψnlm 〈I · S〉

=
Ze2

4πǫ0c2
gN

2memN

8π

3
|ψn00(0)|2 〈I · S〉 (8.64)

corresponding to (8.35) for the spin-orbit coupling. This is illustrated in Fig.8.3. Thus

l = 0

f = 0

f = 1

+1/2

−3/2

Figure 8.3: Hyperfine splitting of a s-level in arbitrary units.

we see explicitly that only l = 0 states will be affected by this hyperfine perturbation
since states with l > 0 vanish at the origin. For the s-states we make use of the result
(5.149) which gives |ψn00(0)|2 = 1/πn3a3. The atomic 1s radius is again given in terms
of the Bohr radius as a = a0/Z. One thus obtains

EF =
2gN
3n3

(Zα)4mec
2
(me

mN

)[
f(f + 1) − 3/2

]
(8.65)

Comparing with the spin-orbit result (8.37) we see that the hyperfine perturbation in
hydrogen is much smaller by a factor me/mp = 1/1836. It is for this reason that it
has earned its name. Notice that for this part of the hyperfine interaction we have the
effective Hamiltonian

H ′
F = K0I · S (8.66)

where the coupling constant is seen to be given by

K0h̄
2 =

4gN
3n3

(Zα)4mec
2
(me

mN

)
(8.67)

It is seen to decrease rapidly for higher excited states when the principal quantum
number n gets large.



8.6 Hyperfine splitting 185

The hyperfine split between the two sublevels arising from the lowest 1s1/2 in the hy-
drogen atom is ∆EF = EF (f = 1) − EF (f = 0) or

∆EF = (4gpme/3mp)α
4mec

2. (8.68)

Putting in numbers, one finds ∆EF = 5.9 × 10−6 eV. By a magnetic dipole transition
as described in the previous chapter, a photon can be emitted when the atom is in
the upper triplet state. The corresponding frequency is ν = ∆EF/h = 1420 MHz or
wavelength λ = c/ν = 21.1 cm. This corresponds to radiation in the radio band. Its
detection has been very useful in mapping out the presence of neutral hydrogen atoms
in the Universe.

In this calculation we have not so far considered the ordinary spin-independent interac-
tion Hel = (e/me)p ·A. Both this electric coupling and the above magnetic coupling are
present in the Pauli Hamiltonian (7.30) and will in general contribute to the hyperfine
interaction. Together with the vector potential (8.52) it gives

Hel =
1

4πǫ0c2r3

e

me
p · µN ∧ r =

1

4πǫ0c2r3

e

me
µN · L (8.69)

where L = r∧p is the orbital angular momentum of the electron. It is seen to contribute
only for states with l > 0. We can therefore group it together with the tensor interaction
in (8.53) to give the combined interaction Hamiltonian

Hl>0 =
Ze2

4πǫ0c2r3

gN
2memN

[
I · L − I · S +

3

r2
(I · r)(S · r)

]
(8.70)

When calculating the perturbative effect on an energy level with l ≥ 1, we can now use
the Wigner-Eckardt theorem on the form (8.50) to simplify the result. For this purpose
we introduce the vector operator

B′ =
[

1

r3

(
L− S

)
+

3

r5
r(S · r)

]

It allows us to write the Hamiltonian (8.70) simply as Hl>0 = KI · B′ where the
constantK = (Ze2/4πǫ0c

2)(gN/2memN ). Then we have

〈j,m |B̂′ · Ĵ|j,m〉 = 〈j,m | 1

r3

(
L̂− Ŝ

)
· Ĵ +

3

r5
(r · Ĵ)(Ŝ · r)|j,m〉

But now (L̂− Ŝ) · Ĵ = L̂2 − Ŝ2 since Ĵ = L̂+ Ŝ. But both L̂2 and Ŝ2 are diagonal in the
|f,mf〉 basis with eigenvalues h̄2l(l + 1) and 3h̄2/4 respectively. Also r · Ĵ = r · Ŝ since

r · L = r · (r ∧ p) = 0. Therefore one finds (r · Ĵ)(Ŝ · r) = (r · Ŝ)2. Remembering now
that the electron has spin S = (h̄/2)σ, we have simply that (r · Ĵ)(Ŝ · r) = (h̄/4)2r2.
The above matrix element thus simplifies to

〈j,m |B̂′ · Ĵ|j,m〉 = h̄2
〈

1

r3

〉[
l(l + 1) − 3

4
+

3

4

]

With the help of the Wigner-Eckart theorem (8.50) we thus can also find the matrix
element 〈j,m |B̂′|j,m〉. We then see that we can effectively use

B′ =
l(l + 1)

j(j + 1)

〈
1

r3

〉
J (8.71)
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in all matrix elements of this part of the hyperfine interaction. As expected, it is seen
to not contribute when l = 0. The orbital matrix element 〈 1/r3 〉 is the same (8.36)
as used in the calculation of the spin-orbit coupling. In this way we end up with the
effective operator

H ′
l>0 = K1I · J (8.72)

for this part of the hyperfine interaction. Its magnitude is determined by the coupling
constant

K1h̄
2 =

Ze2

4πǫ0c2
gN

2memN

l(l + 1)

j(j + 1)

〈
1

r3

〉

=
gN
n3

(Zα)4mec
2
(me

mN

) 1

j(j + 1)(2l + 1)
(8.73)

The spin part is diagonalized by constructing the eigenstates of the total angular mo-
mentum F = I+J .When the nuclear spin i = 1/2 as in hydrogen, all states with orbital
angular momentum l ≥ 1 will therefore also be split into two sublevels as was the case
for the l = 0 states. We can combine the two effective operators (8.66) and (8.72) into
the complete operator

H ′
HF = K0I · S +K1I · J (8.74)

which sums up the effects of these hyperfine interactions. But it should be kept in mind
that they always operate on different states.

8.7 Magnetic transitions in hyperfine doublet

It has already ben mentioned that the hyperfine splitting of the hydrogen ground state
has important astrophysical implications since the photons from the triplet → singlet
transitions can be detected with radio telescopes and thus can signal the presence of
hydrogen in the Universe. But this depends on the lifetime for the transition to be large
enough so that the atoms can remain in the excited triplet state over sufficiently long
time scales.

This must be a magnetic transition since it involves the electron spin. It was calculated
in the previous chapter and given by (7.111). We thus need to calculate the matrix
elements σfi = 〈S |σ|T 〉 between the triplet and singlet states in hydrogen given by
(8.61) and (8.62). Writing now

|σfi|2 = 2|〈S |σ−|T 〉|2 + 2|〈S |σ+|T 〉|2 + |〈S |σz|T 〉|2 (8.75)

where the spin raising and lowering matrices σ± = (σx ± iσy)/2 were derived already in
(5.76). Acting on the fundamental spin-1/2 spinors (5.85), we see that the only non-
zero contributions come from σ−α = β and σ+β = α. In addition, we obviously have
σzα = α and σzβ = −β.

Assuming now for instance that initially the atom is in the triplet state with z-component
ms = +1, we must calculate the matrix element S†σ−T+ = S†σ−αeαp. Since the spin
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matrices only act on the electron spinors αe and βe, this equals S†βeαp. With the singlet
spinor from (8.62), we thus find S†σ−T+ = −1/

√
2. The two other terms in (8.75) gives

nothing. More specifically, the second term is zero since σ+T+ = 0 while in the third
term S†T+ = 0 from orthogonality.

The full, squared matrix element is therefore in this case |σfi|2 = 1. We would have
obtained the same if we had assumed the atom to be in one of the other possible initial
states. For instance, if it was in the state with ms = −1 instead, only the middle term
in (8.75) would contribute with the same result. On the other hand, for the initial state
T0, only the last term is non-zero since σzT0 = S and with S†S = 1 therefore giving
|σfi|2 = 1 again.

With this value for the matrix element, we now get the hyperfine transition rate

Γhyp =
α

3
ω

(
h̄ω

mec2

)2

(8.76)

The frequency ω follows from the energy split (8.68) and its numerical value gives the
rate Γ = 2.85 × 10−15 s−1 corresponding to a lifetime of τ = 1/Γ = 3.50 × 1014 s. Since
there are 3.16 × 107 s in one year, we see that the atom will remain in the triplet state
for ten million years.

We can now also calculate the angulular distribution of the photons in this hyperfine
transition along exactly the same lines as for the electric transition in the previous
chapter. From (7.110) we have the differential transition rate

dΓ

dΩ
=

(
eh̄

2me

)2
ω

8π2ǫ0h̄c3
|e∗
λ · (k ∧ σfi)|2 (8.77)

when the photon has the wave vector k and polarization eλ. If we quantize the spin in
the initial state along the z-axis, k makes an angle β with this axis as shown in Fig. 7.7.
Let us again consider a right-handed photon with polarization vector eR = (e1+ie2)/

√
2.

In the matrix element we then need the product

e∗
λ · (k ∧ σ) =

√
1

2
[− sin β(k ∧ σ)z + cosβ(k ∧ σ)x − i(k ∧ σ)y]

which follows from (7.103). Calculating now the components of k ∧ σ and expressing
them in terms of the Pauli matrices σ±, one finds

e∗
λ · (k ∧ σ) = ik

√
1

2
[(1 − cosβ)σ+ − (1 + cosβ)σ− + sin βσz] (8.78)

after some algebra. This is essentially all we need in the following.

Let us now consider that the atom is initialy in the triplet state T+ with spin ms = +1
along the z-axis. In the matrix element 〈S |e∗

λ · (k ∧ σ)|T+〉 only the middle term in
(8.78) will contribute. The whole calculation is then reduced down to the matrix element
S†σ−T+ = −1/

√
2 we encountered above, giving

〈S |e∗
λ · (k ∧ σ)|T+〉 = ik

1

2
(1 + cosβ) (8.79)
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From (8.77) now follows the angular distribution

dΓ

dΩ
(T+ → S + γR) =

αω

16π

(
h̄ω

mec2

)2

(1 + cosβ)2 (8.80)

for the emission of a positive-helicity photon.

When the photon is left-handed, the calculation is almost identical. The only change
will be cos β → − cosβ in the above result. If now this polarization is not measured,
we must add these two contributions to the rate which then becomes

dΓ

dΩ
(T+ → S + γ) =

αω

8π

(
h̄ω

mec2

)2

(1 + cos2 β) (8.81)

This is in agreement with the total rate (8.76) when we integrate over all directions of
the photon. We would get the same rate if the atom was in one of the other intial states
like T0 or T−.

One should notice that these angular distributions are esentally the same as for the
corresponding electric transitions considered in Chapter 7. The underlying reason is
that in both cases they take place in the dipole approximation from an initial atomic
state with total angular momentum J = 1 to a final state with J = 0. They will
therefore both have matrix elements proportional to the appropriate components of the
corresponding rotation function d

(1)
mλ(β) as previously mentioned.



Chapter 9

Many-electron atoms

The observed spectrum of the hydrogen atom is not much different from what follows
from the solution of the Schrödinger equation in a pure Coulomb potential. Relativistic
corrections are small since they are given by powers of the fine structure constant. And
effects due to the spin of the electron are also small for the same reason.

In atoms with more than one electron, a new perturbation enters. This is the Coulomb
interaction between the atoms. For the lightest atoms this is not small since it is of the
same order as the interaction with the central nucleus. Standard perturbation theory
will therefore not be very useful for these atoms. Also for heavier atoms the mutual
interaction between the atoms play a central role. But when the number of electrons
is suffiently large, we will see that it is possible to approximate all these non-central
interactions with a new, effectice potential which will have central symmetry. Even if
the actual values of atomic of the energy levels must now be found by numerical methods,
the symmetry of the system allows for a straightforward classification of the different
energy levels which will occur. Here the spins of the elctrons play a decisive role since
the Pauli principle contrains the full wave function to be completely antisymmetric in
all the variables describing the elctrons.

The important role of the electron spins we already see in the simplest many-electron
atom, i.e. the helium atom with two electrons. Historically, this was one of the first
important challenges of the new quantum mechanic which replaced the original, semi-
classical ideas proposed by Bohr. We will therefore first look at it in some detail.

