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PREFACE

This text has grown out of a graduate course entitled “Foundations
of Electric Network Theory,” organized at the University of Illinois by
the second author in 1949. Such a course has since been taught by the
two authors regularly at Illinois, Syracuse, and Michigan State Uni-
versities. Over the period of years, the material has naturally evolved
into a shape quite different from the original. However, the basic philos-
ophy of mathematical precision, coordinated with the objective of estab-
lishing the foundation of network theory, has remained unchanged
throughout.

For many years, an intensive search was made (especially by the
second author) for a way to determine precisely, rather than dimly sus-
pect, the mathematical properties of the Kirchhoff equations of electrical
network theory. In themselves, these equations seemed to be infinitely
varied and to fit into no detectable pattern. Darkly at first, but with
accelerated clarity as linear graph concepts were brought to bear, it
became evident that here was the tool for the Kirchhoff-equations prob-
lem. In retrospect, it seems obvious that since the linear graph determines
the coefficient matrices of these equations, it is in the linear graph that
the properties of the equations are to be found.

Theory of graphs depends on the mathematical discipline of linear
algebra, which is not very familiar to electrical engineers. We have kept
this fact in mind and at least tried to explain briefly such concepts as
field, ring, linear vector space, etc., that are used. However, we assume
knowledge of matrix algebra and use it without explanation. Similarly,
in the applications presented, Laplace transformation and theory of
functions are assumed in the network theory, and Boolean algebra in the
switching theory.

The guiding light throughout has been mathematical precision. How-
ever, there are some places where we have avoided making a fetish of
precision, in the interest of readability. For example, in Chapter 1 we
exclude isolated vertices from graphs, but we admit them in Chapters 3
and 8. Similarly, we exclude single-edge loops (or self-loops) in Chapter 1
but admit them in parts of Chapters 3, 9, and 10. Also, the vertex is
bound to the edge in Chapter 1 and divorced from it when convenient
in Chapters 3 and 4. There is, of course, no need to be so inconsistent.
But we feel that these are places where the cure is worse than the disease.
We could admit self-loops from the beginning and insert the hypothesis
“if the graph does not contain any self-loops” into every theorem. We
could call the edge minus the vertices by another name, say arc. Instead,
we prefer to treat the exceptional cases individually by reminding the
reader that the word is being used in a different sense rather than com-

plicate the whole book by burdensome additional terminology. The
vii



viil PREFACE

same remark applies to notation as well. The symbols A and B are used
for matrices of incidence and Q for the cut-set matrix, both in nonoriented
graphs and in directed graphs, even though the elements are chosen from
different fields in the two cases. Since the matrices in the two cases are
very closely related and have identical properties, we feel there is an
advantage in using the same symbolism.

The first five chapters contain the basic theory of graphs. There is
no intention that these five chapters should constitute a treatise on graph
theory. On the contrary, we have carefully omitted all aspects of graph
theory that are unrelated to the applications discussed here. The relevant
concepts are, however, discussed in much greater detail than they would
be in a general treatise on graph theory. Of particular interest in the
applications (considered here) are the matrices of the graph. Therefore
we devote considerable space to the matrices of a graph.

The last five chapters, constituting almost two thirds of the book,
discuss the various applications. Three of these chapters are devoted to
electrical network theory, which happens to be the major field of interest
of the authors. In each of these chapters, we assume that the reader is
familiar with the elementary aspects of the subject and devote the dis-
cussions to those aspects of the theory that are strongly dependent on
the theory of graphs.

The present text is aimed primarily at the advanced graduate student
who has attained some mathematical maturity and has had at least one
graduate course in network theory covering approximately the material
in Linear Network Analysis by S. Seshu and N. Balabanian (John Wiley
and Sons, New York, 1959). It is our sincere hope, of course, that research
workers in the field of electrical networks and others utilizing the theory
of graphs will find this material useful. The segregation of the theory of
graphs from applications and the collection of applications into almost
self-contained chapters has been made with the research worker in mind,
at least in part.

It is virtually impossible to acknowledge everyone who has contributed
directly and indirectly to this book. The most significant contributions
have come from the many graduate students who worked through ver-
sions of the text in the form of preliminary notes—with the sole objec-
tive of making them obsolete. Thanks are also due to Professor M. E.
Van Valkenburg, who read the manuscript critically and made valuable
suggestions. Finally we wish to express our thanks to Professor W. H.
Huggins and the Addison-Wesley Publishing Company for the inclusion
of this book in the Systems Engineering series.

S.S.
M. B. R.
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CHAPTER 1
BASIC CONCEPTS

1-1 Survey of applications. In this text, a detailed study of the theory
of graphs is presented first, before discussing any applications of the
theory. This procedure, while being very satisfactory as a logical order,
is unsatisfactory in another sense. One is not always aware of the need
for the various concepts that are being introduced, or of the utility of
the various theorems that are being proved. The purpose of this first
section is to provide a little motivation by briefly surveying a few of the
many applications of the theory of graphs. In this section, we anticipate
many of the results that are rigorously proved later on. No precision is
attempted in this section, the purpose being mainly to show the utili-
tarian aspects of graph theory. Abstract graph theory has its own beauty,
of course, but this can be appreciated only after a detailed study.

From the point of view adopted here, the most important application
of graph theory is in the physical science for which G. Kirchhoff formu-
lated the theory of graphs, namely electrical network theory. Let us first
attempt to clarify the concept of an electrical network; the process will
bring out the concept of a graph. The laboratory electrical network
consists of a number of devices with terminals. When an attempt is made
to represent or, better, to model these devices in a network diagram on
paper, combinations of two-terminal elements are usually used. Let us
draw such a diagram as a concrete example, as in Fig. 1-1. What is
meant by such a diagram? We mean, first of all, that six devices are in
use, each of them having two terminals. They are interconnected as
shown in the figure. Ifor instance, one terminal of each of the devices 1,
2, and 4 are connected together. The other terminal of device 2 is con-

Fic. 1-1. Example of a network.
1



2 BASIC CONCEPTS [cHaP. 1

nected to one terminal of device 3 and to one terminal of device 5, etc.
The various symbolic lines marked R, L, C, etc., indicate the relations
between the voltages and currents associated with each of the devices.
How these voltages and currents are to be measured is indicated by the
arrows and plus signs.

The physical system has many other characteristics that are not shown
on the network diagram, such as physical dimensions, color, weight, etc.
A characteristic the omission of which is pertinent to the present discussion
is the relative location of the components. The diagram of Iig. 1-1 does
not imply that the six component devices are located in space relative
to each other as shown. For instance, if Fig. 1-1 is redrawn as in Fig. 1-2,
it is still a model of the same network. The important feature is the
interconnection of the components and not their relative space location.
A comparison of the underside of a broadcast receiver with its schematic
will convince anyone of this fact. (Of course in the case of a high-frequency
device, the relative location of components in the physical network is
important, but such a consideration is not part of electrical network
theory.) Thus a network diagram represents two (independent) aspects
of an electrical network: the interconnection between components and the
voltage-current relationships of each component. Network topology is
primarily a study of the former aspect. Therefore, let us try to extract
from Fig. 1-1 the information about the interconnection, or the network
geometry, without regard to voltages, currents, and their interrelations.
The interconnection of the network may be portrayed as in Fig. 1-3(a)
or, more simply, as in Fig. 1-3(b). It must be remembered that the lines
of Fig. 1-3(b) represent network elements and are not necessarily “short
circuits.” An interconnected system of line segments such as Fig. 1-3(b)
is a linear graph, and graph theory is a study of such structures. The
points 1, 2, 3, and 4 are the vertices of the graph and the line segments
are the edges of the graph.

Fic. 1-2. A redrawing of Fig. 1-1.
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1 5 2
5
1 3
4
4 3

() M)
Fic. 1-3. Geometry of Fig. 1-1.

Let us ask what can be learned about electrical networks from a study
of such structures. We have, first of all, Kirchhoff’s original reasons for
inventing graph theory. Namely, we can establish from such a study,
in a mathematically rigorous fashion, the numbers of linearly independent
current and voltage equations. We are acquainted with these numbers,
because they have been established for a few simple cases and projected
into the general case. But we cannot prove the validity of these state-
ments in the general case without appealing to graph theory. Kirchhoff’s
laws can be written in matrix notation as

AJt) =0 (Kirchhoff’s current law),
and (1-1)
B.V(t) = 0 (Kirchhoff’s voltage law).

The matrices A, and B, are the mairices of incidence of the linear graph,
relating vertices to edges and edges to loops respectively. We prove later
that these two matrices have ranks v — 1 and e — v 4 1 respectively,
where e is the number of edges and v is the number of vertices. Therefore
v — 1 and e — v+ 1 are also the numbers of linearly independent
Kirchhoff’s current and voltage equations. Notice that A, and B, are asso-
ciated with the graph. Their ranks have nothing to do with currents
and voltages. If, for instance, the linear graph represents a lumped
mechanical system, with the vertices representing rigid bodies, exactly
the same matrices A, and B, would arise for Newton’s force equations
and the displacement equations respectively (as for the electrical net-
work). Then the same numbers, v — 1 and ¢ — v 4 1, represent the
numbers of linearly independent force equations and displacement
equations.

Secondly, it is possible to establish rigorously the validity of the loop
and node systems of equations and find their generalizations. We can
also find the conditions under which unique solutions can be found for
these equations. Finally, we can justify the various duality procedures.
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None of this is new; the present study merely permits a justification
of familiar procedures.

But more than this is available. We discover short-cut methods of
writing, by inspection from the network, the determinants and cofactors
of the loop and node systems of equations, without even writing out the
equations. For this, we need to know the structure of the coefficient
matrices of the loop and node systems of equations

Z, = BZB' and Y, = AYA (1-2)

where A and B are again coefficient matrices of Kirchhoff’s current and
voltage equations, where not all the equations, but only the independent
ones, are represented. The prime denotes the transpose. A and B depend
only on the interconnections and hence are properties of the linear graph.
Much of the material of the first part of this book is devoted to a study
of their properties. The property that is used in the short-cut method
is the relation between the nonsingular submatrices of A and B and the
structure of the graph. The nonsingular submatrices of A correspond to
the trees of the graph and those of B to complements of trees. A tree is
a connected subgraph containing all the vertices (nodes) and not con-
taining any loops, and the complement is the set of all elements not in
the tree. Knowing this, we prove that the node determinant (det Y,) is
the sum of tree-admittance products and that the loop determinant
(det Z,,) is the sum of impedance products of complements of trees. We
also extend these formulas to the various cofactors.

More interesting than the short-cut procedures are the applications of
graph theory to network synthesis. Several relationships are established
in Chapter 8 between the topology of the network and the analytic be-
havior of the network functions. For instance, it is proved that a trans-

. W
= 3

170 02/

(a) ()
Fig. 1-4. Example in network synthesis.
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formerless realization of a minimum positive real function cannot contain
any paths between the input terminals, or cut-sets separating them, con-
sisting only of one type of element (R, L, or C). As another example we
can say, by inspection (that is without any computations), that all the
zeros of transmission of the network of I'ig. 1-4(a) are outside the shaded
region shown in Fig. 1-4(b).

Another major application of graph theory, which is of interest to the
electrical engineer, occurs in the theory of switching. Here graph theory
finds significant applications in both combinational and sequential net-
work theory. A combinational contact network has an obvious interpre-
tation as a linear graph. For instance, the contact network of Fig. 1-5(a)
has the linear graph representation shown in Fig. 1-5(b). Many graph-
theoretic ideas are therefore applicable to contact network theory. For
example, the switching function (in its so-called “admittance representa-
tion”) is expressible as the sum of path products over all the paths between
the input terminals. The zeros of the switching function correspond to
the cut-sets separating the input terminals. Concepts such as duality
carry over immediately. It is also possible to relate conventional networks
and contact networks. The known methods of proving the minimality
of a contact network depend very strongly on graph theory. We discuss
the three known methods of proof of minimality. The first of these is
due to C. Cardot, who showed that the parity function of n variables,

Flxy, 2o, ...,2,) = 2, ® 22 @ -+ @ z, (1-3)

(of which n = 3 is illustrated in Fig. 1-5), requires 4n — 4 contacts for
its realization. The second is a very elegant graph-theoretic argument
due to C. E. Shannon, proving that the 18-contact realization of the
16 switching functions of two variables is minimal. The third is a matrix
technique due to R. Gould.

-

() (h)
Fie. 1-5. (a) A contact network and (b) its graph;.
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F1g. 1-6. A state diagram.

Graph theory (in the form of theory of nets) is also applicable to
(electronic) logic-circuit representations of Boolean functions. However,
not much work has been done on them, and so the subject is mentioned
only briefly.

The best-known representation of a sequential switching system takes
the form of a directed graph, known as a state diagram. An example of
a state diagram is shown in Fig. 1-6. The vertices, which are now drawn
as circles, represent the “states” of the machine (memory states, for
instance). The edges represent transitions between states, with the input
symbol causing the transition associated with the edge. The output of
the state is associated with the vertex. Thus the representation becomes
a weighted directed graph or a met. It is clear that the theory of directed
graphs should play an important role in the theory of sequential machines.

The general concept of a net has many applications besides the theory
of sequential machines. One of the most natural applications is to com-
munication networks. The vertices represent stations and the edges
represent channels of communication. “Communication network” is
itself a general concept applicable to voice (or message) communication,
oil or gas pipelines, railroads, highways, etc. The weights associated with
the edges depend upon the particular application. They may be channel
capacities (bits* per second or gallons per hour or cars per hour), proba-
bilities of channel availability, etc. An interesting problem here is to com-
pute the maximum rate of flow (of whatever is being communicated)
from one given point of the communication network to another given

* Binary digits.
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point. The solution, due to two independent groups of workers, Elias,
Feinstein, and Shannon, and Ford and Fulkerson, is graph-theoretic and
simple. The maximum flow is the capacity of the smallest cut-set sepa-
rating the two points.

The calculus of binary relations is another natural application of the
theory of nets. Here we are concerned with a set of objects (human
beings, for instance) with some relations defined between pairs of objects.
Typical relations are “son of,” “father of,” “friend of,” etc. Now, each
object is a vertex of the net and the relations are shown by directed edges
weighted with the relation. IFor example, the familiar riddle, “Brothers
and sisters I have none, but that man’s father is my father’s son,” has
the representation shown in Fig. 1-7. Here s, is the speaker, f is his
father, m is “that man,” and s, is the father of m. F and S stand for
“Father of” and “Son of.” The solution to the riddle may be read from
the net. (There are many other mathematical games, unconnected with
the calculus of relations, which depend on graph theory for their solu-
tions.) Social sciences are very often concerned with such relations.
The social structure of a group of individuals can be represented as a net,
and much about the group can be learned from the net. For instance,
a “clique” is a maximal complete subgraph of the net. Yet another net
that is familiar to many electrical engineers is the representation of a set
of equations as a signal-flow graph. Still another application is to neural
networks.

It is clear that very similar (and often identical) methods of attack
will be found useful in these various applications of the theory of nets.

F

Fig. 1-7. Graph of riddle.
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Matrices of the net have been found to be the most useful tools. These
are considered in Chapters 9 and 10.

Enumeration problems in general find graph theory a useful tool.
Enumeration problems arise in such diverse fields as chemistry, psy-
chology, and (classical mathematical) combinatorial analysis. However,
this is a topic that is not considered in this book. Interested readers are
referred to excellent treatments by Riordan [148] and Harary and
Norman [73].*

In fact, it is because graph theory has so many diverse applications
that we should study abstract graph theory as a subject by itself and not
mix it up with some specific application such as electrical network theory.
Despite this separation of theory from application, the study of graphs
in this book is oriented toward applications in electrical engineering.

We have seen examples of applications of both the directed graph (with
orientations assigned to the edges) and the nonoriented graph. For the
application considered here in the greatest detail, namely electrical net-
work theory, we need both directed and nonoriented graphs. In network
analysis, directed graphs are used. However, the orientation is rather
artificial (introduced to take care of the reference systems for current,
voltage, and magnetic polarity) and so disappears when system functions
are computed. For these reasons, we choose to begin graph theory with
nonoriented graphs even though the algebra involved (modulo 2 algebra)
is unfamiliar. This fact is in itself an advantage because it prevents
potential confusion with familiar concepts in electrical network theory and
focuses attention on graph theory instead.

1-2 The nonoriented graph. It is unfortunate that every mathematical
theory has to begin with a long list of definitions. Even more unfortunate
is that nothing can be done about it. One must have a few words to talk
with, and in the interest of precision these have to be formally defined.
It is possible to reduce somewhat the number of definitions (as for instance
in defining a path), but then each definition becomes much more compli-
cated and hence nearly incomprehensible. The intuitive concepts of a
path and a loop turn out to be relatively hard to define, mainly because
all point-set topological concepts are avoided in order to develop a theory
that is independent of the relative locations of the elements. This inde-
pendence is, however, an essential part of both the theory and its applica-
tion to electrical networks. The one saving feature in graph theory is
that many of the terms used have nearly the same meaning as in every-
day English and so very little conscious effort is required to remember

* Numbers in brackets refer to the bibliography at the end of the book.
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them. We will also refer to several illustrative diagrams to act as a buffer
in this initial barrage of definitions.

DEeriniTioNn 1-1. Edge. A line segment together with its distinet end-
points is an edge.

In this book, edge and element are used as synonyms. While element
is the more common engineering term, it can sometimes be confusing
when one has to talk of elements of matrices or some other sets as well.
Edge is more convenient to use then.

Definition 1-1 as stated places two requirements on the edge. First,
the endpoints belong to the edge. Second, the endpoints are distinct.
Clearly, both are merely conventions, and they are introduced here to
simplify the statements of many theorems. On occasion, however, these
conventions cease to be convenient. For instance, in certain interpretive
statements in Section 2-4, it is more convenient to regard the endpoints
as not belonging to the edge. If absolute precision is required, the edge
without its endpoints must then be defined to be a new entity: arc, for
instance. However, in this text, the name edge is used in this connotation
also, with a reminder to the reader that it does not include the endpoints.
Similarly, in the discussion of duality in Chapter 3, and in the discussion
of the applications of nets in Chapters 8 and 10, edges with coincident
endpoints (self-loops) are needed. Again, to avoid additional terminology,
such edges are simply admitted where necessary. The definition of an
edge, as given, is used unless the discussion explicitly states otherwise.

DeFiNiTION 1-2. Vertex. A vertex is an endpoint of an edge.

Point, O-cell, and node are three other names commonly used for a
vertex. By convention, and to simplify the statements of theorems, we
do not usually consider an isolated point as a vertex. On some occasions
it is convenient to regard an isolated point as a vertex (which we do,
after warning the reader).

DgeriniTioN 1-3. Linear graph. A linear graph is a collection of edges,
no two of which have a point in common that is not a vertex.

Linear complex and 1-complex are other words used for a graph. Some
examples of linear graphs are shown in Fig. 1-8. A graph as defined here
is an abstract graph and need not have any geometric significance whatso-
ever. It is true, however, that one can consider a linear graph as a
configuration in a 3-dimensional euclidean space. The vertices can be
interpreted as points and the edges as arcs. Without further specific
statement, only finite graphs are considered here, that is, graphs contain-
ing only a finite number of edges (and hence a finite number of vertices).
Infinite graphs have some interesting properties, but do not (so far) have
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2
2 3 ¢ 4

4, b a b d

1 - 3 1 6 > 5

Fi6. 1-8. Examples of linear graphs.

any applications. The interested reader may refer to Koenig [88] for a
discussion of infinite graphs.

Graph theory derives its potency and its rich variety of applications
from the single axiom of graph theory which follows.

Ax10M OF GRAPH THEORY. If M is an arbitrary finite or infinite collec-
tion of objects, and if to each (unordered) pair (a, b) of M is assigned
a nonnegative integer M., = My, (which may be zero), such that for
each a at least one Mg, is nonzero, then there exists a graph G which
has the elements of M for vertices and in which vertices a and b are
connected by M, edges.

Despite its simplicity and intuitive “validity” from a geometric view-
point, the axiom of graph theory is very important. In fact, it is this
simplicity (and generality) that makes graph theory applicable to a very
large number of situations. As an example, consider a problem that
might arise in a civil defense communication network.

Suppose that there is a network of five stations and we wish to find out
whether there are any “weak spots” in the network that need to be
“strengthened” by additional channels of communication. That is, we
wish to know whether any station or set of stations can become isolated
from the rest of the group by the failure of a very small number of chan-
nels of communication. Let the five stations be a, b, ¢, d, and e. These
are the elements of M for the application of the axiom. For each pair of
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stations, we list the number of channels through which they can com-
municate. The channels themselves may take on any physical form.
Some of them may be radio links, others telephone lines, or even sema-
phore links or roads along which messengers can go. Suppose that this
table takes the form of Table 1-1.

TaBLE 1-1
Pairs of Number of
stations links

a,b 1
a, c 0
a,d 2
a,e 0
b, ¢ 1
b, d 3
b, e 0
¢, d 0
c, e 1
d, e 1

Let us draw the graph for such a system. The graph has five vertices
corresponding to the five elements of M. The number of edges between
vertices ¢ and j is the number M;;, to be found in the second column of
Table 1-1. TFor example, there are three edges between b and d and none
between b and e. The graph is shown in Fig. 1-9. The broken lines on the
figure show how a subset of stations can become isolated from the rest.

F1ec. 1-9. Graph of communication network.
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If all the channels of communication that correspond to the edges cut
by a broken line fail, the sets of stations on the two sides of the broken
line are isolated from each other. (These are called cut-sets, to be defined
later.) We see from the graph that the failure of a single channel cannot
isolate a station or set of stations. But if any two of the three channels
marked 1, 2, and 3 in the figure fail, either or both of stations ¢ and e
would be isolated from the rest. To increase the strength of the system,
at least two more channels are needed. By inspection of the graph it is
seen that a suitable way to add two channels is to add one between a
and ¢ and another between a and e. The graph of the new system is
shown in Fig. 1-10. At least three channels have to fail in the new sys-
tem before any station becomes isolated. The probability of three simul-
taneous failures would naturally be less than the probability of two
simultaneous failures.

DeriniTioN 1-4. Subgraph. A subgraph is a subset of the edges of the
graph (and thus is itself a graph). The subgraph is a proper subgraph
if it does not contain all the edges of the graph.

DErFiNITION 1-5. Incidence. A vertex and an edge are incident with
each other if the vertex is an endpoint of the edge.

For example, in Fig. 1-8(a), edge a is incident with vertex 1 and vice
versa. On the other hand, edge a is not incident with vertex 3.

In Section 1-1, it was shown that it is possible to draw an electrical
network or a linear graph in different ways. In such cases, one would
like a precise way of saying that the two graphs are really the same even
though they are drawn differently and the vertices and edges are labeled

S —

New, New

c O e

Fic. 1-10. Graph of new network.
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differently. The next definition provides the terminology necessary for
this purpose.

DEeriNITION 1-6. Isomorphism. Two graphs G and G’ are isomorphic
(or congruent) if there is a one-to-one correspondence between the
vertices of G and G’ and a one-to-one correspondence between the
edges of G and G’ which preserves the incidence relationships.

For example, the graph of Iig. 1-8(d) is isomorphic to the graph of
Fig. 1-3(b). We establish their isomorphism by means of Table 1-2.

TABLE 1-2

(a) Vertex (b) Edge

Fig. 1-3(b) | Fig. 1-8(d) | Fig. 1-3(b) | Fig. 1-8(d)

> O DN
[VER S R

S U W N~
® Qo o,

It can be readily verified that corresponding edges are incident at corre-
sponding vertices. Ior those unfamiliar with the concept of an isomor-
phism, it should be noted that a one-to-one correspondence is not, by itself,
an isomorphism. The correspondence must be preserved (or be invariant)
under whatever relation happens to be of interest, in this case incidence.
If, for example, edges a and e are interchanged in the above table, making
a correspond to 6 and e to 5 (leaving all other entries unaltered), it is
no longer an isomorphism. For, a has vertices 1 and 3 in Fig. 1-8(d).
From the vertex table, the corresponding vertices in Fig. 1-3(b) are 1
and 4. But edge 6 has vertices 2 and 4 in Fig. 1-3(b), not 1 and 4.

The next sequence of definitions is directed toward the realization of a
reasonable definition of a path and a loop.

DerINITION 1-7. Edge sequence. If the edges of a graph or a subgraph
can be ordered such that each edge has a vertex in common with the
preceding edge (in the ordered sequence) and the other vertex in common
with the succeeding edge, the subgraph is an edge sequence.

In this definition, note that an edge sequence is a graph. When it is
expressed as a sequence of edges, each edge may appear any number of
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times. In fact, an edge may follow itself in the sequence. If we trace the
sequence on the graph, the resulting line may intersect itself or retrace
parts several times. For example, in Fig. 1-8(c),

abcffdecdg

is the ordering of an edge sequence, the edge sequence in this case being
the whole graph.

DeriNiTioN 1-8. Multiplicity. The number of times an edge appears
in an edge sequence is the multiplicity of the edge.

In the example of the edge sequence given above, the edges ¢, f, and d
have multiplicity 2 and all others have multiplicity 1.

DEeriNtTION 1-9. Edge train. If each edge of an edge sequence has
multiplicity 1, the sequence is an edge train.

An example of an edge train in Fig. 1-8(c) is abcdgf. Thus an edge
train can intersect itself (that is, go through a vertex more than once),
but cannot retrace parts of itself, as an edge sequence can.

DeriNiTION 1-10. Initial, final, and terminal vertices. The vertex of
the first edge of an edge sequence (or an edge train) that is not shared
by the second edge is the initial vertex. Similarly, the vertex of the
last edge that is not common to the previous edge is the final vertex.
The initial and final vertices are the terminal vertices of the sequence.
(Initial and final refer to the ordering of the edge sequence. The graph
is nonoriented.)

It is implicitly assumed in this definition that the first and second
edges are not the same and similarly that the final edge is different from
the preceding edge. We also say that the edge sequence is between the
initial and final vertices and that the terminal vertices are comnected by
the edge sequence.

DeriNITION 1-11. Closed and open edge trains. If the terminal vertices
of an edge train coincide, it is a closed edge train, otherwise it is open.

DerFINITION 1-12. Degree of vertex. The degree of a vertex is the number
of edges incident at the vertex.

DeriniTiON 1-13. Path. If the degree of each internal (nonterminal)
vertex of an edge train is 2 and the degree of each terminal vertex is 1,
the edge train is a path. (This degree is to be counted with respect to
the edge train only and not with respect to the graph in which the
edge train may be situated.)
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Some examples of paths in Fig. 1-8(c) are cd, agd, and gec.

DeriNiTioN 1-14. Circuit or loop. If an edge train is closed and all
vertices are of degree 2, the edge train is a circuit or a loop.

This may seem like a lot of fuss just to introduce the intuitively obvious
concepts of a path and a loop. The difficulty, as already indicated, is that
all point-set-theoretic ideas are avoided so that we may develop a theory
that is independent of coordinate systems (i.e., independent of the rela-
tive locations of vertices and edges in a 3-dimensional space) and de-
pendent only on incidence relationships.

Also note that the word circuit is being defined as synonymous with
the word loop, or closed path. In the language of electrical engineers of
yesterday, circuit and network were considered synonymous. We are here
restoring the original meaning of circuit (German Kreis), which was
circle. Modern electrical engineering terminology tends to designate an
electrical network as a network and not as a circust. This may cause an
initial confusion to those used to the older terminology, but it need only
be an initial confusion. A more important point of conceptual importance
is that we are defining a loop to be a subgraph, i.e., a collection of edges
rather than the operation of “going around” a closed path. One immediate
consequence of this definition is that the number of possible loops in a
finite graph is finite—for which fact we can be grateful when confronted
with Kirchhoff’s voltage law.

A much more elegant way of defining a circuit proves very useful, since
it gives intuitive insight into the structure of circuits. Before we can give
this definition, we need the concept of connectedness.

Derinition 1-15. Connected graph. A graph G is connected if there
exists a path between any two vertices of the graph.

Thus, intuitively speaking, a graph is connected if it is in one piece.
Fig. 1-11(a) is an example of a graph which is not connected, and
Fig. 1-11(b) shows one which is connected.

1 2 3 1 2 o 3
6 5 4 3 6o\ 5/ |4 3
7 6 5 7 i

() (h)

Fic. 1-11. Unconnected and connected graphs.
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The alternative definition of a circuit, due to Veblen [190], is: a circuzt
is a connected graph or subgraph in which each vertex is of degree 2.

THeEoREM 1-1. Veblen’s definition of a circuit is equivalent to Defini-
tion 1-14. (In other words a subgraph G, is a circuit according to
Definition 1-14 if and only if G, is connected and each vertex of G, is
of degree 2.) (See Problem 1-2.)

DEerINiTION 1-16. Noncircuit and circuit elements. An element of a
graph G which is not contained in any circuit of G is a noncircuit element.
All other edges are circuit elements.

TueoreEM 1-2. If G is a connected graph and one of the circuit elements
of @ is removed, the resultant graph is connected and contains all the
vertices of G.

Proof. Let e; be a circuit element, and let G, be the subgraph obtained
when e; is removed. Since there is a circuit in G containing e;, the vertices
of e; are common to other edges of G (Veblen’s definition of a circuit).
Hence G, contains all the vertices of G. Only the paths in G which con-
tain e; are absent in (5. Since there is a circuit in G containing e;, there
is a path P, in G, between the vertices of e¢; (which therefore does not
contain e;). If in any path P, of @ containing e, e; is replaced by the
path Ps, an edge sequence is obtained, which contains a path (Problem
1-4). Hence the theorem.

This is a very useful result.

If the graph @ happens to be an unconnected graph, as in Fig. 1-11(a),
then it is obvious that it must consist of a number of “connected pieces.”
We next attempt to make this intuitive concept precise.

By Problem 1-12, the existence of a path between vertices is an equiva-
lence relation. Any such equivalence relation defines a partition of the
vertices of the graph into sets such that any two vertices in a set are
connected by a path in G. Alternatively, we could also construct the
sets. Beginning with any vertex v;, consider all the vertices of G which
can be connected to v, by a path in G. Then the elements of G incident
at these vertices constitute a connected subgraph G,. Furthermore, if
any other element of G is added to this subgraph to form G;, then G, is
not connected. Thus G, is a maximal connected subgraph of G. G may
or may not have any more vertices than are contained in G;. If G has
other vertices (not in @,), consider one of these vertices v;. By a similar
process, we can now construct a maximal connected subgraph containing
v;. The process can be repeated until there are no more vertices left,
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provided @ is finite. The number of these maximal connected subgraphs
is denoted by p.

TuroreM 1-3. The decomposition of a graph into maximal connected
subgraphs is unique.

THEOREM 1-4. p = 1 for a graph G if and only if G is connected.

ProBLEMS

1-1. Show that the terminal vertices of an open edge train are of odd degree
and that the other (internal) vertices are of even degree, where the degree is
to be counted with respect to the edge train only.

1-2. Prove Theorem 1-1. [Hint: Problem 1-1.]

1-3. If there is an open edge train between vertices a and b, show that there
is a path between vertices a and b.

1-4. If there is an edge sequence with terminal vertices a and b, show that
there is a path between a and b.

1-5. Prove that a single edge is a path.

1-6. Let a path P between two vertices a and b be considered as a subgraph
G,. Prove:

(a) There exists one and only one path in G, between vertex a and any

other vertex of G,.
(b) There exists one and only one path in G, between any two vertices

of G.
(¢) The number of edges e and the number of vertices v of G are related
by e = v+ 1.

(d) Any connected subgraph of G is a path.

1-7. If there are two different paths P; and P2 (differing in at least one
edge) between two vertices a and b, show that there is a circuit consisting of
some of the edges of Py and Pa.

1-8. If a closed edge train contains vertex a, show that there is a circuit
containing vertex a.

1-9. Prove that every graph contains at least one connected subgraph.

1-10. Prove that if G1 and G2 are two subgraphs of a connected graph G
such that G1 and G2 have no edges in common and together include all edges
of @, then G1 and G2 have at least one common vertex.

1-11. Let a circuit be considered as a subgraph G.. Prove:

(a) If G, contains e edges and v vertices, then e = v.

(b) There are exactly two paths between any two vertices of G..

(¢) G contains at least two edges.

(d) Any proper subgraph of G, contains at least two vertices of degree 1.

(e) @G, contains a path.

(f) The complement of any path in G is also a path.

1-12. If there is a path between vertices a and b and there is a path between
vertices b and ¢, show that there is a path between vertices a and ¢. Thus if
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we write a P b to say that there is a path between a and b, show that the rela-
tion P satisfies

(a) a P a by definition (reflexivity),

(b) a P b implies b P a (symmetry),

(¢) aPb and b Pc imply a P ¢ (transitivity).

A relation between two objects (a bitnary relation) that is reflexive, symmetric,
and transitive is known as an equivalence relation.

1-13. Show that an equivalence relation defined on a finite set S of objects
defines a partition of S into disjoint (mutually exclusive) subsets si1, s2, ..., s
which includes all elements of S.

1-14. Show that the partitioning defined by an equivalence relation (Prob-
lem 1-13) is unique.

1-15. Prove Theorem 1-3.



CHAPTER 2
CIRCUITS AND CUT-SETS

2-1 The Konigsberger bridge problem. FEuler [51] wrote perhaps the
first paper on graph theory in 1736. Euler’s interest was due to a prob-
lem which arose in Kénigsberg, Germany. This celebrated problem,
called the Konigsberger bridge problem, may be stated as follows.

The shaded areas of Fig. 2-1 denote a river, and the regions A, B,
C, and D denote land. There are seven bridges across the river. The
problem was to cross all seven bridges, passing over each one only once.
Euler solved the problem by showing that it was impossible, and laid
the foundations of graph theory. Euler’s formulation is in terms of islands
and bridges.

If we draw a graph for the bridge problem, with a vertex for each region
and an edge for each bridge, we get the graph of Fig. 2-2. The problem
now is to draw this graph as an open or closed edge train. This problem
is solved after the discussion of Euler graphs. (Here, we are certainly not
interested in the solution to this problem but in the fundamental ideas
that have arisen from it.)

Since graphs are considered as sets of edges, a few set-theoretic terms
(which are almost self-explanatory) are used in the following discussion,
without formal definitions. The union of two subgraphs G; and G, is
the set of all edges which are in G; or in G5 or in both. The ¢ntersection
of two subgraphs G; and G is the set of all edges which are (simultane-
ously) in both G; and Ge. Two subgraphs G; and Gg are edge-disjoint
if they have no common edges. @; and G are vertex-disjoint or simply

C
C
e I
D
A
B
B
Fig. 2-1. Konigsberger bridge Fic. 2-2. Graph of the Kénigs-
problem. berger bridge problem.

19
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disjount if they have no common vertices (and hence no common edges
either). Usually the union of G| and @, is denoted by Gy U G2 and the
intersection as G; N G2. Thus if G; and G, are disjoint, G; N G5 is the
null graph.

DEeriniTION 2-1. Euler line. If a closed edge train of the graph con-
tains all the edges of the graph, then it is an Euler line of the graph.

DeriNiTION 2-2. Euler graph. A graph in which every vertex is of
even degree is an FEuler graph.

We next relate these two seemingly different concepts, the Euler line
and the Euler graph.

TueoreEM 2-1 (Veblen). A graph G is an Euler graph if and only if
@ is a union of circuits, no two of which have an element in common.

Proof. If G is an element-disjoint union of circuits, then the degree
of each vertex is even, and the graph is an Euler graph by Definition 2-2.
Let @ be an Euler graph. Let us begin at any vertex »,. There are at
least two elements at v;. Let (v;v9) be one element. Since v, is of even
degree, there is another element (vov3). Now either v3 = vy or there is
an element (vzvy). Proceeding in this fashion, we must incorporate at
some stage a vertex that has already been included. Then we would have
formed a circuit (with some additional elements, possibly). Let this
circuit be removed. The complement (remainder) in G is still an Euler
graph. Thus we can repeat the procedure until no elements are left.
Hence the theorem.

CoroLLARY 2-1. Every vertex of an Euler graph is contained in a
circuit.

F1c. 2-3. The complete pentagon.
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An example of an Euler graph is shown in Fig. 2-3. Each vertex of
this graph is of degree 4. This graph may be described in a number of
ways as a disjoint union of circuits. For example, it consists of the two
circuits abede and fgijh. Or it is made up of the three circuits aef, cdh,
and bjig.

TureorEM 2-2. A graph can be drawn as a closed edge train if and
only if it is a connected Euler graph.

Proof. If the graph can be drawn as a closed edge train, then every
vertex is of even degree. The graph is therefore connected and is an
Euler graph. Let G be a connected Kuler graph. Let Z be a closed edge
sequence of G which contains the maximum number of elements of @.
If (G —Z) = @ is not empty, then G’ is an Euler graph and has a
vertex in common with Z. Let this vertex be v;. By Corollary 2-1, there
is a circuit C in G’ containing v;. Now Z + C is a closed edge train which
can be described by starting at v;, describing Z, and then describing C.
This contradicts the assumption that Z was a maximal closed edge train
and (G — Z) is nonempty. Thus the theorem is proved.

The complete pentagon of Iig. 2-3 can be drawn as a closed edge train
as follows. Starting with vertex 1, we describe the circuit abcde and then
describe the circuit jhfgi.

The next theorem solves the Kénigsberger bridge problem. It is a special
case of a theorem first stated by Listing and later proved by Lucas. We
need the following lemma, which is interesting in itself and has a very
neat proof.

Lemma 2-1. In any finite graph G, there is an even number of vertices
of odd degree.

Proof. Let p, be the number of vertices of degree n, and let G contain
e elements. Since each element has two vertices, we have

2¢ = py + 2p3 + 3p3 + - - - + ppy. (2-1)
Since 2e is even, so is
26"—2})2—“'2p3——4p4~—4p5—6p6—6p7_... o
pr+p3+ps+p7r+ - (2-2)

Hence the lemma.

THEOREM 2-3. A graph is an open edge train if and only if it is con-
nected and contains exactly two vertices of odd degree.

Proof. If the graph is an open edge train, then the two terminal vertices
are of odd degree, and the internal vertices are of even degree. The graph
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is obviously connected. If there are two vertices of odd degree, let these
be @; and Q,. Addition of an edge (Q,Q:) makes the graph into a con-
nected Euler graph, which is a closed edge train by Theorem 2-1.
Removal of (Q,Q2) makes the edge train open.

The graph of the Konigsberger bridge problem contains four vertices
of odd degree and thus is not an open edge train.

2-2 Circuits. Circuits are fundamental in electrical network theory.
This section is devoted to an examination of the concept of a circuit.

Whitney [199], in a fundamental paper, defines circuits for a rather
general class of objects called “matroids,” by means of the following
three postulates.

C,. No proper subset of a circuit is a circuit.

C,. If Py and P, are circuits, if e; is in both P; and Ps, and if e, is
in P; but not in P,, then there is a circuit in P; + P, containing eg
but not e;.

Cs. If P, and P, contain only one common element e, then P; +
Py — e is a union of a set of circuits.

In these postulates, + stands for set-theoretic union. Thus P; + P,
consists of all the elements which are in P; or in P5 or in both. P; +
P, — e is the union of P; and P, with the element e removed.

Before examining Whitney’s postulates, it is useful to introduce the
concept of a ring and a ring sum of sets.

DEeriniTION 2-3. Ring. A ring is a collection S of objects with two
(binary) operations, addition and multiplication defined, which satisfy
the conditions:

(@) f aand Barein S, sois a+ 8= B+ a

(b) There exists a 0 in S such that 0 + @ = « for all « in S.

(¢) For each « in S, there is an o’ in S such that a + o’ = 0.

dat+@B+7)=(a+8)+7;,a 8, and ¥ in S.

