# Semiconductor Devices THIRD EDITION

S. M. Sze and M. K. Lee

# **Chapter 1** Energy Bands and Carrier Concentration in Thermal Equilibrium

Copyright © 2012 by John Wiley & Sons, Inc. All rights reserved.



© John Wiley & Sons, Inc. All rights reserved.

Typical range of conductivities for insulators, semiconductors, and conductors.

## Si is abundant and has very good SiO<sub>2</sub> Semiconductor is promising due to high sensitivity in $\rho$

| Period | Column II | III      | IV        | V          | VI        |
|--------|-----------|----------|-----------|------------|-----------|
| 2      |           | В        | С         | Ν          | О         |
|        |           | Boron    | Carbon    | Nitrogen   | Oxygen    |
| 3      | Mg        | Al       | Si        | Р          | S         |
|        | Magnesium | Aluminum | Silicon   | Phosphorus | Sulfur    |
| 4      | Zn        | Ga       | Ge        | As         | Se        |
|        | Zinc      | Gallium  | Germanium | Arsenic    | Selenium  |
| 5      | Cd        | In       | Sn        | Sb         | Te        |
|        | Cadmium   | Indium   | Tin       | Antimony   | Tellurium |
| 6      | Hg        |          | Pb        |            |           |
|        | Mercury   |          | Lead      |            |           |

#### TABLE 1 Portion of the Periodic Table Related to Semiconductors

Table 1.1 © John Wiley & Sons, Inc. All rights reserved.

| General             | Semiconductor                 |                                     |  |
|---------------------|-------------------------------|-------------------------------------|--|
| Classification      | Symbol                        | Name                                |  |
| Element             | Si                            | Silicon                             |  |
|                     | Ge                            | Germanium                           |  |
| Binary compound     |                               |                                     |  |
| IV-IV               | SiC                           | Silicon carbide                     |  |
| III-V               | AlP                           | Aluminum phosphide                  |  |
|                     | AlAs                          | Aluminum arsenide                   |  |
|                     | AlSb                          | Aluminum antimonide                 |  |
|                     | GaN                           | Gallium nitride                     |  |
|                     | GaP                           | Gallium phosphide                   |  |
|                     | GaAs                          | Gallium arsenide                    |  |
|                     | GaSb                          | Gallium antimonide                  |  |
|                     | InP                           | Indium phosphide                    |  |
|                     | InAs                          | Indium arsenide                     |  |
|                     | InSb                          | Indium antimonide                   |  |
| II-VI               | ZnO                           | Zinc oxide                          |  |
|                     | ZnS                           | Zinc sulfide                        |  |
|                     | ZnSe                          | Zinc selenide                       |  |
|                     | ZnTe                          | Zinc telluride                      |  |
|                     | CdS                           | Cadmium sulfide                     |  |
|                     | CdSe                          | Cadmium selenide                    |  |
|                     | CdTe                          | Cadmium telluride                   |  |
|                     | HgS                           | Mercury sulfide                     |  |
| IV-VI               | PbS                           | Lead sulfide                        |  |
|                     | PbSe                          | Lead selenide                       |  |
|                     | PbTe                          | Lead telluride                      |  |
| Ternary compound    | $Al_xGa_{1-x}As$              | Aluminum gallium arsenide           |  |
|                     | $Al_{x}In_{1-x}As$            | Aluminum indium arsenide            |  |
|                     | $GaAs_{1-x}P_x$               | Gallium arsenic phosphide           |  |
|                     | $Ga_{x}In_{1-x}N$             | Gallium indium nitride              |  |
|                     | $Ga_{x}In_{1-x}As$            | Gallium indium arsenide             |  |
|                     | $Ga_{x}In_{1-x}P$             | Gallium indium phosphide            |  |
| Quaternary compound | $Al_xGa_{1-x}As_ySb_{1-y}$    | Aluminum gallium arsenic antimonide |  |
|                     | $Ga_{x}In_{1-x}As_{1-y}P_{y}$ | Gallium indium arsenic phosphide    |  |

#### TABLE 2 Semiconductor Materials<sup>2</sup>

Table 1.2 © John Wiley & Sons, Inc. All rights reserved.





Figure 1.2. A generalized primitive unit cell.





Three cubic-crystal unit cells. (*a*) Simple cubic. (*b*) Body-centered cubic. (*c*) Face-centered cubic.

\*半導體為 Single crystal Periodic 排列為 Lattice (晶格)



#### Like two interpenetrating fcc sublattices

Si 之濃度 
$$5 \times 10^{22} \# / cm^{3}$$

Figure 1.4. (a) Diamond lattice. (b) Zincblende lattice.



Figure 1.5. A (623)-crystal plane.



### Figure 1.6. Miller indices of some important planes in a cubic crystal.



Simplified schematic drawing of the **Czochralski** puller. Clockwise (CW), counterclockwise (CCW).



Fig. 9 Photograph of an a 200 mm diameter, (100)-oriented Si crystal being pulled from the melt. (Photograph courtesy of Taisil Electronic Materials Corp., Taiwan.)



Fig. 10 A 200 mm diameter silicon crystal ingot grown by the Czochralski technique.



**Figure 1.7** (*a*) A tetrahedron bond. (*b*) Schematic two-dimensional representation of a tetrahedron bond.



**Figure 1.8** The basic bond representation of intrinsic silicon. (*a*) A broken bond at Position A, resulting in a conduction electron and a hole. (*b*) A broken bond at position B.



**Figure 1.9** The splitting of a degenerate state into a band of allowed energies.



#### Figure 1.10 Schematic representation of an isolated silicon atom. 1S<sup>2</sup> 2S<sup>2</sup> 2P<sup>6</sup> 3S<sup>2</sup>3P<sup>2</sup>



**Figure 1.11** Formation of energy bands as a diamond lattice crystal is formed by bringing isolated silicon atoms together.