9.1 The helium atom

Let the two electrons in the neutral helium atom have positions r1 and r2 as shown in
Fig. 9.1. Since the nucleus has the charge Z = 2, the Hamiltonian becomes

H = − h̄2

2m

(
∇

2
1 + ∇

2
2

)
− 2e2

4πǫ0

(
1

r1
+

1

r2

)
+

e2

4πǫ0

1

|r1 − r2|
(9.1)

where the last term represents the Coulomb repulsion between the two electrons. While
the first two terms are centered around the nucleus, this term is non-central and depends
on the separation r12 = |r1 − r2|. Here lies the main complication of the problem, i.e.
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Figure 9.1: Electron position coordinates in the helium atom.

finding the eigenvalues E of the stationary Schrödinger equation HΨ(1, 2) = EΨ(1, 2)
for the corresponding eigenfunctions Ψ(1, 2).

The Hamiltonian can be written as H = H0 + V where H0 decribes two free electrons
in a Coulomb potential while V is the Coulomb repulsion between the electrons. If we
now assume that this latter term is small, most of the properties of the atom will follow
from the first and dominant term H0. If we also ignore the symmetry properties of the
full wave functions, they can simply be written as products Ψ(1, 2) = ψa(r1)ψb(r2) of
hydrogen wave functions ψnℓ(r) derived in Chapter 5 for a central charge Z = 2. Here
the first electron is in a state with quantum numbers denoted for simplicity by a while
the second has the quantum numbers denoted simply by b. The energy eigenvalues are
therefore E = εa + εb in this approximation, The energies of an unperturbed hydrogen
atom are independent of the orbital angular momentum ℓ and thus we have for the
helium atom energy levels in this approximation the result

E = −22

(
1

n2
a

+
1

n2
b

)
Ry (9.2)

where Ry = e2/8πǫ0a0 = 13.6 eV is the (negative) ground state energy of the ordinary
hydrogen atom with Bohr radius a0.

In the lowest state of the helium atom both the electrons are in the hydrogen ground
states 1s. Their product wave function is therefore 1s1s which is usually written as 1s2.
It corresponds to the ground state energy E0 = −4(1 + 1)Ry = −8Ry = −108.8 eV.
Comparing this with the measured value E0 = −79.0 eV, we see that this lowest or-
der decription is inaccurate to a much larger degree than what we encountered when
discusing the hydrogen atom in previous chapters.

In the first excited state one of the electrons will be in the 2s or 2p state with the resulting
excited energy E1 = −4(1+1/4)Ry = −5Ry for the helium atom. If this excited electron
gets even more excited, it will eventually be liberated from the nucleus and we have an
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unbound electron plus an ionized helium atom with energy E∞ = −4Ry = −54.4 eV.
This implies that the helium atom in the state 2s2, i.e. where both electrons are excited
to the 2s state, cannot be stable since it has an energy E ′ = −4(1/4 + 1/4)Ry = −2Ry
which is above that of an ionized atom. The state 2s2 will thus decay into such an ionized
state due to the internal dynamics of the atom when it is considered more accurately.

We must now include also the effect of the Coulomb repulsion between the electrons
which we so far have assumed to be negligible. Since it tries to keep the electrons apart
from each other in a classical description, its smallest value would correspond to the
two electrons to be on the opposite side of the nucleus. In the unperturbed ground
state 1s2 of the atom, each electron is in a state with radius a = a0/2 and is therefore
separated by the distance r12 = a0. For this particular electron configuration the value
of the repulsion energy is therefore Eee = e2/4πǫ0 = 2Ry = 27.2 Ry. The ground state
energy is therefore lifted up to E0 = −6Ry = −81.6 eV which is much closer to the
experimental value. We therefore expect to see a similar improvement of the results
when this term is included quantum mechanically.

Using perturbation there, the shift of the ground state energy will be given by the
matrix element ∆E0 = 〈Ψ0 |V̂ |Ψ0〉 where the operator V̂ is given by the above Coulomb
repulsion. The ground state |Ψ0〉 is given by the unperturbed wave function 1s2 or more
specifically as

Ψ0(1, 2) =
1

π

(
2

a0

)3

e−2(r1+r2)/a0 (9.3)

when we use the explicit form of the hydrogen wave function from Chapter 5. The result
will therefore be given by the multiple integral

∆E0 =
e2

4π3ǫ0

(
2

a0

)6 ∫
d3r1

∫
d3r2

e−4(r1+r2)/a0

|r1 − r2|
which is highly non-trivial. But we can do it by a simple trick. From the result (6.57)
for the Fourier transform of the Coulomb potential in Chapter 6, we know that it can
be written as

1

4πr
=
∫

d3k

(2π)3

eik·r

k2

Using now this to get the denominator r12 = |r1 − r2| in (9.4) up into the exponent, it
becomes

∆E0 =
e2

π2ǫ0

(
2

a0

)6 ∫ d3k

(2π)3

|I(k)|2
k2

where the integral

I(k) =
∫
d3reik·r−4r/a0

is exactly the same we met in (7.115) when we calculated the cross-section for photo-
production. From (7.116) we thus have

I(k) =
8π(a0/4)3

[1 + (ka0/4)2]2
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and therefore for the Coulomb perturbation

∆E0 =
e2

ǫ0

∫
d3k

(2π)3

1

k2 [1 + (ka0/4)2]4

Introducing x = ka0/4 as a new integration variable, this simplifies to

∆E0 =
2e2

π2ǫ0a0

∫ ∞

0

dx

(1 + x2)4
=

5e2

16πǫ0a0
=

5

2
Ry (9.4)

where the value 5π/32 of the last last integral must be looked up or done with contour
integration in the complex plane. We thus get a perturbed ground state energy of
E0 = (−8+5/2)Ry = −74.8 eV which is a much better result. But we see that this first
order perturbative correction is pretty large so higher order corrections will be needed
to have a result we can trust. And these are very difficult to calculate - if they ever
have.

A simpler and more accurate approach is to use the varionational method instead of
perturbation theory. We then need only an approximative function with properties we
would expect to find in the true wave function for the ground state. This construction
will then involve unknown parameters which then have to be determined by minimizing
the expectation value of the Hamiltonian (9.1).

We have already seen that the product wave function (9.3) describes the ground state
with an accuracy of around 20%. It describes two electrons moving freely around a
central nuclear charge Z = 2. But if we think a bit more physically about the situation
we realize that this must be an approximation since from the point of view of one
electron the electric field from the nucleus is reduced or screened by the other electron
whenever this is ’inside’ the first. A better approximation would then be to describe
both electrons as still moving in a central Coulomb potential, but corresponding to a
charge Z < 2. In analogy with (9.3) we thus choose to work with the trial wave function

Ψ(1, 2) =
1

π

(
Z

a0

)3

e−Z(r1+r2)/a0 (9.5)

where now Z is the variational parameter.

Evaluation of the variational energy 〈Ψ |Ĥ|Ψ〉 for the Hamiltonian (9.1) is now straight-
forward. The first term gives twice the kinetic energy of an electron in the ground state
of an hydrogen atom with nuclear charge Z which becomes 2Z2e2/8πǫ0a0. The middle or
central Coulomb term will for the same reason give the potential energy −4Ze2/4πǫ0a0

while the contribution for the last, repulsive Coulomb term follows from the above per-
turbative calculation. Comparing the two wave functions (9.5) and (9.3), we see that
we just have to make the replacement 2/a0 → Z/a0 in the result (9.4) for the repulsive
Coulomb energy, giving now 5Ze2/32πǫ0a0. The total variational energy thus becomes

〈Ψ |Ĥ|Ψ〉 =
e2

4πǫ0a0

(
Z2 − 4Z +

5

8
Z
)

and is seen to have a minimum for Z = Zmin = 2 − 5/16 = 27/16. This minimal value
then follows as Emin = −2Z2

minRy = −77.5 eV. It is surprisingly near the measured
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value E0 = −79.0 eV. It is also slightly above the true value, as it should be from the
general considerations in Chapter 6 in connection with the variational principle.

The calculation of the ground state energy of the helium atom was iniziated by the
Norwegian physicist Egil Hylleraas in 1928. He was a stipendiat with an American
fellowship working with Max Born in Göttingen at a time when quantum mechanics was
still very new and hotly debated. After a short time he obtained much more accurate
results using the same varational principle but with a more general trial wave function
than the simple version (9.5). This was based on the observation that the ground state
must be rotational invariant and thus have total angular momentum L = 0. It will
therefore depend an fewer variables than the six components of the two position vectors
r1 and r2 which in general would enter in an arbitrary wave function. Since the total
potential energy in (9.1) is rotational invariant and only depends on the three lengths
r1, r2 and r12, these will then be the variables also for the ground state wave function.
While r1 and r2 are obviously invariant under rotations, r12 will also be since it depends
on these two lengths and the angle θ between the corresponding vectors in Fig. 9.1.
And this angle remains unchanged under a simultaneous rotation of both vectors.

His more general wave function was then taken to be the product of the exponential
function (9.5) and a polynomial in these three variables. To leading order the improved
trial wave function would then be

Ψ(1, 2) = e−Z(r1+r2)/a0
[
C0 + C1r12 + C2(r1 + r2) + C3(r1 − r2)

2 + . . .
]

(9.6)

For reasons given in the next section, we have here only included terms which are
symmetric under the interchange of the two electrons. These extra terms decribes the
exitation of the electrons due to the repulsive Coulomb force between them. In addition
to Z, one now also has the coefficients Cn as variational parameters. One of these is
eliminated by normalization. With just these lowest order terms he could then obtain
a result with an accuracy around one per mille. No one could at that time obtain
more precise results. This work was later continued at the University of Oslo with his
students where they also studied excited states of the helium atom and properties of
other, similar atoms.

9.2 Electron spin and the Pauli principle

Accoring to the Pauli principle the full wave function Ψ(1, 2) of the two electrons must
be antisymmetric on all the variables of the system, including the spin varibales. Since
the Hamiltonian (9.1) only depends on the orbital variables r1 and r2, the full wave
function can always be written as a direct product Ψ(1, 2) = ψ(r1, r2)Φ(S,MS). The
total spin S of the electrons can take the values S = 0 and S = 1 with corresponding
z-components MS. These states were found in the previous chapter. In particular, the
singlet S = 0 spin eigenfunction (8.62) we now write as

Φ(0, 0) =

√
1

2

(
α1β2 − α2β1

)
(9.7)

It is antisymmetric in the interchange of the two labels 1 and 2. The corresponding
orbital wave function ψS(r1, r2) must therefore be symmetric in the same two labels in
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order to satisfy the Pauli principle. In perturbation theory ignoring for the moment
the Coulomb repulsion between the electrons, one elctron will be in a hydrogenic state
a with the orbital wavefunction ψa(r) and the other in the state b with wavefunction
ψb(r). An allowed orbital wavefunction decribing both electrons is then

ψS(r1, r2) =

√
1

2

[
ψa(r1)ψb(r2) + ψa(r2)ψb(r1)

]
(9.8)

when they are in the singlet state with spin S = 0. But in the triplet state with S = 1,
the spin eigenfunctions (8.61) are symmetric and the orbital wave function

ψA(r1, r2) =

√
1

2

[
ψa(r1)ψb(r2) − ψa(r2)ψb(r1)

]
(9.9)

is therefore antisymmetric in the two electron labels.

In the ground state both electrons must be in the lowest hydrogen wavefunction which
we previously called 1s. We thus have the orbital configuration [He] = 1s2 for the two
electrons in helium. But since the two quantum numbers a and b now are the same,
we cannot form the antisymmetric combination (9.9). It vanishes. We can only form
the symmetric wavefunction (9.8). The helium ground state must therefore be a spin
singlet. And this we can say without any exact knowledge of the orbital wavefunction.
Even inclusion of the Coulomb repulsion will not change this fact.

Since the orbital angular momentum L of the ground state is also zero, the total mo-
mentum angular momentum J is zero. Denoting an energy level of the atom with the
quantum numbers (J, L, S) by the symbol 2S+1LJ , the ground state is therefore given
by 1S0. The S here now stands for L = 0 as previously used for the hydrogen atom. In-
cluding the Coulomb repulsion it will have the energy calculated in the previous section
using the variational method.