(e) If @ and B are in S, so is (afB).

(f) If a, B, and 7 are in S, (aB)Y = a(BY).

(g) If a, 8, and 7 are in S, then a(8 + ) = af + a¥ and (a + B)Y =
oY + B7.

The first four conditions define an abelian group, abelian since the
commutative law is obeyed.

A simple example of an abelian group under addition is the set of
integers (positive, negative, and zero). This set is also a ring, as can be
verified easily. Another example of a ring is the set of real (or complex)
matrices of order (n,n). Real matrices of order (m,n), where m # n,



2-2] CIRCUITS 23

constitute an abelian group under addition but do not constitute a ring
since (e), (f), and (g) are not satisfied. The product of two such matrices
is not defined. A more involved but more familiar example of an abelian
group that is not a ring is the set of 3-dimensional vectors. Here, if the
product is taken as the cross product, multiplication is defined and yields
a 3-dimensional vector. It is also distributive over addition. But multi-
plication is not associative. That is,

AX BXC) = (AXB)XC. (2-3)

(It is not commutative, either.)

DeriNiTION 2-4. Ring sum (mod 2 sum). The ring sum S; @ Ss of
two sets S; and S is the set of all elements of S; and S, which occur
in S; or S, but not in both.

Thus S; @ S, is'the difference between the logical sum and the logical
product (for those familiar with this terminology):

Sl ® S, =85, U8 — 8 nA,. (2—4)

For example, the ring sum of the two sets S; = {a, b, ¢} and Sy =
{b, c, d} is
Sl ® Sz = {a,d}.

The name arises because the ring sum converts the algebra of sets (Boolean
algebra) into a ring.

With the aid of these definitions, we now establish some fundamental
properties of the set of circuits of a graph.

Tueorem 2-4. The ring sum of two circuits is a circuit or an edge-
disjoint union of circuits (i.e., a set of circuits which contain no com-
mon edges).

The proof of this theorem is almost self-evident in the light of Theorem
2-1. For, if we consider any vertex of the ring sum of two circuits which
is in both circuits, the total degree of the vertex is either 2 or 4. If one
of the edges incident at this vertex is common to the two circuits, then
the degree is 2, otherwise 4. All other vertices are of degree 2. In any
case, the degree of each vertex of the ring sum is even. Thus the ring
sum is an Euler graph, and the rest follows.

TaeoreEM 2-5. The set consisting of the circuits and disjoint unions
of circuits of @ is an abelian group under the operation @®.

If we note here the familiar convention in mathematics, that the null
set is a subset of every set, we may observe that the set of circuits and
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disjoint unions of circuits satisfy the first four conditions of Definition 2-3.
We leave it as a problem for the reader to complete the details (Prob-
lem 2-2).

TueoreM 2-6. The circuits of a graph satisfy postulates C;, Cz, and C;
of Whitney if we interpret “4-” as union.

The proof of Theorem 2-6 is left as an instructive exercise (see
Problem 2-3).

2-3 Trees and fundamental systems of circuits. The “tree”’ is perhaps
the single most important concept in graph theory, insofar as electrical
network theory is concerned. The word tree intuitively signifies a treelike
structure, namely a structure in one piece, with branches, and branches
off other branches. There are no closed paths (circuits) of branches.
The term tree signifies a very similar concept in graph theory.

DErFiNiTION 2-5. Tree. A tree is a connected subgraph of a connected
graph which contains all the vertices of the graph but does not contain
any circuits.

This definition differs slightly from the conventional mathematical
definition, in that the condition “contains all the vertices of the graph”
is usually omitted. The alternative is to use the term complete tree for the
concept we need, as in Cauer [25]. Since there is no occasion here to
use an incomplete tree, we define a tree to be complete. Modern engineer-
ing terminology is in accordance with Definition 2-5. It is time to give
a few examples. The graph of Fig. 1-3(b) contains sixteen trees, four
similar to each of the trees shown in Fig. 2-4. As another example, the
graph of Fig. 2-5(a) contains eight trees, four similar to those in Fig.
2-5(b) and two similar to each of Figs. 2-5(c) and 2-5(d). As a third
example, we give two trees of a more complicated graph. The graph is
shown in Fig. 2-6(a) and the trees in 2-6(b) and 2-6(c).

The tree is a very important concept because of the number of prop-
erties of the graph that can be related to the tree. The number of in-
dependent Kirchhoff equations, the methods of choosing independent
equations, the structure of the coefficient matrices, and the topological
formulas for network functions, are all stated in terms of the single con-
cept of a tree. It has been considered so important that it has found its
way even into several undergraduate texts on network theory.

TaEOREM 2-7. A finite graph is a tree if and only if there exists exéctly
one path between any two vertices of the graph.

Proof. If the graph is a tree, there is at least one path between any
two vertices, since the tree is connected. If there are two paths P; and
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(a) (b) () (d)

Fic. 2-4. Trees of Fig. 1-3(b).

/

(o}

(a) (b) (c) (d)

F1a. 2-5. An example for trees.

(a) (b) O
Fic. 2-6. A graph and its trees.

P, between two vertices of a tree, then there is a circuit in P, + Ps,.
But a tree contains no circuits.

If the graph contains one and only one path between any two vertices,
it is connected and contains no circuits. Hence it is a tree (of itself).

TureoreMm 2-8. Every finite connected graph contains a tree.

Proof. If the graph itself is not a tree, it contains a circuit. Removal
of an element of the circuit leaves the graph connected and does not re-
move a vertex, by Theorem 1-2. The circuit, however, is destroyed.
Repeated application of this procedure yields a tree.

THeEOREM 2-9. If a tree contains » vertices, it contains v — 1
elements.
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Proof. The theorem is proved by induction on the number vertices.
If v = 2, the tree can contain only one element, since it contains no
circuits. Let the theorem be true for v = n. For a tree with n + 1
vertices, there is at least one end vertex a (that is, a vertex of degree 1)
by Problem 2-6. Let (ab) be the element incident at a. If (ab) is removed
from the tree, the result is a subgraph of n vertices, which is its own tree.
By induction hypothesis, this subgraph contains n — 1 elements. Adding
the element (ab), therefore, the tree of n + 1 vertices contains n elements.

A tree thus has four properties: connected, no circuits, v vertices, and
v — 1 elements. It can be shown (Problem 2-7) that any three of these
properties imply the fourth. This raises the question of whether any two
will suffice. The answer is given next.

TueoreM 2-10. If @ is a connected graph of v vertices, and G; is a
subgraph of G with v — 1 elements and containing no circuits, then G,
is a tree of G.

Proof. First we show that G, is connected. Ior, let G, consist of p
maximal connected subgraphs. Let s;, sg, ..., s, be the subgraphs, and
let »; be the number of vertices in s;. Since each s; is connected and con-
tains no circuits, s; is its own tree. Hence s; contains v; — 1 elements.
Since sy, S, . . ., $p contain no common elements or vertices, and together
contain all vertices of G,

Zp: v; = 0. (2-5)
i=1

Hence the number of elements in G, is equal to
P P
Z(vi—l):Zvi—pzv——p:v—l, (2-6)
i—1 i=1

by hypothesis. Hence p = 1, or G, is connected. Now G, is its own tree
and contains v — 1 elements. Hence G, contains v vertices, or is a tree
of G. Problem 2-8 disposes of the other pairs of conditions.

DErFiNITION 2-6. Branch. An element of a tree is a branch.

DeriniTiOoN 2-7. Chord or link. An element of the complement of a
tree is a chord (link).

TueoreEM 2-11. A connected graph of » vertices and e edges contains
v — 1 branches and e — v + 1 chords.

When we speak of chords and branches, it is with reference to a chosen
tree.
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If we add one chord to a tree, the resulting graph is, of course, no
longer a tree. The chord, and the path in the tree between the vertices
of the chord, constitute a circuit. This, however, is a unique circuit and
the only circuit of the resulting graph.

DErFINITION 2-8. f-circuit. f-circuits (fundamental circuits) of a con-
nected graph @ for a tree T are the e — v 4 1 circuits formed by each
chord and its unique tree path.

The concept of fundamental circuits is due to Kirchhoff [86] and is
very useful. If the graph is not connected, it consists of maximal con-
nected subgraphs. One can find a tree for each subgraph. The set of
these trees is called a forest of G. It follows immediately that there are
v — p elements in a forest and u = ¢ — v + p elements not in the
forest.

DeriNiTION 2-9. Nullity. The nullity of a graph with e edges, v vertices,
and p maximal connected subgraphs is u = ¢ — v 4+ p. Nullity is
also known by the names of cyclomatic number, connectivity, and first
Betti number.

DeriniTioN 2-10. Rank. The rank of a graph with v vertices and
p maximal connected subgraphs is ¥ — p. (The reason for the name
rank is seen in Chapter 4.)

The fundamental system of circuits for an unconnected graph is ob-
tained by taking the fundamental systems for each maximal connected
subgraph.

Frequently, it is of interest to know whether a subgraph can be made
part of a tree. The following theorem is useful in this connection.

Tueorem 2-12. A subgraph G, of a connected graph G can be made
part of a tree if and only if G contains no circuits.

Proof.* The necessity follows from the definition of a tree. Suppose
that G, contains no circuits. Let T be any tree of G (G connected by
hypothesis). Consider T + G; = G;. G, contains all the vertices of G.
(1 may contain circuits. Any circuit C of G; contains at least one ele-
ment not in Gy, since G, contains no circuits. Removal of such an element
destroys C' without removing a vertex. Repeated application of this
procedure yields the result of the theorem.

* The method of proof is due to Prof. P. W. Ketchum of the University of
Illinois.
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2-4 Cut-sets and fundamental systems of cut-sets. The preceding
discussions have certainly indicated that a circuit is an important sub-
graph, and the discussions to follow add to the stature of circuits. A
second class of subgraphs, the cut-set, closely parallels the circuit (or, to
anticipate later discussion, is dual to it) and finds important use in elec-
trical network theory. Because these two concepts are so closely related,
circuits and cut-sets are introduced early and kept late in the presentation
of the material in this text. Whitney [194] seems to have originated the
concept of a cut-set during his fundamental work on the theory of graphs.

In discussing cut-sets, it is conceptually convenient to regard an edge
as open, that is, as not including the endpoints, and admit isolated vertices
into the graph. The definitions and theorems stated here are all formu-
lated in such a way as to apply with or without this interpretation. In
many of the explanatory statements, however, the endpoints are considered
as not belonging to the edge. (We may note that rank and nullity of a
graph are unaltered by the insertion or removal of isolated vertices.)

DErFINITION 2-11. Cut-set. A cut-set is a set of edges of a connected
graph @ such that the removal of these edges from G reduces the rank
of G by one, provided that no proper subset of this set reduces the
rank of G by one when it is removed from G.

Since the rank of a graph is v — p (Definition 2-10), removal of a
cut-set of edges without their vertices from a connected graph yields an
unconnected graph (with one isolated vertex, possibly). The rank of the
new graph is ¥ — 2. Hence it follows that “cutting” this set of edges
separates the graph into two pieces. The name cut-set has its origin in
this interpretation. For examples of cut-sets, consider the graph of
Fig. 2-7. The sets of edges aige, chgfe, and bhige are examples of cut-sets.
The broken lines on Fig. 2-7 show how these cut-sets “cut” the graph.
Drawing broken lines on the graph is a good way to find most of the

Fre. 2-7. Examples of cut-sets.
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cut-sets; however, there may be other cut-sets which cannot be shown
by a single straight line drawn across the graph, because of the ways in
which the graph may be drawn. For instance in Fig. 2-8(a), the set of
edges abed is a cut-set, but we can draw a straight line through them
only when the graph is redrawn as in Fig. 2-8(b).

Whitney’s original definition of a cut-set was given in 1933. Although
the concept has been used widely by a number of authors, including
Guillemin [68] and Foster [59], very little work was done on the rela-
tionship of cut-sets to the other concepts of graph theory until quite
recently. Our present discussion of cut-sets is based almost entirely on
one of our own papers [154]. The orientation of the discussion here is
toward showing that cut-sets bear the same relationship to circuits that
circuits bear to incidence relationships. Thus we find the duals of a
number of theorems proved earlier about circuits. It is also our purpose
to show later (in Chapter 4) that the set of cut-sets contains the same
essential information as the graph itself.

The cut-set (aige) of Fig. 2-7 is an interesting example of a cut-set,
since these are all the edges incident at vertex 1 of the graph. It is evi-
dent, in general, that if we remove all the edges that are incident at a

(a) h)

Fic. 2-8. Illustration of remark.

o

()

Fic. 2-9. Reduction of rank by cut-sets.
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vertex, that vertex would be isolated. Thus the rank of the graph would
be reduced by at least one. The “at least” in the previous sentence needs
an explanation. Let us consider an example in which the removal of all
the edges incident at some vertex reduces the rank of a graph by more
than one.

In Fig. 2-9(a), if we remove all the edges incident at vertex 1, leading
to Fig. 2-9(b), the rank of the graph is reduced from 6 to 3, a reduction
of three instead of one as required. In fact, we see that the sets ab, c,
and d are each cut-sets, so that the set of edges incident at vertex 1 is a
disjoint union of cut-sets. Why this happened is discussed next. Vertex 1
is the only vertex common to the subgraphs {a,e, b, c} and {d, b, f, g}.
By Problem 1-10, any two subgraphs G; and G5 of a connected graph G
which are edge-disjoint and together include all edges of G must have a
common vertex. In case two such subgraphs G; and G5 have only one
common vertex, that vertex is called a cut-vertex of the graph (also called
articulation point). The formal definition of a cut-vertex is given in the
next chapter along with the related concept of separability. We also note
here that the edge ¢ by itself is a cut-set and so is edge d. These two
edges are not in any circuit of the graph. These few elementary prop-
erties are collected into the next theorem.

TureoreM 2-13. The set of edges incident at a vertex is a cut-set
provided that this vertex is not a cut-vertex (articulation point) of the
graph. Each noncircuit element is a cut-set (by itself). A circuit
element (by itself) is not a cut-set.

TueoreM 2-14. Every cut-set C' contains at least one branch of every
tree T.

Proof. If we remove C, and T remains, there would be a path between
any two vertices through 7, so that C is not a cut-set.

A stronger version of this theorem, which is an elegant characterization
of cut-sets, is possible:

TureorREM 2-15. C is a cut-set if and only if C' is a minimal set of edges
which contains at least one branch of every tree.

Proof. Let C be a minimal set containing at least one branch of every
tree of the connected graph G. Then the complement G, of C with respect
to G does not contain any tree and so is either not connected or contains
one less vertex than G. Hence the rank of @ is reduced by one. Since C
is a minimal such set, G becomes connected when any edge of C is returned
to the graph. On the other hand, if C is a cut-set, the complement in G
is not connected (counting isolated vertices), and so C' contains at least
one branch of every tree of G. If C is not a minimal such set, some proper



2-4] CUT-SETS AND FUNDAMENTAL SYSTEMS OF CUT-SETS 31

subset of C becomes a cut-set by the first part of the proof, contradicting
the definition of a cut-set.

Theorem 2-15 is the analog of Whitney’s [199] characterization of a
circuit as “a minimal set containing at least one chord of every tree”
(Problem 2-22).

A cut-set can be interpreted in another useful fashion. Let G be a
connected graph, and let C be a cut-set of G. Then the graph obtained
by removing C is in two pieces (one of the pieces may be an isolated vertex).
Let A and B be the sets of vertices in these two pieces. Then A and B
are mutually exclusive and together include all the vertices of G. Further,
any two vertices of A can be joined by a path not containing any vertex
of B; and similarly for vertices in B. The edges of C' have one vertex in 4
and another in B. No other edge has this property. Conversely, if the
vertices of the graph G were partitioned into two sets A and B such that
any two vertices in the same set can be connected by paths not contain-
ing a vertex of the other set, then the edges of G which have one vertex
in A and the other in B constitute a cut-set.

This partitioning of vertices can be done by means of a tree. Let T
be any tree of G, and let b; be a branch of 7. Since T contains no circuits,
{b;} is a cut-set of T' (where T is considered as a connected graph). There-
fore this cut-set {b;} defines a partition of the vertices of T' (which are
all the vertices of G) into two sets A and B with the required property.
Now let us consider the cut-set of G corresponding to this partition. This
cut-set contains only one branch of 7 (and some chords with respect
to T). Such a cut-set is called a fundamental cut-set for the following reason.
By Theorem 2-14, each cut-set includes at least one branch of 7, and the
fundamental cut-set includes exactly one. In this respect, it is similar
to a fundamental circuit. Each circuit includes at least one chord of T,
and a fundamental circuit includes exactly one. Furthermore, fundamental
cut-sets are very closely related to fundamental circuits, as we will see
after the following formal definition.

DerFINITION 2-12. f-cut-set. The fundamental system of cut-sets with
respect to a tree T is the set of v — 1 cut-sets, one for each branch,
in which each cut-set includes exactly one branch of 7.

TueoreEM 2-16. If T is a tree of the connected graph @, the f-cut-set
determined by branch b; of T contains exactly those chords of G for
which b; is in each of the fundamental circuits determined by these
chords.

We leave the proof of this important theorem as an instructive problem
(Problem 2-23).
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2-5 Cut-sets and circuits. In this section, we indicate the most im-
portant properties of cut-sets, namely, their relationship to the circuits
of the graph, which form the basis of the discussion of the cut-set matrix
in Chapter 4.

TarEorEM 2-17. Every cut-set contains an even number of edges in
common with every circuit.

Proof. Let a; be a cut-set and ¢; a circuit. Let II; and II; be the
(necessarily disjoint) sets of vertices of the two subgraphs into which «;
separates the connected graph G. If «; and ¢; have no elements in com-
mon, the theorem is proved. If a; and ¢; have elements in common, then
¢;j contains vertices from both II; and M. Let the vertices of ¢; be ordered
cyclically so that any two successive vertices are endpoints of an element
of ¢;. Starting with a vertex in II;, we get to II; by an edge of the cut-
set. We can get back to II; only by another edge of «;. Since the circuit
is a closed edge train, we have to get back to II; finally. Thus the num-
ber of common elements is even.

The next theorem, which is the converse of the preceding, is the dual
of Veblen’s theorem on Euler graphs and characterizes the structure of
cut-sets.

TueoreM 2-18. A nonempty set « of elements of a connected graph G,
such that « has an even number of elements in common with every
circuit, is a cut-set or an element-disjoint union of cut-sets.

Proof. Case 1. « has no elements in common with any circuit. Then
every element of « is a noncircuit element, and so each element is a
cut-set.

Case 2. Let the noncircuit elements be deleted from «, but retained in G.
Let e; be an element of « (which now contains no noncircuit elements).
Remove e; from «, and let «; be the remainder. Remove e; from G,
and let G; be the remainder. @G, is still connected and contains all the
vertices of G. If @; contains a noncircuit element of (1, let this element
be e3. Then {ey, es} is a cut-set of G. Otherwise, let another element e,
be removed from «; and @, resulting in ay and G5. This procedure of
removing elements from o and G is repeated until the remainder of «
contains a noncircuit element with respect to the remainder of G. This
procedure cannot result in an empty set for the remainder of «, for sup-
pose that all but one of the elements of o have been removed both from
a and from G. Let this last element be e,. If e, is in any circuit of the
remainder of G, « initially had at least two elements in common with
this circuit and so the circuit has been destroyed when one of the other
elements was removed from @, contradicting the hypothesis. Thus, at
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some stage, we are left with a noncircuit element whose removal reduces
the rank of G by one. Thus a contains a cut-set of G. Let such a cut-set
be removed from « but retained in G. (We can find this cut-set, if re-
quired, by returning the elements one by one to the graph until the rank
is restored to v — 1.) Let aj be the rest of a. Now aj has the same
characteristic as «; namely, it has an even number of elements in common
with every circuit. This follows because « had an even number of ele-
ments in common with every circuit, by hypothesis, and the cut-set
which was deleted from « also had an even number of elements in common
with every circuit, by Theorem 2-17. Hence the same procedure may
be repeated.

ProBLEMS

2-1. Extend Listing’s theorem (2-3) to show that a graph with 2k vertices
of odd degree can be drawn as k open edge trains, no two of which have a
common cdge (theorem of Lucas).

2-2. Prove Theorem 2-5.

2-3. Prove Theorem 2-6. [Hint: Theorem 2-4.]

2-4. Prove that if every vertex of a graph @ is of degree 2, then @ is a circuit
or a vertex-disjoint union of circuits.

2-5. For a given graph, find a reasonable way of computing the number of
trees of the graph. [Hint: Theorem 2-12.]

2-6. Show that every tree contains at least one vertex of degree 1 (an end
vertex).

2-7. Show that any three of the following four conditions imply the fourth.

(a) @G, contains all v vertices of G.
(b) G, contains v — 1 edges.

(¢) @, is connected.

(d) G, contains no circuits.

2-8. Show by means of counterexamples that except for the pair (b) and (d),
no other pair of conditions of Problem 2-7 implies the other two conditions.

2-9. If u stands for the nullity of the graph (e — » + p), show that for
any graph, u > 0.

2-10. Show that a graph is a forest (a collection of trees) if and only if the
nullity u of the graph is zero.

2-11. Show that u is invariant under insertion or removal of vertices of de-
gree 2 (either by splitting an edge into two edges in series or by merging two
edges in series into one).

2-12. Prove that any end element (an element with a vertex of degree 1) of
a connected graph is contained in every tree of that graph.

2-13. Prove that any element of a connected graph is a branch of some tree.

2-14. Either prove or give a counterexample: any element of a connected
graph is a chord for some tree.

2-15. Prove that a path is its own tree.
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2-16. Prove that there are at most e 4 1 vertices in a connected graph of
e clements.

2-17. Prove that every connected graph contains a cut-set.

2-18. Prove that the complement of a tree does not contain a cut-set.

2-19. Prove that the complement of a cut-set does not contain a tree.

2-20. Prove the following dual of Theorem 2-12. A subgraph G, of a con-
nected graph G can be included in the complement of a tree if and only if G,
contains no cut-sets of G. [Hint: Consider G — G,. Also Problems 2-17 and
2-18.]

2-21. Write out in detail the proof of Theorem 2-13.

2-22. Prove the analogue of Theorem 2-15; that is, prove that a subgraph G,
of a connected graph G is a circuit if and only if G, is a minimal set of edges
containing at least one chord of every tree of G.

2-23. Prove Theorem 2-16. [Hint: Method of proof of Theorem 2-17.]

2-24. Prove that the set of cut-sets and disjoint union of cut-sets is an abelian
group under the ring sum (@).

2-25. The set of all trees of a connected graph G is (b, ¢, e), (a,d,e),
(a,¢,d), (b,c,d), (a,b,¢), (a, b,d), (bd,e), (a,c,e). Find the fundamental
system of cut-sets by using Theorem 2-15, and find a fundamental system of
circuits by using Problem 2-22, both for the same tree. Verify Theorem 2-16
for this example.



CHAPTER 3
NONSEPARABLE, PLANAR, AND DUAL GRAPHS

In the theory of electrical networks without transformers and in the
theory of combinational contact networks, we assume most of the time
that the network is not separable. A network is separable if it consists of
two subnetworks that are joined at only one node. In such a case, we
know from experience that the two subnetworks can be treated as distinct
subnetworks, independent of each other. The graph corresponding to a
nonseparable network is a nonseparable graph. Another concept that is
useful in network theory is that of duality. In this chapter, the graph-
theoretic concepts of separability and duality are presented. This chapter
is based almost entirely on two classical papers by H. Whitney, “Non-
Separable and Planar Graphs” and “2-Isomorphic Graphs” [195, 198].
However, only such parts of these two papers as are of particular interest
in network theory are introduced.

In Section 3-3, we introduce several inconsistencies in terminology to
avoid the encumbrance of new words. The dual of a single edge (with
distinct endpoints) happens to be a loop consisting of a single edge, i.e., an
edge with coincident endpoints or a “self-loop.” Such edges were excluded
in Chapter 1 but are admitted in Section 3-3 to avoid complicating all
the theorems about duality. (All cases of interest in the applications
concern nonseparable graphs, and in such cases self-loops do not ap-
pear.) Also, in some of the proofs of this section it is convenient to
consider the vertices as not belonging to the edge, and we admit isolated
vertices. We adopt this procedure in preference to the introduction of
new terminology. (The definitions and theorems still hold under the
original definitions.) In the earlier sections of the chapter, however,
isolated vertices and single-edge loops are not admitted.

3-1 Nonseparable graphs.

DerintTioN 3-1. Nonseparable. A graph G is nonseparable if every
subgraph of G has at least two vertices in common with its comple-
ment. All other graphs are separable.

Thus a graph that is not connected is a trivial example of a separable
graph. Several examples of separable graphs are shown in Fig. 3-1.
Examples of nonseparable graphs are shown in Fig. 3-2. It follows from
the definition that a connected separable graph G must contain at least

35
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()

()

Fic. 3-1. Separable graphs.

(a) (b) (e)

Fic. 3-2. Nonseparable graphs.

one subgraph which has only one vertex in common with its complement.
In Section 2-4 such a vertex was named a cut-vertex. Formally, a cut-
vertex is defined as follows.

DeriniTION 3-2. Cut-vertex. Let G be a connected separable graph,
and let v, be the single vertex in common between a subgraph G, and
its complement. Then v, is a cut-vertex (articulation point) of G.

TaeEorREM 3-1. A necessary and sufficient condition that a connected
graph be nonseparable is that it contain no cut-vertex. (This theorem
is merely a restatement of the definition.)

THeEOREM 3-2. A necessary and sufficient condition that v, be a cut-
vertex of a graph G is that there exist two vertices v, and v, (other
than »;) in @ such that every path from v, to v, contains v,.

Proof. Suppose that every path from v, to vp contains v.. Let S be the
set of vertices which can be connected to v, by a path not containing v,.
Let v, and v, be added to S to make S;. Then v is not in S;. Consider
the subgraph G, consisting of the edges which have both vertices in S;.
This subgraph has only the vertex v, in common with its complement.
For if vgis any other common vertex, and ey is an edge of the complement,
incident at vq4, we see that the other vertex v; of e; can be connected to
v, without passing through v, by a path from v, to vs together with eg.
Thus v; belongs to S; and so eg belongs to G, contrary to assumption.



3-1] NONSEPARABLE GRAPHS 37

Thus @ is separable and v, is a cut-vertex. The necessary part of the
condition of the theorem is evident (from a sketch containing a cut-
vertex).

A different way of looking at a nonseparable graph is given by Defini-
tion 3-3 and Theorem 3-3, which follow.

DeriniTioN 3-3. Cyclically connected. A graph is cyclically connected
if any two vertices in the graph can be placed in a circuit.

TaEOREM 3-3. A necessary and sufficient condition that a graph con-
taining at least two edges be cyclically connected is that it be non-
separable.

Proof. Without loss of generality, we may assume that the graph is
connected, as the theorem is trivial otherwise. If (G is separable, by
Theorem 3-2 there exist two vertices v, and v, which cannot be placed
in any circuit. Suppose that there are two vertices v, and v, which are
not in any circuit. If there is an edge (v4vp) In G, then there is no other
path from v, to v,. Now we see that G is separable by a proof similar
to the proof of Theorem 3-2. Otherwise, let v, vg, . . ., vy be the vertices
of a path from v, to v,. If there is no circuit containing v, and vg4, the
first proof applies. Otherwise, let v, be the last vertex of the path that
can be placed in the same circuit as v,. Let vy be the next vertex of the
path. Then every path from v, to v, passes through v.. IFor suppose that
there is a path from v, to vy not containing v.. Let this path be p. Then
we can construct a circuit containing v, and v; (thus contradicting the
hypothesis that v, is the last vertex of the path that can be placed in
the same circuit as v,) as follows. Let C' be the circuit containing v, and
ve. Starting with vy, follow p until a vertex of C is reached. If v, is not
the first vertex reached, follow C to v,. Continue along C to v, and com-
plete the circuit by the edge (v.vs), which will complete the proof.

TueoreM 3-4. A nonseparable graph containing at least two edges
is of nullity u > 0. Each vertex is at least of degree 2.

The proof is omitted. (See Problems 2-9 and 2-10.)

THEOREM 3-5. A nonseparable graph of nullity 1 is a circuit and
conversely.

The proof is left as a problem (Problem 3-3).

If the connected graph G is separable, we may separate the graph into
two new connected graphs by splitting the cut-vertex in two. Insofar
as electrical networks are concerned, this splitting is an operation that
does not change the current or voltage of any network element. This
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process may be continued with another cut-vertex (if one exists) until
every maximal connected subgraph is nonseparable. This process is
known as decomposition of a separable graph into its components (German
Glieder). We may now observe:

TueorEM 3-6. Every nonseparable subgraph of G is contained wholly
in one of its components.

A more important theoretical result is:

TueorEM 3-7. The decomposition of a graph into its components is
unique.

Proof. The theorem follows immediately from Theorem 3-6. For
suppose that Gy, G, ..., G, and G, Gy, . . ., G), are two decompositions
of G. Since G, is a nonseparable subgraph of G, it is contained wholly in
one of the components G}, G5, . . ., Gy, say G;. But G is a nonseparable
subgraph of G and so is contained in a G,. Hence G, is contained in G,
or they are identical. Hence also G, and @’ are identical. Repeated
application of the argument yields the result.

In Chapter 1 we defined isomorphism for two graphs. The concept of
decomposition of a separable graph gives a different type of equivalence.
Consider a separable graph with a eut-vertex v,. It may be decomposed
by replacing v; by two vertices »] and vy’. Now, if we like, we can recon-
nect the two parts by coalescing some vertex v, of one part with some
vertex v; of the other. If the graph represents an electrical network,
the new network has the same currents and voltages as the old one. Two
such graphs are shown in Fig. 3-3. A more general type of equivalence
that is of interest in electrical network theory is the interchange of series-
connected elements or subnetworks. This whole class of equivalences
was investigated by Whitney [198] who named the equivalence a
2-isomorphism.

DeriNitiON 3-4.  2-isomorphism. Two graphs G; and G, are 2-
isomorphic if they become isomorphic under (repeated applications of)
either or both of the following operations:

(a) (M)
Fic. 3-3. Equivalent graphs.
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(a) (b)
() (d)
Fic. 3-4. Pairs of 2-isomorphic graphs.

(a) Separation into components.

(b) If the graph consists of two subgraphs H; and Hj, which have
only two vertices a and b in common, the interchange of their
names in one of the subgraphs.

Geometrically, the subgraph is “turned around” at these vertices, under
operation 2. The most important result about 2-isomorphic graphs is
the following result of Whitney.

TueoreM 3-8. If there is a one-to-one correspondence between the
edges of two graphs G; and G5 such that circuits correspond to circuits,
then the two graphs are 2-isomorphic. Conversely, if G; and G, are
2-isomorphic (and hence have a one-to-one correspondence between
their edges), then circuits in either graph correspond to circuits in the
other.

The second half of the theorem is fairly evident. The proof of the
first part of the theorem is too long to be given here. We therefore refer
the reader to the original paper by Whitney [198]. Two pairs of 2-
isomorphic graphs are shown in Fig. 3—4.

3-2 Planar graphs. The discussions up to this point have been entirely
in terms of the abstract graph; the diagrams have served merely as illus-
trations of the theory. In this section, the problem considered is that of
mapping a graph on a plane. Naturally, only a geometric graph can be
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Fic. 3-5. Stercographic projection.

mapped. It was remarked in Section 1-2 that in a 3-dimensional euclidean
space, a geometric structure can be associated with each abstract graph.
This geometric structure is referred to as the topological graph. The dis-
tinction between the abstract graph and the topological graph must be
carefully kept in mind. This section and parts of the next are concerned
with the topological graph.

DeriNiTION 3-5. Planar graph. A topological graph is planar if it
can be mapped onto a plane such that no two edges have a point in
common that is not a vertex. An abstract graph is planar if the cor-
responding topological graph is planar.

TueoreM 3-9. If a graph can be mapped (as in Definition 3-5) onto
a sphere, it can be mapped onto a plane, and conversely.

Proof. To prove the theorem, we use the familiar stereographic pro-
jection of the sphere onto a plane. (This is the mapping of the complex
plane onto the Riemann sphere.) The sphere is kept on the plane. The
coordinate system in the plane is such that the point of contact is the
origin, as in IYig. 3-5. The topmost point of the sphere is N (the north
pole). Joining N to any point P of the sphere by a straight line and
extending the line to meet the plane at P’ establishes a one-to-one corre-
spondence between points on the plane and points on the sphere. This
procedure is referred to as mapping the plane onto the sphere, and con-
versely. Suppose that we have the graph mapped onto a sphere. Place
the sphere on the plane so that the north pole is not a point of the graph
(that is, it is not a vertex and is not on any edge of the graph). The
stereographic projection now maps the graph onto the plane. The con-
verse is proved similarly.



3-3] DUAL GRAPHS 41

DEeriNiTION 3-6. Region. The regions of a planar graph are the regions
into which the graph divides the plane or the sphere when mapped onto
the plane or the sphere.

In network theory, regions of a planar graph are usually referred to
as windows or sometimes as meshes. A given region of the graph is char-
acterized by the edges on the boundary of the region. When the graph
is mapped onto a plane, the unbounded region is also referred to as the
outside region.

Tueorem 3-10. A planar graph may be mapped onto a plane such
that any given region is the outside region.

Proof. Map the graph onto the sphere by Theorem 3-9. Rotate the
sphere so that the north pole is inside the given region. Map the graph
back onto the plane.

The most important application of planar graphs is in connection with
duality, to be considered in the next section.

3-3 Dual graphs. Following Whitney, we first give an algebraic defini-
tion of duality and later show that it agrees with the familiar geometrical
definition. In a discussion of dual graphs, it is necessary to admit a “self-
loop,” i.e., an edge with coincident endpoints.

DerINITION 3-7. Dual. G5 is a dual of G, if there is a one-to-one
correspondence between the edges of two graphs ¢; and G5 such that
if H, is any subgraph of G, and H s is the complement of the corresponding
subgraph of G, then

re = Ry — ny, (3-1)

where ro, and R, are ranks of H, and G5, respectively, and n; is the
nullity of Hji.

In Definition 3-7, duality is defined for abstract graphs. Since the
definition is likely to be somewhat confusing at first sight, let us consider
an example of duality in the usual geometric sense and illustrate the
definition. In Fig. 3-6(a), two dual graphs are mapped together, the
individual graphs being shown in IFigs. 3-6(b) and 3-6(c). The edges
are labeled such that a corresponds to a*, b to b*, etc. Let H; be the
subgraph of G, consisting of edges a, ¢, d, and g. Then the corresponding
subgraph of G, is {a*, c* d*, g*}, so that the complement Hj consists
of edges b*, e* and f*. These two graphs are shown in Fig. 3-7. By
inspection of Figs. 3-6(c) and 3-7, we see that

re = 2, R, = 3, and n; = 1. (3-2)
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(b) G, (©) Gy

Fi1c. 3-6. Illustration of Definition 3-7.

[o]
b*
a
[4
d ¢
f*
g9

(a) H, (b) Hy
Fic. 3-7. Hi and H2 of Example.
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Thus Tog = 2 = R2 — Ny = 3 — 1. (3”3)

For another example, choose H, = {a, b, ¢, d, e}, so that n; = 2. Then
H, = {f* g*}, with ro = 1. Again this checks with the definition, since

Ry—mn; =3 —2=1. (3-4)

Throughout this section, the notation established by Definition 3-7 is
followed. Capital R and N are used for rank and nullity of a graph, and
lower case letters are used for rank and nullity of subgraphs, with sub-
seripts corresponding to graphs.

TaeoreMm 3-11. Let G5 be a dual of G;. Then
Rl = N2 and R2 = Nl. (3—5)

Proof. Let H; be a subgraph of G; consisting of @, itself. Then the
corresponding subgraph of G5 is G5 itself, so that the complement H, is
the null graph. Hence, ro = 0 and n; = N,;. Substituting in the defini-
tion, we find that

Ry = N,. (3-6)

The other equation follows immediately, since the two graphs contain
the same number of edges and R + N = number of edges, for any graph.
TueoreM 3-12. If G, is a dual of G, then G is a dual of Gs.

Proof. Let H, be any subgraph of G5 and H, the complement of the
corresponding subgraph of G;. Since G is a dual of G,

ro = R2 — Nj. (3_73)
By Theorem 3-11,
Rs = N,. (3-7b)

If e; and ey stand for the numbers of edges in H; and Hs, respectively,
and E stands for the number of edges in G; (or G3), we note that

e1+ e2 = E. (3-8)
These equations give

rin=-¢e —n =¢e — (R2 —r3) = e, — Ny + (e2 — ng)
=E—N1—n2=R1—n2. (3—9)
Thus G, is a dual of G, by Definition 3-7.

Hence it is not necessary to say that G is a dual of G5. It suffices to
say that G; and G2 are dual graphs. We need the next two theorems for
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the proof of the main results of this section. The proof of Theorem 3-13
is not given, since it depends on several results which have not been
considered here. The proof may be found in Whitney [195].

TueoreM 3-13. The dual of a nonseparable graph is nonseparable.

TueoreM 3-14. Let G and G be dual graphs, and let a;(ay, b;) and
as(as, bs) be corresponding edges. (In this notation, a; and b; are
vertices of a;, and similarly for as.) Form @] from G, by deleting the
edge aj(a;, by). Form G5 by deleting the edge az(az, b2) and letting
the vertices ag and by coalesce. Then G and G5 are duals, the corre-
spondence between their edges being the same as in G; and G».

Proof. Let H} be any subgraph of @1, and let Hj be the complement
of the corresponding subgraph of Gj. Let H, be the subgraph of G,
identical to H;. Then the nullities of H, and H} are the same:

ny = n’l . (3—10)

Let H, be the complement in G of the subgraph corresponding to H;.
Then
ro — R2 — N, (3—11)

since G, and G2 are duals. Now H is the subgraph in G2 corresponding
to H, in G, except that H, contains as(as, b2) and these vertices are
distinct. If we delete as(as, bs) from Hg and let the vertices ag and bg
coalesce, we form H),. In this operation, the number of maximal connected
subgraphs remains unchanged and the number of vertices is decreased
by one. Hence,

ry = ryg — L. (3-12)

As a special case of this equation, if H, contains all the edges of G5, then
Ry = Ry, — 1. (3-13)
Combining these equations, we find that
ry = RY — nj. (3-14)
Hence G, is a dual of G1.

The most important result on duality is the next theorem, on the
existence of a dual. This theorem and the next also relate the algebraic
definition of duality with the geometrical definition.*

* The proofs of Theorems 3-15 and 3-16 are very involved and may be omitted
if desired, without loss of continuity. They are included here because of the
importance of these two theorems.



3-3] DUAL GRAPHS 45

TureoreM 3-15. A graph has a dual if and only if it is planar.

Proof. The proof is considerably simplified by considering the vertices
as not belonging to the edges. Since rank and nullity are unaltered by
the insertion or removal of isolated vertices, the definitions apply under
this convention as well.

Let G; be a planar graph. Let G; be mapped onto a sphere. If N,
is the nullity of G,, we observe first that G; divides the sphere into
N + 1 regions. To see this, construct G; edge by edge, starting with
all the vertices in place. Initially, the graph contains » vertices and no
edges, and is in v separate pieces. The rank and nullity are both zero.
Every time we add an edge joining two separate pieces, the nullity and
the number of regions remain the same, but the rank increases by one.
Every time an edge is added, joining two vertices in the same connected
subgraph, the nullity and the number of regions both increase by one.
Initially, the nullity is zero and the number of regions is one. Hence
after G is constructed, the number of regions is N; + 1.

