Semiconductor Devices THIRD EDITION

S. M. Sze and M. K. Lee

Chapter 6 Advanced MOSFET and Related Devices

Copyright © 2012 by John Wiley & Sons, Inc. All rights reserved.

Figure 6.1.

Threshold voltage **roll-off** characteristics in a 0.15 µm complementary metaloxide-semiconductor (CMOS) field-effect transistor technology.⁷

Charge conservation model, (a) $V_D > 0$, (b) $V_D = 0$

Calculated surface potential along the channel for *n*-channel MOSFETs with different channel lengths.⁹ The source-channel boundary is at y = 0. A **low (0.05 V, dotted lines) and a high (1.5 V, sold lines)** V_{DS} are applied. Oxide thickness *d* and substrate doping N_A are 10 nm and 10¹⁶ cm⁻³, respectively. The substrate bias is 0 V.

Band diagram from source to drain, (a) long L, (b) short L, dash line: V_D =0, solid line: V_D > 0

Figure 6.4.

Subthreshold characteristics of

(a) a long-channel and

(b) a short-channel MOSFET.

DIBL: Drain-Induced Barrier Lowering

Figure 6.5 © John Wiley & Sons, Inc. All rights reserved.

Punch-through, (a) above threshold, (b) below threshold

Figure 6.6. Subthreshold characteristics of an *n*-channel MOSFET with V_{DS} = 0.1, 1, and 4 V.

	MOSFET device and	Multiplying factor
Determinant	circuit parameters	$(\kappa > 1)$
Scaling assumptions	Device dimensions (d, L, W, r_j)	$1/\kappa$
	Doping concentration (N_A, N_D)	ĸ
	Voltage (V)	$1/\kappa$
Derived scaling behavior of device parameters	Electric field (&)	1
	Carrier velocity (v)	1
	Depletion-layer width (W)	$1/\kappa$
	Capacitance ($C = \varepsilon A/d$)	$1/\kappa$
	Inversion-layer charge density (Q_n)	1
	Current, drift (I)	$1/\kappa$
	Channel resistance (R)	1
	Circuit delay time ($\tau \sim CV/I$)	$1/\kappa$
	Power dissipation per circuit ($P \sim VI$)	$1/\kappa^2$
	Power-delay product per circuit ($P\tau$)	$1/\kappa^3$
	Circuit density (~ $1/A$)	κ^2
	Power density $(P A)$	1

TABLE 1 Scaling of MOSFET Device and Circuit Parameters

Table 6.1

© John Wiley & Sons, Inc. All rights reserved.

Scaling of MOS counts on d, rj, or Wd/Ws

Figure 6.7 © John Wiley & Sons, Inc. All rights reserved.

> Retrograde channel doping profile Upper P⁻: mobility improvement Middle P: control punch-through, short L effects Bottom P⁻: reduce Cj, body effect

Figure 6.8a © John Wiley & Sons, Inc. All rights reserved.

poly-Si gate depletion effects

Figure 6.8b © John Wiley & Sons, Inc. All rights reserved.

Figure 6.9 © John Wiley & Sons, Inc. All rights reserved.

Different components of parasitic S/D series resistance

© John Wiley & Sons, Inc. All rights reserved.

Figure 6.11 © John Wiley & Sons, Inc. All rights reserved.

Raised S/D to reduce junction depth and series resistance

Figure 6.12. The CMOS inverter.

Figure 6.13. I_p and I_n as a function of V_{out} . The intercepts of I_p and I_n (circled) represent the steady-state operation points of the CMOS inverter.¹¹ The curves are labeled by the input voltages: $0 = V_{in0} < V_{in1} < V_{in2} < V_{in3} < V_{in4} = V_{DD}$.

Figure 6.15 © John Wiley & Sons, Inc. All rights reserved.

Figure 6.15. Cross section of a CMOS inverter fabricated with *p*-well technology.

Figure 6.16 © John Wiley & Sons, Inc. All rights reserved.

Figure 6.16. Equivalent circuit of the *p*-well structure shown in Fig. 15. 如同PNPN結構

Figure 6.17 © John Wiley & Sons, Inc. All rights reserved.

Figure 6.17. Prevention of **latch-up** with a heavily doped substrate.¹⁴

Heavily doped substrate, Rw↓, Q2 不易on

Figure 6.18 © John Wiley & Sons, Inc. All rights reserved.

2D CMOS image sensor

Figure 6.19a © John Wiley & Sons, Inc. All rights reserved.

Passive CMOS pixel with a single in-pixel transistor

Passive pixel sensor CMOS image sensor

Figure 6.20. A typical a-Si:H thin film transistor (TFT) structure.

Figure 6.22. A polysilicon TFT structure.

Poly-Si, >600C, quartz, expensive, laser annealing

For high freq. application, but SOI wafer is expensive

Figure 6.23. Cross section of the silicon-on-insulator (SOI).

3D MOSFET, (a) horizontal (b) vertical structures

Figure 6.26. Basic configuration of a dynamic random access memory (DRAM) cell.¹⁶

Figure 6.27. Configuration of a CMOS SRAM cell. T1 and T2 are load transistors (*p*-channel). T3 and T4 are drive transistors (*n*-channel). T5 and T6 are access transistors (*n*-channel).

Figure 6.28 © John Wiley & Sons, Inc. All rights reserved.

Viley & Sons, Inc. All rights reserved. Floating gate: (a)FAMOS (b) stacked gate Charge-trapping : (c) MNOS (d) SONOS

Illustration of hot electron injection in an n-channel, floating-gate nonvolatile memory.

Figure 6.29b © John Wiley & Sons, Inc. All rights reserved.

Band diagram of programming condition

Figure 6.29c © John Wiley & Sons, Inc. All rights reserved.

Band diagram of erasing condition

Figure 6.31a

© 1984 IEEE. Reprinted, with permission, from IEEE Proceedings, F. Masuoka et. al, "A new flash E2PROM cell using triple polysilicon technology."

Top view of flash memory device

© 1984 IEEE. Reprinted, with permission, from IEEE Proceedings, F. Masuoka et. al, "A new flash E2PROM cell using triple polysilicon technology."

Cross-section along I-I' line

Figure 6.31c

© 1984 IEEE. Reprinted, with permission, from IEEE Proceedings, F. Masuoka et. al, "A new flash E2PROM cell using triple polysilicon technology."

Cross-section along II-II' line

Figure 6.32 © John Wiley & Sons, Inc. All rights reserved.

Single-electron memory cell.

© John Wiley & Sons, Inc. All rights reserved.

MNOS, (a)programming (b)erasing

Figure 6.34 © John Wiley & Sons, Inc. All rights reserved.

Programming and erasing rates for MNOS

Figure 6.35.

(*a*) V-shaped MOS (VMOS), (*b*) U-shaped MOS (UMOS), and (*c*) double-diffused MOS (DMOS) power device structures.¹⁹

Vd很大時, n⁻ depletion, 耐高壓

Figure 6.35 © John Wiley & Sons, Inc. All rights reserved.

Figure 6.35a © John Wiley & Sons, Inc. All rights reserved.

Figure 6.35b © John Wiley & Sons, Inc. All rights reserved.

Figure 6.35c © John Wiley & Sons, Inc. All rights reserved.