Let us now consider the first radial excitation of this L = 0 ground state. In the
unperturbed picture one electron is then excited to the 2s hydrogen orbital so that total
electron configuration is 1s2s. Now we can form both a symmetric and an antisymmetric
combination of these two orbitals and we have two resulting states for the atom, a spin
singlet and spin triplet. Using the above notation, these two terms would then be
denoted by 1S0 and 3S1. This 1S0 can then be said to be the first radial excitation of
the ground state since it has the same quantum numbers. Needless to say, the new 1S0

state and the 3S1 will have the same energy as long as we ignore the Coulomb repulsion.
But as for the ground state, it will increase their energies. In lowest order perturbation
theory this shift is given by 〈Ψ |V̂ |Ψ〉 or

∆E =
∫
d3r1

∫
d3r2ψ

∗(r1, r2)
e2

4πǫ0|r1 − r2|
ψ(r1, r2) (9.10)

The dominant contribution is seen to arise when the positions of the two electrons
approach each other. But now we see that for the antisymmetric combination (9.9) the
combined wave function approaches zero in this limit, while the symmetric combination
(9.8) increases. This Coulomb shift of the triplet term 3S1 is therefore smaller than for
the singlet 1S0. Thus, with the Coulomb repulsion, the three lowest terms or energy
levels for the helium atom will be lifted and split up as seen in Fig.9.2.
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Figure 9.2: Lowest energy level of the helium atom. The unperturbed levels on the left are lifted and
split by the Coulomb repulsion between the electrons.

We have the surprising result that the electron spin plays an important role for the
atomic energy levels even if doesn’t explicitly appear in the Hamiltonian. This will be
a very important effect also in atoms with more electrons as we soon will see.

Using the variational method one can also find the energies of these two excited states.
For the 3S1 the trial wave function can be constructed along the same lines as was used to
find the singlet function (9.6). We only have to ensure that it is now antisymmetric in the
two electron coordinates. On the other hand, for the excited 1S0 state the wave function
must be symmetric and also orthogonal to the ground state 1S0. This complicates the
calculation. Instead one can use the Rayleigh-Ritz method outlined in Chapter 6 in a
basis formed by the unperturbed L = 0 hydrogen wave functions, but we will not pursue
that here.

The first excited state with orbital angular momentum L = 1 will similarly come from
the unperturbed configuration 1s2p. Again including the Coulomb repulsion, this is split
up in a spin triplet of states below a singlet state. This latter will have total angular
momentum J = 1 and thus be denoted by 1P1. Since the triplet state has electron spin
S = 1, the total angular momentum will then take the values J = 2, 1, 0. We thus find
the three triplet terms 3P2,

3P1 and 3P0. Including the relativistic spin-orbit coupling as
in the previous chapter, these will be split slightly apart.
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9.3 Central-field approximation

A heavier atom with N electrons moving in the Coulomb field of a nucleus with charge
Ze has the Hamiltonian

H =
N∑

i=1

(
− h̄2

2m
∇

2
i −

Ze2

4πǫ0ri

)
+
∑

i<j

e2

4πǫ0

1

|ri − rj |
(9.11)

The physical states are eigenfunctions Ψ(1, 2, . . . , N) which are completely antisymmet-
ric in all the electron variables. Even if the problem then has this simple formulation,
the solution is mathematically very difficult and must be done numerically. But given
that, it explains most properties of the atoms and thus the matter we see around us.
This is the realm of chemists.

Each electron has an angular momentum operator Lk = −ih̄rk ∧ ∇k. Each of these
are conserved by the first part of the above Hamiltonian because it is central as for the
ordinary hydrogen atom. But Lk does not commute with the last term since

[Lk,
1

rij
] =

(
Lk

1

rij

)
= −ih̄rk ∧

(
∇k

1

rij

)

= −ih̄
[
−rk ∧

ri − rj
r3
ij

δik + rk ∧
ri − rj
r3
ij

δjk

]

is non-zero. We can therefore not label the general solutions by the angular momenta
of the individual electrons. But for the total angular momentum

L =
N∑

k=1

Lk (9.12)

the commutator is zero as follows from

[L,
1

rij
] = −ih̄

N∑

k=1

[
−rk ∧

ri − rj
r3
ij

δik + rk ∧
ri − rj
r3
ij

δjk

]
= 0

since the vector wedge product is antisymmetric. Thus the full states can be labelled
by the total angular momentum quantum number L and the z-component ML = Lz/h̄.

From the look of the Hamiltonian one would also think that the spin Sk = (h̄/2)σk of
each electron also is a good quantum number since it doesn’t appear at all. But then
we are deceived. Imposing the Pauli principle restriction on the total wave functions we
know from the previous discussion of the helium atom that the effect of the Coulomb
repulsion depends on the total spin angular momenta S defined similarly to the orbital
part L in (9.12). Thus the total spin angular momentum quantum number S and the
z-component MS = Sz/h̄ will also be important quantum numbers for the physical
states.

While the physics of the first part of the Hamiltonian (9.11) describes non-interacting
electrons moving in the central Coulomb potential from the nucleus, the last term is
due to the mutual Coulomb repulsion between the electrons. As for the helium atom,
the main complications of the problem lies here. But with many electrons this term
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is even more important in determining the physical properties of atoms. The reason is
that the number of such terms grows like N2/2 when N is large and thus can become of
the same magnitude as the central potential in the first term. It can thus not be treated
with perturbation theory which worked quite well for the helium atom.

But when the number N − 1 of electrons each electron interacts with, is large, we are
allowed to consider the effect of all these interactions as a central potential U(r) acting
on this particular electron plus a remaining, non-central term. More precisely, we can
then write

∑

i<j

e2

4πǫ0

1

|ri − rj |
=

N∑

i=1

U(ri) +H ′ (9.13)

where H ′ now is non-central, involving all the electron coordinates. Including relativistic
effects, there is also a spin-orbit coupling which also can be treated within perturbation
theory. We will come back to that later in the chapter.

The full Hamiltonian (9.11) can then be written as H = H0 +H ′ where

H0 =
N∑

i=1

[
− h̄2

2m
∇

2
i −

Ze2

4πǫ0ri
+ U(ri)

]
(9.14)

now decribes non-interacting electrons moving in a common, effective potential

V (r) = − Ze2

4πǫ0r
+ U(r) (9.15)

And the eigenvalue problem
[
− h̄2

2m
∇

2 + V (r)

]
ψa(r) = εaψa(r) (9.16)

we assume we can solve as accurately as we want, at least numerically.

For short distances r → 0 the electron sees the full charge of the nucleus and the effective
potential must approach the classical value V (r) → −Ze2/4πǫ0r. In the opposite limit
r → ∞ the electron is outside the remaining N − 1 electrons. It thus sees the nucleus
with charge Ze reduced by the amount (N − 1)e and the effective potential should
approach V (r) → −(Z−N +1)e2/4πǫ0r. A neutral atom has N = Z and the screening
is correspondingly strong.

Since the effective potential (9.15) is not a pure Coulomb potential, the energy levels
will also depend on the angular momentum quantum number ℓ as discussed in Chapter
5. The principal quantum number n is for a non-Coulombic potential defined by the
number of nodes is the radial part of the wavefunction as for the hydrogen atom. Each
value of n determines an electronic shell. The K-shell electrons have n = 1, in the
L-shell they have n = 2 and so on. These two quantum numbers are here and in the
following denoted by Latin lower case letters like a and b. These one-particle solutions
are often called orbitals or subshells. Electrons in higher shells will be seen to have
overlapping energy values.

We don’t know yet how to find the general shape of the effective potential. But it will
turn out that it can be calculated and found to give a resulting electron interaction
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H ′ which is so small that it can be used in perturbation theory based on the solutions
of the much simpler problem defined by H0. And these non-interacting many-electron
solutions are easily constructed in terms of the single-particle orbitals in the same way
as for helium taking into account the Pauli principle. We get the idea when we write
the helium ground state Ψ(1, 2) as the product between the orbital part 1s2 and the
spin singlet (9.7) as

Ψ(1, 2) = ψ1s(r1)ψ1s(r2)Φ(0, 0) =

√
1

2
ψ1s(r1)ψ1s(r2)

(
α1β2 − α2β1

)

=

√
1

2

∣∣∣∣∣
ψ1s(r1)α1 ψ1s(r1)β1

ψ1s(r2)α2 ψ1s(r2)β2

∣∣∣∣∣

The resulting form is called a Slater determinant. Under interchange of the two electron
labels, the antisymmetry of the full wavefunction follows directly from the antisymmetry
of the determinant under the interchange of two rows.

For more than two electrons we then know how to proceed. Denoting the full orbitals
by ψA(i) ≡ ψa(ri)χi where χ is one of the eigenspinors α or β, the full wavefunction
satisfying the Pauli principle will be given by the Slater determinant

Ψ(1, 2, . . . , N) =

√
1

N !

∣∣∣∣∣∣∣∣∣∣

ψA(1) ψB(1) . . . ψF (1)
ψA(2) ψB(2) . . . ψF (2)

...
...

. . .
...

ψA(N) ψB(N) . . . ψF (N)

∣∣∣∣∣∣∣∣∣∣

(9.17)

where the labels A,B, . . . , F depend on which orbitals the electrons occupy. For in-
stance, with two electrons and total electron spin component MS = +1, we get the
state

√
1

2

∣∣∣∣∣
ψa(r1)α1 ψb(r1)α1

ψa(r2)α2 ψb(r2)α2

∣∣∣∣∣ =

√
1

2

[
ψa(r1)ψb(r2) − ψa(r2)ψb(r1)

]
α1α2

which is a general spin triplet with an antisymmetric orbital part (9.9) as already used
for helium. Had we constructed the corresponding state with MS = 0, we would have
found a superposition of a spin singlet and a spin triplet. This just illustrates that the
Slater determinant does not in general give states which are angular momentum or spin
eigenstates.

For this approximation to be useful, we must determine the effective potential (9.15).
There are several methods available and one is outlined in the last section of this chapter.
Given this, we solve the one-particle Schrödinger equation (9.16) which determines the
energy εa of an electron in the orbital with wavefunction ψa(r) with quantum numbers
a = (nℓ). The dependence of the eigenvalues on the orbital angular momentum quantum
number ℓ has already been explained due to the non-Coulombic form of the potential.
Since the effective potential depends on the atomic number Z, these eigenvalues will also
have a dependence on this parameter. A representative diagram of the lowest orbital
energies are shown in Fig.9.3. Orbitals in the same shell with lower values of ℓ will be
closer to the nucleus and thus less screened. Their energies are therefore reduced or
pulled down in the diagram compared with those with larger values of this quantum
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Figure 9.3: Schematic orbital energy levels for a general atom. On the right the eigenvalues are
projected on the same axis in order to see the ordering of orbitals.

number. One finds that the energies of the 3d and 4s orbitals are very close, and their
individual ordering depends on the atomic atom Z. The same applies to the orbitals 4d
and 5s.

Using now the Pauli principle, we can build up the periodic table in this central field
approximation. We have already considered helium with two electrons has the electronic
configuration [He] = 1s2. Lithium has one more electron which is seen from the figure
to enter the L-shell in the 2s orbital, i.e. [Li] = 1s22s. Beryllium has four electrons and
therefore [Be] = 1s22s2. In a more compact notation we can write this as [Be] = [He]2s2

which will especially be useful for heavier atoms.

These two subshells are now filled with electrons. When we next come to boron with
five electrons, this new electron must enter the 2p orbital and thus has the configuration
[B] = [He]2s22p. This orbital can occupate six electrons and when it is filled, we have
the neon atom [Ne] = [He]2s22p6. Like helium this is a forms noble gas since the neon
atom is very stable due to the relative high energy needed to change it, corresponding
to the energy gap between the 2p and 3s orbitals in the figure.

