Semiconductor Devices THIRD EDITION

S. M. Sze and M. K. Lee

Chapter 2 Carrier Transport Phenomena

Copyright © 2012 by John Wiley & Sons, Inc. All rights reserved.

1

Figure 2.1. Schematic path of an electron in a semiconductor. (*a*) Random thermal motion. (*b*) Combined motion due to random thermal motion and an applied electric field.

Figure 2.2.

Electron mobility in silicon versus temperature for various donor concentrations. Insert shows the theoretical temperature dependence of electron mobility.³

µn受scattering mech.

 $\begin{bmatrix} Lattice, T^{\uparrow} 得 \mu \downarrow \\ (thermal vibration) \\ Impurity, T^{\uparrow} 得 \mu \uparrow \\ (Coulomb force) \end{bmatrix}$

$$\frac{dt}{\tau} = \frac{dt}{\tau_I} + \frac{dt}{\tau_L}$$

een any scattering even with the definitions of m

Figure 2.4. Conduction process in an *n*-type semiconductor (a) at thermal equilibrium and (b) under a biasing condition.

Ref. Fig 2.5

$$J_{n} = \frac{I_{n}}{A} = \sum_{i=1}^{n} (-q v_{i}) = -qnv_{n} = qn\mu_{n}\varepsilon$$
(11)

$$J = J_n + J_p = (qn\mu_n + qp\mu_p)\varepsilon$$
(13)

$$\sigma = (qn\mu_n + qp\mu_p) \quad (14)$$
Unit: (V/\Omega)s(1/cm³)(cm²/sV) = 1/cm\Omega
= 1/\sigma_p = 1/\sigma_n + p\mu_p) \quad (15) = 1/\sigma_n + p\mu_p) \quad (15) = 1/\sigma_n + p\mu_p) = 1/\sigma_n + p\mu_p = 1/\sigma_n + p\mu_p) = 1/\sigma_n + p\mu_p = 1/\sigma_n + p\mu_n + p\mu_n = 1/\sigma_n + p\mu_n + p\mu_n = 1/\sigma_n + p\mu_n + p\mu_n = 1/\sigma_n + p

Figure 2.5. Current conduction in a uniformly doped semiconductor bar with length *L* and cross-sectional area *A*.

Figure 2.6. Measurement of resistivity using a four-point probe.³

Figure 2.7. Resistivity versus impurity concentration³ for Si and GaAs.

重要工程資料,一般wafer ρ~1,Na~10¹⁶

Figure 2.9. Electron concentration versus distance; *l* is the mean free path. The directions of electron and current flows are indicated by arrows.

$$J_{n} = -qF = qD_{n} \frac{dn}{dx} \quad (27) \quad F: \text{ electron flow} \\ Dn: \text{ diffusivity} \\ = V\text{th*L} \\ D_{n} = \left[\frac{kT}{q}\right] \mu_{n} \quad (30) \quad \text{L=Vth*TC} \\ Finstein relation \quad \mu = q\tau/m \\ J_{n} = q\mu_{n}n\varepsilon + qD_{n}\frac{dn}{dx} \quad (31) \quad \text{Current density} \\ \text{ diffusion} \quad J_{p} = q\mu_{p}p\varepsilon - qD_{p}\frac{dp}{dx} \quad (32)$$

$$Jcond. = J_n + J_p \quad (33)$$

Figure 2.10. Direct generation and recombination of electron-hole pairs: (*a*) at thermal equilibrium and (*b*) under illumination.

§Direct Recombination

△熱平衡

$$G_L = R - G_{th} \equiv U$$
 (40)
Light thermal
•For low
Inj.(△p, $U \cong \beta n_{n0} \Delta p = \frac{p_n - p_{n0}}{\frac{1}{\beta n_{n0}}}$ (42) β:比例常數
pno<\frac{1}{\beta n_{n0}}
 Ξ direct-recom.
 n -type $U = \frac{p_n - p_{n0}}{\tau_p}$ (43)
 $\tau_p \equiv \frac{1}{\beta n_{n0}}$ (44) Lifetime (of minority carrier f 關)
•Direct recombination : 即 band to band (for 三五族)

Figure 2.11.

Decay of photoexcited carriers. a) *n*-type sample under constant illumination. (b) Decay of minority carriers (holes) with time. (c) Schematic setup to measure minority carrier lifetime.

$$p_n(t) = p_{no} + \tau_p G_L \exp(-t / \tau_p)$$

Щ

Example 7, p.59, quasi-Fermi levels induced by light

Fig. 15 Recombination lifetime and generation lifetime versus energy level o recombination center.

Figure 2.14 Schematic diagram of bonds at a clean semiconductor surface. The bonds are anisotropic and differ from those in the bulk.⁵

Auger recombination.

Def: the transfer of energy and momentum released by e-h recomb to a third e/h

When carrier concentration is very high, Auger recomb is important.

Figure 2.15. Current flow and generation-recombination processes in an infinitesimal slice of thickness *dx*.

(2)
$$\frac{d\varepsilon}{dx} = \frac{\rho_s}{\varepsilon_s}$$
 (60)

可解出inj. minority carrier distribution *G<<R→G可忽略

(3) 及Boundary Condition

B.C.
$$\begin{cases} P_{n}(0) \\ P_{n}(W) = p_{no} \end{cases}$$
$$p_{n}(x) = p_{no} + [p_{n}(0) - p_{no}] \left[\frac{\sinh\left[\frac{W-x}{L_{p}}\right]}{\sinh(W/L_{p})} \right] \qquad (63)$$
$$\forall \varepsilon = 0$$
$$J_{p} = -qD_{p} \frac{\partial p_{n}}{\partial x} |_{W} = q[p_{n}(0) - p_{n0}] \frac{D_{p}}{L_{p}} \frac{1}{\sinh(W/L_{p})} \qquad (64)$$

*BJT解J時會用到. (E inj.到B,穿越B,到C之J)

Figure 2.17. Surface recombination at x = 0. The minority carrier distribution near the surface is affected by the surface recombination velocity.⁶

Figure 2.18.

The Hayes-Shockley experiment. (a) Experimental setup. (b)

(a) Carrier distributions without an applied field.

(c) Carrier distributions with an applied field.7

(b)

Figure 2.18 © John Wiley & Sons, Inc. All rights reserved.

Figure 2.20.

(*a*) The band diagram of two isolated semiconductors with a distance *d*. (*b*) One-dimensional potential barrier. (*c*) Schematic representation of the wave function across the potential barrier.

$$\left[\frac{C}{A}\right]^2 = \exp\left[-2d\sqrt{2m_n(qV_0 - E)/\hbar^2}\right]$$

Figure 2.21a © John Wiley & Sons, Inc. All rights reserved.

Space charge effects, p.71, 72

Figure 2.21b © John Wiley & Sons, Inc. All rights reserved.

31

Figure 2.22. Drift velocity versus electric field in Si.⁸

Figure 2.23. Drift velocity versus electric field in Si and GaAs. Note that for *n*-type GaAs, there is a region of negative differential mobility.^{8,9}

3>_d 3

Figure 2.24 © John Wiley & Sons, Inc. All rights reserved.

Figure 2.24. Electron distributions under various conditions of electric fields for a two-valley semiconductor.

Figure 2.25. One possible velocity-field characteristic of a two-valley semiconductor.

Figure 2.26. Energy band diagram for the avalanche process.

Figure 2.26 © John Wiley & Sons, Inc. All rights reserved.