The graph G5 is next constructed as follows. In each region of the graph
G, place a vertex of the graph G5. G5 therefore contains N; + 1 vertices.
Each edge of G5 crosses exactly one edge of Gy, the vertices of the edge
of G, lying in the two regions separated by the edge of G,. Each edge
of @, is crossed by exactly one edge of Go. The edges of G; and G, are
now in a one-to-one correspondence, as defined by the crossing relation-
ship. In the usual geometrical (or combinatorial) sense, G| and G are
duals. It remains to prove that they are duals in the algebraic sense of
Definition 3-7 as well.

Let H; be a subgraph of G, and let H, be the complement of the
corresponding subgraph of G5. To establish the result, we must show
that ro = Rs — nj;. For this purpose, a constructional scheme is used,
simultaneously constructing H; and H,. To this end, begin with G5 on
the sphere and all the vertices of G, in place. H; is now constructed by
adding its edges one by one. Each time an edge of H, is added, delete
the corresponding edge of G, (leaving the vertices behind). Hence when
H, is completely constructed, H, is also formed. To establish the re-
quired relationship between ranks and nullities, we prove:

(1) Each time the nullity of the subgraph of G, is increased by one

(on adding an edge), the number of connected pieces in the subgraph

of G, is increased by one (on deleting the corresponding edge of Gs).

(2) Each time the nullity of the subgraph of G, is unaltered, the
number of connected pieces in the subgraph of G, is also unaltered.

In (1), we should remember that some of the connected pieces may be
isolated vertices. To prove (1), note that the nullity of the G;-subgraph
is increased only when an edge is added between two vertices in the
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same connected piece. Let (aj, b;) be such an edge, with vertices a; and
b;. As a; and b; were already connected by a path, this path together
with the edge (a;, by) forms a circuit C. Let (as, bs) be the edge of G,
corresponding to (ai, b;). When (ag, bs) is removed, the vertices as and
by are no longer connected. Ior suppose that there is still a path p,
connecting them. Since a, and b, are on opposite sides of the circuit C,
pe must cross C. (Strictly speaking, we must appeal to the Jordan curve
theorem to prove this fact.) Thus an edge of p, crosses an edge of C.
But such an edge of p, was removed when the corresponding edge of C
was added. Thus proposition (1) is established.

To prove (2), consider constructing the whole of the graph G, by this
process. The total increase in nullity is then N;. Therefore the increase
in the number of connected pieces in G is at least N, by (1). Gz was
initially in at least one piece, and so is finally in at least N, + 1 pieces.
But what is left of G5, once G is constructed, is a set of vy isolated ver-
tices. Since vy = N, + 1, by earlier construction, “at least” in the two
sentences above must be replaced by “exactly.” Thus G5 is connected
and the number of connected pieces increases only when the nullity of
the G-subgraph increases.

Returning to H, and H,, if we let Hy have all the vertices of G, the
increase in the number of connected pieces when H, is formed from G is
exactly ny, the nullity of H,. Since G is connected, by previous argu-
ment, the rank of G5 is v, — 1. Hence the rank of Hj is given by

ro =09 — 1 — ny = Ry — n,. (3-15)

Thus G, and G2 are duals in the algebraic sense as well.

To prove the other half of the theorem, we must show that if a graph
has a dual, then it is planar. Whitney [195] has shown that if the com-
ponents of a graph are planar, so is the graph. (This result is fairly obvious
if one considers the topological graph.) Thus it is sufficient to consider
nonseparable graphs. The second part of the theorem is therefore a
consequence of the following theorem.

TueoreEM 3-16. Let a nonseparable graph G; have a dual G5. Then
@; and G5 can be mapped on a sphere such that

(a) corresponding edges of G; and (2 cross each other, and no
other edges cross, and

(b) inside each region of one graph, there is just one vertex of the
other graph.

Since the proof of the theorem is somewhat involved, we first give an
outline of the proof, using diagrams, before we undertake the formal
proof. The proof proceeds by induction on the number of edges in G,
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and Go. If the graphs contain only one edge each, they can be mapped
as shown in Fig. 3-8. Next, we assume that the theorem is true for all
graphs with less than e edges. Consider dual graphs G; and G5 with
e edges. The idea of the proof is to drop one edge of G; and the corre-
sponding edge of G, coalescing the vertices of one of the two edges.
By Theorem 3-14, the new graphs G and G are duals and preserve the
correspondence between edges. Since they have only e — 1 edges each,
they can be mapped, as required, by the induction hypothesis. The
problem now is to restore the original graphs, maintaining conditions (a)
and (b). The proof is broken up into two cases for this purpose. The
first (and simpler) case is that in which one of the two graphs G; and
@2 has a vertex of degree 2. In this case, consider the graph which has
a vertex of degree 2 to be G;. We drop one of the two edges at this vertex
and coalesce the vertices of the dropped edge. The restoration merely
consists of inserting a vertex on the remaining edge of G; and adding an
edge to Gy, as in IYig. 3-9. That (a) and (b) are maintained is evident.

The other case is that in which every vertex is of degree 3 or more.
Here again, an edge (ay, b;) of Gy and the corresponding edge (az, bs)
of G4 are dropped, and the vertices a, and by are coalesced to form a
new vertex ay. The new graphs G| and G are mapped as required
by the induction hypothesis. Now we must separate a;, into two vertices
and insert the dropped edges to restore the original graphs. This is more
complicated than inserting a vertex on an edge as in Fig. 3-9. We must

ag az
p A
/ /7 N\
/ / \
al al \B
/ / \
: o—+—o—L>—o
a;0—————————0¢( a = ¢
\ 1
\ \ /
\ \ /
\ \ /
\ \U/
)
b2 b2

(a) (b)

Fic. 3-9. Restoration for vertex of degree 2.
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ay

(a) )
Fi1c. 3-10. Restoration of general case.

establish that as a) is separated into two vertices, no two edges of G,
will cross each other, and when the edge (as, bs) is added, it will not
cross any other edge of 3. This is established as follows.

We first show that the edges of G corresponding to the edges incident
at as of G constitute a circuit. Since we do not know that the graphs
G, and G2 can be mapped onto a sphere, we require an algebraic proof.
Similar results hold for edges corresponding to those incident at vertices
ay, by, and bs. Next, we establish that the circuit corresponding to the
edges incident at a), consists of two paths p; and p, between the vertices
a; and b;, which came from the two circuits corresponding to as and b,
when (a4, b;) was removed. Hence when a}, is separated into two vertices,
there will be no crossing of edges of Go. This is illustrated in Fig. 3-10.
Now (as, by) is restored, and then (ay, b;) is restored. The need for
establishing the crossing of p; and ps may be appreciated by noting
that if « in Fig. 3-10(b) is incident at by, and B at a,, the edge (ay, by)
would cross « and 8 and (ag, bg). Thus condition (a) would be violated.
It is also necessary to establish that there is no “extraneous” part of G,
inside the circuit formed by p; and p,, which might be crossed by (ay, by).
We turn now to the formal proof.

Proof of Theorem 3-16. The theorem is easily seen to be true if the
graph contains a single edge. We assume it to be true for graphs contain-
ing less than e edges and prove it for graphs with e edges. Since every
edge of a nonseparable graph is in a circuit, each vertex is at least of de-
gree 2.

Case 1. (G, contains a vertex b; which is incident only with two edges
(a1, by) and (by, ¢;). Since G; is nonseparable, there is a circuit contain-
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ing these edges. Thus deleting one of them will not alter the rank, but
deleting both of them reduces the rank by one. From the definition of
duality, each of the two corresponding edges in G is of nullity zero, and
the two edges taken together are of nullity one. Thus they are of the
form a(as, bs) and B(ag, bs), the first corresponding to (a;, b;) and the
second to (by, ¢;). Delete the edge (by, ¢;), and let the vertices b; and
¢y coalesce, thus forming G}. Since @ is nonseparable, so is G§. Delete
B(az, b2) from G to form G3. By Theorem 3-11, G and G5 are duals
and preserve the correspondence between their edges. Since these graphs
contain fewer than e edges, they can be mapped together onto the sphere
so that (a) and (b) hold. In particular, a(asbs) crosses (ay, ¢;). Mark
a point on the edge (a1, ¢;) of G} between the vertex c¢; and the point
at which the edge a(ag, bg) of G5 crosses it. Let this be the vertex by,
dividing the edge (ai, ¢;) into the two edges (a;, b;) and (by, ¢;). Draw
the edge B(az, bs) crossing the edge (by, ¢;). Now G, and G5 are recon-
structed and are mapped onto the sphere, as required.

Case 2. Each vertex of G is at least of degree 3. Then (¢, is not a
circuit and so is of nullity greater than 1. Under these conditions, it is
possible to drop an edge (a1, b;) of G; (not any edge, but only a suitably
chosen edge) such that the rest of the graph is still nonseparable. (The
proof of this result is to be found in Whitney [195].) G5 is nonseparable
and contains more than one edge, and so the edge (as, b2) corresponding
to (ay, by) of G, is not a self-loop; that is, it has distinct vertices. Delete
(ag, be), and let its vertices coalesce into a new vertex aj, thus forming
G,. By Theorem 3-14, G} and G} are duals and preserve the correspond-
ence between their edges. Since @] is nonseparable, so is G5. Consider
the edges of (5 incident at as. Since ag is not a cut-vertex (G non-
separable), these edges constitute a cut-set of edges (Theorem 2-14).
Hence by Problem 3-15, the edges of Gy corresponding to these edges of
G, constitute a circuit C';. One of these edges is the edge (a;, by). The
remaining edges constitute a path p;. Similarly, the edges of G, corre-
sponding to the edges of G5 incident at by constitute a circuit C'5, and
this circuit without the edge (ay, b;) is a path ps. The paths p; and p.
have a; and b; for their terminal vertices. By the same argument, the
edges of G} corresponding to the edges of G incident at aj constitute a
circuit ¢". But these are the edges corresponding to the edges of Gs
incident at a, and be, except the edge (as, bs), which was deleted. Hence
the edges of G constituting the circuit C’ are the edges of the paths p;
and Da2.

Since G and G have less than e edges, they can be mapped onto
the sphere such that (a) and (b) hold. The vertex aj lies on one side of
the circuit C’, which we shall call the “inside.” Each edge of C’ is crossed
by an edge incident at aj. Hence there are no other edges of G, crossing C’.
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There is no part of G4 lying inside C’ other than the vertex aj, for such
a part can have only the vertex aj in common with its complement,
whereas (75 is nonseparable. Also, there is no part of G} lying inside C’,
for any edge must be crossed by an edge of G and any vertex must be
joined to the rest of G} by an edge, since G} is nonseparable.

Now replace a}, by two vertices as and b, restoring the original incidence
for the edges at a;, [the edge (a2, be) has not yet been restored]. Since
the set of edges incident at ag all cross the path p;, and the set of edges
incident at by cross the path p,, we can separate a} into as and by in such
a way that no two edges of G5 cross each other. We may now join a,
and b; by the edge (ay, by), crossing none of the other edges. This divides
the circuit €’ into two parts, with a, in one part and b, in the other.
We may therefore join a; and by by the edge (as, bs), crossing (ay, by).
@G, and G2 are now mapped onto the sphere, as required.

A problem is suggested at the end of this chapter (Problem 3-22) to
show the need for care in this argument.

Theorem 3-15 gives one characterization of planar graphs, namely that
they have duals. A different characterization of planar graphs, in terms
of their structure, is given by the following celebrated theorem of
Kuratowski.

TueoreM 3-17 (Kuratowski). A necessary and sufficient condition
that a graph be planar is that it contain neither of the following two
graphs as subgraphs:

G,. This graph is formed by taking five vertices, a, b, ¢, d, and e,
and connecting each pair of vertices by an edge or a series connection
of edges.

(9. This graph is formed by taking two sets of three vertices, a, b, ¢
and d, e, f, and joining each vertex of one set to each vertex of the
other by an edge or a series connection of edges.

These two basic nonplanar graphs are illustrated in Fig. 3-11. The word
sertes is used in the familiar sense of electrical network theory. IFormally,
the definitions of series and parallel are:

d 4 e ¢

Fie. 3-11. Basic nonplanar graphs.
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DeriniTioN 3-8. Series. Two edges o and B are in series if they have
exactly one common vertex and this vertex is of degree 2.

DeriniTioN 3-9. Parallel. Two edges a and B are in parallel if they
are incident at the same pair of vertices.

Kuratowski’s theorem has been stated here because of its fundamental
character. However, we are unable to give a proof of the theorem, since
the proof depends on many point-set topological ideas that have not been
developed here. The original paper of Kuratowski [94] is referred to for
a proof. A proof is also given by Whitney [197]. The result itself is very
useful for constructing counterexamples. A matrix method of proving
that neither of the two graphs of Fig. 3-11 has a dual is suggested as a
problem in Chapter 4. It follows then, from Theorem 3-15, that neither
graph is planar.

In Definition 3-7 and the various theorems following it, the phrase
“Gy is a dual of G1” was used instead of “. .. the dual...” One may ask
whether a graph can have more than one dual and, if so, how the duals
are related. We can conceive of a simple way in which two different
graphs (nonisomorphic graphs) can have the same dual. Suppose that
we begin with an unconnected graph @; and find its geometrical dual G4
by the procedure of Theorem 3-15. From the proof of Theorem 3-15,
G, is connected. Let us next take G» and construct its geometrical dual
G by the same procedure. Then G is also connected. Hence G; and G
are both duals of G2 and they are not isomorphic, since one is connected
and the other is not. More complicated situations can occur also. The
general question is answered by the next theorem.

TueorEm 3-18. The dual of a graph, when it exists, is unique within
a 2-isomorphism. That is, if G, and G4 are both duals of the same
graph G4, then G, is 2-isomorphic to G5.

Proof. Take any circuit of G (or of G3). By Problem 3-15, the corre-
sponding edges of G; constitute a cut-set. Again by Problem 3-15, the
edges of G4 (or of G2) corresponding to this cut-set constitute a circuit.
Thus circuits of G2 and G correspond and, by Theorem 3-8, the graphs
are 2-isomorphic.

3-4 One terminal-pair graphs. In both conventional electrical net-
works and combinational contact networks, the concepts of separability
and duality are used in connection with one terminal-pair networks in
a sense that is slightly different from the definitions given in Sections 3-1
and 3-3. The following definitions serve to clarify this concept.
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1
6@ |
5 4
(@)

a h)

Fic. 3-12. One terminal-pair examples.

_——

(¢) (d)

Fig. 3-13. Dual of a one terminal-pair.
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DeriniTiON 3-10. One terminal-pair graph. A one terminal-pair graph
is a graph with two vertices (conventionally denoted by 1 and 1’)
specially designated as terminals of the graph.

DeriniTioN 3-11.  Planar one terminal-pair graph. A one terminal-
pair graph is planar if the graph remains planar when an edge is added
between the terminals (1, 17).

DerintTioN 3-12. Dual of one terminal-pair graph. The one terminal-
pair graphs ; and G2 with terminals (1, 1’) and (2, 2') respectively, are
duals in the one terminal-pair sense if the graphs obtained by adding
the edges (1, 1’) and (2, 2’) are duals in the sense of Definition 3-7,
with the added edges corresponding to each other.

As an example, the graph of Fig. 3-12(a) is planar. If, however, it is
considered as a one terminal-pair graph, it may or may not have a dual,
depending on the terminal-pair chosen. If 2 and 5 are chosen as terminals,
it has no dual.

An example illustrating the process implied in Definition 3-12 is given
in Iig. 3-13. Part (a) of the figure shows Gy, and part (d) shows G,.

DerintTioNn 3-13. Nonseparable one terminal-pair graph. A one terminal-
pair graph @ is nonseparable if the graph obtained by adding an edge
between the terminals is nonseparable.

For example, TFig. 3-12(b) is a nonseparable one terminal-pair with
terminals (1, 1’).

The concept of a dual is also useful with two (or more) terminal-pair
electrical networks, but the problem is a little more involved due to the
desire to have certain relationships between the network functions of the
two networks. Hence the discussion is postponed to Chapter 6.

ProBLEMS

3-1. Let a graph G be a trece (of itself). Show that every vertex of G is a
cut-vertex.

3-2. Prove that a connected graph G is separable if and only if G contains
two edges with a common vertex v, such that no circuit of G contains both
edges.

3-3. Prove Theorem 3-5.

3-4. Prove that every nonseparable graph contains at least one circuit.

3-5. Prove that if a nonseparable graph G contains e edges and v vertices,
e > .

3-6. Prove that any edge of a nonseparable graph can be made a chord of
a tree.

3-7. Prove that every cut-set of a nonseparable graph contains at least
two edges.
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3-8. Any two edges of a nonseparable graph can be contained in some f-
circuit. True or false?

3-9. Prove that every vertex of a nonseparable graph is incident to at least
two edges.

3-10. Under what conditions can any two elements of a connected graph
be made chords of a tree?

3-11. Prove that the rank and nullity of a graph are invariant under the
decomposition of a graph into its components.

3-12. Show that the circuits of a graph are invariant under operation (b) of
Definition 3-4.

3-13. Either prove or give a counterexample: a graph is specified to within
a 2-isomorphism by its rank and nullity.

3-14. Draw a few examples of planar graphs and find their duals.

3-15. Prove that if G1 and G2 are dual graphs, circuits in either graph cor-
respond one-to-one with cut-sets in the other. [Hint: Whitney’s postulates Cj,
Cg, and C3 and definitions of cut-sets and duals.]

3-16. Let G1 and G2 be one terminal-pair dual graphs with (1, 1’) and (2, 2')
as their terminals. Show that paths between the terminals of either graph corre-
spond to cut-sets in the other graph, with the terminals being placed in different
parts by the cut-set, and conversely.

3-17. Let G be a one terminal-pair graph with terminals (1, 1’). Show that
every path between these terminals has an odd number of edges in common
with every cut-set separating these terminals. State and prove an appropriate
converse.

3-18. A one terminal-pair graph is defined to be series-parallel as follows:

A single edge is series-parallel. A series or parallel combination of series-
parallel graphs is series-parallel.

Show that the dual of a series-parallel graph is series-parallel. Hence show that
the dual of any non-sertes-parallel (or bridge) graph is another bridge graph.

3-19. With dual graphs, show that disjoint unions of circuits in either graph
correspond to disjoint unions of cut-sets in the other.

3-20. If G1 and G2 are dual graphs, show that trees in (1 correspond to tree
complements in G2 and conversely.

3-21. If G1 and G2 are dual graphs, show that the f-circuits of either graph
correspond to f-cut-sets in the other. [Hint: Problems 3-15 and 3-20.]

3-22. To illustrate the need for care in the proof of Theorem 3-16, attempt
the following:

Delete one of the edges of the nonplanar graph of Fig. 3-11(a) or (b), thus
making it planar. Let this be the graph G. Find its dual, and let it be G4.
Now attempt to restore the deleted edge as in the proof of Theorem 3-14 and
suitably restore G2. (Of course this is impossible, since the original graph Gi1
is nonplanar; but the point at which the procedure breaks down illustrates
the need for the argument of Theorem 3-16.)



CHAPTER 4
MATRICES OF A NONORIENTED GRAPH

4-1 The field modulo 2. The most convenient algebra to use in the
study of nonoriented graphs is the algebra of the residue class modulo 2.
This was first observed by Veblen [190]. The algebra modulo 2 consists
of two elements, 0 and 1. These two symbols are used as convenient
symbols and are not to be confused with the real numbers zero and one.
Any two symbols, a and b for instance, might be used for the two ele-
ments; but 0 and 1 are the standard symbols. Two operations, addition
and multiplication, are defined in this algebra by the rules

0+0=0 04+1=14+0=11+1=0;
(4-1)
0:0=0 0:-1=1-0=0, 1-1=1.

Except for the addition rule 1 + 1 = 0, the others are also the rules for
the real numbers zero and one; this one rule makes the algebra distinct.
To understand this algebra (and incidentally to see why the symbols 0
and 1 are used), let us list the postulates satisfied by the real number
system, letting R stand for the set of all real numbers.

Postulates of Real Numbers

1. Addition postulates:

(i) Ifaandbarein R, soisa + b. (Closure.)

(1) If aand b arein R, thena + b = b 4+ a. (Commutative.)

(iii) If a, b, and ¢ are in R, then a + (b +¢) = (a + b) + ¢.
(Associative.)

(iv) There exists.a real number 0 such that 0 + ¢ = a for all a
in R. (Identity.)

(v) For each a in R there exists b in R such that a + b = 0.
(Inverse.)

II. Multiplication postulates:

(1) Ifaandbarein R,soisa-b. (Closure.)

(ii) Ifaand barein R, thena-b = b:a. (Commutative.)

(iii) If @, b, and ¢ are in R, then a-(b-¢c) = (a-b)-c. (Associ-
ative.)

(iv) There exists a real number 1 such that 1-a = a for all
a in R. (Identity.)

(v) Foreacha # 0, thereexists a bsuchthata-b = 1. (Inverse.)

55
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ITI. Dustributive law:
If a, b, and c are in R, then a- (b +¢) =a-b+a-c.
IV. Order postulates:
(i) TFor each ain R, exactly one of the following three statements
is true:
(1) a is positive.
(2) a is negative.
3) a=0.
(ii)) If @ and b are positive, so are a - b and a + b.

V. Completeness postulate:

Every nonempty bounded set of real numbers has a least upper
bound. (Dedekind’s axiom.)

Let us compare these postulates with the definition of a ring (Defini-
tion 2-1) and with some of the other algebraic systems. Note first of all
that the real numbers constitute an abelian group under addition, as
well as under multiplication. They are also a ring. Or looking at it the
other way, we see that the various algebraic systems result if we relax
some of the conditions imposed on real numbers. If we demand that the
system satisfy only postulates (i), (iii), (iv), and (v) of addition (or of
multiplication) we get an additive (or multiplicative) group. If we also
demand that the system satisfy postulate (ii), the group becomes abelian.
If all the postulates of addition, postulates (i) and (iii) of multiplication,
and the distributive law are satisfied, the system is a ring. If the commuta-
tive law of multiplication is satisfied in a ring, it is a commutative ring.
The addition of postulate (iv) makes it a commutative ring with a unait.
A Boolean ring is an example of a commutative ring with a unit. (In
fact, a Boolean ring can be defined as a commutative ring with a unit
in which every element is ¢dempotent; that is, a - a = a.) The algebra
of all (n X n)-matrices of real or complex numbers is a ring with a unit
that is not commutative.

Finally, if we add multiplication postulate (v) to a commutative ring
with a unit (thus demanding the first eleven postulates), the result is a
commutative division ring, more commonly known as a field. The first
eleven postulates are the algebraic postulates of real numbers.

An example of a field that satisfies the order postulates but not the
completeness requirement is the set of all rational numbers (real or complex).
An example of a system satisfying the first eleven postulates (hence a
field) and the completeness postulate (in a slightly different form) but
not the order postulates is the set of complex numbers. Ifinally, any system
satisfying all fourteen postulates is isomorphic to (or is indistinguishable
from) the real number system.
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A field is the “strongest” algebraic system. All the algebraic properties
of real numbers hold in any field. The residue class modulo any prime
number, defined below, is a field. Let p be the prime number. The set
consists of p elements 0, 1, 2,...,p — 1. The sum of two elements a
and b is found by the following procedure. First treat a and b as real
integers, and find their sum:

at+b=yq (4-2)
Now divide ¢ by p to get a quotient m and remainder r:
g = mp +r, r < p. (4-3)
In the algebra modulo p, we define
a+b=r (mod p). (4-4)

Multiplication is performed similarly. Fields modulo a prime number
are named Galots fields after the famous French mathematician who
first formulated them.

The only Boolean ring which is also a field is the 2-element Boolean
ring. This ring is isomorphic to the field modulo 2.

The familiar algebraic concepts such as linear dependence (of equations
or vectors), rank of a matrix, inverse of a matrix, etc., are valid in any
field. In particular, they are applicable to the field mod 2. The determi-
nant of a matrix in the field mod 2 is found exactly as in real arithmetie,
except that there are no minus signs. [Minus signs come from inverse
elements for addition; but in mod 2 algebra, 1 is its own inverse (or nega-
tive) since 1 +1 = 0.] A few examples are now given to illustrate
mod 2 algebra.

To illustrate several operations, let us find the inverse, in mod 2 algebra,
of the matrix

1 01
P=11 1 0f: (4-5)
1 00

Expanding by elements of the first column, we find that the determinant is
10 01 01
00 00 1 Ol
=1-(1-04+0-00+1-(0-04+1-0)+1-(0-04+1-1)
=1-0+0)+1-(0+0)+1-(0+ 1)
=1-0+1-0+1-1=04+0+1=1. (4-6)

detP = 1-

o
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Note that all signs are “+” but that all other rules are the same as in ordi-
nary arithmetic. The cofactors are

(=]

An="%=0+0=0,
0 0

A12=1 0=O+0=0,
10

A= Y=o04+1=1,
10

rr =12 Y =0+0=0
0 0

Aos =" Y=0+1=1, (4-7)
1 0

A23=1020+0=0,
1 0

A31=O 1=0+1=1,
10

pm=" Y=04+1=1,
10

A33=10=1+0=1.
11

Hence the inverse matrix is
0 0 1
p~l=1|0 1 1]- (4-8)
1 01

Note that the determinant can be only 1 or 0, for there are no other
elements in this algebra. So, the inverse matrix also can have no entries
other than 1 and 0.

As another example of mod 2 algebra and as an illustration of the
procedure of Theorem 4-4 to follow, let us reduce the following matrix
by elementary operations and determine its rank:
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= O
S = O O

1

1

1 0
10
01

(4-9)

- = = O
S O =

(=}

Add the first row separately to the third row and to the fourth row, to
reduce the first column to zeros below row 1. The result is (1 + 1 = 0)

0

P, =

e =

0
1
0

—_ O =

1
0
1

0

01
10
11
11

(4-10)

There is no 1 in the (2, 2)-position, and so interchange column 3 with

column 2. The result is
1

1
0

Py =

S O =

0

[y

0
0
1
0

1
0
1

0

1
0
1
1

(4-11)

e e e =)

(Note the change in the symbol for the matrix to emphasize that these
matrices are different from P and from each other. All of them have

the same rank, however.)
Next add row 2 to row 4, to get

Py =

S O =

1
1
0

(=)

0

- o O

0

0
1
0

—

(4-12)

- O
— = O

0

Since there is a 1 in the (3, 3)-position and a 0 in the (3, 4)-position,
move next to the fourth row. Since the (4, 4)-element is 0, we inter-
change the fourth column and the sixth column, getting finally

1
1
0

Py =

S O O =

0

0
1
0

N = N Y

0

(4-13)

O = O

1
1
0
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The submatrix consisting of the first four columns is

1101

Q= 0100 (4-14)
0 011
0001

The zeros below the main diagonal show that det Q is simply the product
of the diagonal entries. For, on expanding det Q by the first column,
we find that

1 00
detQ=1-/0 1 1|, (4-15)
00 1

since the other elements of the first column are zero. Repeat the process
and expand this (3 X 3)-determinant by the first column:

10 0
det@=10 1 1] =1/ 1‘:1(1+0)=1. (4-16)
00 1 01

Hence P4 contains a submatrix of order 4 X 4 which is nonsingular.
Since P4 cannot contain a square submatrix of a larger order, P4 has a
rank of 4. Hence the rank of P is also 4.

As a third example, let us find the general solution of the system of
equations

X —I— o)) —I— xr3 = 1, (4—173)

T2 + Tz = 0. (4'—171))
Adding the two equations yields

Ty + (1 —,— 1).%2 —I" (1 —f— 1).2:3

I

1+0=1 (4-18a)

or

Adding z3 to both sides of Eq. (4-17b) yields
Xo + (1 + 1)1‘3 =0 —I— X3 (4-19&)
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or
Ty = 3. (4-19b)

Hence the general solution is

=1, Ty = ¢, T3 = {, (4-20)
where ¢ is a parameter (equal to 0 or 1).

4-2 The vertex or incidence matrix. We have already observed, in
the axiom of graph theory, that the most fundamental characteristic of
a graph is the interconnection between edges and vertices. The graph is
completely specified as soon as we specify which edges are incident at
which vertices. Such a specification is most conveniently done by means
of a matrix. We make each row of the matrix correspond to a vertex,
and each column to an edge. If the edge is connected at a vertex, we
write 1; otherwise we write 0. Precisely, the definition is as follows.

DErFiNiTION 4-1. Vertex, or incidence matriz, A,.
A, = [a;;] is a matrix of v rows and e columns for a graph of v ver-
tices and e edges, where
a;; = 1 if the edge j is incident at vertex 7,
a;; = 0 if the edge j is not incident at vertex 7.

The subscript a denotes that all the vertices of the graph are represented.
We will be dealing mostly with ¥ — 1 rows of the matrix A,, and so it
will be convenient to reserve the simpler symbol A for this purpose.
For example, the incidence matrix A, of I'ig. 4-1 is

1 23456789
1(111000000'
2010011000

A, =3[0 00001101 (4-21)
41100100000
5/0 01 110110
60 0000O0O0T1 1]

From inspection of this matrix, the following theorem is obvious.

THEOREM 4-1. Every column of A, contains exactly two nonzero
elements.
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—
o

=)

©

4 5 8
F16. 4-1. Example.

This is the fundamental characterization of vertex matrices. Notice
also, in passing, that the incidence matrix is equivalent to the graph in
the sense that each is determined completely by the other. This leads
us to the next theorem.

Tuaeorem 4-2. If graphs ¢; and (3 have incidence matrices which
differ only by a permutation of rows and columns, then G; and Gs
are isomorphic; and conversely.

Thus, all the information about the graph is contained in the incidence
matrix. It will require the remainder of this chapter to demonstrate the
full significance of this remark. The first property of interest about a
matrix is its rank. Since the algebra involved in this chapter is entirely
modulo 2, our discussion of rank is with respect to modulo 2 algebra.

TaeorEM 4-3. The rank of the vertex matrix A, of a connected graph
is at most v — 1, where v is the number of vertices.

Proof. Add all the rows to the last row (which may be any row). This
is an elementary operation which does not change the rank. Since each
column contains exactly two nonzero elements (1’s), the last row be-
comes a row of zeros (1 + 1 = 0 in modulo 2 algebra). Since the matrix
has only » — 1 nonzero rows, the rank cannot exceed » — 1.

Lemma 4-4. Tor a connected graph G, the sum of any r rows of
A,, with r < v, contains at least one nonzero element.

Proof. By contradiction, let r < v, and let r rows of A, add to a row
of zeros. Let the rows of A, be rearranged such that these r rows are at
the top. Since these r rows add to a row of zeros, it follows that each
column of these r rows contains either two or no nonzero elements. Let
the columns of A, be permuted so that the columns with no nonzero ele-
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ments in the first r rows are the last columns. There must be some
columns like this, or the last ¥ — r rows contain only zeros, which is
impossible since G contains no isolated vertices. Now in the first set of
columns where the first r rows contain both 1’s, the last v — r rows must
contain only zeros. Partitioned in this manner, the matrix A, becomes

A — [A” 0 ] (4-22)
0 A

It is seen that the first r vertices have no common elements with the
last » — r. Hence the graph is not connected, contradicting the
hypothesis.

TaeoreM 4-4. The rank of the vertex matrix A, of a connected graph
is ¥ — 1, where v is the number of vertices of the graph.

Proof. Two proofs of this important theorem are given under (a) and
(b). The first, and the more elegant, makes use of concepts of linear
dependence. The second is a direct proof.

(a) Let Ay, As, ..., A, be the rows of A,. Let ¢; be scalars from field
modulo 2; that is, let ¢; = 0 or 1. Then the equation

21): cjA; = 0
i=1

has only one nonzero solution for c;’s, namely

€L = Cy = +++ = ¢y =1,

by Lemma 4-4 and Theorem 4-3. Thus there is only one independent
relation among the rows of A,. Since A, has v rows, the rank of A, is
v — 1. (This was Kirchhoff’s original proof.)

(b) Let the first ¥ — 1 rows of A, be added to the last row. The last
row is thereby reduced to zeros. The first row contains a nonzero ele-
ment. By permutation of columns, let this be brought to the (1, 1)-
position. If there is any other nonzero element in column 1, say in the
kth row, k > 1, let the first row be added to the kth row, to reduce this
element to 0. By Lemma 4-4, the kth row still contains nonzero elements.
There is a nonzero element in the second row, and it is not in the first
column, since (after the preceding addition) the first column contains
only zeros after the first row. By interchange of columns, let this nonzero
element be brought to the (2, 2)-position. If the second column contains
any nonzero elements below the second row, let the second row be used
to reduce it to zero. Again, less than » rows have been added, and so no
zero row is produced thereby. We see by repeated application of this
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procedure that the vertex matrix is reduced to the form

1 — — — oo - — — .. -
01 - - - - - -
00 1 - S -
0001 - - - -l
00 01 - -
i 00 0,

where the dashes may be 0 or 1. The leading square submatrix of order
v — 1 is triangular with nonzero elements on the main diagonal and so is
nonsingular. Hence the rank of A, is v — 1.

The last row in the proof of Theorem 4—4 is arbitrary, so we may state
the following corollary:

CoroLLARY 4-4. If any row of the matrix A, of a connected graph is
omitted, the resulting matrix A has a rank of v — 1.

The symbol A is always used in this text to denote the incidence matrix
of ¥ — 1 rows of a connected graph. A is also referred to as the vertex
matrix.

4-3 The circuit matrix. Just as we describe the relation between ver-
tices and edges by a matrix, we also define a matrix relating edges and
circuits.

DerINITION 4-2. The circutt matriz Bg.
B, = [bi;] contains one row for each circuit of G and contains
e columns; and
b;; = 1 if element j is in circuit ¢
b;j = 0 if element j is not in circuit s.

Under the definition of a circuit, a finite graph contains only a finite
number of circuits. Hence B, is finite.

As an example, let us construct the matrix B, for the graph of Fig. 4-1.
Six loops are shown in Fig. 4-1. The graph contains four more loops
that have not been shown because the figure would become too confusing.
These latter loops are

loop 7: (1,2,6,9, 8, 4), loop 8: (2,6,7,3),
loop 9: (1, 2,6,7,4), loop 10: (2, 6, 9, 8, 3).
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The matrix B, of the set of all circuits is

1 23456789
1f1 0110000 0]
21011010000
3/0 00011100
410 00000111

B,— 5|1 10110000 (4-23)
6{0 00011011
71110101011
8011001100
91 10101100
100/0 1 10010 1 1]

The fundamental set of circuits defined earlier (Definition 2-8) have
an interesting circuit matrix. To have a fundamental system, we must
choose a tree T of the graph. Let the f-circuits be numbered in some

arbitrary manner as 1, 2,...,e — v + 1. Let the chord that appears
in circuit ¢ be numbered asedge 7, 1 < 7 < ¢ — v + 1. Let the branches
be numbered in some arbitrary manner ase — v+ 2, e —v+3,...,e.

If we arrange the rows and columns of the matrix in the order in which
the circuits and the elements have been numbered, the matrix of f-circuits
appears as

By = [U By, (4-24)

where U is the unit or identity matrix of order e — v -+ 1. As an example,
consider the graph of Fig. 4-2. If we choose the tree consisting of edges 1,
2, and 3, the f-circuits are as shown in the figure. The matrix of these

Fic. 4-2. Example for fundamental systems.
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circuits is

4 5 1 2 3
111 !
B = R (4-25)
210 1+1 0 1

The matrix By obviously has the rank of e — v 4 1. Further, since
the f-circuits are always part of the set of all circuits, By is a submatrix
of B,. This leads to our next theorem.

TueoreEM 4-5. The rank of the circuit matrix B, is at least e — v 4- 1
for a connected graph G of v vertices and e elements.

To establish that e — » + 1 is also an upper bound for the rank of B,,
we need the following theorem. This result is of very fundamental im-
portance even apart from establishing the rank of B,, as is evident from
the rest of this chapter.

TueorEM 4-6. If the columns of the matrices A, and B, are arranged
in the same element order,

AB, =0 and B, = 0, (4-26)
where the prime indicates the transpose.

Proof. Consider the ¢th row of A, and the rth column of Bj, that is,
the rth row of B,. There are nonzero elements in the corresponding posi-
tions in the 7th row of A, and the rth row of B, if and only if the element
is incident at vertex ¢ and is in circuit 7. If the vertex 7 is not in circuit r,
there is no such element and the product is zero. If the vertex 7 is in
circuit r, then by Veblen’s definition of a circuit, exactly two elements
are at vertex 7 and in circuit r, and so the product of the 7th row of A,
by the rth column of B is

1+ 1= 0 mod?2. (4-27)
Hence the theorem. .

Let us verify Theorem 4-6 for the graph of Fig. 4-2 as an illustration.
The graph has.one more circuit that is not shown in the figure, consisting
of edges 2, 4, and 5. The matrices A, and B, for Fig. 4-2 are (the order
of edges is kept as in B, above for illustrative purposes)

4 51 2 3
1o 0101
A, _2]0 1110 (428)
31 0010
4011001
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and

4 51 2 3
111 0 1 1 1
B,=2|0 1 1 0 1 (4-29)
3{1 1010
Hence,
(1 0 1]
0 0101 01 1 000
AB, — 01110 11 0l= 0 0O (4-30)
10010 10 1 0 00
1 1.0 01 11 0] 0 00

Theorem 4-6 immediately establishes an upper bound for the rank
of B, if we make use of the theorem known as Sylvester’s law of nullity. This
theorem and its proof are given below. The elements of the matrices are
assumed to be from a field, so that rank, reciprocal, etc., are meaningful.

TurEoREM (Sylvester’s law of nullity). If
P = [pijln,» and Q= [gijlap
are matrices of elements from a field, and if
PQ = 0,

then (rank of P) + (rank of Q) < n.

Proof. Let the rank of P be r. Let the rows and columns of P be re-
arranged to bring a nonsingular submatrix of order r to the leading posi-
tion, and let the resulting matrix P; be partitioned so that

- [P“ P”] (4-31)
Po1 Po2

and Py, is of order r and nonsingular. Then P, contains n — r columns.
Let the rows of Q be rearranged to correspond to the rearrangement of
the columns of P, and let the rearranged Q be partitioned after r rows,

so that
[Pll Plz:l[Qll] B |:0:| | (4—32)
Por Po2 || Qo1 0
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From the first row,
P11Q11 + P12Q21 = 0 or Qi1 + Pii'P12Qzr = 0. (4-33)

Premultiply the rearranged Q by the nonsingular matrix

U PiiPra]
0 U
The result is

[U P1_11P12][Q11] _ [Qu + Pi_llP12Q2l:| _ [ 0 } . (4-34)
0 U Q21 Q23 Q21

Premultiplication by a nonsingular matrix does not change the rank.
The matrix on the right contains only n — r nonzero rows. Hence
(rank of Q) < n — r = n — (rank of P), or (rank of P) 4+ (rank of Q) < n.

Using Theorem 4-6 and Sylvester’s law of nullity, we immediately
have the following two theorems.

TueOREM 4-7. For any graph G,
(rank of A;) + (rank of B,) < (number of edges).

TureoreM 4-8. For a connected graph G,
(rank of B;) < e — v + 1.
Finally, from Theorems 4-5 and 4-8, we have Theorem 4-9:
TueoreM 4-9. For a connected graph G,
(rank of B)) = e — v 4+ 1.

The symbol B is reserved in this text for a circuit matrix of a connected
graph with e — v 4+ 1 rows and rank ¢ — v + 1.

4-4 Nonsingular submatrices of A and B and formula for B;. In this
section, we shall see further evidence of the importance of the concept
of a tree. The nonsingular submatrices of A and B are very closely related
to the topology of the graph, and it is the purpose of this section to in-
vestigate this relationship.

Lemma 4-10. There exists a linear relationship among the columns
of the vertex matrix A which correspond to the edges of a circuit.