Filling now the next two orbitals 3s and 3p, we construct the elements starting with
sodium [Na] = [Ne]3s and ending with argon [Ar] = [Ne]3s23p6. It forms a noble gas for
the same reason as neon does. An extra electron will now go into the 4s orbital because
for Z around twenty the 3d orbital is slightly higher in energy. We then have potassium
[K] = [Ar]4s. After calcium [Ca] = [Ar]4s2, the 3d orbital starts to fill up. Since these



200 Chapter 9. Many-electron atoms

have a smaller principal quantum number, they will be on the inside of the 4s-electrons.
The 3d-orbital can accomodate at most ten electrons. Filling it up, we generate ten
elements. All will have two outer electrons in the 4s orbital which make them metallic
and with similar chemical properties. For instance, among these transition elements

there is iron [Fe] = [Ar]3d64s2 and finally zinc [Zn] = [Ar]3d104s2.

The next electrons goes into the 4p orbital. When it is filled with six electrons, we have
the noble gas krypton [Kr] = [Ar]3d104s24p6. With even more electrons, we first fill the
5s-orbital which now is slightly below the 4d orbital in energy, but is outside it in space.
When next the inner 4d orbital is filled up, we create a new transition series of elements
with similar chemical properties. It ends with cadmium [Cd] = [Kr]4d105s2 which has
atomic number Z = 48. Knowing the energies of the higher orbitals, we can continue in
exactly the same way and build up the remaining part of periodic table.

9.4 Terms and the Hund rules

In the central-field approximation where we neglect the remaining Coumomb repulsion
H ′ defined by (9.13), there will be many electronic configurations constructed from
different Slater determinants that have the same energy. They are in general states
without spesific values of the angular momentum quantum numbers L and S as already
explained. The effect of the perturbation H ′ must therefore be evaluated using degen-
erate perturbation theory discussed in Chapter 6. As pointed out there, it is then very
convenient to combine the degenerate eigenstates of H0 into a new basis in which the
matrix elements of H ′ are diagonal. And since we have already shown that H ′ commutes
with the operators S and L, we must out of the degenerate electronic configurations form
linear combinations which are eigenstates of these operators, i.e. with definite values
for the total electronic spin S and angular momentum L.

A filled orbital will always have S = 0 and L = 0. This follows directly from the Pauli
principle which says that for every electron spin pointing up, there will be one pointing
down in the same orbital. The same applies to the orbital angular momentum. So we
only have to consider non-filled orbitals.

It is simplest to consider first two electrons in different shells, but let’s say both in
p-orbitals and thus with ℓ = 1. The electrons are then said to be inequivalent. Together
they can then form states with total angular momentum L = 0, 1, 2. Since they also can
be grouped into combinations with total spin S = 0 and S = 1, we obtain three angular
momentum singlet eigenstates 1S, 1P and 1D and the three corresponding triplet states
3S, 3P and 3D. In this basis the Coulomb perturbation H ′ will be diagonal. As for
helium, the electrons in the triplet states are wider apart from each other and will thus
have lower energy than the singlet states. Moreover, the D-states are also wider apart
from each other than the electrons in the P -states and will therefore be lower in energy.
For the very same reason the P -states will be lower in energy than the S-states. This
is schematically illustrated in Fig.9.4.

The three lowest terms in lowest energy state 3D1,2,3 are still degenerate. This degener-
acy is lifted when we include the spin-orbit couplings

∑
k fkLk · Sk where the functions

fk involve only radial coordinates. With help of the Wigner-Eckart theorem discussed
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Figure 9.4: The degenerate electron configuration npn′p is split apart by the Coulomb repulsion into
terms with definite values of spin and angular momentum.

in the previous chapter, this interaction is equivalent to a perturbation proportional to
the operator L ·S. As for the fine-structure in the hydrogen atom, it splits the level into
terms with definite values for the total angular momentum J = L + S. A more detailed
look at this perturbation shows that it is the term with the lowest value of J which has
the lowest energy. The ground state is therefore the term 3D1 and the higher terms will
be excited states of the atom.

When the two electrons are in the same shell, they are said to be equivalent. They then
have the the same value for the principal quantum number n and many of the above
terms will no longer be allowed because of the Pauli principle. This applies for instance
to the two p electrons in the carbon atom [C] = [He]2s22p2. The two electrons in the
2s-orbital form a closed subshell and can therefore be ignored here. When one now
constructs the possible angular momentum eigenstates, one finds that only the terms
1S0,

1D2 and 3P0,1,2 will appear where the degenerate spin triplet is lowest in energy as
expected for the same reasons as before. It will be split apart by the spin-orbit coupling
so that the J = 0 term gets the lowest energy as shown in Fig.9.5. The ground state
of the neutral carbon atom is therefore 3P0 and thus has no total spin. This will be
somewhat different when the atom binds to other atoms. The situation then becomes a
bit more intricate - and interesting for organic chemists.

The net effect of all these interactions to determine the physical ground state of an atom
with several equivalent electrons, can be summed up in the three Hund rules. They are
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Figure 9.5: Term digram for the neutral carbon atom with two equivalent p electrons.

not absolutely true, but emperically established and supported by detailed calculations.
They give the following step-by-step procedure to follow in this construction:

1. The term with largest possible value of the total spin S has the lowest energy.

2. For a given value of S, the term with largest value of the orbital angular momentum
L has the lowest energy.

3. The term with the smallest value J = |L− S| of the total angular momentum is
then the ground state when the orbital is less than half-filled, if not it is the term
with the maximum value J = L+ S.

The first rule follows from the already mentioned fact that the terms with largest value
of S, has the most orbital antisymmetry and therefore contains electrons wthat prefer
to stay away from each other and thus reduce the effect of the Coulomb repulsion. The
same applies to terms with the largest value of L as in the second rule, while the third
rule is direct consequence of the spin-orbit coupling L · S. For given values of L and
S, it takes on a extremal value for J = |L ± S|. More detailed calculations show that
it has a prefactor that is positive when the subshell is less than half-filled and negative
otherwise. Thus J = |L− S| for the term with lowest energy in the first case.

There is a simple way to systematically determine the quantum numbers of the ground
state involving equivalent electrons. We consider ’boxes’ for each value of the z-component
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mℓ of the orbital angular momentum. There will then be totally 2ℓ+1 such boxes avail-
able for electrons in the orbital. To satisfy the Pauli principle, two electrons in the same
box must then have opposite spin directions with z-component ms = ±1/2.

This is illustrated in Fig.9.6 for a p-orbital, i.e. with three boxes. We want to place
two electrons in the orbital as for the carbon atom. One possibility suggested by the
first Hund rule, is shown to the left. If it was allowed, it would have a total orbital
quantum number ML = 1 + 1 = 2 and thus give a D term as occurs in Fig.9.4 with
inequivalent electrons. But now the Pauli principle forbids it since two electrons cannot
have all quantum numbers the same. Remember that equivalent electrons have the

ms ms

: :

: :

a) b)

ml 0−1 +1 ml 0−1 +1

Figure 9.6: Two equivalent electrons in a p-orbital. While the assignment in a) is forbidden because
of the Pauli principle, the assignment in b) is allowed and suggested by the two first Hund rules.

same principal quantum number. The term with maximum number of MS and thus
of S will be formed by having a spin-up electron in two different boxes. It thus has
MS = 1/2 + 1/2 = 1 and therefore S = 1. Next we use the second rule and place the
two electrons as shown to the right in the figure, i.e. with ML = 0 + 1 = 1 and thus
L = 1. The first and second Hund rules thus gives a 3P0,1,2 term as already said above.
Since a p-orbital with only two electrons, is less than half-filled, the spin-orbit coupling
now makes the J = 0 term 3P0 lowest in energy and thus the ground state. Needless to
say, this agrees with what concluded above.

A perhaps more interesting example is the iron atom with the electron configuration
[Fe] = [Ar]3d64s2. The 4s-orbital is full and will thus not contribute any spin or angular
momentum. There are in addition six electrons in the 3d-orbital. It can take at most
ten electrons. To maximize the total spin S, we must have five electrons with spin up
and therefore one with spin down. One box is therefore doubly occupied while the four
other boxes contain single electrons with spins in the same directions. For the total
z-component of the spin we then have MS = 2 and therefore also S = 2. Using now the
second Hund rule, the doubly occupied box must have a maximum value of the quantum
number |mℓ|, let’s say the two electrons are in the box with mℓ = +2 as in Fig.9.7. The
orbital momenta thus add up to give ML = (−2) + (−1) + 0 + (+1) + 2(+2) = 2
and therefore L = 2. Since the orbital is more than half-filled, the total spin angular
momentum is thus J = 2 + 2 = 4 according to the third Hund rule. In this way we find
the ground state of iron to be the term 5D4. It thus has a relatively large spin.
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ms:

l :m +10−1−2 +2

Figure 9.7: Six equivalent electrons in a 3d-orbital of the iron atom forming the ground state.

9.5 Atomic magnetic moments

When the atom is placed in an external magnetic field B, the electrons will couple to it
as described in Chapter 7. The total interaction is therefore

HB = − e

2me

N∑

k=1

(Lk + 2Sk) ·B (9.18)

where me is the electron mass. If the field is along the z-axis, the perturbation becomes

HB = − e

2me

N∑

k=1

(Lkz + 2Skz) = − e

2me
(Jz + Sz) (9.19)

Only electrons in non-filled subshells will contribute. When the terms are split apart by
the spin-orbit coupling, the final states are eigenstates of the total angular momentum J.
In the basis formed by these states, we calculate the matrix elements of this perturbation
as we did for the hydrogen atom in the previous chapter. We then showed that the results
could be described by the introduction of an effective, magnetic moment operator (8.44)

µeff =
eg

2me
J (9.20)

where g is the Landé g-factor (8.48). In our case it will involve the total spin and angular
momenta of the atom, i.e.

g = 1 +
J(J + 1) + S(S + 1) − L(L+ 1)

2J(J + 1)
(9.21)

It determines the absolute magnitude of the magnetic moment.

The effective coupling of the atom to the field is now Heff = −µeff ·B and has a value
proportional with the z-component Jz. It is conventional to define the magnitude µJ of
the magnetic moment by the value it takes when J is along the magnetic field, i.e. by
the maximal value Jz = Jh̄. It thus becomes

µJ =
eh̄

2me
gJ = µBgJ (9.22)

where µB is the Bohr magneton.

With the help of Hund’s rules, we can now determine the quantum numbers L, S, J
of the ground state of the atom. Thus we also can calculate directly the value of its
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magnetic moment. For instance, for iron considered in the previous section, we found
S = 2, L = 2 and J = 4. Inserted into the Lané formula (9.21), we get g = 3/2 and
thus the magnetic moment µJ = µB · (3/2) · 4 = 6µB. This is a rather large value and
shows that iron has strong magnetic properties.

An other example is vanadium with the electronic configuration [V] = [Ar]3d34s2. Plac-
ing the three d-electrons in boxes as dictated by Hund’s rules, the spin angular moementa

ms:

l :m +10−1−2 +2

Figure 9.8: Three equivalent d-electrons defining the ground state of the vanadium atom.

for the ground state can be read off Fig.9.8. We see that the total spin S = 3/2 and
L = 3. Since the orbital is less than half-filled, we will have J = 3 − 3/2 = 3/2. Thus
we have the ground state 4F3/2. The Landé factor becomes g = 2/5 giving a magnetic
moment µJ = (3/5)µB. It should thus be less magnetic than iron.

But the connection between these atomic magnetic moments and the magnetism ob-
served in metals is not so direct. First, the atomic orbitals used here will be distorted
by neighbouring atoms. Secondly, the metallic binding involves electrons which can
move around almost freely between different atoms and will also contribute to the mag-
netic properties of the metal. A complete understanding of all these different magnetic
effects are left for a more advanced course in solid state physics.

9.6 Hartree approximations

So far we have not said anything about how one systematically can determine the central
potential U(r) defined in (9.13) and caused by the screening of other electrons. At a
position r′ they will create a charge density

ρ(r′) = −e
∑

b6=a

|ψb(r′)|2

where the quantum numbers a describe the orbital of the electron being acted upon.
Here we should also include the electron spin and therefore use the full quantum numbers
introduced earlier, A = (aσ) with σ = ↑ for spin up and σ = ↓ for spin down. But to
simplify matters a little, we drop that and thus consider electrons to be spinless fermions.

