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TABLE 1 |EEE MICROWAVE FREQUENCY BANDS

Designation Frequency range (GHz) Wavelength (cm)
VHF O.I—.0.3 300.00—100.00
UHF 0.3-1.0 100.00-30.00
L band 1.0-2.0 30.00-15.00

S band 2.0-4.0 15.00-7.50

C band 4.0-8.0 7.50-3.75

X band 8.0-13.0 3.75-2.31

Ku band 13.0-18.0 2.31-1.67

K band 18.0-28.0 1.67-1.07

Ka band 28.0-40.0 1.07-0.75
Millimeter 30.0-300.0 1.00-0.10
Submillimeter 300.0-3000.0 0.10-0.01

Table 8.1
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Average atmosphere absorption of millimeter waves.* The upper curve is
at the sea level: the lower curve is at 4 km above the sea level.
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Figure 8.1. Static current-voltage characteristics of a typical tunnel diode.
|, and V,, are the peak current and peak voltage, respectively. I, and V,,
are the valley current and valley voltage, respectively. The upper figures
show the band diagrams of the device at different bias voltages.



Figure 8.1 part 1
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Figure 8.1 part 2
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Figure 8.2. Typical current-voltage characteristics of Ge, GaSb, and GaAs
tunnel diodes at room temperature.
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Figure 8.3. Doping profiles and electric-field distributions at avalanche
breakdown of three single-drift IMPATT diodes: (a) one-sided abrupt p-n
junction; (b) hi-lo structure; and (c) lo-hi-lo structure.
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Figure 8.4. Field distributions and generated-carrier densities of an
IMPATT diode during an ac cycle at four intervals of time (a-d); (e) the ac
voltage, and (f) the injected and external current.’
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The current versus electric-field characteristic of a two-valley
semiconductor. E; is the threshold field and E,, is the valley field.
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Figure 8.7.

Numerical simulation of
the time-dependant
behavior of a cathode-
nucleated TED for the
transit-time domain
mode.""
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Figure 8.8.
Band diagram of a
resonant-tunneling diode.
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Figure 8.9. (a) Schematic illustration of AlAs/GaAs/AlAs double-barrier
structure with a 2.5 nm barrier and a 7 nm well. (b) Transmission
coefficient versus electron energy for the structure.



Figure 8.10.

(a) Calculated energy of
electrons at which the
transmission coefficient
shows the resonant peak in
an AlAs/GaAs/AlAs structure
as a function of barrier
thickness for various well
thicknesses. (b) Full width at
half maximum of the
transmission coefficient
versus barrier thickness for
the first and second resonant
peak.3
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Figure 8.11. A mesa-type resonant tunneling diode.



Figure 8.12.
Measured current-
voltage characteristics'®

of the diode in Fig. 8-15.
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Figure 8.15. Cross section and band diagram of a real-space-transfer
transistor in a GalnAs/AlInAs material system.



Figure 8.16.
Experimental real-space-
transfer transistor
characteristics'® at

T =300 K. Drain current
|5 and collector current |-
versus drain voltage V at
a fixed collector voltage
V=39 V.
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(a) A Si/SiGe RSTT OR-NAND gate with three inputs. The channel length
between different inputs is 1 um, and the device width is 50 ym. (b) Truth
table for OR-NAND logic operation.20