Proof. B,A, = 0. (4-35)
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Consider circuit . On partitioning A, into columns and multiplying by
the rth row of B,, we find that

Al
(br1 b2 -+ Dref A2 [ =0 or bpAy + broAz + - + brA. = 0.
;é (4-36)
If elements 7, 73, ..., 7% are in this circuit,
briy = brgy =+ =byy, =1 (4-37)
and all other b,;, = 0. Hence
Ay + A+ + A, =0, (4-38)

which is a linear relationship among the columns of A corresponding to
the edges of a circuit.

TueoreMm 4-10. A square submatrix of A of order v — 1 is nonsingular
if and only if the elements corresponding to these columns of A consti-
tute a tree of the graph.

Proof. One half of the proof is listed as a problem (Problem 4-2).
Let v — 1 columns constitute a nonsingular submatrix of A. The columns
are therefore linearly independent. Hence the corresponding subgraph
contains v — 1 elements and contains no circuits. Hence by Theorem 2-10,
the subgraph is a tree.

Thus the trees of the graph are in one-to-one correspondence with the
nonstngular submatrices of A. This is a very fundamental relationship
and points out the importance of a tree.

A dual relationship exists between the nonsingular submatrices of B
and the chord sets.

TureoreM 4-11. Let B be a submatrix of B, with ¢ — v 4+ 1 rows
and of rank ¢ — v + 1 for a connected graph G. Then a square sub-
matrix of B of order ¢ — v + 1 is nonsingular if and only if the columns
of this submatrix correspond to a set of chords.

Proof. (a) Let the columns correspond to a set of chords, and let the
columns of B be arranged so that this submatrix appears in the leading
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position. Partition B as
B = [By; Bial, (4-39)

where B;; corresponds to a set of chords and B, corresponds to a tree T.
There is a fundamental set of circuits for the tree 7', with a matrix B
which, partitioned similar to B, is

By = [U By 12]' (4_40)
Since By is a basis for the set of all circuits, there is a matrix D such that

= DB, (4-41)

Further, since the circuits of B are independent (i.e., since the rank of
Bis e — v + 1), D is nonsingular. Now

[Bll 812] - D[U Bfm]) (4_42)

from which
Bll = DU == D, (4:—4:3)

so that B;; is nonsingular.
(b) Let the e — v 4+ 1 columns constitute a nonsingular submatrix.

Let B be arranged as
B = [By1 Bi2l, (4-44)

and let By; be nonsingular. There are ¥ — 1 columns in B;s, and so it
is sufficient to prove that there is no circuit consisting only of elements
corresponding to columns in By,. If there is such a circuit, let the row B;
corresponding to this circuit be added to B. Then

[B]_[Bu 512} (4-45)
B,] | o B

There is at least one nonzero element in B;,. By arranging the last v — 1
columns, we can bring this nonzero element to the (¢ — v + 2, ¢ — v + 2)-
position. The leading square submatrix of order ¢ — v 4 2 is now

By: Bie
)
0 1

which is nonsingular. Hence rank of

2]
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N

is a submatrix of B, which is of rank e — v + 1. Hence this is impossible.

ise —v-+ 2 But

We could also have deduced Theorem 4-11 from Theorem 4-10 and
the fundamental orthogonality relation, Theorem 4-6. Whitney [199]
shows in his fundamental paper on linear dependence that with dual
matroids such as are defined by A and B, bases tn one correspond to base
complements in the other.

We stated in Section 4-2 that the incidence matrix contains all the
information about the graph. As an illustration, we next give an explicit
formula for the f-circuit matrix By in terms of the vertex matrix A.

TuEOREM 4-12. The vertex matrix can always be partitioned as

A, = [A“ A”], (4-46)
Az1 Agg

where A, is a square nonsingular matrix of order ¥ — 1. Then the
matrix of f-circuits for the tree corresponding to the columns of A;.
is given by
Bf=[U ALALR'] (4-47)
Proof. Since A, is of rank v — 1, the indicated partitioning is always
possible. Then of course the columns of A;s correspond to branches of
a tree. Let By be the matrix of f-circuits for this tree. Arranged in the
usual order, By may be partitioned as

By = [U Bf12]' (4-48)
Since
AB; = 0, (4-49)
we have
A1y + A9B), = 0 or B}, = AT3A;; or By, = Aj;AT.  (4-50)
As an example, let us verify Theorem 4-12 for the graph of Fig. 4-2.

Deleting the row corresponding to vertex 4, we find that the incidence
matrix of Fig. 4-2 is

(4-51)

>

I

[\
O = e e
= O N
S O = W
—_ O O W
S = O O
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Let us rearrange the incidence matrix to be in the same column order
as By given earlier:

4 5 1 2 3
1{o 0j1 01
A=200 11 10 (4-52)
310{010
Now to verify Theorem 4-12:
1 0 1170 o 0 0 11
AFA;; =1 1 0| |0 1f{=|0 0 1|0 1|=|1 Of (4-53)
010 10 1 1/{1 0 11
Hence
[u (ArzlAu)']:[l o 1], (4-54)
01101

which is indeed the same matrix as Bj.

4-5 The cut-set matrix. The concept of a cut-set was defined in
Chapter 2. In this section, a matrix formulation of the concept is used
to tie together the cut-set properties developed earlier. It is the purpose
of this section to show that the cut-set matrix and the incidence matrix
contain essentially the same information.

DrriniTiON 4-3. Cut-set matriz. The cut-set matrix
Q = [qi;] has one row for each possible cut-set and one column for
each edge and is defined by
¢;; = 1 if edge number j is in cut set ¢
¢i; = 0 if edge number j is not in cut set <.

For example, the cut-set matrix of the seven possible cut-sets of the

Fi1c. 4-3. Example for cut-set matrix.
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graph of I'ig. 4-3 is given by

a b c d e f
11 001 1 0]
2{1 100 01
3011010
Q=400 1101 (4-55)
5(0 1 01 1 1
6{1 01011
701111 0 0

The last cut-set cannot be shown very easily on the diagram as drawn
(see Fig. 2-8).

We are interested in answering the following questions about the
matrix Q.

(a) What is the rank of Q,?

(b) How is Q, related to the incidence matrix A and to the circuit
matrix B?

(¢) What are the nonsingular submatrices of Q,?

(d) How is the matrix of fundamental cut-sets related to the matrix
of fundamental circuits (both formed with respect to the same
tree)?

We answer these questions more or less in the order in which they are
stated except that (a) and (b) are taken up together. Theorem 4-13 is
obvious:

TueoreM 4-13. For a nonseparable graph G, the matrix Q, contains
the matrix A,. TFor any connected graph @, the rows of A, are expres-
sible as linear combinations (sums mod 2) of the rows of Q.

Theorem 4-13 follows immediately from Theorem 2-13 and the ele-
mentary observations about cut-vertices.

CoroLLarY 4-13. If G is a connected graph of v vertices, the rank
of Qg is at least v — 1.

TueorEM 4-14. If the columns of the matrices Q, and B, are arranged
in the same element order,

B,Q, = 0 mod 2. (4-56)
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Theorem 4-14 is simply an elegant restatement of Theorem 2-17 since
the sum of an even number of 1’s is 0 in mod 2 algebra. The details of
the proof are left as a problem.

CoroLLARY 4-14. The rank of Q, is at most v — 1 for a connected
graph G of v vertices.

This corollary is an immediate consequence of Theorem 4-14 and
Sylvester’s law of nullity (Section 4-3). Since the upper and lower bounds
for the rank of Q, are equal, we have the next theorem.

THeOREM 4-15. The rank of the cut-set matrix Q, of a connected
graph G of v vertices is v — 1.

We now have the following situation. The rows of the incidence matrix A
are linear combinations of the rows of Q,; or if we were to select a sub-
matrix Q of v — 1 rows and rank » — 1 from Q,, all rows of A are
expressible as linear combinations of the rows of Q; that is, there exists
a matrix D of order (v — 1) X (v — 1) such that

A = DQ. (4-57)

But both A and Q are of rank » — 1 and contain v — 1 rows. This is
possible if and only if the matrix D is nonsingular. But if D is non-
singular, we can write

Q = DA, (4-58)

where D™! is also nonsingular. Thus, not only can the rows of A be
expressed in terms of the rows of Q, but the rows of Q can also be ex-
pressed in terms of rows of A. More generally, we have, by using Prob-
lem 2-24, the following theorem:

TueorEM 4-16. Each row of a matrix F of order (v — 1) X e and rank
v — 1 corresponds to a cut-set or element-disjoint union of cut-sets if
and only if

F = DA, (4-59)

where D is nonsingular.
We may restate the same result with the use of the circuit matrix:

THEOREM 4-17. Let F be a matrix of order (v — 1) X e and rank
v — 1 such that
BFf = 0 mod 2, (4-60)

where B is the circuit matrix of G. Then each row of F corresponds
to a cut-set or element-disioint union of cut-sets.
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This result is very important because it gives us a means of construct-
ing the cut-set matrix and hence (by using Theorem 4-16) a means of
constructing the incidence matrix from the circuit matrix. However, the
result should be considered to be obvious in the light of Theorem 2-18.

Knowing the relationship of the cut-set matrix to the incidence matrix
(Theorem 4-16) and the structure of the nonsingular submatrices of the
incidence matrix (Theorem 4-10), we can immediately answer the third
question raised above:

TueoreM 4-18. If Q is a cut-set matrix of ¥ — 1 rows and rank v — 1
of a connected graph @, the nonsingular submatrices of Q of order
v — 1 are in one-to-one correspondence with the trees of G.

Finally, let us turn our attention to the matrix of fundamental cut-sets.
To have a fundamental system, we have to choose a tree T'; so it is also
natural to arrange the columns of all matrices in the order of chords
and branches of T. Let us therefore number the edges so that 1, 2, ...,
e — v+ 1 are chords and ¢ — v 4 2,...,e are branches of 7T, and
arrange the columns in this order. Further, let us also number the cut-
sets of the fundamental system in such a fashion that a unit matrix re-
sults. Let the first cut-set of the fundamental system contain the first
branch, namely edge number ¢ — v + 2. Let the second cut-set contain
edge e — v+ 3, etc. Then the matrix Qs of the fundamental system of cut-
sets has the form

Qy = [qu uj, (4_61)

where U is a unit matrix of order v — 1.

For example, in the graph of Ilig. 4-3, let us choose the tree consisting
of edges a, ¢, and e. Then the fundamental cut-sets are the cut-sets num-
bered 2, 4, and 5. The fundamental cut-set matrix is

b df a c e

21 0 1]1 00
Q,=4011l010- (4-62)

5111{001

We may now interrelate the matrices A, By, and Q; in a number of
ways. These relationships stem from Theorems 2-17, 4-14, and 4-16.
We state these results as the next theorem and leave the proof as an
exercise (Problem 4-11).

TueoreMm 4-19. If the columns of the matrices A, By, and Qy are
arranged in the order of chords and branches for the tree T for which
the fundamental systems are formed, and partitioned as
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A= [All Al2]7 Bf = [U Bfu]; and Qf = [qu U]: (4—63)
then we have the following interrelationships:
Q, = AT2A;1 =B, and Q;= AjA=[B}, U. (464)

Thus, in fact, we can start with any one of the three matrices A, By,
and Qs and construct the others.

4-6 Linear vector spaces. We come to one more very useful algebraic
concept in the theory of graphs, the last major algebraic concept to be
introduced here, namely linear vector spaces. The concept of a linear
vector space is not really new. It is mainly an extension of the set of
familiar 3-dimensional vectors. It serves as a unifying concept allowing
us to bring together our knowledge of vectors, matrices, and linear equa-
tions. And in this process it adds geometric intuition to many abstract
algebraic concepts. The brief discussion of linear vector spaces given
here is included for this purpose. Before embarking on a discussion of
the general concept of a linear vector space, we begin by selecting from
the theory of 3-dimensional vectors those properties which can be extended
easily to more than three dimensions, and which characterize the space
as linear.

For notational convenience, a 3-dimensional vector is denoted as a
column matrix, as a

i
¢

ai + bj + ck.

instead of as

Let X, Y, Z, . .. stand for 3-dimensional vectors, and let a, b, ¢, . . . stand
for real numbers. Then the following properties of 3-dimensional vectors
are familiar.

I. () If Xand Y are vectors, so is X 4 Y.
i) X+Y=Y+ X
() X+ (Y+2Z) = (X+Y)+ L
0
(iv) 0 + X = X for all X, where 0 = {0 |-
0
(v) For each X, there is a Y such that X + Y = 0.

II. i) a- Xis a vector.
(i) a-b-X) = (a-b) - X.
@iii) (@ +b) - X=a-X+b- X
ivia-X+Y)=a-X+a"Y.
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II1. Every vector X can be expressed as X = a;D; + asDs + a3D3, where
Dy, Do, and D3 are any three fixed (independent of X) noncoplanar
vectors, and aj, ag, and a3 are real numbers.

We have grouped these properties into three sets in a natural fashion.
The first set characterizes the set as an abelian group under addition.
The second set gives the properties of scalar multiplication. Finally, set
IIT states the 3-dimensional character.

A familiar concept with 3-dimensional vectors is orthogonality. Two
vectors are defined as orthogonal if their scalar product (dot product)
is zero. In matrix notation, the vectors

x Y1
X =|xs and Y=1y.
X3 Y3

are orthogonal if X'+ Y = 0. The product X’-Y is clearly the same as
the dot product. Let us exploit this concept a little further by using it
to construct the set Dy, Dy, D3 of III. Choose D; and Dy to be any two
vectors which are not collinear. Two vectors X and Y are collinear if and
only if

X = aY¥Y or Y = aX, (4-65)

where a is a scalar. In the language of linear dependence, therefore, two
vectors are collinear if and only if they are linearly dependent. Let us
first consider the class of vectors that are linearly dependent on the
noncollinear vectors D; and D,, that is, the set of vectors that can be
expressed as

C = ¢1D; + c2Dy, (4-66)

where ¢; and ¢ are scalars. We recognize these as the vectors that are
in the plane defined by D; and D,. Conversely, every vector in the plane
can be expressed as a linear combination of D; and D;. We can also
observe that the set of vectors in this plane satisfies all the conditions laid
in I, IT, and III, except that there are only two vectors, D; and D, in III.
We say that the plane is a 2-dimensional subspace of the 3-dimensional
space.

Returning to the mainstream, we need a vector D3 that is not in the
plane defined by D; and Dy. An interesting vector to choose is a nonzero
vector D3 that is orthogonal to the plane. D3z can be chosen by the follow-
ing argument. D3 must be orthogonal to every vector in the plane. In
particular

D5D; = 0 and D5D, = 0. (4-67)
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Conversely, if D3 satisfies these two equations, it is orthogonal to every
vector in the plane. For, if Cis any vector in the plane, we have

C= chl + 62D2, (4—683)
and so
D’3C == C]DéDl + CzD{;Dz = 0. (4—68b)

Thus to find D3, two simultaneous equations have to be solved. To
make the notation look familiar, we write

di1 d21 xy
Dl == dlz ) D2 = d22 ’ D3 = | X2 (4—69)
dis das z3

Then the equations to be satisfied by D3 are, in scalar notation,

di1xy + disx2 + digrs = 0 (4-70a)

and
do121 + d2oxs + dazr3 = 0, (4-70b)

[du di2 dls][ﬁ;] _ [O] @11
d21 dz2 dazllas 0

The nonzero solution to these equations can be obtained by the usual
procedure. But this argument gives us a new point of view about
homogeneous linear algebraic equations. The solution to a homogeneous
system of linear algebraic equations is a wvector orthogonal to the vectors
defined by the rows of the coefficient matriz.

Since D3 is orthogonal to the plane defined by D; and Dy, it is certainly
not in the plane. Therefore D3 cannot be expressed as

or

D3 B ClDl —|— CgDz. (4—72)

That is, D3 is not linearly dependent on D; and Ds. Thus orthogonality
implies independence (but not conversely). Thus the matrix

[D1 D2 D3
is nonsingular.
Let us also consider the vectors that are dependent on D3, the vectors

expressible as
C= CD3, (4—73)



4-6] LINEAR VECTOR SPACES 79

where ¢ is a real number. These are evidently the vectors collinear with
D;. This set of vectors again satisfies all the conditions in I, II, and III,
with III containing only one vector. We say that the set of vectors
C = ¢D3, where D3 is nonzero, is a l-dimensional subspace of the 3-
dimensional space. The two subspaces that we have (the 1-dimensional
subspace defined by Ds and the plane defined by D; and D,) are said to
be orthogonal to each other, since every vector in one subspace is orthogonal
to every vector in the other subspace.

D; and D; constitute the basis vectors of the plane, and D3 is the basis
vector of the line. It is clear that if the basis vectors of one subspace are
orthogonal to the basis vectors in the other subspace, the two subspaces
are orthogonal.

One final observation may be made before leaving the special case.
With the vectors as constructed, any vector in the 3-dimensional space
can be expressed as a linear combination of D;, Dy, and D3 as

C = ¢,D; + c3Ds + ¢3D3, (4-74)

where the scalars ¢y, ¢g, and c3 are uniquely determined by C. This is
stated usually as: the 3-dimensional space is the direct sum of the two
subspaces defined by {D,, Do} and {D3}. Since they are orthogonal by
construction, the subspaces are also called orthogonal complements of the
3-dimensional space. We now leave the special case and turn to the
general concept.

DerFINITION 4-4. Linear vector space. Let G = {X, Y, Z, ...} be an
additive abelian group, and let ¥ = {a, b, ¢, ...} be a field. Let there
be defined a multiplication of elements of G by elements of §. Then
the set of such products U = {aX, bY, aZ, ...} is an n-dimensional
linear vector space if for all @, b,...in Fand all X, Y,...in G,

@) a-b-X)= (a-b) X,

b) @+b)-X=a-X+Db-X

@@ a-X+Y)=a-X+a-Y,

(d) every element of U is expressible as a linear combination of a fixed
set of n basis vectors Dy, Dy, . .., D, with coefficients from F as
X = Z?=l aiDi, and

() 1-X = X, where 1 is the unit element of &.

It is possible to extend this definition to the case in which the scalars
are chosen from a ring (instead of from a field) by adding the stipulation
that the expression in (d) be unique. Such a generalization is not needed
here. By implication, n in (d) is a finite integer. The vector space is then
referred to as a finite-dimensional vector space. There are also infinite-
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dimensional vector spaces. An example is the set of all real continuous
functions f(x) on the interval 0 < z < 1. A basis for this set is
{sin 27nz, cos 2mnr}n—o, with (d) being the Fourier representation.

In modern algebra, it is customary to study linear vector spaces without
introducing any coordinate systems at all. However, for the present
purposes, it is more convenient to consider a fixed-basis set of vectors
as defining a coordinate system. Then each vector in the space can be
described as a column matrix and we will be in the familiar domain of
matrix algebra. Thus if Dy, Do, . .., D, is the fixed basis, and a vector X
has the representation

n
X =Y D (4-75a)
i=1
we write
T
x =72 (4-75b)
Ty
The vectors Dy, D, . . ., D, can also be represented in this way, becoming

merely the columns of a unit matrix of order n. The most interesting vector
spaces associated with a graph are the row spaces of the matrices A and B.
In these row spaces, there is a natural way of representing vectors as
matrices, and so we avoid some difficulties that might otherwise result
from this unconventional procedure. The linear vector space of interest
is the set of all subgraphs of a given graph. The field is the field modulo 2,
so that addition becomes “ring sum.” The fixed-basis set of vectors de-
fining the coordinate system are the “elementary” or “atomic” subgraphs,
each consisting of a single edge of the graph.

Every one of the properties of 3-dimensional space that were discussed
earlier holds for n-dimensional space as well. (It is more correct to say
that we discussed only such properties of 3-dimensional space as are
true of n-dimensional space as well.) A few of the more important prop-
erties are discussed below for the general space, and the generalizations
of the others are left for the reader to complete.

It is neither possible nor desirable to include a complete and rigorous
discussion of linear vector spaces here. Therefore, we must be content
with stating a few results that seem plausible and include only a semi-
formal discussion of the others. The following two results are assumed
in the later discussion.

Every basis of an n-dimensional vector space contains exactly n elements.

More than m vectors chosen from an m-dimensional linear vector space
are linearly dependent.
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Linear dependence for vectors is defined as for equations. Vectors
Y1, Yo, ..., Yi are linearly dependent if there exist scalars ay, ao, ..., ax
in &, not all zero, such that

k
Z anj = 0. (4—76)

j=1

It follows then that at least one of these vectors can be expressed as a
linear combination of the others. .

First, let us investigate the condition under which a given set of
n vectors Yy, Yo, ..., Y, is a basis for the space. The coordinate system
is assumed to be defined by the basis Dy, Dg, ..., D,. Since each Y; is
a linear combination of the D’s,

Yi= ) a;D; (4-77)
1=1

or, expressed in matrix notation,

A !

Yi ayy a2 -+ ain (| D1

.le = (@21 @22 --- az,||DyY|- (4-78)
!’ ’

Yn Gn1 Gp2 **° Qun || Dn

(The transpose notation is used partly to make the ax;’s appear in natural
order and partly because the vectors we deal with in graph theory are
mostly expressed as row matrices.) This equation can be written more
concisely as

Y = AD. (4-79)

Now suppose Yi, Ys,..., Y, is a basis. Then the vectors are clearly
independent. (Otherwise we do not need all of them.) But this implies
that the rows of the matrix A are independent and so A is of rank 7 ; hence
A is nonsingular. Conversely, if the vectors Y;, Yo, ..., Y, are linearly
independent and hence the matrix A is nonsingular, we can invert the
equation for the D’s and write

D' = ATlY, (4-80)

Thus the basis vectors Dy, ..., D, can be expressed in terms of the Y’s,
and hence any vector in the space can be expressed in terms of the
Y’s. Thus:

Any set of n linearly independent vectors is a basis for the n-dimensional
linear vector space.
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By comparison, in three dimensions, the test for finding out whether
three vectors A, B, and C are noncoplanar (and hence a basis) is to com-
pute the volume of the parallelepiped that they enclose, which is

a; as as
+A X B-C = = det [bl bo b3] . (4-81)
ci C2 C3

An important theorem on bases, which is very closely related to
Whitney’s postulate By to be given shortly, is the Steinitz replacement
theorem, which states:

If Y1, Yo, ..., Ys are linearly independent, and if Dy, Dy, ..., D, 25 a
basis of the n-dimensional linear vector space (thus s < n), then there exists
a subset of Dy, Dy,...,D, of n — s elements which together with Y,
Yo, ..., Ys constitute a basis.

This result is the exact analogue of the method of proof used for
Theorem 2-12. The analogue of Theorem 2-12 itself is:

Any set of linearly independent vectors can be included in a basis.

These two results are proved in exactly the same fashion as was
Theorem 2-12. To prove the first of these two results, for instance, we
consider the set of vectors {Yy, Yg,...,Ys; D;, Dy, ...,Ds}. Every
vector of the space can certainly be expressed in terms of these. This
set (assuming s > 0) must be dependent, since it contains more than
n vectors, so that

i aiY,' + i b]'D]' = 0. (4—82)
=1 j=1

Since the Y/s are linearly independent, at least one b; is nonzero. Hence
this particular D; can be expressed in terms of the others and so can be
deleted from the set. We repeat the procedure, deleting dependent D,’s
until the set becomes linearly independent, and therefore a basis. Since
every basis contains n elements, n — s of the D;’s must have been included
in the final set.

We conclude the discussion of linear vector spaces with the statements
of a few useful definitions and theorems, leaving it for the reader to
make the necessary extensions from three dimensions. (The theorems are
italicized.)

If § (in Definition 4-4) is the real field, two vectors X and Y are
orthogonal (with respect to a given basis) if

X'Y = 0, (4-83)

where X and Y are assumed to be expressed as column matrices in terms
of the basis.
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A wector X s orthogonal to every vector in a subspace Vs (or, briefly,
orthogonal to the subspace) if and only if X is orthogonal to the basis vectors
of Us.

Two subspaces are orthogonal if every vector in one subspace is orthog-
onal to every vector in the other subspace.

Two subspaces are orthogonal if and only if the basis vectors of one sub-
space are orthogonal to the basis vectors of the other.

Given two subspaces U; and U, of an n-dimensional space U, the
direct sum Uy @ U, of the two subspaces is the set of all vectors X; + Xg,
where X; is in U; and X, is in Us,.

If U, and V3 are orthogonal subspaces of an n-dimensional space UV such
that the sum of their dimensions is n, then U = V; @ Va.

Thus every vector in U is a linear combination of the basis vectors of
V; and V,. It follows that the basis vectors of V; together with the
basis vectors of UV, constitute a basis for U; in particular, they constitute
a linearly independent set of vectors. In such a case, the subspaces U,
and U, are called orthogonal complements of the space V.

An abstract algebraic discussion of linear vector spaces may be found
in any text on modern algebra (Birkhoff and MacLane [11] or Van der
Waerden [187], for instance). A detailed discussion from the point of view
adopted here may be found in Hohn [78]. The application to linear graphs
has been discussed by Gould [67] and Doyle [46].

4-7 Vector spaces associated with a graph. We now reinterpret the
properties of the matrices, cut-sets, and circuits of a linear graph in the
language of linear vector spaces. In the first (and more important) inter-
pretation, the vector space Vg consists of the set of all subgraphs of the
given linear graph G. The graph @G is assumed to be connected, but the
assumption is not necessary. The extension to unconnected graphs is
not difficult and so is omitted from the present discussion.

The field § over which the subgraphs of G constitute a linear vector
space is the field mod 2, and addition of vectors is the ring-sum opera-
tion. It can be verified directly from Definition 4-4 that the set of all
subgraphs of G constitutes a linear vector space of dimension e. The
coordinate system is that defined by the “atomic” elements, each of which
consists of a single edge of G. If the edges are numbered 1, 2,... e,
any subgraph can be expressed as an e-tuple (gigs -+ - g.) of 1’s and 0’s.
In particular, the rows of the matrices A, B, and Q are vectors of the
space Ug.
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DeEeriniTION 4-5. Subspaces Vg and Vp. Vg is the set of all linear
combinations of the rows of the matrix A over the field mod 2; Vg is
the set of all linear combinations of the rows of B over the field mod 2,
where A and E are the incidence and circuit matrices of the graph G.

TueoreM 4-20. There are 2°~! vectors in Vg, and each of these is
a cut-set or disjoint union of cut-sets.

Proof. Since the rank of Aisv — 1, there are v — 1 vectors in a basis.
Each vector in Vg can therefore be expressed as

v—1
Z aiAi)
=1

where the A; are the hasis vectors of Vg. Since there are two choices,
0 or 1, for each a;, there are 2°~! vectors in Vg, including the vector 0.
The rest of the theorem follows from Theorems 4-13 and 4-17 since all
vectors in Vg are orthogonal to the rows of B. The analogous result
for VUp is stated in the next theorem:

TueoreM 4-21. There are 2* vectors (including 0) in Vg, where u
is the nullity of the graph @, and each of these is a circuit or disjoint
union of circuits of G.

Thus every graph G of e edges defines two subspaces Vg and Vg of the
linear vector space Vg of dimension e. In the case of the directed graphs
considered in Chapter 5, Vg and Up become orthogonal complements of
Vg- In the field mod 2, however, orthogonality cannot be meaningfully
defined. There are cases in which the same vector can belong to both
Vg and Vg (that is, a circuit is also a cut-set), as for example in the graph
consisting of two parallel edges. We can now interpret 2-isomorphism
and duality as follows.

THEOREM 4-22. 2-isomorphic graphs G; and @, define the same Q-
and B-subspaces of an e-dimensional space, with Vg; = Vge and
Vg1 = Vp2. Conversely, any two graphs with Ug; = Uga or Vp; =
Vpg are 2-isomorphic.

A one-to-one correspondence between the edges of the two graphs is
implicitly assumed. The result follows from Theorems 3-8 and 4-17.

Since the Q-subspaces of 2-isomorphic graphs agree, the basis vectors
defined by the incidence matrix of either graph are also basis vectors for
the @Q-subspace of the other graph. Thus if A; and A, are incidence ma-
trices of the two graphs, the rows of A; are a basis set of vectors for Uy,
and so are the rows of A,. Hence the next theorem.
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THEOREM 4-23. Two graphs (71 and G5 are 2-isomorphic if and only
if their incidence matrices A; and A, are related by

A; = DA, (4-84)

where D is a nonsingular matrix of integers mod 2.

Tureorem 4-24. If G; and G are dual graphs, they define the same
subspaces of the e-dimensional space, with

Vg1 = Upe and Vg2 = UpBi. (4'—85)

Theorem 4-24 follows from Problem 3-15.

CoroLLARY 4-24. If G and G5 are dual graphs, the incidence matrix
of either graph is a circuit matrix of the other (with the proper rank,
and each row representing a circuit); that is,

Al = Bz and A2 = Bl. (4—86)

The inverse problem of synthesis of a graph from a given decomposition
of a vector space is much more involved, and consideration of this ques-
tion is postponed to Chapter 5.

Vector spaces defined by the columns of the matrices A and B can also
be considered, but these are not particularly interesting; however, they
do relate to the work of Whitney [199]. For example, Whitney calls a
tree a basis for the graph because the columns of A corresponding to the
branches of a tree constitute a basis for the vector space defined by the
columns of A. Whitney defines a basis as a set of elements with the
properties that

B;. no proper subset of a basis is a basis and
B,. if D and D’ are bases, and if e is in D, there exists an e’ in D’
such that D — ¢ + ¢’ is a basis.

We recognize B as essentially the Steinitz replacement theorem. In
the space defined by the columns of B, it is the chord sets that constitute
bases. This complementary relationship is characterized by Whitney in
the statement that the two spaces are dual matroids. One of Whitney’s
theorems on dual matroids is that “Bases in one matroid correspond to
basis complements in the dual matroid.” We do not pursue this topic
further here.
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ProBLEMS

4-1. Show that the rank of the vertex matrix of a graph with v vertices and
p maximal connected subgraphs isv — p. [Hint: Arrange the rows and columns
of A, according to subgraphs, and partition similarly.]

4-2. Prove that if Tis a tree of the connected graph @, then the v — 1
columns of the incidence matrix A of @, corresponding to the edges of T, con-
stitute a nonsingular submatrix of A. [Hint: Find the incidence matrix Ar of T,
and find its rank.]

4-3. Show that in general the rank of B, is e — v + p.

4-4. Given the matrix A;, how can you find out whether the graph is
connected?

4-5. Let A be the vertex matrix of a connected graph G. Let R = [r;;] be a
matrix of elements 0 and 1, such that

(a) R is of order (¢ — v 4 1) X e, where A is of order (v — 1) X ¢, and

(b) RA” = 0.

Show that each row of R represents a circuit or disjoint union of circuits. If R
contains a unit of matrix, how can the conclusion be strengthened?

4-6. Determine the rank of the matrix B, of Fig. 4-1 by the procedure used
in the example of Section 4-1. (It should be 4, of course.)

4-7. Find all the trees of Fig. 4-2 and verify that the corresponding sub-
matrices of A are nonsingular. See if there are any other nonsingular submatrices
in A.

4-8. Form another circuit matrix B (of ¢ — » + 1 rows) for Fig. 4-2. Find
all the nonsingular submatrices of this matrix, and check against Problem 4-7.

4-9. Find the rank of the matrix Q, of the graph of Fig. 4-3 by reducing the
matrix, using elementary operations.

4-10. Write out the details of the proof of Theorem 4-14.

4-11. Prove Theorem 4-19.

4-12. Outline the procedure for obtaining a graph, given a basis for the
cut-sets of the graph. Apply this procedure and obtain a graph which has the
following cut-sets for a basis. Sets of edges: (abd), (cef), (¢fg), (dfg). Can you
obtain more than one graph with these cut-sets? How are the graphs that you
obtain related to each other?

4-13. A graph has the following sets of edges as the basis for the set of all
circuits: (abc), (cde), (bdf). Find (in order) (a) a fundamental system of circuits,
(b) a fundamental system of cut-sets, and (c) the graph.

4-14. Prove that a graph is determined to within a 2-isomorphism by the
set of all trees. Given that the trees of a graph are (ace), (bed), (abd), (abe),
(ade), (bde), (bce), and (acd), find the fundamental system of cut-sets with the
aid of Theorem 2-15, and hence find the graph.

4-15. How will parallel edges manifest themselves in the matrix Q,? And
series edges?

4-16. Show that the fundamental system of circuits is a basis for the set
of all circuits and disjoint unions of circuits of a graph, and hence show that
this set is a linear vector space of dimension e — v 4 p over the field mod 2.
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4-17. If a linear vector space over the field mod 2 is of dimension 7, show
that the number of bases for the space is

(2r—29. (@2 — 2. (2r — 22 ... (2r — 2771,

[Hint: There are 27 vectors in the space. Since any nonzero vector is independent,
it can be included in a basis. Hence, the first vector can be chosen in 27 — 1 =
27 — 20 ways. Any k vectors define a subspace consisting of 2% vectors. So
any one of the other 2" — 2F vectors is independent of these k vectors.]

4-18. Show that the trees of the graph satisfy Whitney’s postulates Bi
and Ba.

4-19. Repeat Problem 4-18 for chord sets.

4-20. A tree T; is adjacent to a tree T2 if T1 and T2 contain the same
branches, with one exception. Given any two trees T1 and T, of a connected
graph G, show that there is a sequence of trees T'1, T2, ..., Ta—1, T such that
any two successive trees are adjacent. That is, T'; can be transformed into T,
by replacing edges of T'1 one at a time, the structure remaining a tree through-
out the transformation. [Hint: Whitney’s postulate Bs.]

4-21. Let 1 and 1’ be any two vertices of a nonseparable graph G. By a
cut-set (1, 1) is meant a cut-set which places vertices 1 and 1’ into two different
connected parts. Show that the cut-sets (1, 1’) contain a basis for the set of
all cut-sets (that is, Vg). [Hint: In the incidence matrix A, let 1’ be the omitted
vertex. Derive the matrix Q by adding rows in such a fashion that row 1 has
been added to each of the others. Equivalently, add an edge (1,1’) to the
graph. Now modify A (with 1’ still omitted) by row additions such that there
is a 1 in every row in the column corresponding to edge (1, 1), and then elimi-
nate disjoint unions of cut-sets.] The dual of this result is stated at the end of
Chapter 5.

4-22. Prove that a cut-set is a minimal (nonempty) set of edges such that
the columns of B corresponding to these edges are linearly dependent.

4-23. Prove that a circuit is a minimal set of edges which has an even number
of edges in common with each cut-set.

4-24. State and prove the analogue of Lemma 4-10 for cut-sets.



CHAPTER 5
DIRECTED GRAPHS

5-1 The vertex matrix. Most applications require linear graphs in
which each edge is oriented, rather than the nonoriented graphs discussed
so far. Such graphs are called directed graphs instead of the (perhaps)
more natural oriented graphs because, by long-standing convention, the
name oriented graph is applied to graphs in which there is at most one
directed line segment between any two vertices. Parallel edges are allowed
in the present discussion. In some applications, the orientation of the
edges is a “true” orientation in the sense that the system represented by
the graph exhibits some unilateral property, as for example in signal-flow
graphs, information theory, or sequential machines. In electrical network
theory on the other hand, the orientation used is a “pseudo”-orientation,
used in lieu of an elaborate reference system. The edges, in electrical net-
work theory, are assigned arbitrary orientations.

DEeriNITION 5-1. Oriented edge. An oriented edge is an edge with an
orientation assigned by ordering its vertices.

In a diagram, the orientation is shown by an arrowhead on the edge
pointing toward the second vertex of the ordered pair. For example,
Fig. 5-1 shows an oriented edge (a, b). The edge is said to be oriented
away from the first vertex and toward the second vertex of the ordered pair.

ao - ob

F1g. 5-1. Oriented edge.

DzeriNiTiON 5-2. Directed graph. A graph in which every edge has been
assigned an orientation is a directed graph.

DEerINITION 5-3. Connected. A directed graph is connected if the cor-
responding nonoriented graph is connected.

This appears to be an unnatural concept of connectedness for a directed
graph. It is more natural to require the orientations of the edges of the
path to be all alike. However, Definition 5-3 is used in electrical networks
(as the orientation itself is “unnatural” in this case). In the theory of
sequential machines, the other concept is useful, and is called strong con-
nectedness. This concept is introduced in Chapter 9.

88
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DEeriNiTION 5-4. Vertex matrix.
The vertex matriz A, of a directed
graph is defined by
A, = [a;;] is of order v X e for a
graph with v vertices and e
edges,
a;; = 1 if edge j is incident at
vertex 7 and is oriented
away from vertex ¢,

a;; = —1 if edge 7 is incident at

vertex ¢ and is oriented

toward vertex ¢, and Fig. 5-2. Example for vertex
aij = 0 if edge j is not incident matrix.

at vertex 1.

This vertex matrix A, is the coefficient matrix of Kirchhoff’s current
equations, to be discussed in Chapter 6. Consequently the properties of
this matrix are of considerable interest. As an example, the vertex matrix
of the directed graph of Fig. 5-2 is

a b c d e f
1 1 0 0 1 0 1

A, = 2 0 —1 0 —1 1 0 . (5-1)
3 0 0 —1 0 —1 —1

4] —1 1 1 0 0 0

The symbol A, was used earlier for the incidence matrix of a nonoriented
graph and is now used for the vertex matrix of a directed graph. The
entries are now treated as real integers. The choice of symbolism here
(as in the case of the circuit and cut-set matrices to follow) is guided by the
fact that the essential structure of the matrix A, is the same for directed
and nonoriented graphs. There will normally be no confusion. Occasion-
ally (as in Section 5-5) both the matrices (for the directed and nonoriented
graphs) may be needed in the same development. In such cases, the super-
seript (2) will denote the mod 2 (nonoriented) matrix.

The properties of the matrices of a directed graph, and to a large extent
the methods of proving them, are identical to those in the nonoriented
case. Hence the proofs in this and the following three sections are given
in outline form only and often omitted and suggested as problems.

Lemma 5-1(a). The rank of the vertex matrix A, of a directed graph
of v vertices is at most v — 1.
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Proof. Each column contains a 1 and a —1. Hence the sum of all the
rows is a row of zeros.

Lemma 5-1(b). For a connected directed graph of » vertices, the sum
of any r rows of the incidence matrix, where r < v, is nonzero.

THEOREM 5-1. The rank of the incidence matrix A, of a connected
directed graph of v vertices is v — 1.

The proofs of Lemma 5-1(b) and Theorem 5-1 are identical to the
proofs in the nonoriented case and so are suggested as a problem. As be-
fore, A denotes a submatrix of A, of a connected directed graph obtained
by deleting an arbitrary row of A,.

TreorEM 5-2. If T is a tree of a connected directed graph @, the
v — 1 columns of the matrix A corresponding to the branches of T
constitute a nonsingular matrix.

Proof. The v — 1 columns in question constitute the incidence matrix
Ar of T. Since T is a connected graph of v vertices, the rank of Ar is
v — 1, by Theorem 5-1. Since A7z is of order (v — 1,v — 1), it is non-
singular.

5-2 The circuit matrix. Since the graph is directed, it is natural to
consider the circuits and cut-sets also as oriented.

DErFiNITION 5-5. Oriented circutt. A circuit with an orientation as-
signed by a cyclic ordering of vertices is an oriented circuit.

For example, in Fig. 5-2 the circuit {d, e, f} can be oriented as (1, 2, 3, 1)
or as (1, 3,2,1). Again, one can represent the orientation pictorially by
an arrowhead. For the purposes of the following definition, the orientations
of an edge of a circuit and the circuit “coincide” if the vertices of the edge
appear in the same order both in the ordered-pair representation of the
edge and in the ordered-vertex representation of the circuit. Otherwise,
they are “opposite.” Pictorially, the meaning is obvious.