The potential energy of the electron at position r in the orbital ψa created by this charge
distribution is now

U(r) = −e
∫
d3r′

ρ(r′)

4πǫ0|r − r′| =
e2

4πǫ0

∑

b6=a

∫
d3r′

ψ∗
b (r

′)ψb(r
′)

|r− r′| (9.23)
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This should now be used to form the effective potential (9.15). However, we now see
at least two problems with this approach. First, the potential is not in general radially
symmetric, but depends on all three components of the position vector r. This we can fix
by taking some angular average. Secondly, we see that the potential depends on which
orbital ψa we consider. We will find the effective potential being in general different
for different orbitals. Again we can get out of that problem by taking some average in
constructing a general potential, but this dependence is really inherent to the method.

Anyhow, the resulting Schrödinger equation (9.16) now takes the form

(
− h̄2

2m
∇

2 − Ze2

4πǫ0r

)
ψa(r) +

e2

4πǫ0

∑

b6=a

∫
d3r′

ψ∗
b (r

′)ψb(r
′)

|r− r′| ψa(r) = εaψa(r) (9.24)

and would give the orbital energies εa. But the equation is really a set of coupled,
non-linear differential equations, first proposed by Hartree. They can only be solved
numerically and then iteratively. Here it would mean that we would intially assume
some orbital functions ψb(r

′) similar to ordinary hydrogenic eigenfunctions. These would
then be used to calculate the potential (9.23). With this achieved, one then solves the
Hartree equation (9.24) and finds the new orbitals ψa. These should then decribe the
interacting electrons better. Then one goes back to (9.23) with the improved orbitals
and repeats the process. Hopefully the iteration converges so that one ends up with
stable results for the orbitals and their energies.

But in this method there has so far been no worry about the electrons being fermions
satisfying the Pauli principle. This was first done by V. Fock with the help of Slater
determinants for the electron configuration. The net result is not so much different from
the Hartree equation (9.24), but involves an extra term,

(
− h̄2

2m
∇

2 − Ze2

4πǫ0r

)
ψa(r) +

e2

4πǫ0

∑

b6=a

∫
d3r′

ψ∗
b (r

′)ψb(r
′)

|r − r′| ψa(r) (9.25)

− e2

4πǫ0

∑

b6=a

∫
d3r′

ψ∗
b (r

′)ψa(r
′)

|r − r′| ψb(r) = εaψa(r)

This is called the exchange term and is always important in many-fermion systems.
Since the electron at the position r in the orbital ψa is identical with the electron at
r′ in the orbital ψb setting up the potential, they must enter the full interaction in
an antisymmetric way. With this extra term we can now also drop the requirement
b 6= a in the summations because now the contribution to the sums from the terms with
b = a will cancel between them. Thus with the Hartree-Fock approximation we have
the possibility to obtain an effective potential valid for all the orbitals and thus more
physical. But notice that the exchange term can no longer be understood as a classical
potential. It is a pure quantum contribution.
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Non-relativistic quantum fields

Quantum mechanics of systems with many interacting particles becomes quite cumber-
some when their number becomes large as for heavy atoms, but also in nuclear physics
and condensed matter physics. With fermions we have to construct physical states out of
very large Slater determinants or corresponding symmetric states for bosons. However,
since the particles are identical, it is possible to simplify the mathematics enormously
by considering them as quanta of an underlying field. The particles will then be like
quanta of the harmonic oscillator or photons of the electromagnetic field.

We will only consider non-relativistic motion of these particles. The corresponding field
theory is then also non-relativistic and often called Schrödinger field theory. At the end
we will return to the problem of a particles on a periodic lattice which we also discussed
at the end of Chapter 3. Including now interactions, we can then make contact with
modern problems in solid state physics.

10.1 Identical particles

Let us consider N identical particles with mass m moving in a common potential V (x).
The possible energies of a single particle will then be given by the eigenvalues of the
ordinary one-particle Hamiltonian

ĥ =
p̂2

2m
+ U(x̂) (10.1)

Using the one-particle identity operator 1̂ =
∫
d3x|x〉〈x|, it can be written is the equiv-

alent way ĥ =
∫
d3x|x〉h(x)〈x| where

h(x) = − h̄2

2m
∇

2 + U(x) (10.2)

is the ordinary differential Hamiltonian operator. The corresponding eigenvalue equation
ĥ|k〉 = εk|k〉 has orthogonal eigenstates with the standard normalization 〈k |k′〉 = δkk′.
They also form a complete set, i.e.

∞∑

k=0

|k〉〈k | = 1̂ (10.3)

207
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In coordinate space the equivalent eigenvalue problem is given by h(x)uk(x) = εkuk(x)
and corresponds to the orbital equation (9.16) in the previous chapter. But here we
find it convenient to denote the corresponding eigenfunction by uk(x) = 〈x |k〉 when
the particle is in the orbital or mode with quantum number k. From the above they are
thus orthonormalized as

∫
d3xu∗k(x)uk′(x) = δkk′ (10.4)

The completeness relation (10.3) similarly becomes

∞∑

k=0

uk(x)u∗k(x
′) = δ(x − x′) (10.5)

Needless to say, this is all valid for any dimension d of the space we consider, but we
have chosen to work in ordinary case with d = 3.

The total energy E of all the independent particles will now follow from the full Hamil-
tonian

ĤN =
N∑

i=1

ĥi = ĥ1 + ĥ2 + · · · + ĥN (10.6)

It is obviously invariant under all permutation of the particle labels, i.e. under the
full permutation group. The energy of the system will now be the eigenvalues of the
corresponding multiparticle Schrödinger equation ĤN |ΨN〉 = E|ΨN〉.
A possible eigenstate is obviously the direct product |k1〉|k2〉 · · · |kN〉 where the first
particle is in the state |k1〉, the second particle in state |k2〉 and so on. But it is not an
eigenstate of the permutation group. For particles in three dimensions the physical states
must be completely symmetric for bosons and completely antisymmetric for fermions.
Let us denote these as |k1k2 · · · kN〉. By combining all the N ! permutations of the N
particle labels with the appropriate signs, we can write these as

|k1k2 · · · kN〉 =

√
1

N !

∑

P

ǫP |kP (1)〉|kP (2)〉 · · · |kP (N)〉 (10.7)

with ǫ = +1 for bosons and ǫ = −1 for fermions and where the sum goes over all particle
permuations P (i). With only N = 2 particles these states are the usual symmetric and
antisymmetric combinations we have met before. For three particles we can write the
state as

|k1k2k3〉 =

√
1

6

(
|k1〉|k2〉|k3〉 + ǫ|k1〉|k3〉|k2〉 + |k2〉|k3〉|k1〉

+ ǫ|k2〉|k1〉|k3〉 + |k3〉|k1〉|k2〉 + ǫ|k3〉|k2〉|k1〉
)

(10.8)

For fermions the three quantum numbers k1, k2 and k3 must all be different. This just
reflects the Pauli principle saying that there can be no more than one particle in each
quantum state. In this case the symmetrized state is also seen to be normalized to one.
With bosons there can be an arbitrary number of particles in each state and two or
all three of the quantum numbers k1, k2 and k3 can be equal. The state |k1k2k3〉 is
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then no longer normalized to one. This is most easily seen when k1 = k2 = k3 ≡ k
since |kkk〉 =

√
6|k〉|k〉|k〉. This enhancement of the bosonic norm can be said to be a

reflection of the phenomenon of Bose condensation.

A convenient basis in this N -particle Hilbert space is the coordinate basis |x1x2 · · ·xN〉
formed by the similarly symmetrized products of |x1〉|x2〉 · · · |xN〉. They satisfy the
completeness relation

1

N !

∫
dx1

∫
dx2 · · ·

∫
dxN |x1x2 · · ·xN〉〈xN · · ·x2x1| = 1 (10.9)

where we must divide by N ! because of the permutation invariance of the integrand. For
the system in a general state |Ψ〉 we can then define the corresponding wavefunction
by the matrix element 〈x1x2 · · ·xN |Ψ〉. In particular, for the state (10.7) we have the
wavefunction ΨN(x1,x2, . . . ,xN) = 〈x1x2 · · ·xN |k1k2 · · · kN〉. Writing this out in detail,
one finds that the result can be written on the compact form

ΨN(x1,x2, · · · ,xN) =

∣∣∣∣∣∣∣∣

uk1(x1) uk2(x1) · · · ukN
(x1)

...
...

uk1(xN) uk2(xN) · · · ukN
(xN)

∣∣∣∣∣∣∣∣
ǫ

(10.10)

using the basic matrix element ukn
(xi) = 〈xi |kn〉. The object on the right-hand side is a

determinant in the case of fermions with ǫ = −1. Comparing with (9.17) in the previous
chapter, we see that it is just the Slater determinant. For bosons it is called a permanent

and is evaluated exactly as a determinant except that all the different products of its
elements are combined with only positive signs.

When we bring the nth particle to the first position in the vector |k1k2 · · · kN〉 in (10.7)we
must exchange it with n− 1 other particles. We then pick up a phase depending on the
state being bosonic or fermionic. More specifically, we have

|k1k2 · · · kn · · · kN〉 = ǫn−1|knk1k2 · · ·kn · · · kN〉 (10.11)

where the underlined particle is absent. For fermions this corresponds to exchanging
rows in the Slater determinant.

The energy of such a physical state is then E = εk1 + εk2 + · · ·+ εkN
. When the number

of particles is very large, it is obviously very cumbersome to write out the exact state of
each particle. This is in particular true for the physically most important multiparticle
states which are those with lowest energies. In the bosonic case most of the particles
will be in the one-particle ground state u0 and thus have the same quantum numbers.
From our knowledge of the harmonic oscillator and the quantized electromagnetic field
we know what to do. We introduce also here the occupation numbers nk which give the
number of particles in the one-particle mode uk. The multiparticle state

|ΨN〉 = |n0, n1, n2, · · · , nk, · · ·〉 (10.12)

has then n0 particles in the lowest one-particle state |k0〉, n1 particles in the first excited
state |k1〉 and so on. For bosons these occupation numbers can take any integer value
nk = (0, 1, 2, . . .) while for fermions we can only have nk = (0, 1). A couple of such
states are shown in the figure. The total number of particles in the state (10.12) is then

N =
∞∑

k=0

nk = n0 + n1 + n2 + · · · (10.13)
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Figure 10.1: Occupation number representations of the bosonic state |4, 3, 2, 1, 2, 0, 1〉 in a) and the
fermionic state |1, 1, 0, 1, 1, 0, 1〉 in b).

while the total energy becomes

E =
∞∑

k=0

nkεk = n0ε0 + ε1n1 + ε2n2 + · · · (10.14)

Now we only have to give a few occupation numbers in order to give a complete quantum
specification of the multiparticle system when it is in a low-energy state. What remains
to do, is the construction of these states with the correct symmetry properties.

10.2 Fock space

The symmetrized states |k1k2 · · · kN〉 are vectors in the Hilbert space HN of N identical
particles. It is orthognal to the corresponding Hilbert spaces of systems with different
number of particles. Each of these suffices as long as the number of particles remain
fixed. But in many important and interesting physical systems in Nature this is not so as
we know from emission of absorbtion of photons. In order to study these more general
phenomena we must join all the separate Hilbert spaces for fixed particle numbers
into a more general Hilbert space accommodating systems with an arbitrary number of
particles. It is called a Fock space and is formally given by the infinite, direct product

F = H0 ⊗H1 ⊗H2 ⊗ · · · ⊗ HN ⊗ · · · (10.15)

We will then be doing quantum field theory instead of manybody quantum mechanics.
Even for systems with a small and fixed number of particles we will find the field-
theoretic formulation very elegant and powerful.

