Semiconductor Devices THIRD EDITION

S. M. Sze and M. K. Lee

Chapter 8 Microwave Diodes, Quantum-Effect and Hot-Electron Devices

Copyright © 2012 by John Wiley & Sons, Inc. All rights reserved.

Designation	Frequency range (GHz)	Wavelength (cm)
VHF	0.1-0.3	300.00-100.00
UHF	0.3-1.0	100.00-30.00
L band	1.0-2.0	30.00-15.00
S band	2.0-4.0	15.00-7.50
C band	4.0-8.0	7.50-3.75
X band	8.0-13.0	3.75-2.31
Ku band	13.0–18.0	2.31-1.67
K band	18.0-28.0	1.67 - 1.07
Ka band	28.0-40.0	1.07-0.75
Millimeter	30.0-300.0	1.00-0.10
Submillimeter	300.0-3000.0	0.10-0.01

TABLE 1 IEEE MICROWAVE FREQUENCY BANDS

Table 8.1 © John Wiley & Sons, Inc. All rights reserved.

Absorption min. are at 35, 94, 140, and 220 GHz

Average atmosphere absorption of millimeter waves.⁴ The upper curve is at the sea level; the lower curve is at 4 km above the sea level.

Figure 8.1. Static current-voltage characteristics of a typical tunnel diode. I_P and V_P are the peak current and peak voltage, respectively. I_V and V_V are the valley current and valley voltage, respectively. The upper figures show the band diagrams of the device at different bias voltages.

Figure 8.1 part 1 © John Wiley & Sons, Inc. All rights reserved.

Figure 8.1 part 2 © John Wiley & Sons, Inc. All rights reserved.

tunnel diodes at room temperature.

Figure 8.3. Doping profiles and electric-field distributions at avalanche breakdown of three single-drift IMPATT diodes: (*a*) one-sided abrupt *p-n* junction; (*b*) hi-lo structure; and (*c*) lo-hi-lo structure.

Figure 8.4. Field distributions and generated-carrier densities of an IMPATT diode during an ac cycle at four intervals of time (*a-d*); (*e*) the ac voltage, and (*f*) the injected and external current.⁷

Figure 8.5 © John Wiley & Sons, Inc. All rights reserved.

The current versus electric-field characteristic of a two-valley semiconductor. E_{τ} is the threshold field and E_{v} is the valley field.

Figure 8.6.

Two cathode contacts for transferred-electron devices (TEDs) (*a*) Ohmic contact and (*b*) two-zone Schottky barrier contact.

Similar to IMPATT

Figure 8.7. Numerical simulation of

the time-dependant behavior of a cathodenucleated TED for the transit-time domain mode.¹¹

Figure 8.9. (*a*) Schematic illustration of AlAs/GaAs/AlAs double-barrier structure with a **2.5 nm barrier and a 7 nm well**. (*b*) Transmission coefficient versus electron energy for the structure.

Figure 8.10.

(*a*) Calculated energy of electrons at which the transmission coefficient shows the resonant peak in an AlAs/GaAs/AlAs structure as a function of barrier thickness for various well thicknesses. (*b*) Full width at half maximum of the transmission coefficient versus barrier thickness for the first and second resonant peak.¹³

Well thickness Lw \downarrow => En

Barrier thickness LB $\uparrow => \Delta En \downarrow$

Figure 8.11. A mesa-type resonant tunneling diode.

Figure 8.13.

Band diagrams of a unipolar resonant tunneling (RT) transistor¹⁴ a (a) $V_{BE} = 0$, (b) $V_{BE} = 2E_1/q$ (maximum RT current), (c) $V_{BE} > 2E_1/q$ (RT quenched), (d) base-emitter current-voltage characteristics measured at 77 K, and (e) an exclusive NOR circuit.

Figure 8.14.

(*a*) A heterostructure with alternate GaAs and AlGaAs layers. (*b*) Electrons, heated by an applied electric field, transfer into the wide-gap layers. (*c*) If the mobility in layer 2 is lower, the transfer results in a negative differential conductivity.

Figure 8.15. Cross section and band diagram of a real-space-transfer transistor in a GaInAs/AlInAs material system.

Ic ↑, I_D 流過wide Eg, µ↓, I_D↓

(*a*) A Si/SiGe RSTT OR-NAND gate with three inputs. The channel length between different inputs is 1 μ m, and the device width is 50 μ m. (*b*) Truth table for OR-NAND logic operation.²⁰