DeriniTION 5-6. Circuit matrix B,. The circuit matriz B, = [b;;] with
a finite number of rows and e columns is defined by
b;; = 1 if edge j is in circuit 7 and the orientations of the circuit and
the edge coincide,
b;j = —1 if the edge j is in circuit ¢ and the orientations do not
coincide, and
b;; = 0 if the edge j is not in circuit 7.



5-2] THE CIRCUIT MATRIX 91

F1c. 5-3. Example for circuit matrix.

In the next chapter, B, is shown to be the coefficient matrix of Kirch-
hoff’s voltage equations. As an example of a circuit matrix, let us consider
the set of all circuits of the graph of Fig. 5-3:

a b c d e
1f 1 1 0 0o o0 o0
2] o0 1 1 0 —1 1
B—3| 0 0 -1 1 0 0 (5-2)
4({—-1 o 1 0 -1 1
50 1 0 0 —1 1 —1
6/l o 1 0 1 —1 1]

The rank of the circuit matrix is established exactly as in the nonoriented
case, by making use of a fundamental system and the orthogonality of
A, and B,.

DEeFINITION 5-7. Fundamental circuits (f-circuits). The f-circuits of a
connected directed graph with respect to a tree 7 are the e — v 41
circuits formed by each chord and the single path in the tree between
the vertices of the chord. The f-circuit orientation is chosen to agree
with that of the defining chord.

The matrix B of these circuits arranged in the order of chords and
branches of T again has the form

B, = [U Br]. (5-3)

The unit matrix fixes the rank of By as e — » -+ 1. Since By is a sub-
matrix of B,, we have the next theorem.
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TueoreM 5-3. The rank of the circuit matrix B, of a connected directed
graph is at least e — v + 1.

THEOREM 5—4. If the columns of the matrices A, and B, are arranged in
the same edge order,

AB, =0 and B,A, = 0.
The proof is left as an interesting problem (Problem 5-7).

TueorEM 5-5. The rank of the circuit matrix B, of a connected directed
graphise — v + 1.

The proof follows from Sylvester’s law of nullity, as in the nonoriented
case.

As before, B denotes a circuit matrix of ¢ — » + 1 rows and rank
e — v + 1 of a connected directed graph.

5-3 Nonsingular submatrices of A and B and formula for B;.

LemMa 5-6. There exists a linear relationship among the columns of
A corresponding to the edges of a circuit.

THEOREM 5-6. A square submatrix of A of order v — 1 is nonsingular
if and only if the columns of this submatrix correspond to the branches
of a tree.

The proofs of Lemma 5-6 and Theorem 5-6 are identical to the proofs
of Lemma 4-10 and Theorem 4-10.

TuEOREM 5-7. The determinant of a nonsingular submatrix of A is
+1.

Proof. This important result has a very simple proof. Consider any
nonsingular submatrix of A. Each column of this submatrix has at most
two nonzero elements, a +1 and a —1. Not every column can have both
a +1 and a —1, for then the matrix is singular. Also, there is no zero
column. Hence there is at least one column with only one nonzero element,
a 1. Expanding by this column, we find the determinant to be

A= +1-Ay (5-4)

where (7, 7) is the position of the nonzero entry. The cofactor A;; again
has, by the same reasoning, a column with a single nonzero element.
Expand A;; by this column. Repeated application of the procedure yields

A= =+1. (5-5)
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THEOREM 5-8. Let Bbe amatrixof e — » + 1rows and rank e — v 4 1
for a connected graph G. A square submatrix of B of order ¢ — » + 1 is
nonsingular if and only if the columns of this submatrix correspond to
the set of chords for some tree of G.

The proof of Theorem 5-8 is identical to the proof of Theorem 4-11.
Thus, once again:

Nonsingular submatrices of A are in one-to-one correspondence with the
trees of the graph.

Nonsingular submatrices of B are in one-to-one correspondence with com-
plements of trees of the graph.

TaeEoREM 5-9. Let the vertex matrix A be partitioned in terms of
chords and branches for a tree as

A= [A;1 Ajl (6-6)

Then the matrix By of f-circuits for the tree corresponding to Aps is
given by
By = [U —Al;- AL (5-7)

A closer examination of Theorem 5-9 (which is proved as in Chapter 4)
suggests an even deeper result about A;,. Instead of starting with a graph,
we can start with an arbitrary nonsingular matrix A;, with at most a 1
and a —1 per column. Having obtained the inverse AT;!, we can write
any other matrix A;;, with at most a 1 and a —1 per column and the same
number of rows as Ajo. Apart from this condition, A;; can be written
completely independently of A;s. We know that a graph can be drawn for
the matrix

[A1r Ajgl

TFor the graph, by Theorem 5-9, it is necessary that
B/, = —ATz A1 (5-8)

But By has only elements +1, —1, and 0. Hence, regardless of the way in
which the matrix A;; is written, the elements of AT;! - Ajq must be 1, —1,
and 0. Thus, A;! must have some very special characteristic. If, for
example, it were possible to have

1 -1 0
Az =|0 1 —1], (5-9)
1 0 1
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we could choose Aj; as

1
A11~—_- —1 0 (5_10)
| 0 —1
and have
1 —1 o] 1 1] 2 1
Al7A;; =0 1 —1—-1 of=|—-1 1|, (5-11)
1 0 1) 0 —1] 1 0

which we know is impossible. Thus we could not have had a 1 and a —1
in the same row. This suggests the following result.

TureoreM 5-10. Let A;2 be a nonsingular submatrix of the vertex
matrix A. Then the nonzero elements of any row of AJ;' are either all
1 orall —1.

Proof. We always have
ALz - Az = U. (5-12)
Let
Ay = C. (5-13)

Suppose that there exists row ¢ of C containing both positive and negative
elements. Let the columns of C be arranged so that the first r columns of
row ¢ are +1, the next s columns are —1 and the rest are zeros. Let the
rows of A;s be arranged similarly, and let A;, be partititioned into rows as

A,

As =2 | (5-14)
Av—l
Then the product of the ¢th row of C by A5 is

DA— D A=R, (5-15)

where R is a row matrix, and is the 7th row of the unit matrix U of order
v — 1. Thus R has 0’s everywhere except in the 7th column. Now A;2 has
at most a 41 and a —1 per column. Also from Eq. (5-15), if any column,
except the 7th column, has a nonzero entry in the first » ++ s rows, then
this column has both a +1 and a —1, both in the first r rows or both in
the next s rows. The 7th column, however, has only one nonzero entry in
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the first r 4 s rows, since the one nonzero entry in R is 1. Let this non-
zero entry be in row j.

Case 1. If j < r, then the ¢th column in rows r 4+ 1 to r <+ s contains
only zeros. Thus for every 1 in these rows, there is a —1 in the same

column, so that
r+8

k=r+1

or these rows are linearly dependent and A;s is singular, contrary to
hypothesis.
Case 2. If j > r, we see by a similar argument that

> A=0, (5-17)
k=1

contrary to the hypothesis that A;, is nonsingular.

Theorem 5-10 is not of any evident theoretical importance. It could be
used as a computational aid, for checking computations.

5-4 Cut-sets of directed graphs. A cut-set of a directed graph is merely
a cut-set of the corresponding nonoriented graph. However, since the graph
is oriented, it is more natural to consider the cut-set also as oriented. To
orient the cut-set, we use the interpretation of a cut-set given in Sec-
tion 2-4, ndamely, that a cut-set defines a partition of the vertices of the
graph.

DEeriniTION 5-8. Cut-set orientation. A cut-set is oriented by ordering

the sets of vertices @ and B8 of G separated by the cut-set as (a, 8) or

(8, @). An edge e; of the cut-set («, 8) has the same orientation as the

cut-set if e; is oriented away from its vertex in « and toward its vertex

in B.

Pictorially, one can show the orientation by means of an arrow placed
near the broken line defining the cut-set. An example of a directed graph

1 2
- S, -

|

- | N
|
|

4. 1,

Fic. 5-4. Example for oriented cut-sets.

\



96 DIRECTED GRAPHS [cHAP. 5

with oriented cut-sets is shown in Fig. 5-4. In cut-set 1, for example,
edges f and d have the same orientation as the cut-set and edge a is oriented
opposite to the cut-set.

Once again we can discuss cut-sets most conveniently by means of a cut-
set matrix.

DEeriniTION 5-9. Cut-set matriz. The cut-set matrix Q, = [g:;] has one
row for each possible cut-set of the graph and one column for each edge,
and is defined by

g;; = 1 if edge j is in cut-set ¢ and the orientations agree,

g;; = —1if edge j is in cut-set 7 and the orientations are opposite, and

g:;; = 0 if edge j is not in cut-set z.

It should be noted for emphasis that every possible cut-set is in Qg,
except that we do not include cut-sets that are obtained by merely re-
versing orientations. For the graph of Fig. 5-4, there are seven cut-sets
(one of which, consisting of edges a, b, ¢, and f, is not shown), and so the
matrix appears as

a b c d e f
1(—1 0 0 1 0 1
2 1 1 1 o 0 o
3 0 0 1 0 1 1

Q=4 0 1 0 1 —1 0 (5-18)

5 0 —1 —1 —1 0 1
6 1 0 1 —1 1 0
71 1 1 0 0 —1 —1]

As in the nonoriented case, we have

TueoREM 5-11. The cut-set matrix Q, contains the incidence matrix
A (with some rows possibly multiplied by —1) as a submatrix if G is
nonseparable. In any case, the rows of A are expressible as linear com-
binations of rows of Q.

CoroLLARY 5-11. For a connected graph G, of v vertices, the rank of
the cut-set matrix Q, is at least (v — 1).

To set the upper bound, we once again attack the problem by relating
cut-sets to circuits, adding the effect of orientation to Theorem 4-14.

TureorREM 5-12. The number of edges common to a cut-set and a circuit
is always even. If a cut-set 7 has 2k edges in common with a circuit j,
then k of these edges have the same relative orientation in the cut-set
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Fic. 5-5. Illustration of Theorem 5-12.

and in the circuit, and the other k£ have one orientation in the cut-set
and the opposite orientation in the circuit.

The proof of Theorem 5-12 consists simply in formalizing the intuitive
ideas presented in I'ig. 5-5. Since we have already established the even-
ness of the number of common elements, only the orientation part needs to
be proved, and this we omit as evident. (See Problem 5-13.)

TaeorREM 5-13. If the columns of the circuit matrix B, and the cut-set
matrix Q, of a directed graph G are arranged in the same edge order,

B.Q), = 0. (5-19)

Theorem 5-13 is merely a restatement of Theorem 5-12 in matrix nota-
tion and requires no proof. Combining Theorem 5-13 with Sylvester’s
law of nullity, we get the result we are after, namely Theorem 5-14.

TueoreEM 5-14. The rank of the cut-set matrix Q, of a directed graph
@ of v vertices isv — 1.

Since the relationships between the cut-set matrix and the circuit
matrix are the same as in nonoriented graphs, we have the same results
as in the nonoriented case, except that a few negative signs appear, as
we now have the field of real numbers to work with. There is hardly any
point in going over the same ground once again in detail, and so we shall
blandly state the results, leaving the details as obvious.

DeriNiTION 5-10. f-cut-sets. If T is a tree of a connected directed
graph G, the fundamental system of cut-sets with respect to 7 is the set
of v — 1 cut-sets in which each cut-set includes only one branch of T.
The fundamental cut-set orientation is to agree with the orientation of
the defining branch.

Again, if we order the columns as chords and branches and arrange the
cut-sets suitably, the matrix of the fundamental system of cut-sets has

the form
Qs = [Qy, UL (5-20)
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We then have the familiar results stated in Theorems 5-15 and 5-16:

TueoreM 5-15. If Q is a cut-set matrix of v — 1 rows and rank v — 1
of a connected directed graph G of v vertices, and A is the incidence
matrix of G, then

Q = DA, (5-21)

where D is nonsingular.

TureoreM 5-16. If the columns of A, By, and Q; of a directed graph G
are arranged in order of chords and branches for the tree T defining
the fundamental systems of cut-sets and circuits, so that

A=[A11 A, Br=[U By, and Qy=[Q,, U], (5-22)
we have the relations
Q = AizA  and  Q, = —B}, = ATz A1 (5-23)

TuEOREM 5-17. If Q is a cut-set matrix of a connected directed graph
@ of v vertices, with ¥ — 1 rows and rank » — 1, the nonsingular sub-
matrices of Q of order v — 1 correspond one-to-one to the trees of G.

TureorEM 5-18. If F is any matrix of elements 1, —1, and 0, such that
BF = 0, (5-24)

where B is the circuit matrix of ¢ — v + 1 rows and rank e — v + 1 of
a connected directed graph G of e edges and v vertices, then each row of
F represents a cut-set or disjoint union of cut-sets.

5-5 Existence of graphs for given matrices. In recent years, there has
been a considerable amount of work done on the synthesis of conven-
tional electrical networks and combinational switching networks, by
algebraic methods. This relatively new field, dating back only to 1954,
is known as topological synthesis. Some early contributions are due to
Okada [124], Traktenbrot [175], and Seshu [152, 153]. An important fun-
damental problem came into focus immediately [153]. In all of these
topological syntheses, one arrives at a matrix of integers mod 2 which,
desirably, should be the cut-set or circuit matrix of a graph. It was pointed
out as early as 1935 by Whitney [199] that there exist matrices of integers
mod 2 that are not cut-set matrices or circuit matrices of graphs. If a
given matrix is a cut-set matrix, it can be reduced by elementary row
operations to an incidence matrix; that is, a matrix with at most two 1’s
per column. An example of a matrix that cannot be so reduced is
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1000111
F,=|0 1 0 1 0 1 1| (5-25)
0011101

The complete theoretical solution of the problem was given recently by
Tutte [186]. Cederbaum [32] and Gould [66] considered this problem in
some detail before the solution was given by Tutte. This section is devoted
to a discussion of the general problem. Tutte’s general solution depends
on many algebraic topological concepts that have not been developed in
this book, aside from being extremely long. Therefore we are unable to
give the proof of Tutte’s general theorem and have to be satisfied with a
statement of the result. Cederbaum’s contributions are, however, con-
sidered in some detail.

Before considering specific results, let us discuss the general problem.
Suppose that F = [f;;] is a matrix of integers mod 2, which is a cut-set
matrix (or a circuit matrix) of maximum rank of a linear graph ¢. Let us
now assign arbitrary orientations to the edges of G and consider it as a
directed graph G4. Construct the cut-set matrix (or circuit matrix) Fy
of G4 for the same cut-sets (circuits) as in F, retaining the column ordering
as well. As we know, F and F; have many properties in common. First of
all, they have nonzero elements in the same positions. They have the same
rank. Since nonsingular submatrices of F and F; of maximum order cor-
respond to trees (chord sets) of G, nonsingular submatrices of F and Fg4
correspond. Thus F is a special kind of matrix. Its 1’s may be replaced

F1c. 5-6. Example illustrating remark.
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appropriately by 1’s and —1’s in such a way that the ranks of submatrices
are unaltered. The matrix F, given in Eq. (5-25) is an example for which
this is not possible. F, cannot be replaced by a matrix of 1’s, —1’s, and 0’s
such that ranks of submatrices remain invariant.

The discussion above requires a slight qualification, since the field mod 2
and the real field are different. If we start with a set of circuits or cut-sets
for a directed graph G4 which are independent over the real field, these
circuits or cut-sets may not be independent over the field mod 2 when
orientations are removed. Such a circumstance is uncommon, but it
can occur. An example is the set of circuits shown in Fig. 5-6. (The orien-
tations of the edges and circuits in this figure may be altered without af-
fecting the argument.) The matrix of these circuits is

a b c d e f
111 0 1 0 1 1

Bg =2 |0 1 1 —1 0 —1{. (5-26)
311 —1 0 —1 —1 0

The submatrix consisting of columns q, b, and d, in that order, has a deter-
minant —2 and so is nonsingular. By is therefore of rank 3. If graph and
circuits are considered as nondirected, the matrix of these circuits is ob-
tained by removing all the negative signs in By:

11 01011
B,=2(0 111 0 1]. (5-27)
31t 1011 0

The mod 2 rank of B, is only 2, since the sum of its rows (mod 2) is zero.
Similar examples with cut-sets may be found in Cederbaum [28].

Degeneracies of this type can be avoided by requiring that the matrix
under discussion contain a unit matrix, and thus correspond to f-circuits
or f-cut-sets. This is a convenient assumption to make from other points
of view as well, and so is made here. Thus,

F = [U F12] or F = [Fll U], (5—28)

depending on whether F is desired as a circuit matrix or as a cut-set matrix.
This is no loss of generality, since any given matrix can be brought to this
form by premultiplication by a suitable matrix. The problem may now
be stated in two stages as:
(a) Under what conditions can F be replaced by a matrix of +1, —1,
and 0 and keep its rank and nonsingular submatrices invariant?
(b) Under what conditions is F the circuit matrix or cut-set matrix of
a graph?
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Before considering these general questions, we discuss the contribution
of Cederbaum on FE-matrices and show that E-matrices belong to the
class of matrices with property (a) above. Later discussion also estab-
lishes that if the matrix contains a unit matrix, then the cut-set and cir-
cuit matrices of the graph are, in fact, E-matrices. Thus the properties of
E-matrices and their characterization are of fundamental importance in
the theory of graphs.

Since we wish to discuss cut-set and circuit matrices simultaneously
(and at this stage we do not even know whether the matrix is either a cut-
set or a circuit matrix) the neutral symbol F is used for mod 2 matrices,
with subscript d for real matrices.

DerinITION 5-11. E-matriz. A matrix Fy of real elements is an E-
matrix if the determinant of every square submatrix of F;is 1, —1, or 0.

Tuaeorem 5-19. If F; = [f;;] is an E-matrix, then f;; = 1, —1, or 0.

TueoreM 5-20. If Fy is an F-matrix, then so are
(a) Fg
(b) matrices obtained by a permutation of rows or columns of Fy,
(c) all submatrices of Fz, and
(d) matrices obtained by multiplying rows or columns of F; by —1.

Theorems 5-19 and 5-20 are more or less obvious. The next theorem
depends on a theorem on matrices due to Jacobi which has not been dis-
cussed here, and so its proof is not included. Theorem 5-21 is not required
for further development of the subject, and its statement is included purely
for completeness.

TuroreEM 5-21. If F;is a (square) nonsingular E-matrix, so is F7 1.

The most important results on E-matrices are Theorem 5-22, which
characterizes E-matrices, and the results that follow from it, namely
Theorems 5-25 and 5-26.

TaeOREM 5-22. Consider the equation
FaX =Y, (5-29)

where F; is a real matrix of order (n, n) and where X = [x;] and Y = [y,]
are (n X 1)-column matrices (vectors). A necessary and sufficient
condition that F; be an E-matrix is: on assuming any n — 1 of the 2n
variables x;, y; to be zero, there exists a vector pair X, Y with X % 0
satisfying Eq. (5-29) and in which all the remaining n + 1 unspecified
variables are 1, —1, or 0.

Proof. Let F; be an E-matrix. Let an arbitrary set of n — 1 vari-
ables be taken as zero. Let r of these be ¢’s (0 < r < n — 1) and the
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other n — r — 1 be z’s. By a suitable permutation of rows and col-
ums of Fz, we may make the vanishing y’s occupy the first » positions
(y1 = y2 = +++ =y, = 0) and the vanishing z’s occupy the last
n — r — 1 positions (ZT;42 = %y43 = *++ = z, = 0), without chang-
ing the E-character of F;. Then the first r equations of the system are

fuizy 4 fiee + - - + frr41% 41 = 0,
fo1x1 + faoxe + ¢+ - + forqy1%r41 = 0, (6-30)

frlxl +fr21'2 + - +fr,r+lxr+l = 0.

If every fi;in Eq. (5-30) is zero, take x; = land g =23 =+ + - = 2,41 = 0.
Then from the other equations of the system, y; = f;; forr +1 <7 < n,
which proves the result since f;; = =1 or 0. Otherwise, let the coefficient
matrix of the system (5-30) be of rank 5, 0 < s < r. By permutation of
rows and columns, we may assume that the top left submatrix of order s

is nonsingular. Then the system can be solved for xy, x3, . . . , 2, in terms of

Tsy1, L2y -, Trp1. Takezsyy =landxsyo=2s43 ="+ =2,41 =0.

Then, solving the first s equations of Eq. (5-30) by Cramer’s rule, we find
AP .

xiz——mr 1,:1,2,...,8, (5—31)

where A is the determinant of the top left submatrix of order s in Eq.
(5-30), and A! is obtained by replacing column 7 of A by column
(s + 1) of the first s rows of Eq. (5-30). Since F; is an E-matrix, A = 1,
—1,0r0,and A = 1 or —1. Thus,2; = 1, —1,orOfori = 1,2,...,s.
To find yp, p =r+ 1, r 4+ 2, ..., n, augment the first s equations of
(5-30) by the pth equation of the original system (Eq. 5-29), to get

fuiry + fiexe + -+ + f1e41241 = 0,
fo171 + fagxe + -+ - + fos412541 = 0,
: (5-32)
fa1xy + fooe + -+ + fos412541 = 0,
fp1x1 4 fpo@e + - -+ fp 5412541 = Yp,

since all other x; are zero. If the coefficient matrix of the system (5-32) is
singular, take y, = 0. Otherwise, let A;f"'” be the determinant of the co-
efficient matrix. Solving Eq. (6-32) for z,41, we find

Ts+1 = (s41) Yoy (5—33)
AP

where A® is the same as the A® of Eq. (5-31). Since 2,41 = 1, this
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yields
A;}s+1)
Y = ~xw (5-34)

Since F; is an E-matrix, y, = =1. Thus, X and Y satisfying the required
conditions have been found. The sufficiency of the condition is established
by induction on the order of the submatrices of Fy. IFirst choose x; = x5 =
cee =721 = Tip1 = +++ = Tp = 0. Since there exists an X # 0 satis-
fying Eq. (5-29), we may assume that x; = 1 (by multiplying all equations
by —1 if necessary). Then from Eq. (5-29),

ve="Ff, k=12 ...,n (5-35)

But y;, = 1, —1, or 0. Hence the submatrices of order 1 of F; have deter-
minants (the elements of F;) 1, —1, or 0. Next suppose that all square
submatrices of order r and less have determinants 1, —1, 0, where r > 2.
Consider a nonsingular submatrix of order r + 1. Without loss of general-
ity, let this be the top left submatrix of Fs, and let the determinant of this
submatrix be A”TY. Choose

y1=yz=-+-=y=20 and xr+2=xr+3=...:xn:0. (5-36)
The first » + 1 equations of the system (5-29) are then

fuizy + fieze + - -+ f1rp1%0410 = 0,
fa1xy + feowe + - -+ + forp12r41 = 0,
(5-37)
frizy + froxe + - A+ frrp1Zrp = 0,

fr+1,1-751 +fr+1'2-732 + - +fr+1.r+1xr+l = Yr41-

Since there exists an X # 0 and some Y satisfying Eq. (5-29) by assump-
tion, and since the determinant of the system (5-37) is nonzero, y,,; # 0
and so yr4+1 = 1. Solving Eq. (5-37) for the nonzero 2’s, we have

_ Agr) _ A(;)
T = ean U T E (5-38)

Since , # 0, so is A"”. Hence by the induction hypothesis,
A = +£1.
Since s = =1, by hypothesis, we have from Eq. (5-38) that
ATTD — 4, (5-39)

Hence the result is established by induction, and Fy is an E-matrix.
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TuEOREM 5-23. Any matrix which contains (as a submatrix) the matrix

X 0 X X
N=|X X 0 X|, (5-40)
X X X 0

where the crosses indicate nonzero entries, cannot be an E-matrix.

Proof. By Theorem 5-20, it suffices to prove that N is not an E-matrix.
By multiplying columns by —1 where necessary, we may assume that all
the nonzero entries of the first row are 1. This operation does not change
the E-character, by Theorem 5-20. Similarly, by multiplying either row
2 or row 3, or both, by —1 if necessary, we make all the entries of the
first column 1’s. Now none of the other nonzero entries can be —1 if N

is an E-matrix, as can be seen easily. I'or instance, if ng3 = —1, then
nip N3 1 1
det = = —2, (5-41)
N3y N33 1 —1

which is impossible. Hence we need only consider the matrix

1010
N=|[1 10 1]. (5-42)
1110

The determinant of the last three columns of N is 2, and so N is not an
E-matrix.

All the research workers—Whitney [199], Gould [66], Cederbaum [32],
and Tutte [185]—who have attempted to solve the general problem ap-
pear to have encountered this particular matrix.

Cederbaum [32] gives several other interesting structural properties of
E-matrices, and we refer to his original paper for these. Attention is next
directed here to the solution of the general problem. The definitions and
major theorems that follow are modifications of Tutte’s [185] results.
Theorems 5-25 and 5-26 relating E-matrices and regular matrices are due
to Seshu [158].

Let
Fa = [fij] (5-43)
denote a matrix of real integers (positive, negative, and zero), and let
F =[] (5-44)

denote a matrix of integers mod 2 (that is, f;? = 1 or 0). We assume that
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these matrices are of order (m, n), and rank m (m < n, naturally). Con-
sider the set of all linear combinations of the rows of F; with real integral
coeflicients, and the set of all linear combinations of rows of F with coeffi-
cients 1 or O (of the mod 2 algebra). Then each of these is a linear vector
space of dimension m. (Strictly speaking, in standard mathematical ter-
minology the rows of F; generate a 0-module as the set of integers in a
ring, not as the set of integers in a field [187].) We fix the coordinate sys-
tem by admitting no column operations on these matrices other than
permutations.

DEeriNiTION 5-12.  Elementary vector. The vector Ry of either of the
spaces under consideration is elementary if it is nonzero and there is no
other vector R, in the space which has nonzero elements only at a proper
subset of the positions in which R; has nonzero elements.

DeriNITION 5-13. Primative vector. A vector R of the linear vector space
defined by the rows of F; (of real integral elements) is primitive if it is
elementary and all of its entries are 1, —1, or 0.

DEerINITION 5-14. Real regular matriz. The matrix Fy of real integral
elements is regular if, to every elementary vector in the linear vector
space defined by the rows of F;, there corresponds a primitive vector in
the linear vector space, with nonzero entries in the same positions.

For convenience, we refer to a matrix containing a unit matrix,
Fa = [U Fyg), (5-45)

as a matrix in normal form. For matrices in normal form, Definition 5-14
can be rephrased as follows:

A matrix Fy of real integers in normal form (Eq. 5-45) is a regular matrix
if for every linear combination R; of the rows of F; with coefficients 1,
—1, and 0, we have that (a) the elements of Ry are 1, —1, and 0, or (b)
there exists another such linear combination Ry (with coefficients 1,
—1, and 0) which has 1 and —1 for nonzero elements and these are at
a (not necessarily proper) subset of the positions in which R; has non-
zero elements.

Let us first establish the reason for considering regular matrices.

TueEoREM 5-24. The fundamental cut-set matrix Qy, the incidence
matrix A, and the fundamental circuit matrix By of a directed graph
are all regular matrices.

Proof. Since Qs and A generate the same space, it suffices to consider
Qy and By:
Q/ = [Qll U] and B/ = [U 312]. (5—46)



106 DIRECTED GRAPHS [cHAP. 5

Consider any linear combination Q; of rows of Q; with coefficients 1, —1,
and 0. Let ¢y, 75, . . ., 7 be the cut-sets with coefficients 1 and 71, o, . . ., Jp
be the cut-sets with coefficients —1, so that

k P
QI =),Q;— 2, Q. (5-47)
r=1 r=1

Now consider the graph as nonoriented, with fundamental cut-set matrix
Q}z), with rows and columns arranged in the same order as in Qy. Let

k »
Q¥ => Q@ + > Qq,, (5-48)
r=1 r=1

where the sums are sums mod 2. By Theorem 4-17, Q{? represents a cut-
set or disjoint union of cut-sets. Now we observe that wherever Q; has
zeros, Q{® also has zeros. [Q{® may have more zeros than Q;.] This
result is immediate since each of the vectors on the right side of Eq. (5-47)
has elements 1, —1, or 0, and so Q; can have a zero only if an even number
of nonzero entries has been added. Under these conditions, Q{? also has
a zero since the sum of an even number of 1’s is zero in mod 2 algebra.
Also, since Q{* has independent rows, Q® # 0 if Q; 0. Hence we
can always find another cut-set Q> which is contained in the disjoint
union of cut-sets Q. If Q® is a cut-set itself, take QP = Q{*. The
directed cut-set Qs corresponding to Q¥ then has entries 1, —1, and 0
and has zeros wherever Q; has zeros. Qy is therefore regular. A similar

proof shows that By is also regular.

Theorem 5-24 is actually true of most of the cut-set matrices and cir-
cuit matrices, and is not restricted to Q; and B;. The restriction to Qy
and B; is made merely to ensure that the corresponding mod 2 matrices
have linearly independent rows so that Q{?’ cannot become the empty cut-
set. The exceptional cases that have to be excluded are the “pathological”
cases similar to the matrix By of Eq. (5-26).

Returning to general regular matrices (which may or may not be cut-
set or circuit matrices of graphs), we first prove that every regular matrix
in normal form is an E-matrix. The assumption “normal form” is not a
serious restriction, as shown by Lemma 5-25(a).

LemMma 5-25(a). To every regular matrix Fp there corresponds a regular
matrix F; in normal form which generates the same linear vector space
with at most a permutation of coordinates (corresponding to a permuta-
tion of columns of Fg).

Proof. Let Fg be of order (m, n) and rank m. We may assume that the
first m columns of Fp constitute a nonsingular submatrix (by permutation



5-5] EXISTENCE OF GRAPHS FOR GIVEN MATRICES 107

of columns if necessary):
Fr = [F11 Fra (5-49)

Now F;; can be made diagonal by using only the following row operations
(see Problem 5-31):

(a) multiplication of a row by a nonzero integer,

(b) addition to one row of an integral multiple of another row, and

(¢) permutation of rows.
Then Fg becomes transformed into the matrix

Fri = [D Frgsl, (5-50)

where D is a diagonal matrix with nonzero (integral) diagonal entries.
Since each row of Fg; is a linear combination of rows of Fx with integral
coefficients, it belongs to the linear vector space defined by the rows of
the regular matrix F. Hence the rows of Fg; can be replaced by primitive
vectors preserving all the zeros in Fr; by the definition of regular matrix.
None of the primitive vectors can have zeros in all the first m positions
since Fy; is nonsingular and therefore has independent rows. Thus D is
replaced by a unit matrix. (If any of the diagonal entries is —1, multiply
this vector by —1, which does not change its primitive character.) Thus

the matrix becomes
Fs = [U Fgal. (5-51)

F4 clearly generates the same linear vector space and hence is also regular.

Lemma 5-25(b). The rows of the regular matrix F; in normal form are
primitive vectors.

The proof is omitted and left as a problem (Problem 5-28).

LemMma 5-25(c). Any subset of rows of a regular matrix F; in normal
form constitutes another regular matrix.

Proof. Let ry, re, ..., r be the rows in question. Consider any linear
combination of ry, 7o, . .., 1y with coefficients 1, —1, and 0. In the linear
vector space defined by Fg, there is a corresponding primitive vector. Be-
cause of the unit matrix, this primitive vector cannot depend on any
other row r,, for then it has a 41 in column r,, where the first vector has
only 0. Hence the lemma.

TarEOREM 5-25. Every regular matrix Fy in normal form is an E-matrix.

Proof. By Lemma 5-25(c) (where the subset is a single row), the square
submatrices of order 1 of F; have determinants 1, —1, and O (these are
the elements of F;). Suppose that all square submatrices of orders up to
(and including) r, r > 2, have determinants 1, —1, and 0. Consider a
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nonsingular submatrix of order r + 1, which for notational convenience
we write as

P11 P12 cee Pir P1,r+1
P21 P22 <. P2r P2,r+1
P=1: . (5-52)
Pr1 Dr2 e Drr Pr,r41
Pr+1,1 Pr41,2 - - Pr41,r Dr4i,r+1

By permuting columns, we may consider the leading (r X r)-submatrix of
P to be nonsingular. Consider the row vector

R=[A1rqp1 Aory1r *+* An Argyrgal, (5-53)

where the elements are cofactors of the elements of the last columns of P.
Clearly R is the last row of P™! multiplied by A = det P. By the induction
hypothesis, A; 41 = 1, —1, or 0, and A,; ;1,41 # 0. Replace the last
row of P by RP. Clearly |det P| is unaltered by this process since the new
matrix has a determinant equal to A - A, ,4;. The matrix now becomes

P11 P12 --- Pir Pilr+1
P21 P22 ... D2r P2,r41
P, =|: (5-54)
Pr1 Pr2 -+ Drr Prr+l
0 o --- 0 A

The last row of P; is a linear combination of the rows of P with coefficients
1, —1, and 0. Consider the same linear combination of the rows of Fg
corresponding to rows of P. If A s 41, there exists a primitive vector
with no additional nonzero entries, which by Lemma 5-25(c) can be ex-
pressed as a linear combination of the same rows, with 1, —1, and 0 as
coefficients. This primitive vector cannot have a 0 in the position occupied
by A since P is nonsingular. Use the coefficients of this linear combination
(which gives the primitive vector) on P; that is, replace the last row of P
by the linear combination of rows of P as defined by the primitive vector.
Since all the coefficients are 1, —1, or 0, the determinant changes at most
in sign. The last row now becomes [0 0 0 --- 0 =£1]. Expanding the
new determinant by the last row, we arrive at

det P = :i:A,—+1,r+1 = 4+1. (5‘55)

CoRroLLARY 5-25. Every submatrix of a regular matrix in normal form
is itself regular (but may not be in normal form) and is an E-matrix.

The corollary follows by the method of proof used in Theorem 5-25
and from Theorem 5-20.
The converse of Theorem 5-25 is also true, as stated by the next theorem.
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TaeorREM 5-26. Every E-matrix with linearly independent rows is
regular.

Proof. Let Fy be an E-matrix of order (m, n), with m < n. We may
assume that F; contains no zero-row. Let any linear combination of the
rows of F; be represented as X'Fz, where X is an m-vector of elements 1,
—1, and 0. Let

FiX = Y,

X = [z, Y = [y (5-56)

If Y does not contain elements 1, —1, and 0, we have to prove that there
exists another X; # 0, with elements 1, —1, and 0, such that

FiX; = Yy # 0,
X; = [21], Y: = [yil, (5-57)

has elements 1, —1, and 0, and has zeros wherever Y has zeros. If Y con-
tains no zeros at all, let «} = 1 and 2z} = 2} = -+ = 2z}, = 0. Then
Y; becomes the first column of F; which has elements 1, —1, and 0. In
the general case, we slightly modify the method of proof used for Theorem
5-22. Let Y contain r zeros. By permuting rows of F;, we may consider
the first r 3’s to be zero. Then the first r equations of the system (5-56)
become

fuzy + foixe + - o - A+ fmizm = 0,
fi2x1 4 fooxo + -+ - + fmotm = 0, (5-58)

flrxl +f2rx2 + - +fmrxm = 0.

These equations are satisfied by the given linear combination X. Therefore
the columns of the coefficient matrix of Eq. (5-58) are linearly dependent.
Therefore the rank of the coefficient matrix is s < m. Again by permuta-
tion of rows and columns, let the leading square submatrix of order s be
nonsingular. Set z};; = 1 and zl,, = 2l,3 = -+ =2} = 0. The
existence of zl,; is ensured because s < m. This ensures that X; = 0.
The new vector X; is found exactly as in Theorem 5-22 by solving the
first s equations of (5-58) as

A(}?)
= —", {=12...,s5, (5-59)
A(S)
as in Eq. (5-31). The computation of y,, p =r+ 1, r+2, ..., n, is

performed exactly as in Theorem 5-22. However, we must establish that
Y, # 0. But this follows because F; has linearly independent rows by
hypothesis, and so F; has linearly independent columns.
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Finally, we turn to matrices of integers mod 2 and the statements of
the answers to the questions raised at the beginning of this section.

DeEFiNITION 5-15. Binary matriz. A matrix of integers 1, —1, and 0 is
binary if the replacement of —1’s by 1’s leaves the ranks of submatrices
unaltered, where the rank of the derived matrix is with respect to modulo
2 algebra.

THEOREM 5-27. Every E-matrix is binary.

Proof. The theorem follows from the general expansion formula for a
determinant [78]. If P = [p;jla,n, then

det P = ) Z €j1jz - inP151P252 " Pnjny (5_60)
(1ig:=+in)
where the sum is over all permutations (j1j2 -+ 7s) of (1,2,...,n),and

€j,igin 18 1 or —1 depending on whether the permutation is even or
odd. For mod 2 algebra, the coefficient is always 1. The details are left
as a problem (Problem 5-30).

CoROLLARY 5-27. Every regular matrix in normal form is binary.

DEFINITION 5-16. Regular matrix mod 2. A matrix of integers mod 2
is regular if the replacement of a suitable set of 1’s by —1’s makes it
regular.

Referring back to the remarks at the beginning of this section, the first
problem is to characterize regular matrices mod 2. If the given matrix F
contains the matrix N of Eq. (5-40), with the crosses replaced by 1’s, or
its transpose, it is clearly not regular. However if F does not contain N or
N’, one cannot immediately conclude that F is regular. For, some linear
combinations of rows of F may produce N or N’. It may appear at first
sight that all linear combinations of rows of F must be tried to examine
this possibility. However, they are not all necessary. It is sufficient to
premultiply F by the inverses of its nonsingular submatrices. Each of the
resulting matrices is referred to as a normal form of F,since these contain
unit matrices. The answers to the fundamental questions are given next.

TuEOREM 5-28. A matrix F of integers mod 2 is regular if and only if
no normal form of F contains either of the matrices

1 11
1 011

011
1 1 01 or

1 01
1110

1 10

as a submatrix.
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TureorEM 5-29. A matrix F of integers mod 2 is the cut-set matrix
(circuit matrix) of a graph if and only if it is regular and no normal
form of F contains a circuit matrix (cut-set matrix) of either of the two
basic nonplanar graphs of Kuratowski (Fig. 3-9).

The necessity parts of these two theorems have been established. For
Theorem 5-28, the necessity is given by Theorem 5-23. The necessity
part of Theorem 5-29 has been established in Theorems 5-24 and 3-14.
The sufficiency occupies 57 pages of Transactions of the American Mathe-
matical Society [185, 186] and so cannot be given here. The theorems,
however, are of fundamental importance.

5-6 Summary of important results on graphs. Having completed the
general discussion of graphs, and before proceeding to their applications,
it is useful to collect the most important results that have been obtained.
In a logical development, the important results are indistinguishable from
the many auxiliary results that are needed for the proofs of the main re-
sults and the minor results included for the sake of completeness. Also,
many of these have been listed as problems and are likely to have been
overlooked. Let us therefore spotlight the significant results. To keep
the summary compact, we shall use the same termininology and notation
used earlier, without further explanation. To avoid verbosity, we assume
that all graphs are connected and omit words like non-empty. A theorem
or problem number indicates where the proof of the result may be found
in the text. Where significant, we include the name of the person who
first proved the result, and the year of that proof. Because of the classi-
fication, there are many repetitions.

I. Circuit:

(a) Connected graph with every vertex of degree 2. (Veblen, 1911;
Theorem 1-1.)

(b) Minimal set of edges not contained in any tree. (Whitney, 1935;
Problem 2-22.)

(¢) Minimal dependent set of columns of A or Q. (Whitney, 1935;
Lemma 4-10.)

(d) Minimal set with at least one chord of each tree. (Whitney, 1935;
Problem 2-22.)

() Minimal set with an even number of edges from each cut-set.
(Problem 4-23.)