Formally we can join the Hilbert spaces with fixed particle numbers by introducing new
operators that connect them. For this purpose we define a operator â†k which creates
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the N + 1 particle state |kk1k2 · · · kN〉 from the N particle state |k1k2 · · · kN〉,

â†k|k1k2 · · · kN〉 = |kk1k2 · · · kN〉 (10.16)

The new particle with quantum number k is seen to be added in the position of the first
particle. Acting on the empty state |0〉 it creates the one-particle state

â†k|0〉 = |k〉 (10.17)

For each one-particle state there is a corresponding creation operator. The application
of two creation operators gives similarly

â†kâ
†
k′|k1k2 · · ·kN〉 = |kk′k1 · · · kN〉

But from the definition of the symmetrized states we have |kk′k1 · · · kN〉 = ǫ|k′kk1 · · ·kN〉.
Thus it follows that â†kâ

†
k′ = ǫâ†k′ â

†
k. This result can be written in the more standard

form as
[
â†k, â

†
k′

]

ǫ
= 0 (10.18)

where the generalized commutator is defined as [Â, B̂]ǫ = ÂB̂ − ǫB̂Â. For bosons with
ǫ = +1 this is just the ordinary commutator, while for fermions it is the anticommutator.
Usually it is written with curly brackets, i.e.

{Â, B̂} = ÂB̂ + B̂Â (10.19)

It was first encountered in the mathematics of the Pauli spin matrices as seen from
(5.80).

By repeated applications of creation operators on the empty state, we can create any
many-particle state which should then automatically have the right symmetry prop-
erties. Taking the adjoint of (10.18), we get the corresponding general commutator
between annihilation operators,

[âk, âk′]ǫ = 0 (10.20)

which also reflects directly the symmetry properties of the states.

The adjoint operator âk correspondingly destroys a particle in the N particle state
|k1k2 · · · kN〉 and takes it into a state with N − 1 particles. When it acts on the empty
state, there is nothing to annihilate and it gives zero,

âk|0〉 = 0 (10.21)

Since 〈k | = 〈0 |âk, we must then also have

âk|k′〉 = δkk′|0〉 (10.22)

since 〈k |k′〉 = δkk′. Usually the empty state has lowest energy without real particles.
This is the quantum the vacuum state.

Writing the above result as âk|k′〉 = 〈k |k′〉|0〉, we can now find the action of the
annihilation operator on a general N -particle state. It will act on each particle in the
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state, removing one after the other. But the particle to be annihilated must be brought
to the front position in the state vector. Using then the basic symmetry requirement
(10.11), we get

âk|k1k2 · · ·kN〉 =
N∑

n=1

ǫn−1〈k|kn〉|k1k2 · · · kn · · · kN〉 (10.23)

The annihilation operator is thus seen to act like a derivation operator, picking up a
sign ǫ as it works its way through the many-particle state.

In order to find the commutator between creation and annihilation operators, we first
apply an annihilation operator to (10.16) and then use (10.23) to obtain

âkâ
†
k′|k1k2 · · · kN〉 = âk|k′k1k2 · · · kN〉

= 〈k|k′〉|k1k2 · · · kN〉 +
N∑

n=1

ǫn〈k|kn〉|k′k1 · · ·kn · · · kN〉

When the product of operators is applied in the opposite order, it similarly follows that

â†k′ âk|k1k2 · · · kN〉 = â†k′
N∑

n=1

ǫn−1〈k|kn〉|k1 · · · kn · · · kN〉

=
N∑

n=1

ǫn−1〈k|kn〉|k′k1 · · · kn · · ·kN〉

Multiplying this last expression by ǫ and comparing with the result above, we find
immediately the general commutator result

[
âk, â

†
k′

]

ǫ
= 〈k|k′〉 = δkk′ (10.24)

For bosons we see that it agrees with the corresponding commutators for the quanta
in the harmonic oscillator and for photons. In fact, this canonical commutator lies at
the heart of all quantum field theories, non-relativistic as here but also in relativistic
theories like quantum electrodynamics. We thus conclude that bosons are quantized with
commutators and fermions with anticommutators. This is the crucial, mathematical
difference between the two families of particles.

The normalized multiparticle state (10.12) is now constructed as

|ΨN〉 =
(â†0)

n0

√
n0!

(â†1)
n1

√
n1!

(â†2)
n2

√
n2!

· · · (â
†
k)
nk

√
nk!

· · · |0〉 (10.25)

as for photons. For fermions the occupations numbers would just take the two values
nk = (0, 1). They are eigenvalues of the number operators n̂k = â†kâk. Indeed, with help
of our basic commutators, we verify that

[n̂k, â
†
k′] = â†kδkk′ , [n̂k, âk′] = −âkδkk′ (10.26)

both for bosons and fermions, using the identity [ÂB̂, Ĉ] = Â[B̂, Ĉ]ǫ + ǫ[Â, Ĉ]ǫB̂. Thus
we have number operators with the wanted effect

n̂k|n0, n1, n2, · · · , nk, · · ·〉 = nk|n0, n1, n2, · · · , nk, · · ·〉 (10.27)
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The total number operator N̂ with the eigenvalue (10.13) is therefore

N̂ =
∞∑

k=0

n̂k =
∞∑

k=0

â†kâk (10.28)

It can be used both for closed systems where the total particle number is fixed and for
open systems where this number changes. The latter situation is found in statistical
physics for systems in thermal and chemical equlibrium with the environment.

Similarly, the Hamiltonian for the full system of particles is

Ĥ =
∞∑

k=0

εkâ
†
kâk (10.29)

since it must reproduce the energy eigenvalue (10.14). It gives the time evolution of
the system in the Fock space described by the state vector |Ψ, t〉 as dictated by the
Schrödinger equation

ih̄
∂

∂t
|Ψ, t〉 = Ĥ|Ψ, t〉 (10.30)

valid for all quantum systems.

10.3 Quantum field operators

The one-particle states |k〉 have formed the basis from which we can struct all multi-
particle states in the full Fock space. Creation and annihilation operators for other
choices of basis states can now be constructed by standard transformation theory. A
special and very important rôle is played by the operators which create and annihilate
particles in position eigenstates |x〉. These are easily found from the completeness
relation (10.3) which gives

|x〉 =
∞∑

k=0

u∗k(x) |k〉 (10.31)

Since we now can write |k〉 = â†k|0〉, we therefore have |x〉 = ψ̂ †(x)|0〉 where

ψ̂ †(x) =
∞∑

k=0

u∗k(x) â†k (10.32)

is a new operator. It could just as well have been called â†x since it is seen to create a
particle in the position x. The corresponding Hermitean conjugate operator

ψ̂(x) =
∞∑

k=0

âkuk(x) (10.33)

similarly annihilates a particle in the same position. Needless to say, this is the quantized

field operator for the non-relativistic particles we consider and it acts in Fock space. All
the particles are identical since they are described by the same field.



214 Chapter 10. Non-relativistic quantum fields

We can now express the previous operator equations in terms if these new field operators.
For instance, the canonical commutator (10.24) is replaced by

[ψ̂(x), ψ̂†(x′)]ǫ =
∑

kk′
uk(x)u∗k′(x

′)[âk, â
†
k′]ǫ =

∑

kk′
uk(x)u∗k′(x

′)δkk′

=
∞∑

k=0

uk(x)u∗k(x
′)

From the completeness relation (10.5) we thus have

[ψ̂(x), ψ̂†(x′)]ǫ = δ(x − x′) (10.34)

By a similar calculation we find the commutator between two field operators be zero,
i.e. [ψ̂(x), ψ̂(x′)]ǫ = 0. It is a direct reflection of the zero commutator between any two
annihilation operators âk and âk′.

Similarly, we can also express the previous operators N̂ and Ĥ in terms of these new field
operators. Since they both involve the products of creation and annihilation operators,
consider the integral

∫
d3x ψ̂†(x)ψ̂(x) =

∑

kk′
â†kâk′

∫
d3xu∗k(x)uk′(x)

Using here the former normalization integral (10.4), the right-hand side just simplifies
to (10.28) for the number operator. Thus we have

N̂ =
∫
d3x ψ̂†(x)ψ̂(x) (10.35)

It is therefore appropriate to call the local operator ρ̂(x) = ψ̂†(x)ψ̂(x) for the number
density operator.

In exactly the same way we can write the Hamiltonian (10.29) as

Ĥ =
∫
d3x ψ̂†(x)

[
− 1

2m
∇2 + U(x)

]
ψ̂(x) (10.36)

since the action of the differential operator h(x) within the brackets picks out the eigen-
value εk′ when it acts on the mode-function uk′(x) in ψ̂(x). Here it is therefore also
appropriate to define a Hamiltonian density operator Ĥ(x) = ψ̂†(x)h(x)ψ̂(x). It deter-
mines the energy density of particles at point x.

The N -particle state ψ̂†(x1)ψ̂
†(x2) · · · ψ̂†(xN)|0〉 now decribes particles with definite

positions in coordinate space and with the right symmetry properties. For different
values of N these form a basis in Fock space similar to the coordinate basis |x1x2 · · ·xN 〉
we initially used. It is therefore natural to define the many-particle wavefunction for
the state (10.25) as the matrix element

ΨN(x1,x2, . . . ,xN) = 〈0 |ψ̂(x1)ψ̂(x2) . . . ψ̂(xN )|ΨN〉 (10.37)

When N = 1 this is almost obvious and can easily be shown for N = 2, reproducing the
correct symmetric combination of one-particle wavefunctions for bosons and antisym-
metric for fermions. In the general case we reproduce the Slater determinant-permanent
in (10.10).
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From the Schrödinger equation (10.30) we can now find the time dependence of these
field operators in the usual way. Since the Hamiltonian is constant in time, we have

ψ̂(x, t) = eiĤt/h̄ψ̂(x)e−iĤt/h̄ (10.38)

Using Lie’s formula (2.53) and the commutators in (10.26), this can be evaluated to give

ψ̂(x, t) =
∞∑

k=0

uk(x)
[
âk + [Ĥ, âk](it/h̄) +

1

2!
[Ĥ, [Ĥ, âk]](it/h̄)

2 + . . .
]

=
∞∑

k=0

âkuk(x)e−iεkt/h̄ (10.39)

Notice that from the definition (10.38), the canonical commutator (10.34) is also valid
for the time-dependent field ψ̂(x, t) as long as the two operators in the commutator are
taken at the same time. It is then said to be an equal time commutator.

Calculating in the same way the time evolution of the Hamiltonian (10.36), we get on
the left side the expected result Ĥ(t) = Ĥ since the operator Ĥ commutes with itself.
This should be expected because we consider a isolated system where the total energy is
constant. However, on the right-hand side we obtain Ĥ =

∫
d3x ψ̂†(x, t)h(x)ψ̂(x, t) which

can be useful in some instances. Here h(x) is the differential one-particle Hamiltonian
operator (10.2) used previously.

With this time dependence we are really in the Heisenberg picture as explained in
Chapter 2. An expression equivalent to the time-dependence in (10.39) can therefore be
derived directly from the Heisenberg equation (2.48). For the field operator it gives

ih̄
∂

∂t
ψ̂(x, t) = [ψ̂(x, t), Ĥ] (10.40)

With the above expression for the Hamiltonian, it then follows that

ih̄
∂

∂t
ψ̂(x, t) =

∫
d3x′[ψ̂(x, t), ψ̂†(x′, t)h(x′)ψ̂(x′, t)]

=
∫
d3x′δ(x − x′)h(x′)ψ̂(x′, t)]

where the non-zero contribution comes from the canonical commutator (10.34). We thus
obtain the equation of motion

ih̄
∂

∂t
ψ̂(x, t) =

[
− h̄2

2m
∇

2 + U(x)

]
ψ̂(x, t) (10.41)

for the field operator. It is seen to satisfy the same Schrödinger equation as the cor-
responding one-particle wavefunction ψ(x, t) does. In some way the wavefunction have
become an operator. For this reason non-relativistic quantum field theory is sometimes
called second quantization.

When the motion of a single particle is first quantized, we find the allowed values of
energy, momentum etc of each particle. But with many identical particles present in the
same system, there is a new layer of quantum conditions being enforced which makes the
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complex-valued wavefuncton into an operator in Fock space. The many-particle system
is therefore said to be second quantized when described in this field-theoretic language.