**Figure 1.12** The parabolic energy (*E*) vs. momentum (*p*) curve for a free electron.



Figure 1.13 A schematic energymomentum diagram for a special semiconductor with  $m_n = 0.25 m_0$  and  $m_p = m_0$ .



**Figure 1.14** Energy band structures of Si and GaAs. Circles (°) indicate holes in the valence bands and dots (•) indicate electrons in the conduction bands.



Figure 1.15 Schematic energy band representations of (*a*) a conductor with two possibilities (either the partially filled conduction band shown at the upper portion or the overlapping bands shown at the lower portion), (*b*) a semiconductor, and (*c*) an insulator.

Intrinsic semiconductor : impurity 所產生之e,p << thermal 之 e,p

Fermi-Dirac distribution  
function  

$$n = \int_{0}^{E_{top}} \underline{n(E)} dE = \int_{0}^{E_{top}} \underline{N(E)} F(E) dE$$
 (9)  
電子濃度 濃度 能態密度  
 $F(E) = \frac{1}{1 + e^{(E-E_F)/kT}}$  (10),能量E態位被佔據的機率

E<sub>F</sub>: Fermi Level,被電 子佔據的機率為1/2的能量

Density of state N(E)與E<sup>1/2</sup>成正比



**Figure 1.16** Fermi distribution function F(E) versus  $(E - E_F)$  for various temperatures.



**Figure 1.17** Intrinsic semiconductor. (*a*) Schematic band diagram. (*b*) Density of states. (*c*) Fermi distribution function. (*d*) Carrier concentration.

effective density of state  

$$N_{C} \equiv 2(2\pi m_{n}kT/h^{2})^{3/2}$$

$$(13a) \qquad 2.86 \times 10^{19} cm^{-3}$$
For silicon
$$n = N_{C} \cdot exp\left[-\frac{(E_{C} - E_{F})}{kT}\right]$$

$$(16)$$

$$N_{V} \equiv 2(2\pi m_{p}kT/h^{2})^{3/2}$$

$$(18) \longrightarrow 2.66 \times 10^{19} cm^{-3}$$
For silicon
$$p = N_{V} \cdot exp\left[-\frac{(E_{F} - E_{V})}{kT}\right]$$

$$(17)$$

Ei : intrinsic fermi level , band gap 中間 。 ni : intrinsic carrier density  $\longrightarrow$  (Si) 1.45 × 10<sup>10</sup> #/<sub>cm</sub> <sup>3</sup> Intrinsic semiconductor n=p=ni

 $np = n_i^2$  Mass action law (20) { Intrinsic, Extrinsic 皆可用

$$n_i^2 = N_C N_V \exp\left[-\frac{E_g}{kT}\right]$$
 (21)  
$$n_i = \sqrt{N_C N_V} \exp\left[-\frac{E_g}{2kT}\right]$$
 (22) 可得ni

#### Figure 1.18

Intrinsic carrier densities in Si and GaAs as a function of the reciprocal of temperature. <sup>5-7</sup>





**Figure 1.19** Schematic bond pictures for (*a*) *n*-type Si with donor (arsenic) and (*b*) *p*-type Si with acceptor (boron).



**Figure 1.20** Measured ionization energies (in eV) for various impurities in **Si and GaAs**. The levels below the gap center are measured from the top of the valence band and are acceptor levels unless indicated by *D* for donor level. The levels above the gap center are measured from the bottom of the conduction band and are donor levels unless indicated by *A* for acceptor level.<sup>8</sup>



**Figure 1.21** Schematic energy band representation of extrinsic semiconductors with (*a*) donor ions and (*b*) acceptor ions.

similarly

$$\swarrow \quad p = n_i \cdot exp\left[\frac{(E_i - E_F)}{kT}\right] \tag{29}$$



**Figure 1.22** *n*-Type semiconductor. (*a*) Schematic band diagram. (*b*) Density of states. (*c*) Fermi distribution function (*d*) Carrier concentration. Note that  $np = n_i^2$ .

#### EXAMPLE 4

A silicon ingot is doped with  $10^{16}$  arsenic atoms/cm<sup>3</sup>. Find the carrier concentrations and the Fermi level at room temperature (300 K):

**SOLUTION** At 300 K, we can assume complete ionization of impurity atoms. We have

 $n \approx N_D = 10^{16} \,\mathrm{cm}^{-3}$ .

From Eq. 20,  $p \approx n_i^2/N_D = (9.65 \times 10^9)^2/10^{16} = 9.3 \times 10^3 \text{ cm}^{-3}$ .

The Fermi level measured from the bottom of the conduction band is given by Eq. 25:

 $E_C - E_F = kT \ln(N_C/N_D)$ = 0.0259 ln(2.86 × 10<sup>19</sup>/10<sup>10</sup>) = 0.205 eV.

The Fermi level measured from the intrinsic Fermi level is given by Eq. 28:

$$\begin{split} E_F - E_i &= kT \, \ln(N_D/n_i) \approx kT \, \ln(N_D/n_i) \\ &= 0.0259 \, \ln \, (10^{16}/9.65 \times 10^9) = 0.358 \ \text{eV}. \end{split}$$

These results are shown graphically in Fig. 27.

-



**Figure 1.23** Band diagram showing Fermi level  $E_F$  and intrinsic Fermi level  $E_i$ .

#### Figure 1.24

Fermi level for Si and GaAs as a function of temperature and impurity concentration. The dependence of the bandgap on temperature is shown.<sup>9</sup>