II. Cut-set:

(a) Dual of a circuit.
(b) Minimal set of edges not contained in any tree complement. (Theo-
rem 2-15.)
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(¢) Minimal dependent set of columns of B. (Problem 4-22.)

(d) Minimal set with at least one branch of every tree. (Theorem 2-15.)

(e) Minimal set with an even number of edges from each circuit.
(Theorem 2-18.)

III. Trees:
(a) G, contained in a tree if and only if (/s contains no circuits. (Theo-
rem 2-12.)

(b) G contained in a tree complement if and only if G contains no cut-
sets of G. (Problem 2-20.)

(¢) Maximal independent set of columns of A. (Theorems 4-10 and
5-6.)

(d) Complement of maximal independent set of columns of B. (Theo-
rems 4-11 and 5-8.)

IV. Duality. (Hypothesis: Gy s a dual of Go):
(a) Gqis a dual of ;. (Theorem 3-12.)
(b) Ry = Ny and R; = N;. (Theorem 3-11.)
(¢) Ay = By and A; = B;. (Corollary 4-25.)
(d) B, = Q2 and By = Q;. (Theorem 4-25.)
(e) If G3isadual of G5, then G is 2-isomorphic to Gy. (Theorem 3-17.)

V. Determination of a graph to within a 2-isomorphism:

(a) Matrix A. (Isomorphism.)

(b) Matrix B. (Whitney, 1933; Theorem 4-19.)

(¢) Matrix Q. (Theorem 4-19.)

(d) Set of all trees. (Whitney, 1935; Problem 4-14.)

(e) Set of all chord sets. (Whitney, 1935; Problem 4-14.)

(f) Set of all cut-sets separating any two vertices of a nonseparable
graph. (Problem 4-21.)

(g) Set of all paths between any two vertices of a nonseparable graph.
(Ashenhurst, 1954; Theorem 9-5.)

VI. Aand Q:

(a) Rank of v — 1. (Kirchhoff, 1847; Theorems 4-4 and 5-1.)

(b) Nonsingular submatrices &} trees. (Theorems 4-10 and 5-6.)

(¢) For directed graphs (Q assumed Qy), determinant of a nonsingular
submatrix is 1 or —1. (Theorems 5-7 and 5-25.)

(d) Regular matrices. (Theorem 5-24.)

(¢) Q = TA, T nonsingular. (Theorems 4-19 and 5-15.)

(f) Qs = ATFA. (Theorems 4-19 and 5-16.)

(g) If Gy and Gy are 2-isomorphic, then A; = Q,, A; = Q;, and
Ay = TAy, T nonsingular. (Theorem 4-24.)
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VII. B:

(a) Rank of e — v 4+ 1. (Kirchhoff, 1847; Theorems 4-9 and 5-5.)

(b) Nonsingular submatrices ¢} tree complements. (Theorems 4-11 and
5-8.)

(¢) For By of directed graphs and “windows” of planar directed graphs,
determinant of nonsingular submatrix is 1 or —1. (Theorem 5-24
and Problem 5-26.)

(d) Regular matrix (Bf). (Theorem 5-24.)

(e) AB’ = 0, QB’ = 0. (Theorems 4-6 and 4-14.)

(f) By = [U A} - AT3'] nonoriented. (Theorem 4-19.)
By = [U —A]; - A7}] directed. (Theorem 5-16.)

(g) G, and @3 2-isomorphic if and only if B; = B,.

VIII. Vector spaces of nonoriented graphs (dim O stands for dimension of V):

(a) dim Vg = v — land dim Up = ¢ — v + 1.

(d) Vg <> S; = {cut-sets and edge-disjoint unions of cut-sets}.

(e) Vp <> Sy = {circuits and edge-disjoint unions of circuits}.

(f) @y and G are 2-isomorphic if and only if Vg; = Vg and
UVp1 = Upe.

(g) G and @2 are duals if and only if Vg; = Upe and Vp; = Vga.

(h) Vg contains 2°~! vectors, and Up contains 2°~° 1! vectors.

IX. Vector spaces of directed graphs:

(a), (f), (g) Same as for nonoriented graphs.
(b) Vg orthogonal to Vp.
(C) Vg @ Up = Vg
(d) {Vectors in Vg with coordinates 1, —1, and 0} <

S; = {cut-sets and edge-disjoint unions of cut-sets}.
(e) {Vectors in VUp with coordinates 1, —1, and 0} <

Sg = {circuits and edge-disjoint unions of circuits}.
(h) Both Vg and Up contain an infinite number of vectors.

X. Matrices mod 2 and graphs:

(a) Given matrix F of integers mod 2, F can be replaced by a matrix of
1, —1, and 0, keeping ranks of all submatrices invariant if and only
if no normal form of F contains either

1 11
1 011

011
1 1 01 or

1 01
1110

110

as a submatrix. (Theorem 5-28.)
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(b) Given F satisfying conditions in (a), F is the cut-set matrix of a
graph if and only if no normal form of F contains the circuit matrix
of a nonplanar graph. (Theorem 5-29.)

(¢) Given F satisfying conditions in (a), F is the circuit matrix of a
graph if and only if no normal form of F contains the cut-set matrix
of a nonplanar graph. (Theorem 5-29.)

XI. Planar graphs:

(a) A graph is planar if and only if it does not contain a Kuratowski
graph. (Theorem 3-16.)
(b) A graph is planar if and only if it has a dual. (Theorem 3-14.)

ProBLEMS

5-1. Prove Theorem 5-1.

5-2. Orient the graph of Fig. 1-10. Construct the matrix A. Choose a tree
and show, by elementary operations, that the submatrix of A corresponding to
this tree is nonsingular.

5-3. It is always possible to arrange the rows and columns of A such that

A = Ain Az
0 A
and A;; is square. However, the order of Aj; changes, depending on various
factors. Examine these factors and state the criterion for making A;; as large
as possible, with no row of Aj; being zero.

5-4. Prove that given any subgraph containing no circuits, the incidence
matrix A of the graph can be arranged as
A = [Au Alz],
0 Azz
where the columns of A1 correspond to the edges of the subgraph and Aj; is
nonsingular.

5-5. Find the rank of the matrix B, of Fig. 5-3 by reducing the matrix, using
elementary operations.

5-6. Construct the matrix for a fundamental system of circuits of Figs. 3-9(a)
and (b).

5-7. Prove Theorem 5-4. [Hint: If a vertex is in a circuit, consider all pos-
sible orientations.]

5-8. Show that any set of e — v -+ 1 circuits of a connected graph G such
that the matrix of these circuits has a rank e — v + 1 includes every circuit
element. Thus show that the sophomore law “Be sure to include every network
element in at least one loop” is superfluous. [Hint: Follow proof of the second
part of Theorem 4-11.]

5-9. Show that any incidence matrix A “covers” the graph as indicated for
the circuit matrix in Problem 5-8.
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5-10. The graph of Fig. 3-9(a) can be “covered” (all edges included) with
two, three, four, five, or six circuits in such a way that each circuit contains
(at least) one edge which is in no other circuit. Show this. Can the graph be
so covered with seven circuits? What general conclusion can be drawn from
this example?

5-11. State the analogue of Problem 4-5, in directed graphs, and prove it.

5-12. Construct a fundamental system of cut-sets for Fig. 5-4 and the cor-
responding matrix.

5-13. Complete the formal proof of Theorem 5-12.

5-14. Assign edge orientations to Fig. 1-8(c) in any arbitrary fashion. Then,
(a) establish A,, (b) establish Qq, and (c) show that A, is contained in Q,.

5-15. Repeat Problem 5-2 by using Q.

5-16. Repeat Problem 5-9 for any cut-set matrix Qy.

5-17. Prove that any row in any matrix Q; is a linear combination of some
set of rows of A,.

5-18. Take any cut-set matrix of Fig. 5-4 of maximal rank (3) and find the
transformation D of Theorem 5-15, relating the cut-set matrix to the incidence
matrix.

5-19. Prove Theorem 5-17.

5-20. Prove Theorem 5-18.

5-21. Orient Fig. 2-2. Establish A, Qy, and Bs corresponding to some tree.
Show by calculation that AB; = 0 and Q;B; = 0.

5-22. Orient Fig. 2-2. Determine Qy for four different trees. Show that in
each of the four matrices, the submatrices corresponding to the four trees are
nonsingular.

5-23. Show that Qy and By can be calculated from any given A.

5-24. Orient the graph of Fig. 3-9(a). Calculate the number of trees in this
graph from the formula

(number of trees) = det AA’.

(This formula is established in Chapter 7.)
(a) There are cvidently many trees and therefore many matrices B; and Q.
How many matrices A exist?

(b) Try to find the number of rows in B,.

(¢) Repeat part (b) for cut-set matrix Q,.

5-25. Let G be a planar directed graph. Describe the procedure for con-
structing the geometrical dual of G (including the orientations of edges) which
should be performed so that the incidence matrix of either graph is the circuit
matrix of the other.

5-26. Show that with planar graphs @, if the “windows” are chosen for loops,
Theorem 5-7 is applicable to the circuit matrix also. (Cederbaum [26].)

5-27. Do the statements of Problems 3-8 and 3-9 remain true for directed
graphs G and G* (oriented as in Problem 5-25) even when orientations of
paths, cut-sets, and circuits are taken into account? Justify your answer.

5-28. Prove Lemma 5-25(b). [Hint: Argument of Lemma 5-25(c).]

5-29. It follows from Theorems 5-24 and 5-25 that the determinants of a
square submatrix of order v — 1 of Q; and order e — v + 1 of By are 1, —1,
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or 0. Use this to show that if B is any circuit matrix (not necessarily funda-
mental or even regular), the determinants of all nonsingular submatrices of B
have the same magnitude. [Hint: Express B in terms of By and use: the de-
terminant of a product of two square matrices is the product of the determinants.]

5-30. Complete the detailed proof of Theorem 5-27.

5-31. Justify the reduction procedure used in Lemma 5-25(a) to reduce Fg
to the form [D Fg2).

5-32. Show, without using Theorem 5-25, that the matrix Bg of Eq. (5-26)
is not regular.



CHAPTER 6
APPLICATIONS TO NETWORK ANALYSIS

As mentioned in Section 1-1, Kirchhoff founded the theory of graphs
in its present form (as opposed to Euler’s discussions) in 1847, specifically
for its application to electrical networks. (Kirchhoff’s contributions are
distributed throughout this book; Chapters 5, 6, and 7 contain most of
Kirchhoff’s contributions to electrical network theory.) The present
chapter is concerned with those aspects of electrical network analysis
which depend on the theory of graphs. Much of the discussion is suf-
ficiently general to be applicable to general linear systems, as is well recog-
nized in the engineering profession.

The main purpose of this chapter is to provide a rigorous mathematical
foundation for the discipline of electrical network theory, justifying many
of the familiar statements and procedures of network analysis. A general
familiarity with network analysis, including the Laplace transformation
technique, is assumed in this chapter. Therefore no time is devoted to
the “physical aspects” or to the relationship to other disciplines, e.g., the
equations of Maxwell and those of Lagrange.

6-1 Kirchhoff’s laws. Since the purpose here is to “prove’”’ some
properties of Kirchhoff’s current and voltage equations, it is necessary to
begin with a precise (postulational) formulation of Kirchhoff’s laws. A
very brief discussion of the concept of a reference is given first, to allow
for the correlation of the present formulation with the conventional ones.

Electrical network theory is formulated in terms of two variables,
current and voltage, associated with each network element (branch, in
conventional terminology). As in any other physical science, these quanti-
ties are correlated with the readings of certain instruments, which in this
case are called ammeters and voltmeters. Since our discussion here is con-
cerned with current and voltage as real functions of time, i(t) and v(¢),
the meters should be of the “instantaneous-value” kind. They might be
center-zero D’Arsonval meters or oscilloscopes, for instance. As is well
known, the sign of the reading depends on the way in which the instrument
is connected in the network; reversing the terminals changes the reading
from positive to negative or vice versa. Hence, for unique correlation of
theory with experiment, it is necessary to specify, on the network diagram,
how these quantities are to be measured. Such a specification is done by
means of current and voltage references. TFigures 6-1 and 6-2 show the
common references used and the meter connections implied by them.

117
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(b)

F1g. 6-1. Current reference convention.

(a-2) (b)

F1a. 6-2. Voltage reference convention.

In each figure, part (a) shows the reference, and part (b) shows the meter
connection. The @ on the meter stands for the + -terminal of the meter
or the red terminal of the oscilloscope. Since current and voltage refer-
ences can be arbitrarily assigned to a network element, there is no need
to carry two sets of references. Hence, in this book, they are combined
into one reference (which is used later as the magnetic polarity reference
as well). The combined reference is identified as the edge orientation in
the directed graph. The convention adopted here is shown in Fig. 6-3.
Thus, all the voltage + -references are assumed to be at the tails of the
current-reference arrows. (Those accustomed to the “rise” convention
of Fig. 6-2(a—2) may find this a little confusing initially.)

Since the present formulation of Kirchhoft’s laws may be unfamiliar,
an example is given first, before the formal statement. In Fig. 6-4(a),
a network is shown in familiar form, with all the current and voltage ref-
erences shown and the voltage + being kept at the tail of the current-
reference arrow. The three loops in the network and the loop references
are also shown. From earlier experience, Kirchhoff’s current and voltage
equations for this network may be written as

qO——————— 0} ao—l:—ob
¥

v
(a) M)
F1g. 6-3. Combined reference.
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ey B e

F1c. 6-4. Example for Kirchhoff’s laws.

Current equations:

Node a:  2,(f) + 22(¢) = 0,
Node b: — 22(t) + 13(8) + 24(2) = 0, (6-1)
Node c: — 14(t) + i5(t) = 0,
Node d: —17,(¢) — 13(t) — 15(t) = 0;
Voltage equations:
Loop 1: —uvy(t) + v2(t) + v3(t) = 0,
Loop 2: v3(t) — va(t) — v5(t) = 0, (6-2)
Loop 3: —v1(t) + va(t) + v4(t) 4 vs(t) = 0.

Collecting these two systems of equations in matrix notation results in

Pl(t)_
1 1 0 0 0 i) 0
0 -1 1 1 off I o (©-3)
0 0 0 —1 1 i) 0
—1 0 —1 0 —1 550 | 0
and
(Ul(t)-
—1 1 1 0 0| ve(t) 0
0 0 1 —1 —1|lvs@® =10 (6-4)
1 1 0 1 1llee 0
L v5(2) ]
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The coefficient matrices of Eqs. (6-3) and (6-4) are now recognized
as the vertex and circuit matrices, respectively, of the directed graph of
Fig. 6-4(b). It is not difficult to see that this observation is perfectly
general, and is not peculiar to the example. The postulational forms of
Kirchhoff’s laws now follow.

DeriNiTioN 6-1. Electrical network. An electrical network is a directed
linear graph with two real-valued functions v and ¢ of the real variable ¢,
which are of bounded variation, associated with each edge, satisfying
the three postulates Ny, N2, and N3 below.*

PosturatE Ny. Kirchhoff’s current law:
Aai(t) - 0, (6—5)

where A, is the vertex matrix of the directed graph

11 (t)
i) = | 2 (6-6)
it
and ©;(t) is assoctated with edge j.
PosTuraTE N, Kirchhoff’s voltage law:
Bav(t) = 0, (6-7)
where B, is the circuit matriz of the directed graph
v1(t)
o = |2 (6-8)
0

and v;(t) ts associated with edge j.

Since the properties of incidence and circuit matrices are known, it suffices
to restate these results as properties of Kirchhoff’s current and voltage
equations.

TueorEM 6-1. For a connected network, exactly v — 1 of Kirchhoff’s
current equations are linearly independent. In general, if the network
is in p connected pieces, there are v — p linearly independent Kirchhoff’s
current equations. In both cases, v is the number of vertices.

* The statement of Postulate N3 is postponed to Section 6-3 to avoid con-
fusion in the following discussion of Kirchhoff’s laws.
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Theorem 6-1 follows immediately from Theorem 5-1, since the linear
dependence of a system of equations is decided by the rank of the coef-
ficient matrix. Similarly, Theorem 6-2 follows from Theorem 5-5.

THEOREM 6-2. There are exactly ¢ — v + 1 linearly independent
Kirchhoff’s voltage equations for a connected network with e edges
and v vertices.

More interesting results are obtained on translating Theorems 5-6
and 5-8.

TureoreEM 6-3. If T is any tree of a connected network, the voltage
functions of the chords of 7' are expressible as linear combinations of
the voltage functions of the branches of 7', and the current functions
of the branches of T are expressible as linear combinations of the cur-
rent functions of the chords of 7'

The proof of Theorem 6-3 is straightforward and is left as a problem
(Problem 6-2).

Since the incidence matrix and the cut-set matrix differ only by a
nonsingular transformation, it is possible to state Kirchhoff’s current law
by using the cut-set matrix.

Turorem 6-4. If Q is a cut-set matrix of v— 1 cut-sets and rank
v — 1, Kirchhoff’s current equations

Ait) =0 (6-9)
are equivalent* to the system of equations
Qi(t) = 0. (6-10)

This result, which is easily proved (Problem 6-4) is familiar in a dif-
ferent form. If a subnetwork N, is connected to the rest of the network
by means of k wires, it is a familiar fact that the sum of the currents in
the k& wires (with references taken into account) is zero. Theorem 6-—4
makes precisely this statement, since the k wires constitute a cut-set.
Essentially, the matrices A and Q should be considered to be interchange-
able. Almost any statement about A is also true about Q and conversely
(except for A’s property of having one 1 and one —1 per column, and
the related result of Theorem 5-7). For this reason, many authors prefer
to consider the cut-set matrix rather than the vertex matrix (see, for
instance, Foster [59] or Guillemin [68]).

* Two systems of lincar equations are equivalent if they have the same
solution.
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6-2 Mesh (loop) and node transformations. The discussion up to this
point has been in terms of the so-called branch variables, namely the cur-
rents and voltages associated with the network elements. Although these
quantities are more “basic” in the sense of being directly measurable, the
loop and node variables are used more often in network analysis. This
section is devoted to a justification of their use and discussion of the
consequences. We decompose the vector space associated with the graph
into orthogonal complements for this purpose. A justification based on
the theory of equations is also possible and may be found elsewhere [156].

As observed earlier, the orthogonality relation

AB' = 0 (6-11)

shows that the vector subspaces Ug and Up are orthogonal complements
of the e-dimensional linear vector space VUg. From the discussion of linear
algebraic equations in Section 4-6, we recognize that the vector i(f)
satisfying Kirchhoff’s current equation must belong to Vg, and similarly
v() must belong to Vg. Since the rows of the matrices B and A are
respectively bases for these two subspaces, i(f) must be a linear combina-
tion of the columns of B’, and v(f) must be a linear combination of the
columns of A’. Such a linear combination can be written in matrix nota-
tion as in Section 5-5. For instance, if B is partitioned into rows,

B=|B2}, p=e—uv-+1 (6-12)

the expression for i(f) can be written as

iml(t)
i(t) = [By By --- B m2() (6-13)
Tmu(t)
where 7n1, tme, ..., tms are the coeflicients of the linear combination.

Since B’ is a matrix of constants and i(f) is a matrix of functions of ¢, the
coefficients of the linear combination must be functions of ¢{. Similar re-
marks apply to v(t).

TaeoreEM 6-5. The column matrix i(¢) of element-current functions of
a connected network satisfies Kirchhoff’s current equation,

Ai(t) = 0, (6-14)
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if and only if there exists a set of ¢ — v + 1 functions ¢,,;(f) such that

i(t) = Blin(t), (6-15)
where
iml(t)
in(t) = im?(t) y ow=e—uv+1, (6-16)
0

and B is a circuit matrix of the network of ¢ — v + 1 rows and rank

e — v+ 1.
The sufficiency of Eq. (6-15) is observed immediately, since
Ai(t) = A[Bi,(t)] = (AB)i,(t) = O. (6-17)

Equation (6-15) is the mesh, or loop, transformation. The corresponding
theorem for v(?) is given next and follows from similar arguments.

TaroreEM 6-6. The column matrix of voltage functions v(f) of a con-
nected network satisfies Kirchhoff’s voltage equation,

Bv(t) = O, (6-18)

if and only if there exists a set of v — 1 functions v,;(¢) such that

v(t) = A'va(), (6-19)
where
vnl(t)
va(t) = [Un2(® |, p=0v — 1, (6-20)
(0

and A is an incidence matrix of v — 1 rows of the network.

Equation (6-19) is the node transformation. The variables 7,;(f) are
known as mesh, or loop, currents, and v,;(t) are the node voltages (also known
as node-to-datum voltages).

In Theorem 6-6, the incidence matrix A can evidently be replaced by
a cut-set matrix Q of » — 1 rows and rank » — 1. Then the transfor-

mation becomes
v(t) = Q'vp(2). (6-21)

With most (but not all) cut-set matrices, the variables in v,(f) can be
identified as node-pair voltages, i.e., voltages between some pairs of nodes
in the network. If Q becomes Qy, the variables are the voltages of the
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branches of the corresponding tree (see Section 6-4). In these cases
(where the interpretation node-pair voltages is possible) Eq. (6-21) is re-
ferred to as the node-pair transformation. However, for any cut-set matrix
Q, Eq. (6-21) is valid, provided only that Q has v — 1 rows and rank
v — 1.

Although the concepts of loop currents and node voltages are extremely
familiar, let us illustrate the transformations by means of an example, to
show that the matrix equations agree with the familiar conceptions of
loop currents and node voltages; only the notation is new.

For the network of IFig. 6-5, the incidence and circuit matrices are

1 2 3 4 5 6

1[-1 =1 0 0 —1 0
A=2| 0 1 1 1 0 0 (6-22)
3L o o o0 —1 1 1

and

1 1 —1 1 0 0 0
B=2 0 1 0 —1 -1 0f- (6-23)

The mesh transformation is therefore

i(t) = Bin(t),

[41(t) 1 0 0
15(t) —1 1 0 it (0)
wOI_ 0= o) (6-24)
14() 0 —1 1 ima(®
15(1) 0 —1 0
| 76(t) | | 0 0 1]
which becomes, on multiplying out,
1) = tmi(?),
i9(t) = —im1(t) + ma(t),
7:3(t) = iml(t) — im3(t); (6—25)

14(t) = —im2(t) + Tma(?),
i5(t) = —im2(?),
iG(t) = 7:m3(t)'
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o Reference
4

F1a. 6-5. Loop and node transformations.

On examining Fig. 6-5, it is seen that these are indeed the correct expres-
sions for the element currents in terms of the loop currents.
The node transformation is

v(t) = A'vu(d),

[v1(0) [—1 0 o
Ug(l) —1 1 Unl(l)
s 010l (6-26)
2)4(0 0 1 —1 Ung(t)
v5(t) -1 0 1
| v6(?) | | 0 0 1]
or, in scalar form,
v1(t) = —vp1(t),
02(0 = _vnl(t) + vn2(t);
v3(t) = Vna(t), (6-27)
U4(t) = Un2(t) - vn3(t)7
v5(t) = —vp1(t) + vas(t),
ve(t) =  vas(?).

Since all the element-voltage references are at the tails of the current
reference arrows, these are indeed the correct expressions for the element
voltages in terms of the voltages of nodes 1, 2, and 3 with respect to the
reference (or datum) node 4.

Thus the results of Theorems 6-5 and 6-6 are not particularly new.
However they do justify the use of loop and node variables in network
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analysis, and provide an elegant notation for writing these expressions.
The next theorem makes use of this elegance of notation.

TuroreM 6-7 (power relation). If the currents and voltages in a net-
work satisfy Kirchhoff’s laws, then

j=1

Proof. By Theorems 6-5 and 6-6,

i vi(t) - i;(t) = V'(t)v(t) = 0. (6-28)

i(t) = Bin(l) and v(t) = Alv,(t). (6-29)
Hence
i'(t) - v(t) = in(O)BA'VL(l) = im(t)(BA)va(t) = O (6-30)
since
BA’ = 0. (6-31)

Tor the reference convention adopted, the expression for “power ab-
sorbed in element j” is

p;i(t) = v;(8)7;(8). (6-32)

From this, Theorem 6-7 can be interpreted as stating that
> pi) = 0. (6-33)
j=1

On integrating Eq. (6-33) between any two limits ¢; and {5, the result
is Theorem 6-8.

TuEOREM 6-8 (conservation of energy). If the energy function is
absolutely continuous, so that

pi) =0 and  wo = ‘@, 63

then Kirchhoff’s laws imply conservation of energy:

e
Z w;(t) is constant.
j=1

Stated differently, Theorem 6-8 implies that conservation of energy
need not be added as a postulate of the discipline of network theory.
It is already included in the theory, so long as energy is a well-behaved
function.

The mesh and node transformations are of interest from a mathematical
point of view because they are singular transformations (defined by singu-
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lar matrices). It turns out to be an interesting problem to investigate
when a given singular transformation can be used and when it cannot
be used. The interested reader is referred to an original article [151] for
such a discussion.

6-3 The third postulate. Postulates N; and N, are concerned only
with the way in which the network elements are interconnected. The
character of the network elements (resistor, inductor, capacitor, generator,
etc.) does not enter the discussion of Kirchhoff’s laws in any way.
Kirchhoff’s laws are associated purely with the topology of the network.

On the other hand, the character of the individual network element
(whether it is a resistor or inductor or generator) is clearly independent
of where in the network the element happens to be located. The network
element is characterized by the relationship between voltage and current.
Postulate N3 concerns this relationship. The independence of the two
aspects of a network (the geometry, or interconnection aspect, and the
character of the network elements) must be clearly borne in mind.

The functions associated with each element of a network, in addition
to satisfying Kirchhoff’s laws, are required to satisfy a system of integro-
differential equations. These element equations have the general form

v(t) = LG%(:—)— + Ri(t) - D / “i@) de 4 e(®) - vo(0L).  (6-35)
0

The entries in the matrices L, R, and D characterize the equations and the
network.

(a) If the matrices are symmetric, the network is bilateral, or re-
ciprocal; otherwise it is nonreciprocal.

(b) If the entries in the matrices L, R, and D are independent of the
dependent variables v; and 7;, then the network is linear; otherwise
it is nonlinear.

(¢) If the entries in the matrices L, R, and D are functions of the
independent variable ¢, but not of ¢; and v;, the network is a linear
time-variable network.

(d) If the matrices L, R, and D are positive semidefinite or definite,
and if e(t) = 0, the network is passive.

(e) If the matrices R, L, and D contain only constants, the network
is linear time-invariant.

The general principles of the discussions in this chapter are applicable
to all linear time-invariant networks. The discussions up to this point
are applicable to all lumped networks. However, for the major theorems
in the rest of this chapter, a linear, reciprocal, time-invariant network
with positive semidefinite matrices is assumed. The reason for this re-
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striction is given by means of an example at the end of Section 6-4. The
type of network to be considered is characterized by the third postulate.

PosTuLATE N3. The functions v(t) and i(t) are related by
v() = L 710 4+ Ri@) 4D / i(2) dz 4 ve(04) + e(t), (6-36)

where R and D are real diagonal matrices with nonnegative entries on the
main diagonal, and L is real symmetric, with the nonzero rows and columns
of L constituting a positive definite submatriz.

A detailed discussion of the concept of positive definiteness may be
found in Hohn [78]. The definition and some important properties are
given here for the continuity of the discussion. A real symmetric matrix F
of order n is positive definite if for every real vector X # 0 of order n,

X'FX > 0,

where X'FX is a quadratic form. It can be expanded as

X'FX = i i Tofrss.

r=1 s=1

The definition can also be formulated in terms of complex vectors X, in
which case the transpose of X must be replaced by the transposed con-
jugate. It is left as a problem (Problem 6-14) to show that the two are
equivalent for real matrices F. It is a trivial consequence of the definition
that every diagonal matrix with positive diagonal entries is positive
definite, for then the quadratic form is merely

Z xifii.

i=1
A useful test for positive definiteness is the following. A leading principal
minor of order r is the determinant of the submatrix consisting of the
first » rows and the first » columns. It can be shown that a symmetric
matrix is positive definite if and only if all the leading principal minors
of order r are positive for r = 1, 2, 3,...,n.

Positive semidefiniteness is defined as follows. The real symmetric

matrix F is positive semidefinite if for all real vectors X £ 0 of order =,

X'FX > 0,

provided there is at least one X # 0 for which the equality sign applies.
If the matrix F is positive semidefinite, then all the leading principal
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minors are nonnegative. The converse, however, is not true in this case.
A counterexample is the matrix

—

11
F=1]1 1
11

S =

The leading principal minors of F are all nonnegative, but F is neither
positive definite nor semidefinite. Define a principal minor of order r
to consist of rows 1y, 79, . . ., 7, and columns 74, 7y, . . ., 7, (that is, chosen
symmetrically) of the matrix F. Then the matrix is positive semidefinite
if and only if all the principal minors are nonnegative.

The condition that the matrix L be positive semidefinite is equivalent
to requiring that a passive system be stable. In Section 6-5 it is shown
that a passive network satisfying N3 is stable. Conversely, the following
statement is proved in Section 6-5. If a set of inductors can be found such
that the matriz L of these inductors is meither positive definite mor semi-
definite, then we can build a passive network consisting of these inductors
and some posttive resistors which is unstable. Postulate N3 makes a stronger
requirement, namely that the nonzero rows and columns of L must consti-
tute a positive definite submatrix. This condition is equivalent to pro-
hibiting “perfectly coupled” transformers. The uniqueness theorems
established in Section 6-4 are not true for networks containing perfectly
coupled transformers. It is also possible to justify the positive semi-
definiteness of the matrix L by showing that the quadratic form i’Li is the
energy stored in the magnetic field of the inductors, by using a rather
complicated field-theoretic argument. However, we prefer to base the
justification on stability.

The matrix e(f) corresponds to the so-called driving functions or gen-
erators. These are the elements of the network for which either »(f) or
1(¢) is a specified function. If v(f) is specified, it is referred to as a voltage
driver or voltage generator, and if 7(t) is specified, it is a current driver or
current generator.

Fic. 6-6. Example for Postulate N3.



130 APPLICATIONS TO NETWORK ANALYSIS [cuAP. 6

Since these equations have been written in somewhat unfamiliar nota-
tion, let us consider a simple example and write out the equations for the
example. For the network of Fig. 6-6, the element equations of Postu-
late N3 are

n@| |[no| {000 0o 0 of%uw
d .

va(2) 0 000 O 0 O azz(t)
d .

= +

v4(l) 0 0 0 0 Ly Les O %g(n
d .

1)5(t) 0 0 0O L45 L55 0 Eﬁls(t)
d .

Ug(t) Z)G(t) 0 0O 0 0 0 alﬁ(l)

0 0 00 0 0]fz(0)]
0 R, 0 0 0 0]l40)
L]0 0 00 0 0w
0 0 0 0 0 070
0 0 0 0 0 0}l
0 0 0 0 0 0] ]
- o prt —_ _ -
OOOOOO/il(x)dx 0
0
t
00 0 00 O /Oig(x)dx 0
00 Dg 00 0 /’i3(x) dz | | vs(0+)
+ ’ + - (6-37)
000000/01'4(x)dx 0
00 0 000 /tis(x)dx 0
0

00 0 00 0 /tis(x)dx 0
0 _
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These equations can be rewritten more concisely (and with fewer zeros) as

[0,)] [ou®] [O 0 0 0 0 Oofd@ 0
Uz(l) 0 0 R2 0 0 0 0 iz(t) 0
@ =] 0 [+[o o -11;133 0 0 0|+ |w0p]
va(t) 0 0 0 O Lyp Lgsp 0] is(d)
vs(t) 0 0 0 O Lgp Lssp Off 25(8)
| v6(t) | lve(t)] |0 O O 0 0 0] 7 | |
(6-38)
where the operational notation
N 10 1.0 rt. 8
pi) = S5 and () = /0 i(x) da (6-39)

has been used.

A few remarks on these equations might eliminate some possible con-
fusion. First, the rows and columns in the coefficient matrix which
correspond to the drivers are zero. Second, each R, L, C, and generator
has been considered to be a separate element. In network analysis, such
an assumption is unnecessary. But we find this convention useful later,
and so a uniform convention is adopted. A possible source of confusion
is the use of L45 in the matrix, whereas the polarity marks in Fig. 6-6
seem to indicate —Lg45 as the appropriate entry. In this case, L45 has
been taken to be a negative number. It is theoretically more convenient

to write
L= [Ly] (6-40)

and let L;; be positive or negative rather than to write
L = [xLij], (6-41)

with the choice of signs in the matrix depending on the particular network.
The following convention is associated with Eq. (6-40). If the two polarity
marks on windings 7 and j are similarly situated with respect to the edge
orientation in the directed graph of the network (i.e., both at the tail
or both at the head of the orientation arrow), L;; is a positive number;
otherwise it is negative. If for any particular reason it is desired that
mutual inductance should be nonnegative, mutual inductance can be
defined as M;; = |Lj|.
Postulate N3 can be written concisely in operational notation as

v(t) = e®) + Z(p)i(t) + vc(0+), (6-42)
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where, it should be emphasized, Z(p) contains operators and so must be
handled with care.

6-4 Loop and node systems of equations. In this section, the loop
and node systems of equations are established on a firm foundation for
rather general networks. We also examine the conditions under which
these equations have unique solutions, i.e., the conditions under which
the coefficient matrices are nonsingular. The three fundamental systems
of equations of network theory constitute the starting point of the de-
velopment. These are

v(t) = e(®) + Z(p)i(t) + vc(0+).

Since Postulate N3 leads to a system of ordinary linear integrodifferen-
tial equations with constant coefficients, the Laplace transform method
of solution is the most convenient. In this text, a uniform convention is
adopted for Laplace transforms. Capital letters always stand for Laplace
transforms of the corresponding lower-case symbol. Thus, for instance,

ey = [ T e () dt = F(s).

In Laplace transforms, the three fundamental systems of equations (6-43)

become:
Al(s) = 0, BV(s) = 0,

1 (6-44)
V(s) = E(s) + Z(s)I(s) — Li(0+) + ~ ve(04).
As implied by the notation, Z(s) is obtained by replacing p by s in Z(p)
of Eq. (6-43). The last two terms in Eq. (6-44) correspond to the
initial values. Clearly, the matrix i(0+) can be replaced by one contain-
ing only the inductor currents ir(0+), since all other entries of L are
zZero.

In Laplace transforms, the mesh and node transformations are

I(s) = B'l(s) and V(s) = A'V,(s), (6-45)

which are respectively equivalent to Kirchhoff’s current and voltage
equations, as observed earlier.

The systems of loop and node equations to be derived here are for very
general networks with arbitrary distributions of current and voltage
generators and with all initial conditions taken into account; conse-
quently, they are “complicated.” Therefore it is worth while to draw a
“flow chart,” which incidentally shows the derivation of simplified sys-
tems of loop and node equations. The systems illustrated in the flow chart
of Fig. 6-7 are for networks satisfying the conditions:
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I'undamental
equations
() Al =0
(ii) BV = 0
(i) V=21 +E
Branch-voltage Branch-current
equations equations
Substitute (iii) in (i). Substitute (ili) in (ii).
(iv) AYV = AYE i) Al=0
(il) BV =0 (iv) BZI = —BE
J
\ \
Solve (i1) by Solve (i) by
v) V= AV, (v) | = B/lp
(iv) AYV = AYE (iv) BZI = —BE
Node Loop or mesh
equations equations
Substitute (v) in (iv). Substitute (v) in (iv).
(vi) AYA’V, = AYE (vi) BZB/l;, = —BE

Fic. 6-7. Flow chart for loop and node equations.

(a) All initial conditions are zero.

(b) The network contains no current generators.

(¢) Each voltage generator has an R, L, or C in series, and the two
together are considered as a network element.

In the chart, Y = Z™!, which exists by conditions (b) and (¢). The
branch-current equations in column 2 of the chart are of historical im-
portance because many of the early workers, including Kirchhoff himself,
used the branch-current system of equations. The general system, to be
derived next, follows the same pattern as Fig. 6-7 but is more involved,
since the matrices have to be partitioned in various ways. For most
practical purposes, the simplified systems shown in the chart of Fig. 6-7
suffice. The main purpose in deriving the generalized systems of equations
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is to establish rigorously the conditions under which unique solutions can
be obtained for an electrical network.

In the general case, a network satisfying Postulates N, Ny, and N3 is
considered. For the principle of the derivation, the restriction of N3 to
reciprocal networks is unnecessary, but is vital to Theorems 6-11 and
6-12. In the general derivation, each R, L, C, and generator is assumed
to be a separate network element. Two general assumptions are made
as follows:

(a) Whenever a row (and column) of Z(s) is zero, the corresponding
element is a driver; and either »(¢) or 7(f) is specified for this element.

(b) There exists a tree T'; of the network such that all the current
generators are chords for this tree, and there exists a tree Ty (which
may or may not be the same as T';) such that all the voltage generators
are branches of T's. (T'; and T'; usually have other chords and branches,
respectively, as well.)

Assumption (a) is meaningful, for otherwise we have an element in
the network about which nothing is known. Assumption (b), although
it appears artificial, is not a restriction. In the interest of logical order,
it is shown before the general derivation is undertaken that assumption (b)
is a necessary condition for the unique solvability of the network equations.

TueoreM 6-9. If for a connected network the equations
Al(s) = 0, BV(s) = 0,

1 (6-46)
V(s) = E() + Z)I(s) + 5 ve(04) — Liz(0+)

have a unique solution for I(s) and V(s), then there exists a tree such
that the current drivers are chords for this tree and the voltage drivers
are branches for this tree.

Proof. Tirst write the three systems of equations together so that the
known quantities can be separated from the unknowns and the coefficient
matrix examined:

A 0 0
o B ['(s) ] - 0 L (6-47)
YOI Tew + Lveon — twon

—Z(s) U

Now the matrices must be partitioned so that the known quantities can
be transposed to the right and the unknowns to the left. [In Eq. (6-47)
the currents of the current drivers and voltages of the voltage drivers
are the known quantities on the left, and the voltages of the current drivers
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are unknowns appearing on the right.] To this end, arrange the variables
such that the current drivers appear first and the voltage drivers last.
Rearrange the rows and columns of Z, and the columns of A and B, such
that the equations are unaltered. Let a subscript 1 denote the current
drivers, a subscript 3 the voltage drivers, and a subscript 2 the others.
Then, in partitioned form, the network equations are

‘AL A, A; 0 0 o]l"® [ 0 1
0 0 0 B, By Byl 2 0
0o o o u o ofl"®|= Ex(s) - (6-48)
VI(S) 1 .
0 —Z;, 0 O U 5 ve(0+) — LiL(0+)
(o o0 o0 o J1V:01 | E3(s) |
| V3(s) |

The known quantities in these equations are 1,(s), E3(s), v¢(0+4), and
ir(0+). The others, including the voltages of the current drivers and
the currents of the voltage drivers, are unknowns. Transposing the
known 1;(s) to the right and the unknown E;(s) to the left, the third
and fifth equations become trivial since E;(s) and E3(s) are merely alterna-
tive symbols for V;(s) and V3(s). Deleting these trivial equations, we find

A, A 0 07 G —Ali(s)
0 0 B; B, I3 (8) - —B3V3 (S) . (6—49)
Vi(s)

1

= ve(0+) — LiL(0+)
—Z;, 0 0 U V(s) s
By the hypotheses of the theorem, these equations have a unique solution.
The coefficient matrix is therefore nonsingular. The rows of the coeffi-
cient matrix are therefore linearly independent and hence so is any subset
of rows. Consider the first v — 1 rows. Since these are linearly inde-
pendent, the matrix [A; A3] contains a nonsingular submatrix of order
v — 1. By Theorem 5-6, the columns of this submatrix correspond to a
tree T'; of the network. For this tree, the current drivers are evidently
chords, since A; corresponds to the set of current drivers. Similarly, the
second set of e — v + 1 rows is linearly independent, and so the matrix
[B; By] contains a nonsingular submatrix of order e — v 4+ 1. By
Theorem 5-8, the columns of this submatrix correspond to the set of all
chords of a tree T'5. Since the voltage drivers correspond to the columns
of Bg, the voltage drivers are branches of T'5. To complete the proof, we
must show that 7'; and Ty can be chosen to be the same tree. This result
is established as a separate theorem.
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TueorEM 6-10. Let G be a connected graph. Let S; and S, be edge
disjoint subsets of G, such that (a) there exists a tree T'; such that
the edges of S; are chords of T'; (not necessarily the whole of the chord
set of T';) and (b) there exists a tree Ty such that the edges of S, are
branches of T’y (again T's may have other branches besides edges of Ss);
then there exists a tree T for which the elements of S, are branches
and the elements of S; are chords.