But one should never confuse wavefunctions with quantum fields. The former can be
functions of several coordinate vectors describing the positions of many particles while
a field is always a function of just one coordinate vector. A more modern name for
the formalism is Schrödinger quantum field theory since the field operator satisfies the
Schrödinger equation (10.41).

For non-interacting particles the Hamiltonian (10.1) simplifies to just ĥ0 = p̂2/2m. The
one-particle solutions are then just the free states |k〉 characterized by the wavenumber
k and with eigenvalues εk = (h̄k)2/2m. In the coordinate basis these are the plane
waves

uk(x) = 〈x |k〉 =

√
1

V
eik·x (10.42)

when the system is in a finite box V . These were also used for the quantization of the
electromagnetic field in Chapter 7 where the normalization integral (7.64) was derived
correponding to (10.4) in this chapter.

Everything from the previous section can obviously be taken directly over to this spe-
cial case. The canonical commutator is [âk, â

†
k′ ]ǫ = δkk′ while the field Hamiltonian

Ĥ0 =
∑

k εkâ
†
kâk has the same form as the corresponding one-particle Hamiltonian

ĥ0 =
∑

k εk|k〉〈k |. For the field operator (10.39) we now get

ψ̂(x, t) =

√
1

V

∑

k

âk e
i(k·x−εkt/h̄) (10.43)

and only valid in this case of free particles. This corresponds to the first part of the
electromagnetic field operator (7.86). The second part is missing here since ψ̂(x, t) is a
quantum field operator for non-relativstic particles. Photons are always relativistic.

We can make use of this plane-wave expansion also in the more general case with inter-
actions. This situation would arise if we could not solve the more general one-body
mode equation h(x)uk(x) = εkuk(x). But these exact modes are really not absolutely
necessary for the derivation of the field operator ψ̂(x). In the definition (10.31) we only
made use of the fact that they form a complete set. Thus we can always choose to use
instead the plane-wave uk, thus giving

ψ̂(x) =

√
1

V

∑

k

âk e
ik·x (10.44)

for the field operator (10.33). However, the Hamiltonian which now has the more general
form (10.36), becomes

Ĥ =
∑

k

[
εkâ

†
kâk +

∑

q

â†k+qâkUq

]
(10.45)

with the expansion (10.44). Here Uq is the Fourier transform

Uq =
1

V

∫
d3xe−iq·x U(x)
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We can understand the last term in the Hamiltonian as a scattering process where an
incoming particle with momentum h̄k hits the potential U(x), receives a momentum
h̄q from it and continues as a new particle with momentum h̄k′ = h̄k + h̄q, leaving
the potential. This is depicted in the figure which is called a Feynman diagram for

Uq

k’ = k + q

k

Figure 10.2: Feynman diagram for particle interacting with an external potential.

this scattering process. As for photons, we see that in this second-quantized picture the
particle at an interaction point is first annihilated and then instantanously recreated as a
new particle at the same point. With first quantization in ordinary quantum mechanics
we would say that it is the same particle that moves throughout the scattering process.

For free particles we could calculate exactly the general time dependence (10.43) of the
field operator. This we can no longer do for an interacting field. That should be clear
from the derivation in (10.39) where the commutator [Ĥ, âk] now will an infinite number
of terms, making it impossible to find a closed expression for the sum in the Lie formula.

This reflects the fact that we no longer have the exact solution of the interacting one-
particle problem. We must therefore include the effect of the external potential U(x) in
some other way. However, when it is sufficiently weak, we can use standard perturbation
theory. It then becomes clear that the perturbative vacuum state |0〉 satisfying âk|0〉 = 0
no longer is the physical vaccum state |Ω〉, i.e. the one with lowest energy. This new
ground state will in general be a Fock state of the generic form (10.25) or a superposition
of such states. In general we will then obviously also have âk|Ω〉 6= 0. For the same
reason, in the plane-wave expansion (10.44) of the field operator, the interacting N -
particle wavefunction will now be 〈Ω |ψ̂(x1)ψ̂(x2) . . . ψ̂(xN)|ΨN〉 instead of (10.37). In
the generic case it is a complicated, infinite sum or integral over products of plane waves.

10.4 Inter-particle interactions

So far we have only considered independent particles, i.e. without mutual interactions.
Even if they interact with an external potential, they can considered to be free. And
for this reason such a system is not very realistic and therefore just a starting point,
particularly suitable for building up the necessary formalism.
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It really important physics in real systems found around us is due to the forces between
the particles. In most cases these are two-body interactions described by a potential
V (x−x′) depending only on the separation between the particles. In quantum mechanics
the corresponding two-body operator is then

v̂ =
1

2

∫
d3x

∫
d3x′ |xx′ 〉V (x − x′) 〈x′ x| (10.46)

when one particle is at position x and the other at x′. The factor 1/2 in front is
a normalization constant which follows from the completeness relation (10.9) for the
special case V = 1.

Let us now construct the corresponding interaction operator in the field-theoretic for-
mulation. Writing |xx′〉 = ψ̂†(x)ψ̂†(x′)|0〉 in (10.46), we must have

V̂ =
1

2

∫
d3x

∫
d3x′ψ̂†(x) ψ̂†(x′)V (x − x′)ψ̂(x′) ψ̂(x) (10.47)

when we follow the construction we previously used for one-body operator like the
Hamiltonian. A Feynman diagram describing this interaction is shown in Fig.10.3.
On the left side at position x a particle is annihilated by the operator ψ̂(x) and then

V(x − x’)
x’x

Figure 10.3: Feynman diagram for a two-particle interaction via a potential.

recreated by ψ̂†(x). This happens simultaneously also at the other vertex x′ of the inter-
action. Expressing the field operators in terms of annihilation and creation operators
as given in (10.33), we obtain

V̂ =
1

2

∑

klmn

Vkl;mnâ
†
kâ

†
l âmân (10.48)

where the interaction matrix element

Vkl;mn =
∫
d3x

∫
d3x′ u∗k(x)u∗l (x

′)V (x − x′)um(x′)un(x) (10.49)

The ordering of the operators is important. As a check of this formula, consider the
special case that the potential is constant V = 1. Then we have Vkl;mn = δknδlm so that

V̂ =
1

2

∑

kl

â†kâ
†
l âlâk
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Here the total number operator N̂ appears. With the annihilation operator it has the
commutator [N̂ , âk] = −âk and therefore

V̂ =
1

2

∑

k

â†kN̂ âk =
1

2

∑

k

â†k(âkN̂ − âk) =
1

2
(N̂2 − N̂)

This is correct since there are N(N − 1)/2 interacting pairs in the system.

Including this mutual interaction, the previous Hamiltonian (10.36) now becomes

Ĥ =
∫
d3x ψ̂†(x)

[
− 1

2m
∇2 + U(x)

]
ψ̂(x)

+
1

2

∫
d3x

∫
d3x′ψ̂†(x) ψ̂†(x′)V (x − x′)ψ̂(x′) ψ̂(x) (10.50)

In terms of creation and annihilation operators it takes the more compact form

Ĥ =
∞∑

k=0

â†kâkεk +
1

2

∑

klmn

Vkl;mnâ
†
kâ

†
l âmân (10.51)

and has the general form used in condensed matter and low-energy nuclear physics.
Indeed, using the variational principle one can with this Hamiltonian derive more sys-
tematically the approximate Hartree-Fock equations for the mode functions written
down at the end of the previous chapter. Notice again that the physical vacuum state
|Ω〉 of this interacting system is in general different from the perturbative vacuum |0〉
defined by âk|0〉 = 0.

As already mentioned, one has a many-particle wavefunction ΨN(x1,x2, . . . ,xN ) also
with interacting particles using the definition (10.37) with the perturbative vacuum |0〉
replaced by the physical vacuum or ground state |Ω〉 . It is then a reassuring problem
to show that it satisfies the ordinary, N -particle Schrödinger wave equation with the
interparticle potential V (x − x′). For instance, for N = 2 and discarding the external
potential U , one finds

[
− h̄2

2m
(∇2

1 + ∇
2
2) + V (x1 − x2)

]
Ψ2(x1,x2) = EΨ2(x1,x2) (10.52)

when the energy of the physical vacuum is set to zero, i.e. Ĥ|Ω〉 = 0.

Many important systems consist of particles interacting over a finite range. As was
explained in Chapter 6 in connection with scattering of such particles, the detailed shape
of the potential is then not important at sufficiently low energies. Only the scattering
length a has an observable consequence. When this is the case, we can replace the
above physical potential with a mathematical potential which is simpler to calculate
with. And the smartest choice is to use the Dirac δ-function, i.e.

V (x − x′) → gδ(x − x′) (10.53)

Here g is an effective coupling constant which can be expressed in terms of the scattering
length a. In fact, from (??) and its definition, we find g = 2πah̄2/µ where µ = m/2 is
the reduced mass of the two interacting particles.
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With this replacement of the potential in the Hamiltonian (10.50), it becomes a volume
integral over the Hamiltonian density

Ĥ = ψ̂ †
(
− h̄2

2m
∇

2 + U
)
ψ̂ +

1

2
gψ̂ †ψ̂ †ψ̂ψ̂ (10.54)

Calculating now the equation of motion of ψ̂(x) from (10.40) as before, the result is
obviously no longer the ordinary Schrödinger equation, but instead

ih̄
∂ψ̂

∂t
=

[
− h̄2

2m
∇

2 + U + gψ̂†ψ̂

]
ψ̂ (10.55)

Since it involves an extra, cubic term, it is sometimes called the non-linear Schrödinger

equation. But what we have here is a dynamical equation for the field while the
Schrödinger equation (10.30) for the state vector is always linear.

10.5 Fermions

In order to distinguish these from bosons, it is here convenient to change notation to
âk → b̂k for the fermion operators. The mode expansion (10.33) is then

ψ̂(x) =
∞∑

k=0

b̂kuk(x) (10.56)

These annihilation operators now satisfy {b̂k, b̂k′} = 0. In particular we have b̂2k = 0
when acting on any state. This is again a direct reflection of the Pauli principle saying
that there can be no more than one particle in each state.

Squaring the number operator n̂k = b̂†k b̂k one obtains n̂2
k = b̂†k b̂k b̂

†
k b̂k. Interchanging

the two middle operators give n̂2
k = b̂†k(1 − b̂†k b̂k)b̂k using the canonical anticommutator

{b̂k, b̂†k′} = δkk′. The last term is now seen to be zero. The number operator thus satisfies
n̂k(n̂k − 1) = 0 and thus has only the eigenvalues nk = (0, 1) again as Pauli said.

So far we have just considered spinless fermions. But the spin-statistics theorem says
that fermions must have half-integer spins. Electrons have spin S = 1/2 and must
therefore be equipped with an extra quantum number σ = ↑ or σ = ↓ depending on the
spin direction. In a plane-wave basis we will then need the both quantum number k
and σ so that b̂k = b̂kσ. The canonical anticommutator is then

{b̂kσ, b̂†k′σ′} = δkk′δσσ′ (10.57)

while {b̂kσ, b̂k′σ′} = 0. The field operator (10.56) becomes a Pauli spinor

ψ̂(x) =

(
ψ̂↑(x)

ψ̂↓(x)

)
(10.58)

where the components have the expansion

ψ̂σ(x) =

√
1

V

∑

k

b̂kσ e
ik·x (10.59)
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in analogy with (10.44) for bosons. From (10.34) we then have the canonical anticom-
mutator in coordinate space

{ψ̂σ(x, t), ψ̂†
σ′(x

′, t)} = δ(x − x′)δσσ′ (10.60)

for the non-relativistic spinor field.

