Semiconductor

Devices
THIRD EDITION

S. M. Sze and M. K. Lee

Chapter 6
Advanced MOSFET and Related Devices

Copyright © 2012 by John Wiley & Sons, Inc. All rights reserved.



Figure 6.1.

Threshold voltage roll-off
characteristics ina 0.15 ym
complementary metal-
oxide-semiconductor
(CMOS) field-effect
transistor technology.’
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Charge conservation model, (a) V>0, (b) Vg
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i 5 o, T il resneved, Schematic of the charge sharing model.®
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Calculated surface potential along the channel for n-channel MOSFETs
with different channel lengths.® The source-channel boundary is aty = 0. A
low (0.05V, dotted lines) and a high (1.5 V, sold lines) V¢ are applied.
Oxide thickness d and substrate doping N, are 10 nm and 10'® cm-3,
respectively. The substrate bias is 0 V.
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Band diagram from source to drain, (a) long L, (b) short L,
dash line: V=0, solid line: V>0
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Figure 6.4.

Subthreshold characteristics of DIBL: Drain-Induced Barrier Lowering
(a) a long-channel and

(b) a short-channel MOSFET.



e e Theory p_=3v 2V
6 — Exp

Vp (V)
(2)

Figure 6.5
© John Wiley & Sons, Inc. All rights reserved.

Punch-through, (a) above threshold, (b) below threshold



Figure 6.6. Subthreshold characteristics of an n-channel MOSFET with
Vps =0.1,1,and 4 V.



TABLE 1 Scaling of MOSFET Device and Circuit Parameters

MOSFET device and Multiplying factor

Determinant circuit parameters (k>1)

Scaling assumptions Device dimensions (d, L, W, ) 1/x
Doping concentration (N, Np) K
Voltage (V) 1/x

Derived scaling behavior  Electric field (&) 1

of device parameters Carrier velocity (v) 1
Depletion-layer width (W) 1/x
Capacitance (C = €A/d) 1/x
Inversion-layer charge density (Q,) 1
Current, drift (1) 1/x
Channel resistance (R) 1

Derived scaling behavior  Circuit delay time (t~ CV/I) 1/x

of circuit parameters Power dissipation per circuit (P~ VI)  1/x’
Power-delay product per circuit (Pt) 1/
Circuit density (~ 1/4) e
Power density (P/A) 1

Table 6.1
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Scaling of MOS counts on d, rj, or Wd/Ws

GATE

8 SOURCE DRAIN d
g n* | Ffﬂi;mq [ J; {

A 777/ W /5

© 2D SIMULATION /

e EXPERIMENT

102 103 10
y = rid (Wg+ Wp)2 (um?3 - A)



Spacer Maetal

Gate

| 7/
dielectric 27
A L—L
n+
P

Silicide

Figure 6.7
© John Wiley & Sons, Inc. All rights reserved.

Retrograde channel doping profile

Upper P-: mobility improvement

Middle P: control punch-through, short L effects
Bottom P-: reduce Cj, body effect
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poly-Si gate depletion effects
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Different components of parasitic S/D series resistance
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Raised S/D to reduce junction depth and series resistance
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Figure 6.12. The CMOS inverter.
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Figure 6.13. | and | as a function of V.. The intercepts of | and I,
(circled) represent the steady-state operation points of the CMOS
inverter.!” The curves are labeled by the input voltages: 0 =V, <V, <
Vinz < Ving < Vina = Vpp.



Figure 6.14.

Transfer curve of a
CMOS inverter."
Points labeled A, B, C,
and D correspond to
those points labeled in
Fig. 13.
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Figure 6.15. Cross section of a CMOS inverter fabricated with p-well
technology.
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Figure 6.16. 4o e PNPN‘\%"}#

Equivalent circuit of the p-well structure shown in Fig. 15.
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Figure 6.17
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Figure 6.17. :
Prevention of latch-up with HeaV”y doped substrate, Rw ¥

a heavily doped substrate.™ Q2 7 % on
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2D CMOS image sensor
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Passive CMOS pixel with a single in-pixel transistor
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Passive pixel sensor CMOS image sensor
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Figure 6.20. A typical a-Si:H thin film transistor (TFT) structure.



Figure 6.21.

Subthreshold characteristics of
an a-SI:H TFT (L/Z - 10/60
um/um). The field-effect carrier
mobility is 0.23 cm?/ V-s.
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Figure 6.22. A polysilicon TFT structure.

Poly-Si, >600C, quartz, expensive, laser annealing
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Figure 6.23. Cross section of the silicon-on-insulator (SOI).
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Figure 6.24. The kink effect in the output characteristics of an n-channel
15 . - O
SOIMOSFET. Hot hole stored in sub, Vb }+ = | Vt & ©
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3D MOSFET, (a) horizontal (b) vertical structures
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Figure 6.26. Basic configuration of a dynamic random access memory
(DRAM) cell.™®
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Figure 6.27. Configuration of a CMOS SRAM cell. T1 and T2 are load
transistors (p-channel). T3 and T4 are drive transistors (n-channel). T5 and
T6 are access transistors (n-channel).
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lllustration of hot electron injection in an
n-channel, floating-gate nonvolatile memory.
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Band diagram of erasing condition
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© 1984 IEEE. Reprinted, with permission, from IEEE Proceedings, F. Masuoka et. al, "A new flash E2PROM cell using triple polysilicon technology."

Top view of flash memory device
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© 1984 IEEE. Reprinted, with permission, from IEEE Proceedings, F. Masuoka et. al, "A new flash E2PROM cell using triple polysilicon technology."

Cross-section along I-I' line
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Cross-section along II-II' line
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Single-electron memory cell.

Drain
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MNOS, (a)programming (b)erasing
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Programming and erasing rates for MNOS
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