Proof. Delete the elements of S; from G. Let the rest of G be denoted
by G,. Since G; contains the tree 7'y of G, G, is connected and contains
all the vertices of G. Ss is contained in G, since S; and S, have no com-
mon edges. Since, by hypothesis, S, is contained in a tree of G, S con-
tains no circuits, and hence can be made part of a tree of G; (Theorem
2-12). Let this tree be T. Then 7 is also a tree of G, and satisfies the
conditions imposed in the theorem.

The proof of Theorem 6-9 is now complete and the general assumption
(b) on the distribution of generators is justified. It is possible to show that
the hypotheses of Theorem 6-9 are also sufficient for the unique solvability
of the network equations (6-49) (see Problem 6-15). However, this result
is established with greater ease with the help of mesh and node systems
of equations. The mesh equations are considered next.

Let the variables be arranged as in the proof of Theorem 6-9. Let T
be a tree of the network which contains all the voltage drivers and none
of the current drivers. For the current drivers, choose fundamental
circuits. The circuits for the other chords need not be f-circuits, but
are chosen so that they do not contain the current drivers. Thus the
current drivers are placed in exactly one circuit each. Then, partitioning
the columns of B as in Theorem 6-9, and partitioning the rows after the
rows corresponding to the f-circuits for the current drivers, we find that
Kirchhoff’s voltage equations become

Vi(s)
[” P12 B”] V(o) =H- (6-50)
0 By By Vs (s) 0

(The unit matrix and the zeros below it arise because the current drivers
are in exactly one circuit each.)
Of these two equations (6-50), set aside the first equation,

Vi(s) = —B12Va(s) — By3Vs(s), (6-51)

for the present. It is used later to find V,(s) after the voltage transforms
V3(s) are found.
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In this development, the same circuit matrix is also used for the mesh
transformation, although it is clear from Theorem 6-5 that it is not
necessary to do so. Any circuit matrix of the network containinge — v + 1
rows and of rank e — v 4 1 can be used. If this procedure is followed
[i.e., if different circuit matrices are used for (1) Kirchhoff’s voltage
equations and (2) the mesh transformation], the coefficient matrix of the
loop system of equations will be asymmetrical even for a reciprocal
(or bilateral) network. However, there is no generality achieved by
following such a procedure. The symmetry, on the other hand, is con-
venient. Furthermore, for the positive-definiteness arguments to follow,
the symmetry is essential. Therefore, if we use the same circuit matrix
as in Eq. (6-50), the mesh transformation becomes

|l(8) U 0
l2(s) | = | Bf2 Bho ["“(3’]- (6-52)
In
13(s) 13 Bbs 2(5)
We see from the first row that
In1(s) = 11(s) (6-53)

and hence is known. (This should be obvious from earlier experience,
since the current drivers are in exactly one loop each and so the loop
current is equal to the generator current.) We see from the third row
of the mesh transformation that

I3(s) = Bi3li(s) + Bhslna(s). (6-54)

This equation is also set aside for computing the functions I3(s) after
Im2(s) have been found. I'rom Theorem 6-5, Kirchhoff’s current law
need not be considered after the mesh transformation has been used.

The voltage-current relations written in the present partitioned form
are

Vi(s) 0 0 0 || 1:(s) E;(s) 0
Vo(s) [ =0 Zya(s) Of]le(s) [+]| O |+ %VC(O—F) — La2ir2(04) |
V3(S) 0 0 0 |3(S) E3(S) 0

(6-55)
As in Theorem 6-9, the first and third equations are trivial. The second

equation is

Va®) = Zas®hs) + 5 veOH) — Lagizs 0. (6-50)
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Now perform the combinations indicated in the chart of Fig. 6-7.
The equations to be considered are

B22V3(s) + B23Vi(s) = 0,
Vals) = Zasla(s) + 5 ve(0) — Loaiza(04),  (6-57)
I2(s) = Bizli(s) + Bo2lna(s).

Performing the operations indicated in the chart of Fig. 6-7, we find
that the final mesh or loop system of equations is

B22Z22(s)B22lma(s)
1 .
= —B23V3(s) — B22Z2B2l1(s) — 3 B2ove (0+) + Baoolozize(0+). (6-58)
By anticipating the results of Theorem 6-12, we can solve these equations

for l,,2(s) in terms of the known generators and initial values. Substitute
the solution for l,3(s) in

I2(s) = Bi2l1(s) + Baalna(s) (6-59)
to find l3(s) and in
I3(s) = Bi3li(s) + Ba3lna(s) (6-60)
to find I3(s). Substitute I3(s) in
Vals) = Zooha(s) + 3 va(04) — Lasiza(0+) (6-61)

to find Va(s). Finally, substitute Va(s) in
Vi(s) = —B12V2a(s) — By13V3(s) (6-62)

to find Vi(s). The time functions are found by inverting the Laplace
transforms. Then all the currents and voltages are found, and the analysis
of the network is complete. Observe that the loop method of analysis
is an organized procedure for reducing the number of equations to be
solved simultaneously, from 2¢ to e — v + 1 — (number of current gen-
erators), which latter number is the number of equations in the system
(6-58). The rest of the analysis consists of substitution.

The coefficient matrix of the loop system of equations

Z,(s) = BgoZyoBhy (6-63)

is generally known as the loop-impedance matriz. Before establishing
the nonsingularity of the loop-impedance matrix, the generalized node
system of equations is derived. The generalized system to be derived
is not the conventional node system shown in Fig. 6-7 but is the node-
pair system of equations in which the variables are the branch voltages
of a suitable tree of the network. In this, we follow an earlier paper [151].
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Let the variables be arranged as before, with a subscript 1 denoting
current drivers, a subscript 3 denoting voltage drivers, and a subscript 2
denoting the others. By general assumption (b), there exists a tree T
for which the voltage drivers are branches and the current drivers are
chords. Consider the current equations of the fundamental system of
cut-sets for this tree 7. By Theorem 6-4, these equations are equivalent
to Kirchhoff’s current equations. If we arrange the cut-set equations
suitably, and partition after the cut-sets defined by the voltage drivers,
these equations are

I (s)
[Q“ 1z ”] (s =[°]~ (6-64)
Q1 Q22 O |3(8) 0

As in the loop system, set aside the equations for the currents of the volt-
age drivers,

I3(s) = —Qu1l1(s) — Qi2l2(s), (6-65)
and consider the second set

Q2111(s) + Qgala(s) = 0. (6-66)

The voltage-current relations are, as before,

Vi(s) 0 0 0 (| 1:(s) Ei(s) 0
Va® [ =0 Za@ || [+] 0 |+ |3 ve0h) — Lasiza0) |
V3(s) 0 0 0l 15(s) E3(s) 0

(6-67)

As before, the first and third equations in Eq. (6-67) are trivial, and the
second is

Va(s) = Zaaha(s) + 1 ve(04) — Lasiza(0+). (6-68)

Following the chart of Fig. 6-7, these equations must be solved for I3(s)
and the solution substituted in Eq. (6-66). To this end, we must state
and prove Theorem 6-11.

TaeoreMm 6-11. If the network satisfies Postulate N3, and if for every
element with a zero row and column in Z(s), either V(s) or I(s) is
specified, then the matrix Zs5(s) of Eq. (6-68) is positive definite for
positive real s and so is nonsingular. Hence det Z55(s)* is not identically
zero in .

* The determinant of Zag2(s) is a polynomial in s divided by some power
of s and so will have some zeros; in fact, if each R, L, and C is taken as a sepa-
ratc element as is done here, the zeros are at s = Qors = «,
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Proof. By suitable permutation of rows and columns, Z;3(s) can be
brought to the form

R 0 O
Zoo(s) =0 st 0O |- (6-69)
0 0 1D
s

By Postulate N3, R is diagonal with positive diagonal entries, and so is D.
Also by Postulate N3, L is positive definite. Hence:

det Zys(s) = (det R) (det D) (det L)s¥, (6-70)

where k is an integer (positive, negative, or zero). Since each of the
terms of the product on the right side of Eq. (6-70) is nonzero,
det Zy2(s) # 0. The positive definiteness is immediately observed.

We remind the reader that L need not be diagonal; the network may
contain magnetic coupling; only perfectly coupled transformers are pro-
hibited. Since Zj2(s) is nonsingular, the inverse is defined as

Yoo(s) = Z53 (). (6-71)

(In the absence of mutual coupling, Yq. is easily found by taking recipro-
cals of diagonal elements of Z,5. In the general case, the submatrix cor-
responding to the coupled coils is inverted, the other elements being still
the reciprocals of corresponding diagonal elements of Zz5.) Now solving
the voltage-current relations of Eq. (6-68) for I5(s), we find that

l2(s) = Y22(s) [V2(8) — %VC(O‘}‘) + L22iL2(0+)]‘ (6-72)

If we substitute this expression for Is(s) in the cut-set current equations
(6—66), the result is

1
Q2111(s) + Q22Y22(s) [Vz(s) — 5 ve(O+) + lzziLz(O—l-)] =0. (6-73)
If we separate known quantities from unknowns in this equation, we find
1 .
Q22Y22(s)Va(s) = —Q21l1(s) + Qa2Y22(s) [g ve(0+) — L22|L2(0+)]’

(6-74)

The next step is to use the node-pair voltage transformation (see Fig. 6-7).
Again, since the use of a different cut-set matrix in this transformation
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results in no additional generality, the same cut-set matrix as in Eq. (6-64)
is used for the node-pair transformation, which is

Vi(s) Q11 Q%

V,1(s)
Va(s) | = | Q)2 e l: r1 ] . (6-75)
Vpa(s)
Va(s) U
From the third row, we see that
Vp1(s) = Va(s), (6-76)

which again should be obvious from the choice of fundamental cut-sets.
Again, the first equation,

Vi(s) = Q11V3(s) + Q21Vpa(s), (6-77)
is reserved for later use; the second is used for the node-pair equations
Va(s) = Q12V3(s) + Qa2Vpa(s). (6-78)

Since the node-pair transformation has been used, Kirchhoff’s voltage
equations need not be considered any further. Now on substituting the
expression for Vg(s) given in Eq. (6-78) into the fundamental cut-set
equations (6-74) and transposing the known V3(s) to the right, we find
the node-pair system of equations to be

Q22Y22(5)Q22Vp2(s)
= —Q22Y22Q12V3(s) — Q2111(8) + Q22Y22 E ve(0+) — LzziLz(O—f—)]'
(6-79)

With some additional computation (see Problem 6-16), we can simplify
the right side by showing that

1 . 1,
Yoo 3 ve(0+) = Caove(0+) and  Ygolosino(0+) = 3 ir2(0+), (6-80)
so that the node-pair equations can be written as

Q22Y22Q%2V52(s)
= —Q22Y22Q12V3(s) — Q2111(s) + Q22 [C22VC(0+) — % iL2(O+)] )
(6-81)

where, as before, i;2(0+4-) are the initial values of the functions 7(¢) of the
inductors only.
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It would be pointless, in manual computations, to use these general
loop and node-pair systems of equations developed here for solving simple,
specific problems. Several simple rules (which can be derived easily from
the general equations above) are known for writing these equations by
inspection. One may therefore wonder whether these general systems are
of any value. The derivation here has three purposes. First it is valuable
to have seen, at least once, the complete and detailed justification of such
common procedures as loop and node analyses. The second purpose is to
establish the equations on a sufficiently firm basis to prove the non-
singularity of the coefficient matrices under the general assumptions
made. The general equations are, finally, suitable for solving problems
when digital computers are available.

The next lemma is needed in the proofs of the main theorem on unique-
ness of solutions to the loop and node systems of equations, as well as in
the later discussion of energy functions. It is a generalization of a well-
known theorem [78].

Lemma 6-12. Let P be a real positive definite matrix of order n. Let
T be a real matrix of order (r, n) and rank r (<, naturally). Then
TPT’ is positive definite. If P is positive semidefinite, then TPT is positive
definite or semidefinite.

Proof. Let X be a column vector of r rows, of real elements, with X = 0.
We need to show that X’TPT'X > 0. To this end, define

Y=TX (6-82)

Then Y is an n-vector. Since T’ has a rank equal to the number of columns,
the equation

X=0 (6-83)
has only the trivial solution

X=0. (6-84)

Since X # 0, it follows that Y # 0. Since P is positive definite,

Y'PY > 0, (6-85)
or
(U'X)'P(T’X) >0 or  X(TPT)X > 0. (6-86)

Hence TPT’ is positive definite. The rest of the theorem follows similarly.

TaeoreM 6-12. If the network satisfies Postulate N3, and the condi-
tions

(a) there is no loop consisting only of voltage drivers,

(b) there is no cut-set consisting only of current drivers, and
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(¢) whenever a row and column of Z(s) are zeros, either v(f) or #(t)
is specified,
then the coefficient matrices of the loop and the node-pair systems of
equations are both nonsingular.

Proof. In this theorem, the driver-distribution conditions have been
stated in a more natural form. It is left as a problem (Problem 6-18)
to show that conditions (a) and (b) of Theorem 6-12 are equivalent to
the conditions of Theorem 6-9. From Theorem 6-11 and Lemma 6-1,
it is sufficient to prove that the matrices B2 and Q22 have ranks equal
to the number of rows.

Remove all the current drivers from the network. Then by condi-
tion (a), the rest of the network, say N* is still connected and contains
all the vertices of the original network. The matrix [Bos Bss] is now seen
to be a circuit matrix of N* with the proper number of rows and rank,
where the submatrices By, and By are the same as in Eq. (6-50). Now
by condition (a) there exists a tree of N* containing the voltage drivers,
which are the elements corresponding to the columns of Bys. Therefore
a subset of columns of By, corresponds to the chord set of this tree. Hence
B,, contains a nonsingular submatrix of maximum order. Hence By, has
a rank equal to the number of its rows.

The cut-set matrix of N* is obtained by simply deleting the first column
of the partitioned matrix of Eq. (6-64). The cut-set matrix of N* is

therefore
[le U
Qs 0

Since N* is connected and contains all the vertices of the original network,
the rank of the cut-set matrix of N* is v — 1. Since the matrix above
has exactly v — 1 rows, the rows are linearly independent. In particular,
the rows of [Qz2 0], which are a subset of the rows of the cut-set matrix,
are also linearly independent. The matrix [Qo2 0] therefore contains a
nonsingular submatrix of maximum order, which evidently has to be
contained in Qgzs. Thus Q22 has a rank equal to the number of its rows,
and so the proof is complete.

To complete the argument of network analysis, one should prove at
this point that the functions l,,2(s) and V,2(s), as well as the other func-
tions defined in terms of these, are Laplace transforms; that is, since they
are rational functions or the product of transforms (I; and V3) by rational
functions, one should prove that the degree of the numerator polynomial
is lower than the degree of the denominator or, in the second case, at most
equal to the degree of the denominator polynomial. Further, one should
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Fic. 6-8. Active network.

show that the time functions so obtained satisfy the initial conditions
specified. It is well known that these existence theorems are not true
unless the initial conditions satisfy certain requirements. (Otherwise the
so-called tmpulse functions are present in the solution and the initial
conditions are not satisfied.) Unfortunately, no such proof is available.
Therefore these existence theorems are left as unsolved problems.

Before concluding the discussion of the loop and node systems of equa-
tions, it is in order to explain why the restriction “reciprocal passive” is
necessary in Theorem 6-12. If the network contains dependent generators,
the nonsingularity of the loop-impedance matrix (or the node-admittance
matrix) is not decided, in general, purely by the topological structure;
it may well depend on the values of the parameters of the network. For
example, in the network of I'ig. 6-8, where 2¢; is a dependent current
generator, the loop-impedance matrix is singular if R, = Rj3, and non-
singular if R, # Rg3.

6-5 Energy functions and stability. The main purpose of this section
is to show that a passive network satisfying Postulate N3 is stable and
thereby, in a sense, to justify N3; namely, we wish to prove the state-
ment made about the positive definiteness of L. The energy functions
of the network are defined for this purpose and for later use in Chapter 8.
Many of the concepts and methods of proof used in this section are due
to Bode [12].

DEeriNiTION 6-2. Stable, strongly stable. The system represented by the
set of ordinary integrodifferential equations with constant coefficients

P(R)X(®) = Y(®) (6-87)

[where p = d/dt, 1/p = [dt, P is a matrix of polynomials in p and
1/p, and Y(t) is the matrix of (known) driving functions] is stable if det
P(s) has no zeros in Re (s) > 0, and is strongly stable if all the zeros of
det P(s) are in Re (s) < 0.
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For the conventional definition of stability (in terms of the solutions
of the homogeneous equation, or the transient solution), one must add
the stipulation that P~!(s) has at most simple poles on the imaginary
s-axis. The next theorem shows that a passive network satisfying Postu-
late N3 is stable according to Definition 6-2.

TueorEM 6-13. The determinants of the loop-impedance matrix
Z,,(s) = BaaZy2(s)B22 (6-88a)
and the node-pair admittance matrix
Yu(s) = Qa2Y22(s) Q22 (6-88b)

of a network satisfying Postulate N3 have no zeros inside the right
half-plane Re (s) > 0.

Proof. For convenience, define
Rm = BgoRgoBhs,  Ln = BaolooBhy, D = BgoD22Ba. (6-89)

By Lemma 6-1 and Theorem 6-12, the matrices R, L,,, and D,, are posi-
tive semidefinite or definite; the sum of the three is positive definite.
Consider the homogeneous system of loop integrodifferential equations

Zn(p)im(t) = 0 (6-90)
or

(me + Rm + % Dm) im(t) = 0. (6_91)

As is well known, if s is a zero of det Z,,(s), then
im(t) = imke’*’ (6-92)

is a solution of the homogeneous system (6-90) for a suitable matrix of
(complex) constants i, Substituting Eq. (6-92) into the homogeneous
system (6-91) and performing the indicated integration and differentiation,
we find that

<sk'-m + Rm + S—lk Dm> imkeskt = Oy (6_93)

or, since the exponential function is never zero, we may divide by €%’ to
get

(skl-m + Rm + 51; Dm) imk = 0. (6_94)

Premultiply this equation by i*% (the transposed conjugate of inx) to
q
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convert it into a scalar equation with quadratic forms:
. . . . . . 1
(';knlkl-mlmk)sk + (':zlkRm'mk) + ('r’:zlkDm'mk) :g; = 0. (6-95)

The quadratic forms in this equation are positive definite or semidefinite.
Hence when we multiply through by s, Eq. (6-95) becomes a quadratic
equation in s, with real nonnegative coefficients. Such an equation has
no solutions with Re (sx) > 0. Hence the result is established. The
proof for det Y,(s) is similar.

The quadratic forms in Eq. (6-95) are known as energy functions for
the following reasons. Taking the quadratic form of R,, for example,
we see that

imiRmimk = imk(B22R22B52)imk = (Bbaimk)*Raz(Bhaimk). (6-96)
But
B122imk = i2, (6_97)

where iz are the element currents for this set of loop currents, from the
mesh transformation. Hence

€2
imRmime = i3'Raziz = Y R;lij|% (6-98)
j=1
the last step following from the fact that Rs, is a diagonal matrix. The
reason for the name energy function is now quite clear. This name is used
also when the variables of the quadratic forms are not complex numbers
but are Laplace transforms of the current functions. The definition of
energy functions is extended by Definition 6-3 in the general case of the
transformed loop equations,

Zm(s)lm(s) = Em(s) -+ K(S, O+)y (6_99)
where K stands for the matrix of initial values.

DerFiNiTION 6-3. Energy functions. The energy functions of an elec-
trical network are

F(s) = B ()Rmln(s),  T(s) = L&' ()lmlm(s),  V(s) = L (s)Dmln(s).
(6-100)
We make use of this definition in the next section to get an expression
for the driving-point impedance in terms of the energy functions. We
turn next to the “justification” of Postulate Nj.

TueoreEM 6-14. If a set of inductors can be found such that the in-
ductance matrix L of these inductors is neither positive definite nor
semidefinite, then an unstable passive network can be constructed con-
sisting of some of these inductors and some positive resistors.



6-5] ENERGY FUNCTIONS AND STABILITY 147

Proof. Let Ly, Lo, . .., L, be a set of n inductors such that the matrix
of these inductances,

Lyg Liz -+ Lia
L=]La; Lag -+ Lonl|> (6—101)
I-nl I-n2 te I-nn

is neither positive definite nor semidefinite. Then there must be at least
one principal minor (not necessarily a leading principal minor) which
must be negative. For convenience of notation, let this be the leading
principal minor of order k. The network is now constructed as follows.
Connect a 1-ohm resistor across each of Ly, Lo, . . ., L. Leave the others
open-circuited as in Fig. 6-9.

Let us now write loop equations for this network, choosing loop refer-
ences agreeing with the reference marks for the inductors [those used in
the construction of the matrix L of Eq. (6-101)]; the loop-impedance
matrix becomes

sLi; + 1 sLis s sLyy
Zm(S) = 8L12 8L22 + 1 .- SLQk- . (6—102)
sLik sLay, <ee sk 41
Let
A(s) = det Z,,(s). (6-103)

Then A(s) is a polynomial of degree k in s. By the usual rule for adding
determinants, A(s) can be expanded as

Lus L128 e leS 1 L128 L138 e les
A(s) = [ Lias Lgos -+ Logs| + 0 Lyps Lggs -+ Loggs|4 ---
les Lgks o kas 0 szs L3k8 e kas
100 --- 0
o]0 1 0 oo 0] (6-104)
0 00 --- 1

It is observed from Eq. (6-104) that the coefficient of s* is given by
Lyy Lz -+ Ly
ay = det le ng e L2k ’ (6—105)

Lix Lok -+ L



148 APPLICATIONS TO NETWORK ANALYSIS [cHaP. 6

Li+1 Li+2 Ly

Fig. 6-9. Unstable ‘“passive’” network.

which is negative by hypothesis. The constant term is given by the last
term in Eq. (6-104), which is 1. Hence

AGs) = ais® + ap_18" T+ -+ as + L. (6-106)
Thus for sufficiently large real positive s,

A(o) < 0. (6-107a)
But
A(0) =1 > 0. (6-107b)

Being a polynomial and thus continuous, A(s) must pass through zero
somewhere on the positive real axis. Thus A(s) has a zero in the right
half-plane and the network is unstable.

Certainly, one does not expect a physical network such as that in
Fig. 6-9 to go up in smoke if it contains no generators. Thus Postulate N
is justified.

When only two inductors are coupled, positive definiteness is the same
as the condition that the coefficient of coupling be less than 1; that is,

LiiLyy — L3, > 0. (6-108)

But if more than two inductors are coupled, positive definiteness is a
stronger requirement. Ior instance, the matrix

1 09 09
L=({09 1 02 (6-109)
09 02 1
is not positive definite or semidefinite, and so is unrealizable, even though

all the “coefficients of coupling” are less than 1. (See Tokad and
Reed [174].)
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6-6 Dual networks. We conclude the discussion of network analysis
with a treatment of the dual in both one and two terminal-pair networks.
We assume a general familiarity with such networks and the derivations
of the various describing functions from the loop and node systems of
equations. (I'or the derivations, see [156].) Only the definitions of these
functions are given here.

DeriNtTioN 6-4. Driving-point impedance and driving-point admittance.
Let N be an electrical network not containing any (independent)
generators, and let two vertices (1, 1’) of N be designated as input
vertices. Then the ratio of the transform of »;(f) to the transform of
11(t), with references as shown in Fig. 6-10, under zero initial condi-
tions, is the driving-point impedance at (1, 1’):

g
Zas) = Y1) 6-110) = [
Il(s) all initial conditions zero +
U1
The reciprocal of Z4(s) is the driving-point
admzttance: o———— o1’
1,(s) Fie. 6-10. Driving-
Yai(s) = 6-111 L by g
d( ) V](S) all initial conditions zero ( ) point functions.

[It may happen that for the given v;(¢) there is no solution 7, () under
zero initial conditions. The definition refers merely to the formal
procedure.]

DeFINITION 6-5. Dual of a one terminal-pair network. The dual of a
given planar one terminal-pair electrical network without generators
or transformers is the one terminal-pair dual of the corresponding graph
(Definition 3-12) with the element-impedance matrix Z(s) of either
network being the element-admittance matrix Y(s) of the other network.

The requirement in the definition on the corresponding elements is the
usual replacement of an inductor by a capacitor of equal value and vice
versa, and the replacement of a resistor by another of reciprocal value.

THeorEM 6-15. If N and N* are dual one terminal-pair networks,
then the driving-point impedance of either network is equal to the
driving-point admittance of the other; that is,

Zy(s) = Yi(s) and Ya(s) = Z3(s). (6-112)

Proof. Let ey and ef be the edges connected across the input vertices
of N and N* respectively. Then by the corollary to Theorem 4-25, the
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incidence matrix of N + e, is the circuit matrix of N* + ez and con-

versely; that is,
A = B* and B = A* (6-113)

Further, by Definition 64,
Z=Y* and Y= Z% (6-114)

Hence the loop-impedance matrix of either network is the node-admittance
matrix of the other:
Zn =YY and Y, = Z%. (6-115)

Since the matrices are equal, so are the determinants and cofactors. The
rest follows from the usual formulas for Z4(s) and Y4(s) with the reference
conventions of I'ig. 6-11:

Za(s) = ﬁ% z (6-116a)
d *
o Yi(s) = ZA% o (6-116b)

where 2z indicates that the determinant and cofactor are chosen from the
loop-impedance matrix, and y similarly refers to the node-admittance
matrix.

Two networks satisfying the reciprocal relationship of Eq. (6-112) are
generally referred to as inverse metworks. By Theorem 6-15, dual one
terminal-pairs are also inverse networks. The converse, however, is not
true. By the well-known results of Brune [16], every passive one terminal-
pair network has an inverse, whereas only planar one terminal-pair net-
works without transformers have duals.

For later use (in Chapter 8), the expression for the driving-point im-
pedance Z;(s) in terms of energy functions is developed before considering
the dual of a two terminal-pair. The loop equations for the network
of Fig. 6-10, with v; in loop 1 only and with the initial conditions equal
to zero, are written as

<Rm T sy + % Dm> bn(s) = En(s), (6-117)
T,
o1 o1
v1+ (1) N ou N*
o1/ i/lfef erence

Fi1c. 6-11. References for duals.
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where 1,,,(s) = I1(s), Emn1(s) = Vi(s), and all other E,,;(s) = 0, by the
choice of loops. If we premultiply Eq. (6-117) by % (s), the result is

F6 + 510 +1 V0| = v 116, 61

with the usual notation for energy functions. Hence

Vi) _ Va(s) - I1(s)

Za(s) = Ii(s) — Ti(s)- I*(s)

(6-119)

can be expressed as

Za(s) = -

[1,]2

[F(s) + sT(s) + % V(s)], (6-120)

which is the desired expression.

DEeriNITION 6-6. Planar two terminal-pair. A two terminal-pair net-
work, with (1, 1’) and (2, 2’) designated as the terminal-pairs, is planar
if the network remains planar on adding an edge e; between terminals
(1, 1) and an edge e; between terminals (2, 2’), with e; and ey being
on the boundary of a common region, when the network is mapped onto
a plane (or onto a sphere).

Definition 6-6 is seen to be more restrictive than Definition 3-11. For
example, the network of Iig. 6-12(a) is not a planar two terminal-pair
network with the terminal-pairs (1, 1’) and (2, 2’), even though it remains
planar on adding e¢; and e; as in Fig. 6-12(b).

DerinitioN 6-7. Dual of a two terminal-pair. The dual of a planar
two terminal-pair network N is obtained by finding the dual network
of N + e; + ¢3 (with the notation of Definition 6-6) and deleting the
edges €] and €}, corresponding to e; and e;. The terminals of e} and
¢5 are the terminal-pairs of the dual N*.

17 1/
() M)

Fic. 6-12. A nonplanar two terminal-pair.
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Fig. 6-13. Two terminal-pair reference convention.

A two terminal-pair network (see Fig. 6-13) is characterized by its
open-circuit impedance matrix or its short-circuit admittance matrix,
which are respectively the coefficient matrices in the equations

[VI(S)_ . _211 212]—11(8)]

Va(s)] Lz21 2z22] 12(s)

and (6-121)
[11(8)— B [y11 ylz_[Vl(S)},
I(s)]  Ly2r ya2ll Va(s)

with all initial conditions equal to zero, as before. The coefficient matrices
are respectively denoted by Z,. and Y.

TueoreM 6-16. If N and N* are dual two terminal-pair networks,
then the short-circuit admittance matrix of either network is equal to
the open-circuit impedance matrix of the other.

The proof follows directly from the definition of two terminal-pair duals
(Definition 6-7) on observing that the formulas for z;; and y,;; of Eq.
(6-121) are the same (in terms of the loop-impedance matrix and node-
admittance matrix respectively) if the network is common-terminal, i.e.,
if terminals 1’ and 2’ are the same terminal. The details are left as a
problem (Problem 6-24).

It is easily appreciated, by drawing the planar two terminal-pair such
that e; and e, are on the boundary of the “outside” region, that the dual
of a planar two terminal-pair will always be common-terminal. Since
the dual of the dual of a graph G is 2-isomorphic to G, we have the next
theorem.

THEOREM 6-17. A planar two terminal-pair network N is 2-isomorphic
to a two terminal-pair network N; which is common-terminal and has
the same open-circuit and short-circuit matrices.

Thus only a very restricted subclass of two terminal-pair networks
have duals.
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ProBLEMS

6-1. Discuss, to the fullest extent you are able, the implication of Theorem 6-2
on using less than or more than e — » 4 1 voltage equations. Establish as
many criteria as you can for choosing a set of e — v -+ 1 circuits which leads
to a circuit matrix of rank e — v 4 1.

6-2. Prove Theorem 6-3. Carry out an example as an illustration. What
happens if you take a fundamental system of circuits for Kirchhoff’s voltage
law and a fundamental system of cut-sets for Kirchhoff’s current law before
solving for branch currents and link voltages?

6-3. Theorem 6-3 specifies certain restrictions on the location of driving
currents and driving voltages in a network. State them.

6-4. Prove Theorem 6-4 by first showing that two homogeneous systems of
algebraic equations are equivalent if and only if their matrices differ by a non-
singular transformation.

6-5. The result indicated by Eq. (6-10) implies that certain sets of currents
in a network add to zero. What are these sets in terms of “looking” at a net-
work or a graph?

6-6. Choose a fundamental system of cut-sets for an example (say Fig. 6-5).
Write out the node-pair transformation using the fundamental cut-set matrix.
Verify that the variables v,;(f) are branch voltages. Prove this result in general.

6-7. Prove Theorem 6-6.

6-8. Can we express all the element currents in terms of less thane — v 4- 1
loop currents? Justify your answer.

6-9. Prove that of the three postulates (Arsove [2])

Ai(t) = 0, Bv(t) = 0, i'(Ov() = 0,

any two imply the other. [Hint: Consider the vector subspaces Ug and Ug.]

6-10. How do we justify that >_p; = 0 in a network when we know that it
takes some energy to run an electrical network?

6-11. In certain singular problems (such as two identical capacitors charged
to different voltages and connected in parallel), we know that energy in the
network is not conserved. What happens to Theorem 6-8 in these cases?

6-12. The Riemann integral f(f 1(z) dr has certain mathematical properties
just because it is an integral. Determine precisely what these are [particularly
the possibility of discontinuity in wve¢(f)]. Consider Problem 6-11 in view of
these properties. In particular, show that a mathematical contradiction arises.

6-13. Find the expression for node voltages in terms of the branch voltages
of a tree, and the expression for loop currents in terms of chord currents of a
tree.

6-14. If A is a real symmetric matrix, show that

X'AX > 0
for all nonzero real vectors X (that is, A is positive definite for real X) if and
only if

Y¥AY > 0

for all nonzero complex vectors Y.
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6-15. By reducing the coeflicient matrix of Eq. (6-49) to the triangular form,
show that the driver conditions of Theorem 6-9 are also sufficient to ensure the
unique solvability of the network equations (6-46). [Hint: Use fundamental
systems of circuits and cut-sets for Kirchhoff’s voltage and current equations,
both for the same tree. Partition the matrix further according to chords and
branches of this tree. Use Theorem 5-9. The problem is somewhat lengthy.]

6-16. Show that

lezzvc(O-i-) = Ca22ve(0+) and Yaolz2ir2(04) = :gl“iL2(0+)- (6-80)

6-17. Work out the details of the derivation of the simplified loop and node
systems of the equations shown in Fig. 6-7.

6-18. Show that conditions (a) and (b) of Theorem 6-12 are equivalent to
the driver conditions of Theorem 6-9.

6-19. What would be wrong in writing 5-loop equations for a 6-loop network
and solving them? Try an example such as Fig. 6-14.

6-20. What happens if you choose more than e — v+ 1 loop equations?

6-21. Show that the zeros of the network determinants for LC, RL, and RC
networks are on jw-, —o-, and —o-axes respectively. [Hint: Proof of
Theorem 6-13.]

6-22. Develop the expression for Y4(s) in terms of the node equations, into
a form analogous to the energy-function expression for Zi(s) of Eq. (6-120).

6-23. Prove that if a network contains a tree such that all chords of the tree
are resistors, then the network is strongly stable according to Definition 6-2.
[Hint: Proof of Theorem 6-13.]

6-24. Complete the details of the proof of Theorem 6-16.

6-25. In Theorem 6-17, show that the open-circuit impedance matrices of
N and N are identical.

6-26. Find the one terminal-pair duals of Figs. 7-1, 7-21, and 8-5.

6-27. Examine the networks of Figs. 7-9 and 7-22 to determine whether they
have two terminal-pair duals. Find the duals when they exist.

6-28. Give a simple reasoning, with an example, to show why two terminal-
pair networks that merely remain planar when the source and load are added
may not have two terminal-pair duals (Fig. 6-12, for example).

2

Ficure 6-14



CHAPTER 7
TOPOLOGICAL FORMULAS

The name topological formulas is applied to the formulas for writing
certain classes of network functions (driving-point and transfer functions)
by inspection of the network diagram without actually expanding various
determinants and cofactors. As such, these formulas have applications
to both network analysis and network synthesis. In analysis, topological
formulas provide a short-cut method of evaluating network determinants
and cofactors because the usual cancellations inherent in evaluation of
determinants are avoided. The recent increase in interest in topological
formulas is due mainly to this fact, since the evaluation of determinants
(especially with polynomial entries) by conventional procedures is a time-
consuming operation when digital computers are used. The application of
topological formulas to network synthesis has barely begun (as mentioned
in Section 5-5). In synthesis, the main virtue of topological formulas, so
far, has been to provide a certain intuition. It seems virtually certain that
future applications in network synthesis will entrench topological formulas
much more firmly in the field than any computer method of analysis.

Like many other topics discussed in this book, the basic concepts of
topological formulas are not new; they date back to Kirchhoff (1847) and
Maxwell (1892). The application to active networks is, however, very
recent (1957). The discussion in this chapter is restricted to the basic
formulas for network functions. For detailed discussions of all the varia-
tions and ramifications, the reader is referred to Mayeda and Seshu [109]
for passive networks and to Mayeda [111] or Coates [36] for active net-
works. Although it is possible to obtain the general formulas for active
networks directly and treat passive networks as a special case, passive
networks without mutual inductances are considered first in the following
discussion. The formulas for the special case (passive networks without
mutual inductances) are much the simplest, and the special case is suffi-
ciently important to be considered separately.

7-1 Node determinant and cofactors. The network under considera-
tion in this section is assumed to be passive and without mutual inductance.
The topological formulas for such networks, in terms of the admittances
of the network elements, were first given by Maxwell [108]. The first
formal proof for the node-determinant formula was given by Brooks,
Smith, Stone, and Tutte [14]. The most recent interest in these formulas
started with Percival [129].

155
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All topological formulas depend on a theorem of matrix theory known
as the Binet-Cauchy theorem, which may be stated as follows.

Biner-CavucHY THEOREM. If P of order (m,n) and Q of order (n,m)
are matrices of elements from a field (m < n),

i products of corresponding .
det PQ = Z (major determinants of P and Q) ’ 71

where the summation is over all such major determinants.

The major determinant (or briefly, major) referred to in the theorem is
a determinant of order m, since P is of order (m, n). The word corresponding
implies the following. If columns jy, ja, . .., jm of P constitute the major
of P that is chosen, the corresponding major of Q consists of rows j;, js,

., Jm of Q. The proof of the theorem may be found in Hohn [78]. Asan
illustration of the theorem, let

2 1
P——-[l —1 3] and Q=[—1 1}. (7-2)
2 1 0 . o

There are three major determinants (of order 2) to be considered. Applying
the Binet-Cauchy theorem, we find that

detpa) = |1 7] 2 Y82 - 8 -1
2 1l [—=1 1 2 0 [10 10 | 10
= 3-3 4 (—6)(—D) + (=3)(—1) = 18, (7-3)

which result can be verified by computing PQ and finding its determinant
directly.

DeriNtTION 7-1. Tree-admittance product. A tree-admittance product is
the product of the admittances of the branches of a tree.

THEOREM 7-1. The determinant A, of the node-admittance matrix Y,
of a passive network N without mutual inductances is

_ tree-admittance product
An = z”: ( of tree t; of N > (7-4)
a.
trees

Proof. Since N contains no generators, we may write
Y, = AYA, (7-5)

using the notation of Chapter 6. Since N contains no mutual inductances,
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Y is diagonal:

y1 0 0 --- 0
0 Yo 0
Y=|0 0 yz --- 0 |- (7-6)
0 0 0 --- vy,
Hence the product AY differs from A only in that column 7 is multiplied
by y; forz =1, 2, ..., e. (The two matrices AY and A have the same
structure otherwise.) By the Binet-Cauchy theorem,
B N products of corresponding g
An = det Yn = Z ( majors of AY and A’ 77

By Theorems 5-6 and 5-7, the nonzero majors of A correspond to trees
and have the values (+1). Hence the nonzero majors of AY also correspond
to trees and have the values (%1) y;,¥s, - - ¥i,_,, Where elements ¢,
g, ... 1,_1 constitute a tree of N. Since the corresponding major of A’
is the transpose of the major of A, the two majors have the same value
(1 or —1). The theorem now follows immediately.

CoroLLARY 7-1. The node determinant A, of a connected network con-
taining no mutual inductances is a homogeneous polynomial of degree
v — 1 in the variables yi, y2, ..., y. and is a linear function of any
one ;.