The one-particle spin operator S = (h̄/2)σ = (h̄/2)
∫
d3x|x〉σ〈x | will now become the

second quantized operator

Ŝ =
1

2
h̄
∫
d3xψ̂†(x)σψ̂(x) (10.61)

using the same recipe as previously. For instance, the z-component is given by the field
operator

Ŝz =
1

2
h̄
∫
d3xψ̂†

σ(x)(σz)σσ′ ψ̂σ′(x) =
1

2
h̄
∑

k

(
b̂†k↑b̂k↑ − b̂†k↓b̂k↓

)
(10.62)

which follows after the volume integration. The first term is seen to give +h̄/2 for each
fermion with spin up while the last gives −h̄/2 from those with spin down. Similarly,
the spin raising operator is Ŝ+ = h̄

∑
k b̂

†
k↑b̂k↓. When it acts on a one-particle state

|k ↓〉 = b̂†k↓|0〉 with spin down, it thus changes its spin to up, i.e. Ŝ+|k ↓〉 = |k ↑〉.
In an external potential the Hamiltonian of the fermions is still given by (10.36). The
analogous Hamiltonian in an external electromagnetic field we can similarly be read off
directly from the Pauli Hamiltonian (7.30) in Chapter 7.

For a realistic system we must also include inter-particle interactions as already described
by (10.48) when we ignore the external potential. In a plane-wave basis we then evaluate
the matrix element (10.49) and get the Hamiltonian

Ĥ =
∑

kσ

εkb̂
†
kσ b̂kσ +

1

2

∑

kqk′

Vqb̂
†
k+qb̂

†
k′−qb̂k′ b̂k (10.63)

where εk = k2/2m again are the one-particle energies. In the last term we have ignored
the spin labels since these will be determined by the spin dependence of the potential.
As illustrated by the Feynman digram in Fig.10.4, the interaction describes two particles
with momenta k and k′ which interact via the Fourier component Vq of the potensial.
After the interaction they have momenta k + q and k′ − q respectively.

Superconductivity was explained by Bardeen, Cooper and Schrieffer by a simpler version
of this general Hamiltonian. It was based on the conjecture by Cooper that under
special conditions in a metal two electrons will feel a weak, attractive force when they
have opposite momenta and spin. This is called a Cooper pair. The corresponding
interaction potential can be taken to be constant, i.e. Vq → −V . It can then be written
as

ĤBCS =
∑

k

εk[b̂
†
k b̂k + b̂†−k b̂−k] − V

∑

kk′

b̂†k′ b̂
†
−k′ b̂kb̂−k (10.64)

when each wavenumber k is associated with spin up ↑ and −k implies spin down ↓. On
this form one can find the physical ground state |Ω〉 which has lower energy than the
perturbative vacuum |0〉. It can be considered to be a condensate of Cooper pairs that
conducts electricity with zero resistance.
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qV

k’k

k + q k’ − q

Figure 10.4: Feynman diagram for a two-particle interaction in momentum space.

10.6 Particles and holes

In the ground state of free fermions all the lowest one-particles states are occupied up
to maximum momentum h̄kF which is called the Fermi momentum. The corresponding
energy εF = h̄2k2

F/2m is the Fermi energy. It is a spherical surface in momentum space.
For a real metal with electrons moving in an ionic lattice, it will have a more complicated
geometrical shape.

The ground state |F 〉 can now be constructed as

|F 〉 =
∏

|k|≤kF

b̂†k|0〉 (10.65)

when we here and in the following ignore the spin labels. It has an energy

E = 〈F |Ĥ|F 〉 =
∑

|k|≤kF

εk (10.66)

This is just one example of similar sums of the general form

S =
∑

k

f(εk) (10.67)

which occurs very often in statistical and solid state physics. Defining the density of

states by

D(ε) =
1

V

∑

k

δ(ε− εk) (10.68)

where V is the volume of the system, the sum follows then from

S = V
∫
dεD(ε)f(ε) (10.69)

This integral is usually simpler to do than the original when one knows the density of
states.
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For free fermions εk = h̄2k2/2m it is easily found to be

D(ε) =
∫

d3k

(2π)3
δ(ε− h̄2k2/2m) =

m

π2

∫ ∞

0
dkk2δ((h̄k −

√
2mε)(h̄k +

√
2mε))

=
m

2π2h̄3

√
2mε (10.70)

where the contribution to the integral comes from the zero h̄k =
√

2mε in the delta-
function. In two dimensions we would similarly have obtained D(ε) = m/2πh̄2.

The ground state energy (10.66) now follows as

E = V
∫ εF

0
dε εD(ε) =

mV

5π2h̄3

√
2mε

5/2
F (10.71)

Similarly, the density ρ = N/V of fermions is

ρ =
∫ εF

0
dεD(ε) =

m

3π2h̄3

√
2mε

3/2
F (10.72)

Combining these two results, we find for the average fermion energy E/N = (3/5)εF .
In two dimensions it is εF/2 instead.

When a particle is excited from below the Fermi surface to a vacant state above it, a
hole is created among the states where the fermion used to be. The creation operator
for such a hole with momentum k can therefore be defined to be

d̂†k = b̂−k, |k| ≤ kF (10.73)

We can then divide the set of fermion creation and annihilation operators into two, hole
operators d̂k and d̂†k with |k| ≤ kF and particle operators b̂k and b̂†k with |k| > kF . From
the fundamental anticommutator (10.57) we then obviously have

{b̂k, b̂†k′} = δk,k′ |k|, |k′| > kF

{d̂k, d̂
†
k′} = δk,k′ |k|, |k′| ≤ kF

and {b̂k, d̂†k′} = 0 since their momenta will always be different.

In the mode sum for the field operator (10.59) we can now make a split into two physically
distinct pieces,

ψ̂(x) =

√
1

V




∑

|k|>kF

b̂k e
ik·x +

∑

|k|≤kF

d̂†k e
−ik·x



 (10.74)

where the first corresponds to particles and the last to holes. In this latter one we have
made the replacement k → −k in the summation.

For the free Hamiltonian Ĥ =
∑

k εkb̂
†
k b̂k we we can make a similar separation between

the two contributions,

Ĥ =
∑

|k|>kF

εk b̂
†
k b̂k +

∑

|k|≤kF

εk b̂
†
k b̂k

= EF +
∑

|k|>kF

εk b̂
†
k b̂k −

∑

|k|≤kF

εk d̂
†
k d̂k (10.75)
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after using the anti-commutator between the two hole operators. We thus see that the
energies of the hole excitations are negative when measured with respect to the Fermi
energy. In a relativistic theory the existence of antiparticles come about in a similar
way. Indeed, an antiparticle is really the absence of a particle with positive energy. But
one should be careful with this analogy since antiparticles exist both for bosons and
fermions.

10.7 Lattice field theory

So far we have ignored the background potential U(x) in which the electrons are moving.
In solid state physics this is formed by the positively charged ions situated on a regular
lattice. It has translational invariance as already discussed in Chapter 3. As was demon-
strated there, this symmetry has important implications for the energy eigenstates of
the particles. One finds energy bands separated by forbidden gaps.

When the coupling to the ions become strong, the electrons are most likely to be found
near the corresponding lattice sites where the ions are situated. They can move by

x

y

a

a

x

Figure 10.5: Two-dimensional square lattice where each site has four nearest neighbours.

jumping to one of the nearby sites. Usually these are taken to be the nearest neigh-
bouring sites. For the quadratic lattice in two dimensions shown in Fig.10.5 there are
four such sites, each separated from the original site x by the lattice constant a. Their
positions are therefore x′ = x+ a ex,x− a ex,x+ a ey,x− a ey where ei are unit vectors
along the crystal axes. For a cubic lattice in three dimensions there are six such nearest
neighbours.
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A particle on such a three-dimensional lattice has then a one-particle Hamiltonian (3.46)
which we now write as

ĥ = E0

∑

x

|x〉〈x | −A
∑

<x,x′>

|x〉〈x′ | (10.76)

where E0 is the energy of the particle localized at a site. In the last term −A is the
hopping amplitude and the sum goes over all sites x and their nearest neighbours x′.

We can now use the same construction as in the previous sections to find the corre-
sponding second quantized Hamiltonian describing an arbitrary number of free particles
on the lattice. If we let the operator â†x create a particle at site x so that we can write
|x〉 = â†x|0〉, the many-particle Hamiltonian will be

Ĥ = E0

∑

x

â†xâx − A
∑

<x,x′>

â†xâx′ (10.77)

The canonical commutator is now

[âx, â
†
x′ ]ǫ = δxx′ (10.78)

It is the discrete version of (10.34) valid in the continuous case. The operator n̂x = â†xâx

counts the number of particles at lattice site x.

Because of the jumping term in the full Hamiltonian (10.78) the eigenstates will be
superpositions involving all the localized states |x〉. In fact, from (3.44) in Chapter 3
we know that an eigenstate with wavenumber k will be

|k〉 =
∑

x

eik·x|x〉 =
∑

x

eik·xâ†x|0〉 (10.79)

As a check, let us consider

Ĥ|k〉 = E0

∑

xx′

â†xâxâ
†
x′eik·x

′|0〉 −A
∑

<x,x′>

â†xâx′

∑

x′′

â†x′′eik·x
′′ |0〉

In the first term we interchange the operators âx and â†x′ using the commutator (10.78).
This leaves δxx′ since âx|0〉 = 0. Doing the same in the second term with the operators
âx′ and â†x′′ , leaves δx′x′′. Thus

Ĥ|k〉 = E0

∑

x

â†xe
ik·x|0〉 − A

∑

<x,x′>

â†xe
ik·x′|0〉

= E0|k〉 − A
3∑

i=1

(eiak·ei + e−iak·ei)
∑

x

â†xe
ik·x|0〉

and we have a result on the form Ĥ|k〉 = Ek|k〉. This coherent excitation has therefore
the energy

Ek = E0 − 2A
3∑

i=1

cos kia (10.80)

in agreement with the result (3.48) and holds both for bosons and fermions on the
lattice.
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These eigenstates (10.79) can be written as |k〉 = â†k|0〉 where the corresponding creation
operator is seen to be

â†k =

√
1

N

∑

x

â†xe
ik·x (10.81)

where N =
∑

x 1 now is the number of sites in the lattice. It is needed if we want to have
the standard commutator [âk, â

†
k′]ǫ = δkk′ come out this way, as is easily verified. With

these new creation and annihilation the lattice Hamiltonian (10.78) is diagonalized in
the sense that the can be written as

Ĥ =
∑

k

Ekâ
†
kâk (10.82)

The eigenvalues are therefore simply given in terms of the fermionic occupation numbers
as E =

∑
k Eknk where the corresponding eigenstates are constructed as in the generic

case (10.25).

Electrons are charged and repel each other with Coulomb potential Vxx′ that increases
when their separation decreases. This inter-particle interaction can now be described
by the discretized version of (10.47). Combining it with the free Hamiltonian above, we
have

Ĥ = E0

∑

x

â†xâx −A
∑

<x,x′>

â†x âx′ +
1

2

∑

xx′

â†x â
†
x′ Vxx′ âx′ âx (10.83)

The first term is like a chemical potential, the second term represents the kinetic energy
while the second term is the potential or interaction energy.

A simpler version of this Hamiltonian which still incorporates the essential physics, is
to include only the Coulomb repulsion for particles being on the same lattice sites.
Without spin, the particles must then be bosons. Denoting this repulsive energy by U
and writing â†x â

†
xâx âx = n̂xn̂x + n̂x valid for bosons, we then get

Ĥ = −A
∑

<x,x′>

â†x âx′ + U
∑

x

n̂xn̂x (10.84)

We have here ignored a diagonal term proportional to E0 +U corresponding to the first
term in (10.83). It acts only as a reference point for measuring energies. Even with
all these simplifications only approximate results can be derived from this Hamiltonian
when it is used to model quantum lattice particles in condensed matter physics.

With electrons we can only have at most two particles on the same site and only when
they have opposite spins. Introducing again this quantum number, the above Hamilto-
nian must then be written more precisely as

Ĥ = −A
∑

<x,x′>

(b̂†x↑b̂x′↑ + b̂†x↓b̂x′↓) + U
∑

x

n̂x↑n̂x↓ (10.85)

This particular version is called the Hubbard model and has been intensively studied as
a model for strongly correlated electrons in metals exhibiting high-Tc superconductivity.
However, its detailed properties are to a large extent still unknown in spite of its very
simple form.


