Semiconductor Devices THIRD EDITION

S. M. Sze and M. K. Lee

Chapter 10 Photodetectors and Solar Cells

Copyright © 2012 by John Wiley & Sons, Inc. All rights reserved.

Figure 10.1a. Schematic diagram of a photoconductor that consists of a slab of semiconductor and two contacts at the ends.

Figure 10.1b © John Wiley & Sons, Inc. All rights reserved.

Layout: interdigit with a small gap

Figure 10.3 © John Wiley & Sons, Inc. All rights reserved.

Ideal and typical commercial one

(a)

Figure 10.4a © John Wiley & Sons, Inc. All rights reserved.

Figure 10.4c © John Wiley & Sons, Inc. All rights reserved.

*沒有P+之吸收

Figure 10.5. Metal-semiconductor photodiode.

Figure 10.6 © John Wiley & Sons, Inc. All rights reserved.

Figure 10.7.

A typical silicon **avalanche photodiode:** (*a*) device structure and (b)space charge (c) electric field (*d*) quantum efficiency.

Avalanche: carrier 放大, 要避免leakage, breakdown

Reprinted with permission from Applied Physics Letters, 40 (38), F. Capasso et. al, "Enchantment of Electron Impact Ionisation in a Superlattice: A New Avalanch Photodiode with a Large Ionisation Rate Ratio", Copyright 1982 American Institute of Physics.

A staircase superlattice APD No high E, low noise

Figure 10.10 © John Wiley & Sons, Inc. All rights reserved.

A quantum-well infrared photodetector (QWIP)

(a) Light normal to 45° face, transparent to substrate(b) Grating on the top

Figure 10.12. Solar spectral irradiance²⁵ at air mass 0 and air mass 1.5 and the cutoff wavelength of GaAs and Si.

Figure 10.14. (*a*) Energy band diagram of a *p*-*n* junction solar cell under solar irradiation. (*b*) Idealized equivalent circuit of a solar cell.

Figure 10.15 © John Wiley & Sons, Inc. All rights reserved.

Figure 10.15. (*a*) Current voltage characteristics of a solar cell under illumination. (*b*) Inversion of (*a*) about the voltage axis.

Figure 10.16. Multigap cell concepts. (*a*) Spectrum splitting approach. (*b*) Tandem-cell approach.²⁷

Figure 10.17. Current-voltage characteristics and the equivalent circuit of solar cells that have resistances.

Figure 10.18a. Passivated emitter near locally diffused (PERL) cell.²⁴

Figure 10.18b © John Wiley & Sons, Inc. All rights reserved.

Back-surface field

Figure 10.20. Series-interconnected a-SI solar cells deposited on a glass substrate with a rear glass cover bonded using ethylene vinyl acetate.

Micro-crystalline/ amorphous tandom cell

Figure 10.21a

Reprinted from *Solar Energy Materials and Solar Cells*, 78, A.V. Shah et. al, "Material and solar cell research in microcrystalline silicon", pp. 469-491, Copyright 2003, with permission from Elsevier.

Figure 10.21b

Reprinted from Solar Energy Materials and Solar Cells, 78, A.V. Shah et. al, "Material and solar cell research in microcrystalline silicon", pp. 469-491, Copyright 2003, with permission from Elsevier.

Response of micro-crystalline/amorphous tandom cell

Absorption α of CuInSe₂

Figure 10.22a © John Wiley & Sons, Inc. All rights reserved.

Figure 10.22b © John Wiley & Sons, Inc. All rights reserved.

Figure 10.23a © John Wiley & Sons, Inc. All rights reserved.

DSSC structure

© John Wiley & Sons, Inc. All rights reserved.

DSSC band diagram and carrier losses

(a) bilayer, (b) bulk heterojunction

Figure 10.26a

Reprinted from *Physica E: Low-Dimensional Systems and Nanostructures*, 14, A.J. Nozik, "Quantum dot solar cells", pp. 115-120, Copyright 2002, with permission from Elsevier.

Figure 10.27 © John Wiley & Sons, Inc. All rights reserved.

聚光increaseη,Voc 等優點 强度上升1E3