The second part of the corollary is not true for mutual inductances.
Let us illustrate the theorem by means of an example. For the network
of Fig. 7-1, there are eight trees, consisting of the edges

(123), (124), (134), (135), (145), (234), (235), (245).
By Theorem 7-1, the node determinant is therefore

Ap = Y1Yoys + Y1YolYs + Y1Y3Ys + Y1Y3Ys
4+ y1yays + Y2ysya + Yoysys + Yayays. (7-8)

F1e. 7-1. Example for Maxwell’s rule.
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By substituting the admittances, we find

_ G4Cs G,
An = L2 + $L,L,

1C3

+ + (G1C3G5)s
G5C3 Gs

+ L +L Les T L, T Tl (7-9)

or, by collecting coefficients,

GiCs , G103 |, Gs5C3
Ty, " L. T L,

G1G5 C3 Gl + G5
+[ L +L2L4]E+[ oL ]sz (7-10)

With some experience, one can write the last step directly. Two important
facts should be noted. First, the node-admittance matrix need not be
written. Its determinant is found directly. Second, there was no can-
cellation, and so no unnecessary work has been done. It is necessary only
to write the node-admittance matrix for Fig. 7-1 and compute its determi-
nant to appreciate this fact.

Finally, note that the determinant of the node-admittance matrix is
independent of the reference node, a fact that can also be proved di-
rectly [162].

Maxwell originated the topological formula for the node determinant
in the form:

= (G1C3G5)s +

A, s the sum of products of conductivities taken v — 1 at a time, omitting
all those terms which contain products of the conductivities of branches
which form closed circuits.

For convenience, we use the shorthand notation
V(Y) = 3 (tree-admittance products). (7-11)

This expression (in terms of y,’s) is known as the node discriminant [59].

Let us next investigate the cofactor of an element on the main diagonal
of Y,(s). The cofactor of an element in the (¢, 7)-position is obtained by
deleting the 7th row and 7th column of the matrix Y,(s) and taking the
determinant of the resultant matrix. Since

Ya(s) = AYA, (7-12)

deleting the ¢th row from Y,(s) is equivalent to deleting the 7th row from
A. Let A_; be the matrix obtained by deleting the 7th row from A. Simi-
larly, deleting the ¢th column from Y,(s) is equivalent to deleting the ¢th
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column from A’, that is, deleting the 7zth row from A. Thus the cofactor

of the (z, 7)-element is
A;; = det A_YA ;. (7-13)

Exactly the same technique that was applied to A, can be applied to A;;.
However, it is more instructive to construct the graph for which A;; is
the node determinant and apply Theorem 7-1. Let the 7th vertex of the
network N be shorted to the reference vertex. If this new combined ver-
tex is used as the reference vertex, the node-admittance matrix of the new

network N, is precisely
Yo = A_;YAL .. (7-14)

Thus A;; is simply the sum of tree products for the graph obtained by
identifying the 7th vertex with the reference vertex.

Let us examine the subgraphs of the network N which become the trees
of the network N; (ith vertex and reference identified) so that we may
extend the formula to the case of asymmetrical minors. N; contains
v — 1 vertices, and so a tree of N contains » — 2 elements. The sub-
graph of N corresponding to such a tree of N, will not contain any circuits.
However, since it contains only v — 2 elements, it will not be connected;
it will be in two connected parts. One of the two parts may consist of an
isolated vertex. The vertex 7 and the reference vertex will be in two dif-
ferent connected parts of this subgraph, in N. (If they were in the same
connected part, shorting the ith vertex with the reference vertex would
produce a circuit.) Such a geometrical configuration has been named a
2-tree by Percival [129].

DEeriNiTION 7-2. 2-tree. A 2-free is a pair of unconnected, circuitless
subgraphs, each subgraph being connected, which together include all
the vertices of the graph. One (or, in trivial graphs, both) of the sub-
graphs may consist of an isolated vertex.

The symbol T, will be used for a 2-tree. Very often, 2-trees in which
certain designated vertices are required to be in different connected parts
are used. Then subscripts are used to denote such 2-trees. For example,
T2y cae is the symbol for a 2-tree in which the vertices a and b are in one
connected part and the vertices ¢, d, and e are in the other connected part.

DEFINITION 7-3. 2-tree product. A 2-tree product is the product of the
admittances of the branches of a 2-tree. Again, one of the two parts
may be an isolated vertex. The product for an isolated vertex is defined
to be 1. A 2-tree such as T, ,, in which the same vertex ¢ is required to
be in different connected parts has by definition a zero product.

A sum of 2-tree products such as occurs in the expansion of a symmetrical
cofactor of the node-admittance matrix is symbolized by W(Y) with sub-



160 TOPOLOGICAL FORMULAS [cHAP. 7

scripts denoting any special vertices which are required to be in different
parts. In terms of 2-trees, the formula for the symmetrical cofactor can
be expressed as in Theorem 7-2:

TaeorEM 7-2. If r is the reference vertex of node equations, the co-
factor of an element in the (2, 7)-position is given by

Ay = 2 (Ty, , products); (7-15a)
all 2-trees
that is,
Dii = Wi (Y). (7-15b)

As an example, let us find the cofactor A;; for the network of Fig. 7-1,
with 1’ as the reference vertex. Ior illustrative purposes, the 2-trees
T, , of Fig. 7-1 are shown in Fig. 7-2. Note that in some of these 2-trees,
either vertex 1 or 1’ appears as an isolated vertex. Now

Ay = Wi (Y) = 2 (T2, products)

C
= (GsC3)s + G1Gs + % L—i
G1/Ls + G1/Ls + Gs/La + Gs/Ly

_|_

S (7-16)

Again note the absence of any cancellation, which leads to maximum
efficiency of computation.

I 1 2 1 1 2 1 1 2
NNN—0 O— "\ \V\VN—0
2 =
b}
4
o—JO U —o0 o
(IJ/ 3 1 3 1/ 3
(20) h) () ()
1 2 1 2 2 2

—0
'
w
B

Fic. 7-2. 2-trees (1, 1) of Fig. 7-1.
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Asymmetrical cofactors of the node-admittance matrix are considered
next.

THEOREM 7-3. Let 1’ be the reference vertex of a system of node equa-
tions for a network which contains no magnetic coupling. Then the
cofactor of an element in the (7, j)-position is given by

Aij = Wij1(Y) = 2 (T, products), (7-17)

where the summation is over all the 2-trees with vertices 7 and ;7 in one
connected part and vertex 1’ in the other.

Proof.* The cofactor of an element in the (¢, 7)-position is given by
Ay = (=)' M, (7-18)

where M ; is the determinant of a matrix obtained by deleting the 7th row
and jth column from the node-admittance matrix Y,. Hence

]l[ij = det A__,'YAI_]‘, (7—19)

where, as before, the subscript indicates the row which has been deleted
from the incidence matrix. As in the case of the symmetrical minors, ob-
serve that the nonzero majors of the matrix A_; correspond one-to-one to
the 2-trees of the network which have the vertex ¢ in one connected part
and the vertex 1’ in the other. Similarly, the nonzero majors of the matrix
A_; are in one-to-one correspondence with the 2-trees of the network
which have the vertex j in one connected part and the vertex 1’ in the
other. Using the Binet-Cauchy theorem once again, we find that

o products of corresponding 3
Mij = Z ( majors of A_;Yand A’_; /° (7-20)

As before, the matrix product A_;Y differs from A_; only in that the pth
column is multiplied by yp, p = 1,2,...,e. Thus a nonzero major of
A_;Y is (except possibly for sign) a 2-tree product of a 2-tree T's; ;.. Simi-
larly the nonzero majors of AL; correspond to the 2-trees T, .. The
product of the corresponding majors on the right side of Eq. (7-20) is
therefore nonzero only when the set of edges (corresponding to the col-
umns of A_; and A_;) constitute a 2-tree T's, ;. as well as a 2-tree T, ..
Thus the nonzero products correspond to 2-trees in which both the ver-
tices 7 and j are in one connected part and the vertex 1’ is in the other,
i.e., subgraphs which are 2-trees, T2ij.1"

* Proof first given by W. Mayeda in a term paper at the University of Illinois
1955.
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To establish the sign to be prefixed to the 2-tree products, let us select
from the incidence matrix A the submatrix consisting of the columns cor-
responding to the elements of one of the 2-trees of the type T's,; ;.. This
submatrix is of order (v — 1,v — 2). If we delete row ¢ from this matrix
and take the determinant, we get the major of A_;, which gives the sign
of the major of A_;Y. If we delete row 7 from this matrix and take the
determinant, we similarly get the sign of the major of A_; and hence of
the corresponding major of AZ;. Each such 2-tree necessarily contains a
path between the vertices 7 and j. Let this path from ¢ to j consist of the
edges er,, €5, €3, ..., 6, in order. In the chosen submatrix of A, the
columns corresponding to these elements will have the following structure.
Column r; will have a nonzero entry in row 7. Columns r; and r, will
have nonzero entries in the same row, this row being different from row .
Columns 7, and r3 will have nonzero entries in another common row, etc.,
and column r; has a nonzero entry in row j. Let two columns which have
nonzero entries in the same row be called adjacent, since they correspond
to adjacent elements of the graph. Then, in the sequence of columns
r1, Te, ..., 'k, Successive columns are adjacent and no others are. Using
these results, we now reduce the chosen submatrix of A to one in which
column r; has nonzero entries in rows ¢ and j and zeros in the other rows.
This reduction is achieved by means of column operations only, so that
the majors of A_; and A_; are left invariant under these operations.

Let column r; have a 1 in the 7th row; the case in which this entry is
—1 is the same and will not be considered. Column r; has a —1 in another
row, say p. Column 7, has a nonzero entry in this row, by the above
argument. If this entry is +1, add column ry to column r;. If this entry
is —1, subtract column r; from column r;. In either case, column r;
has, after the operation, a +1 in row ¢, a —1 in another row (the row
in which column r3 has a nonzero entry) and zeros in all other rows.
Next, consider columns r; and r3. If the common row entries have the
same sign, subtract column r3 from column r;; if they have opposite signs,
add. Then the —1 in column r; is moved to a row in which column ry4
has a nonzero entry. After repeated application of this procedure, we
finally arrive at a stage when the —1 appears in a row in which column
7, has a nonzero entry not adjacent to column ri_;, namely row 7. Now
we have a matrix in which column r; has a 1 in row 7, a —1 in row 7, and
zeros in all other rows. Let this final matrix be denoted by A,.

There are two cases to consider: ¢ > j and ¢ < j. The two cases are
identical, and so let ¢ > j.

Consider the major of A_;. This major is obtained by deleting row ¢
from the matrix A obtained above and taking the determinant. Expand
this major by column r;. Column r; has only one nonzero entry. This
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entry is a —1 and is now in the jth row. (Since ¢ > j, the deleted row
is below row j, and so the row index of row j is unaltered.) Let the de-
terminant of the matrix obtained by deleting rows ¢ and 7 and column
ry from Az be denoted by D. Then

(major of A_;) = (—1)1H(—1)D = (—1)"1H+p.  (7-21)

Consider the major of A_;. This major is obtained by deleting row j
from the matrix Az and taking the determinant. Column r; of this determi-
nant has a 1 in row ¢ — 1 and zeros in all other rows. (The row index of
this row has decreased by one because row j has been deleted.) Expand
the determinant by column r;. The minor obtained by deleting column
r1 and row 7 — 1 is the same determinant D that was obtained earlier.
Hence,

(major of A_j) = (— 1) ~Y(1)D. (7-22)

Hence the product of the two majors of A_;Y and A’_; is given by
(—1)*tH DT, |, produet),

which is the same as
(— 1)’“(’!’21.].' ,» broduct)

since D is either 1 or —1 because it is selected from the incidence matrix
A. Note that 7 and j are independent of the major selected from A_; and
A_;. Hence

det A_;YA_; = (—1)"*" X (T, . products)
= (=)W 1(Y). (7-23a)
Hence finally,
Ay = (=1 det AL;YAL; = Wi.1(Y), (7-23b)
and the theorem is proved.

Before proceeding further, observe that the formula for the asymmet-
rical cofactor contains, as a special case, the formula for a symmetrical
cofactor. For, if we let + = j in Theorem 7-3,

Ay = Wi (Y) = Wi (Y) (7-24)

since the vertex ¢ is always in the same part as vertex 7.

The topological formulas require that all the trees or 2-trees (of the
given type) be located. The following two rules, due to Percival [129],
and the 2-tree identities following the rules are useful for this purpose.
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Rule 1. If V{(Y), Vo(Y), ..., Vi(Y) are the tree-admittance poly-
nomials for the components Gq, Go, . .., G of a separable graph G, then
the polynomial V(Y) of G is given by

V(Y) = Vi) VoY) Va(Y) - - - Vi(Y). (7-25)

Rule 2. If two subgraphs G; and G2 of a connected graph G have
exactly two vertices 7 and 7 in common, then for G consisting of G; and Gy,

V(Y) = V()W (V) + Vo)W1, (T). (7-26)

These two rules are so obvious that they require no proof. Rule 2 is
seen to be valid by observing that every tree must contain a path between
vertices 7 and 7, either in G or in G, but not in both. Thus, every tree
consists of a tree in G; and a 2-tree in G, or vice versa. Conversely, a tree
of one of the subgraphs and a 2-tree in the other, separating vertices 7 and
7, constitute a tree of G.

Rule 2 is very useful in computation. One can first choose an element of
@ as (1. If this element is yz, with vertices ¢ and j, then

V(Y) = uWi;(Y) + Vo(Y), (7-27)

where W is now simply the 2-tree sum of the graph and V5 is the sum of
tree products when y; is removed from the graph. Next, another element
may be chosen for computing Vo similarly; the process may be repeated
until the polynomial can be written by inspection.

ExamprLe. For Fig. 7-3,

V(Y) = y1W1,2(Y) + Va(Y)
= y1lysys + y3ys + yays + yaye + ysyel + Va(Y),  (7-28a)
Va(Y) = yolysys + ysys + yays + yaye + ysyel + Va(Y),  (7-28b)
and
Vs(Y) = yslyays + ysyel + yaysye. (7-28¢)
Hence
V(Y) = (y1 + y2)(y3ys + y3ys + yays + yaye + ysye)

+ y3(yaye + ysye) + yaysye. (7-28d)
The first 2-tree identity, which is self-evident, is
Wi;i= W, (7-29)

since every 2-tree with vertices ¢ and j in different parts appears in both poly-
nomials. The second useful identity is

Wi = Wi+ Wi, (7-30)
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Fic. 7-3. Example for Rule 2 of Fic. 7-4. Driving-point functions.
Percival.

where k is any other vertex (v # k, k£ # 7). This identity is scen to be true since
k must be in one of the two connected parts. This equation may also be stated
in the more convenient form

Wii— Wik = Wik (7-31)

7-2 Driving-point and transfer admittances. I‘igure 7-4 shows a one
terminal-pair network not containing any generators. Vi’ and I denote
the transforms of the voltage and current respectively, with references
as shown. By Definition 6-4, the driving-point admittance at terminals
(1, 1) is

I(s)
Vi(s)

with all initial conditions equal to zero. If node equations are written
with 1’ as the reference node, then

Ya(s) =

Ya(s) = , (7-32)

A

) 7-33
AL (7-33)

where A and A;; are the determinant and cofactor (1, 1) respectively, of
the node-admittance matrix, as in Iiq. (6-116b). It is important to note
that the node-admittance matrix of the network of Fig. 7-4 (including I,)
is the same as the matrix Y,(s) for the one terminal-pair alone, without
Ii(s). (If loop equations are used, the matrices with and without the
driver are different.) Hence the driving-point admittance formula is ob-
tainable directly by using Theorems 7-1 and 7-2, as we show in the next
theorem.

THEOREM 7-4. For a one terminal-pair passive network which contains
no magnetic coupling,
V(Y)

Yd(S) = I’Vl__l'();—)-’ (7—34)

where 1 and 1’ are the input vertices.

Lvidently, the computation of V(Y) and W, ;-(Y) can be done without
any regard to which vertex is used in writing the node equations. This is
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not surprising, since the driving-point admittance is certainly independent
of the reference vertex chosen.

For example, the driving-point admittance of the network of Fig. 7-1
at terminals (1, 1’) is, from Eqgs. (7-10) and (7-16),

Ya(s) = [(G1C3G5)s® + (G1C3T's + G103T4 + G5C3T2)s?
+ (G1G5Ty + Tal'4C3)s + (G + G5)TeT4] /[G5C3s?
+ (G1G5 + C3T3 + C3Ty)s® 4 (G1Ts + G1T'y + G52 + GsTy)s),

(7-35)
where I'; = 1/L;.

The transfer admittance is considered next. Maxwell gave the original
rule for the transfer function of a two terminal-pair network. Maxwell’s
rule for the current in an element between vertices r and s and oriented
away from r, due to a voltage driver £ with vertices p and ¢ and with
reference 4 at ¢, is

iy = ¥y Vpg NP0, (7-36)

In this formula, we recognize the term A, ,, to be the difference of co-
factors selected from the node-admittance matrix. Maxwell’s rule for this
factor is:

Ars,pg 1s the sum of products of admittances, taken v — 2 at a time,
omitting all the terms which contain Y, or Y,, and other terms either
making closed circuits with themselves or with the help of Y,; and Y p,.
The terms which contain Y,, (or which form a closed circuit with Y,,)
and Y, (or those forming closed circuits with Y p,) are taken as positive
terms, and similar terms with Y, and Y, are taken as negative terms.

Tlirst observe that, because each term contains ¥ — 2 factors and does
not include a circuit, each product in Maxwell’s formula corresponds to a
2-tree product. Second, neither pair of vertices (p, ¢) or (r, s) can be in
the same connected part, since the terms which form closed circuits with
Y, or Y., and those containing Y, or Y., are to be omitted. Thus the
2-trees selected are simultaneously T, , and Ty, .. Thus there are two

L o1/

Fig. 7-5. Terminated two terminal-pair.
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possible sets of 2-trees to be selected: T's,, ,, and T, ,,. Maxwell affixes
a positive sign to the second set of 2-trees and a negative sign to the first
set. We next restate Maxwell’s rule in terms of 2-trees after introducing
the more common notation in the theory of two terminal-pair networks.

Let Fig. 7-5 represent a two terminal-pair network with input vertices
(1, 1) and output vertices (2, 2’). Let the references for the input current
and voltage and the output current and voltage be as shown. Let y be
a load connected across the output terminals (2, 2°). Let the node equa-
tions be written for this network with the vertex 1’ as the reference vertex.
These equations have the form

Y11 Y12 tt Y1,v—1 Vi I,
?,{21 Ya2 e Y2,0—1 V21’ = 0 (7-37)
Yv—1,1 Yv—1,2 *°° Yo—1,v—1 Vv—l.l' 0

when all initial conditions are zero. The output voltage Vi = Vo is
given by

V, = AI—Q’# I, (7-38)

Thus, Maxwell’s rule above states that
A — Aoy = 2 (Ts,,,,, products) — > (Ts,, ,r, Products).  (7-39)

Maxwell’s formula is established by the use of the topological formula
for asymmetrical cofactors (Theorem 7-3) and the 2-tree identities.

TueoreM 7-5. If Y, is the node-admittance matrix of a passive network
which does not contain any mutual inductances, and 1’ is the reference

node, then
Ayg — Ay = Wig10/(Y) — Wigr12(Y). (7-40)

Proof. The proof is immediate, on observing that

Wi (YY) = Wig,1rer + Wigor 1
and (7-41)
Wior1(Y) = Wiar 1o + Wiaor 1y,

I(710——02

|
Wiy — W = 7
i

L,,l,/o—oz/

Fic. 7-6. Percival’s intuitive representation.
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and so the admittance products of 2-trees of the form T’ ,, ;. cancel on
subtraction.

Percival [129] expresses this rule in the intuitive fashion shown in
Fig. 7-6. The argument above illustrates the typical character of all
topological formulas; namely, one does not calculate any superfluous terms
in following topological formulas, as one does in evaluating determinants.
Only those terms which do not cancel are included.

7-3 The short-circuit admittance functions. As remarked in Sec-
tion 6-6, two terminal-pair networks are more often described independ-
ently of the load y; by means of the coefficient matrix of the system of

equations
[11]2 [yll Z/12][V1], (7-42)
I, Y21 Y22 [ V2

with references as in I'ig. 7-7. The functions y;; of this matrix are known
as short-circutt admaittance functions, since setting the appropriate voltage
equal to zero equates these functions to the current-voltage ratio.

Let node equations be written for the network of I'ig. 7-7 with node 1’
as the reference node. Then on solving them as usual [156], we get the
open-circuit impedance matrix Z,. [see q. (6-49)] and its inverse, the
short-circuit admittance matrix Y, as

7 = _1_[ Ap Apg — Ayy }
oc — A
App — Ay Ago + Apryr — 2A30°
and (7-43)
v, — 1 Aoy + Agrpr — 209" Arg' — A |
¢ A + Ar1grer — 2A1199°
1122 112°2 1122 Aty — Ao Al

All the cofactors in Y, (and Z,.) can be expressed in terms of 2-trees,
except those in which two rows and columns have been deleted. To
express these terms topologically, the 3-tree, defined below, is needed.

DErFiNiTION 7-4. 3-tree and 3-tree product. A 3-tree is a set of v — 3
elements which does not contain a circuit. (Thus a 3-tree is a set of
three unconnected circuitless subgraphs which together include all the
vertices of the graph. One or two of these subgraphs may consist of
isolated vertices.) A 3-tree product is the product of the admittances
of a 3-tree; the product for an isolated vertex is 1, by definition.

Certain specified vertices may be required to be in different connected

parts of the 3-tree. Such a 3-tree is denoted as T, _ .., which is a 3-tree

in which the vertex sets (q, b), (¢), and (d, e, f) are required to be in dif-
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v, RLC Vs

l 01/ 2/ 0—

Frc. 7-7. Two terminal-pair reference convention.

ferent connected parts. The sum of 3-tree products is denoted by the sym-
bol U(Y), with subscripts on U to denote any specified distribution of
vertices. We see at once, by arguments similar to those of Theorem 7-3,

that
Ar122 = Ur,2,1, Ar12rer = Urer,1, Ari2er = Useer1r,  (7-44)

since 1’ is the reference vertex. 3-trees of the form T, ,,. ,» occur both in
Uj e 1-and in Uy 9,1.. Such terms therefore cancel in the det Z,. expan-
sion because of the —2A;129 term. Therefore

Aj122 + Ar12e — 241120
= Ujo,2,17 + Ui,2,1722 + Urz,2,17 + Ur,o0, 100 (7-45)

The other entries of Y, are

Agg + Agrgr — 2099 = Wo o+ War 1w — 2Wagr 1
= Waror + War 12
= Wy o, (7-46)
Ayt — Ayp = Wigir — Waig v
= Wiz,12 — Wia,1re, (7-47)
and
All = VVl,l“ (7—48)
In the sequel, the abbreviation > U is used for the sum
22U = Usgo1+ Usorver + Urzor1 + Uror1ve.

THEOREM 7-6. For a passive two terminal-pair network which con-
tains no mutual inductances, the matrix of the short-circuit admit-

tances is given by:
Yoo = Wa.2 Wizae = W““""']- (7-49)

1
U
b3 [Wm'.x'z — Wis,1'e Wiy
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Y1

Y2
Ya

/
v Y3 2

Fig. 7-8. First example for two terminal-pair.

From the computation that was performed for det Z,., we can also write
the topological formula for the determinant of the short-circuit admit-
tance matrix, since
1

det Z,, (7-50)

Yoo = Zod and so det Y, =

TaeOREM 7-7. Ior a passive two terminal-pair network which contains
no mutual inductances, the determinant of the short-circuit admittance
matrix is given by

det Yo = V(Y) N ACORN
5 Uiz21' + Urorer + Uiz + Ur2rire 2U0(Y)
(7-51)

THEOREM 7-8. I'or a two terminal-pair network which contains no
mutual inductances, the open-circuit impedance matrix is given by

7 1 l: Wi (Y) Wige(Y) — le'.1'2(Y)}.
° V(Y) W12,1’2'(Y) - le’,1’2(Y) Wz,z’(Y)
(7-52)

TraeEOREM 7-9. Tor a two terminal-pair network which contains no
mutual inductances, the determinant of the open-circuit impedance
matrix Z,. is given by

_Xuw). .
det Zoe = 57y (7-53)

ExampLes. For the two terminal-pair network shown in Fig. 7-8, the re-
quired 3-tree and 2-tree products are

Ui2’ 2.1’ = y2, Uier2 = y3, Uieer,ir = y1, Uz e = ya;
Weor = (y1 +y2)yz 4+ ya), Wir = (n1+ya)y2+ys);  (7-54)

W12 = yaye, Wiz,i'er = y1ys.
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Frc. 7-9. Sccond example for two terminal-pair.

Hence the short-circuit admittance matrix is

YSC

1 [(yl + y2)(ys + ya) Y2ys — Y1y3
T ity tustous

As another example, consider Fig. 7-9. The 3-tree and 2-tree products are

Y2ys — Y1y3 (y1 + yo) (y2 + ys)] + (59)

Ui2'2,1” = Uizg,1’2 = Ur2'1'2 = 0;

(y1 + y2)(ys + ya + ys5) + ys(ya + ys);

Wigr12 = 0, Wi2,172" = y1y3ys; (7-56)
Wi = y1ysys + y2ysys + y1yays + y2yays + ysyays,
Wa2r = y1yoys + y1yzys + y1ysys + y1veys + y1ysys.

It

U212

Hence
B 1
T (y1+ y2)(ys + ya + ys) + y3(ya + s)
[ynyz(ya + ya+ ys) + v1ysya + ys) —Y1Y3Y5 ]
X .

—Y1Y3Ys y3ys(y1 4 y2 + ya) + yays(y1 + ye)
(7-57)

Yse

7-4 Kirchhoff’s rules. Kirchhoff [86] gave a set of rules, completely
dual to those of Maxwell, for the computation of network response.
(Kirchhoff’s rules were stated almost forty years before Maxwell’s rules.)
Kirchhoff gave his rules in terms of resistances. We interpret his rules in
terms of impedances and loop equations, even though Kirchhoff’s rules
were stated in terms of the “branch current” system of equations. (Loop
currents were invented by Helmholtz about thirty years after Kirchhoff’s
paper was written.)

It is possible to give a detailed treatment of Kirchhoff’s rules, as was
done in Section 7-2 for Maxwell’s rules. However, since as a matter of
convenience we intend to use Maxwell’s rules rather than Kirchhoff’s in
the next chapter, we do not follow such a procedure; further, the develop-
ment of the formulas in terms of element impedances is completely dual.
Therefore we shall be satisfied with the basic formulas for the loop deter-
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minant and cofactors. The reader is referred to Mayeda and Seshu [109]
for the detailed treatment.
For the mesh determinant, we have that

B ;L products of corresponding .
Am = det BZB" = Z( majors of BZ and B’ (7-58)

For a network that contains no mutual inductances, Z(s) is diagonal and
so, as before,
Ay = Z RiRig " " " R (major of B)27 (7—59)

wherey = e — v + 1.

By Theorem 5-8, the nonzero majors of B are in one-to-one correspond-
ence with the chord sets of the network. However, such a major does not
necessarily have a value 41 in general. Okada [126] states that the value
of a nonzero major of B is +2% ¢ being a nonnegative integer, fixed for a
given B. (See also Problem 5-29.) Thus if we define a chord-set product to
be the product of the impedances of the chords of a tree of the network,
we get the following topological formula for the mesh determinant.

TurorEM 7-10. For a network that contains no mutual inductances,
A,, = det BZB’ = 2% ¥ (chord-set products). (7-60)

There are two cases for which 7 is certainly zero; 7 = 0 for fundamental
circuits, and 7 = 0 for the set of meshes (“windows”) of a planar network.
(See Problems 5-26 and 5-29.) A detailed discussion of this question has
been given by Cederbaum [28]. Since the network functions are inde-
pendent of the circuit basis chosen, we may assume that the fundamental
system of circuits is chosen and so let © = 0. Then we have that

A, = > (chord-set products). (7-61)

This topological formula was originally given by Kirchhoff [86] in the
form:

A,, is the sum of products of resistances taken e — v + 1 at a time,
which have the common property that, when these elements are re-
moved, no circuits remain.

The topological formulas of Theorems 7-1 and 7-10 can be combined
by observing that
z1-y1 =1
and so

(21 + 29 -+ - 2¢)(tree product) = (chord-set product of the same tree).
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TureorEM 7-11. TFor a network without mutual inductances,
A, = 2122232 A, (7-62)
where fundamental circuits are used.

The result is originally due to Tsang [181] and has been extended by
Cederbaum [28] to networks containing magnetic coupling. The nota-
tion for the mesh discriminant is simplified by introducing the following
complement convention of Percival [129].

Given the polynomial V(Y), the complementary polynomial C[V(Y)]
is formed by replacing each product in V(Y) by the product of the vari-
ables not in this product. The polynomial C[V(Z)] is obtained by re-
placing y; by z; in C[V(Y)]. With these conventions,

Am = CIV(2)]. (7-63)

In using this complement convention, we also adopt the convention that
the complement of zero is zero.

The cofactor of the element in the (7, 7)-position of the matrix Z,,(s)
is of interest only when there is at least one element in the ¢th circuit
which is not in any other circuit. Hence it is assumed that there is an ele-
ment y; in circuit ¢ which is in no other circuit. Let the vertices of y; be
1and I'.

Using the same notation as before, we write

A = det B_iZB'_,‘. (7—64)

With the assumption that y; is in no other circuit, we find that this matrix
B_,ZB’ ; is the mesh impedance of the network obtained by deleting ele-
ment y;. Let the network obtained by deleting element y; be denoted
by Nl'

THEOREM 7-12.
A;; = Y (chord-set products of Ny) = C[V1(Z)]. (7-65)

Kirchhoff gave the following rule for the computation of the current
I, in an element between vertices r and s with reference from r to s, due
to a generator K between vertices p and ¢ with a reference + at g¢:

A,
I.e = E,p» Tb ) (7-66)

where A is the mesh determinant, which has already been considered.
Kirchhoff’s rule for Agp is:

Agp is the sum of (signed) products of impedances taken e — v at a
time, which have the common property that, after these elements have
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Fig. 7-10. Conventions for Kirchhoff’s rule.

been removed, there is only one circuit left, and this circuit contains
both the generator £ and the element in which the current is being
computed. The terms for which the remaining circuit goes through
both E,p and I,, in the same relative direction are taken with a positive
sign, and those for which the remaining circuit goes through E and I,
in opposite directions are taken with a negative sign. (The orientation
is with reference to the element orientation.)

To correlate Kirchhoff’s rules with 2-trees, it is convenient to introduce
the following conventions. Let N denote the two terminal-pair network of
Fig. 7-10, excluding the generator £ and the load Z;. Also, N consists of
R-, L-, and C-elements only. Consider one of the products in A, of
Kirchhoff’s rule. There are e — v elements in this product, where e is
the number of elements in the complete network, including £ and Zj.
When this set of elements is removed, there are » elements remaining.
This set of elements includes exactly one circuit which contains both
E and Z;. Hence if either E or Z; (but not both) is removed, the rest is
a tree of the network N + E + Z;. Therefore, if both £ and Zj, are
removed, the rest is a 2-tree of N, which separates the vertices of E as
well as the vertices of Z;. Hence the rest is both T, » and Ty, ,.. Once
again the 2-tree may be either T'y, ,/,» or T'g,, 1,

The products in Agp consist of the elements of N which are not in these
2-trees. Thus A,y contains C[T's,, ,+,-] impedance products and C[T's,, ]
impedance products, where C denotes complementation with respect to
N only. Kirchhoff affixes a positive sign to the products of the first type
and a negative sign to the products of the second type. Thus by Kirch-

hoff’s formula,
Agp = C[Wy2,172/(Z)] — C[Wy2,102(2)]. (7-67)

Complementation is with respect to N, and the Z in parentheses implies
that the products are impedance products.

To prove* Kirchhoff’s formula, we need first to observe that a set
of fundamental circuits can always be chosen for the complete network
N + E + Zy, such that neither E nor Zj, vs tn more than one circuit, al-
though they may both be in the same fundamental circuit or in different ones.

* Proof as given by R. Obermeyer in a term paper at the University of Illinois,
1956.
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F1a. 7-11. References for loops.

If the network N is connected, we can find a tree of N. The elements
E and Z, are chords for such a tree and so are in only one circuit each and
in different circuits. If N is not connected, N + E is connected. Other-
wise N + E + Z;, would be separable (we are assuming that it is non-
separable). Choosing a tree of N + E, which necessarily contains E, we
observe that the element F would be only in the fundamental circuit of
Z 1, and in no other. Thus E and Z, are in only one circuit.

The latter case, in which £ and Z, are in the same circuit, is the driving-
point case, which has already been considered. Hence it will be assumed
that F and Z;, are in different fundamental circuits. Let E be in circuit
1 and Z;, be in circuit 2 for notational convenience. Let these circuits be
oriented as shown in Fig. 7-11. Then, obviously,

_ Az g _
I, = S2E, (7-68)

with reference to the mesh equations. Since fundamental circuits were

chosen,
A = Y (chord-set products of N + E + Z) (7-69)

(without any factor 2%%). Also, we find that

Aye = [cofactor of the (1, 2)-element of B;ZBj]
= (—1)'*% det B_,ZB’_,, (7-70)

using the same notation as in Section 7-1, the subscript denoting the
deleted row. Once again

;L products of corresponding) ) .
det B_,ZB_» = Z( majors of B_;Z and B’_, (7-=71)

Deleting row 1 from By yields the circuit matrix of the network when
circuit 1 is destroyed, which effect is obtained by deleting element E.
Thus, nonzero majors of B_1 are in one-to-one correspondence with chord
sets of N + Z .

Similarly, deleting row 2 of B, yields the circuit matrix when circuit 2
is destroyed, which is the same as deleting element Z;. Hence, nonzero
magors of B_y are in one-to-one correspondence with the chord sets of N + E.
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Since Z is a diagonal matrix, it introduces no complications.

Thus, to get a nonzero product of the two majors, the set of elements
must be a chord set of both N + E and N + Z1. Thus, the chord set
cannot include either E or Z;. Hence £ in N + F and Z; in N + Z;,
must be branches of the trees for which this set is a chord set. The ele-
ments of N which are branches for these trees must therefore constitute a
2-tree of N. This 2-tree separates the vertices of both £ and Z. Hence,
it is a 2-tree of one of the two types T's, 1, or Ty, -, Conversely, the
product of the elements in the complement in N of every such 2-tree is a
term in det B_,ZB’,, since each such 2-tree with E is a tree of N + E,
and with Z;, is a tree of N + Z.

It remains to establish the signs of C[W 3 1:2/(Z)] and C[W g 1:2(Z)].
We follow a procedure analogous to the one adopted in establishing Max-
well’s rule for asymmetrical cofactors of the node-admittance matrix.

Let e, €qy, - . -, €q,_, be a set of elements corresponding to the columns
of a nonzero major in B_; and B_,. To establish the signs of these two
majors, consider the complete fundamental-circuit matrix By in which the
columns are rearranged in the order

1: 27 91,92 - - -y Qe—vy + - -y Qe—2-

Since the order of the columns ¢y, ¢, . . ., ¢e—, has not been changed, the
major determinants of interest remain the same. Now the set of elements
complementary to the set gy, g, . . ., ge—» (with respect to N) is a 2-tree
of N separating the pairs of vertices (1, 1’) and (2, 2’). If we adjoin both
E and Zp, to this 2-tree, the resultant graph contains one circuit K. This
circuit K contains both I and Z. Since every circuit can be built up from
fundamental circuits, so can K. Let the coefficients of the linear combina-
tion (of fundamental circuits) which produces K be (e, €9, . . ., €,), where
eache;j =1, —1,0or0,and p = ¢ — v + 1. We may take ¢; = 1; then
€2 = 1 or —1. (Since K contains both ¥ and Z, and since these appear
only in the first and second circuits of the fundamental set, respectively,
€; # 0and e; # 0.) Therefore

[e1€2€3 - - - €,]B; = K, (7-72)

where K stands for the row matrix of the circuit K.
Premultiply the circuit matrix B; by the nonsingular matrix

1 0 €3 €4 €5 cee €1 €
0 1 0 0 0 cee 0 0
M=10 0 1 0 0 0 0| (7-73)
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Since rows 1 and 2 have not been used as “tool” rows in this set of row
operations, the major determinants of B_; and B_, are unaltered in this

process. Let .
MB; = Bg. (7-74)

In the matrix Bg, if we multiply row 2 by €, and add to the first row, the
first row becomes the circuit K. This circuit K contains I, Z, and ele-
ments from the 2-tree. Hence K does not contain any of the elements
Q1 Q2, - - -y Qe—v. And € = 1 or —1. Hence (Case 1) the entries in
columns qy, g2, . . ., ge_y of the first two rows of the matrix Bx are either
identical or (Case 2) the entries in the second row are the negatives of
the entries in the first row.

Case 1. In this case, the majors of B_; and B_, are identical, since
deleting the first row of the submatrix containing columns qp, ..., ge—s
produces the same submatrix as deleting the second row. Hence the
product of the two majors is equal to one.

In this case, € must equal —1 to produce the desired zeros for circuit K.
Hence circuit K has the form

E Zr ¢ ¢ @ " QG ' g
K=l —1 0 0 0 --- 0 ---1; (7-75)

that is, £ and Z, appear with opposite signs. With reference to Fig. 7-11,
the circuit K goes through the vertices of £ and Z, in the order 1'12'21’.
Therefore the 2-tree must be T,/ 7, to provide the required paths for
circuit K of this form. The converse is also seen to be true. Thus

ClW12,172(2)]

has a positive sign in the expansion of det B_;ZB’,.
Case 2. In this case, the major of B_; is obtained by multiplying the
first row of the major of B_; by —1. Hence

(major of B_;)(major of BLy) = —1.

Also, in this case € = 1, and so following the same argument as before,
we see that the circuit K is of the form

E ZL q1 92 Qe—v *°° Qe
K=[1 1 0 0 --- 0 --=- 1] (7-76)

Hence the 2-tree must be of the type T, /,» to provide the required
path for the circuit K. Conversely, every such 2-tree leads to a circuit
K for which e, = 1. Hence in the expansion of det B_,;ZB’,, the sum
C[W 12,172:(Z)] has a negative sign.
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Fia. 7-12. Percival’s representation of Kirchhoff’s rule.

Hence,
det B_yZB_ » = C[W1y',1'2(Z)] — C[W12,172'(Z)]. (7-77a)

Finally, since
Ay = (—1)'*2 det B_,ZB’ 5, = —det B_,ZB o, (7-77h)

we have that
Ay = CWig,12'(Z2)] — ClWya,172(2)). (7-77¢)

This formula can be written in an intuitive fashion by following Percival,
as in Fig. 7-12.

TaEOREM 7-13. For a network containing no mutual inductances, if
circuits 1 and 2 contain the elements (1, 1’) and (2, 2’), respectively,
and these elements are in no other circuits, the cofactor (1, 2) of the
mesh-impedance matrix is given by

Ayy = C[Wyg,12(2)) — C[Wyg,12(2)]. (7-78)

7-5 General linear networks. The assumptions of reciprocity and no
mutual inductance, made in the earlier sections of this chapter, are now
dropped, and topological formulas are developed for the more general
class of lumped linear networks, including nonreciprocal elements and
mutual inductances. However, the network is assumed to have either an
element-admittance matrix Y(s) or an element-impedance matrix Z(s).
This assumption excludes the so-called “ideal” transformer. If Y(s) exists,
admittance formulas are possible, and if Z(s) exists, impedance formulas
are possible. Only the admittance formulas are considered here, as the
two are dual developments. For the admittance formulas, the “perfectly
coupled” transformers (for which the nonzero rows and columns of L con-
stitute a semidefinite matrix) must also be excluded.

Three methods of developing topological formulas for such networks
are known (due to Mason [107], Coates [36], and Mayeda [111]). The
procedure due to Mason is conceptually very different from the methods
of analysis discussed in this text; hence it is not included here. The other
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F1e. 7-13. Some common networks.
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two are identical as computational schemes, when applied to most prac-
tical networks. However, from a theoretical point of view, the develop-
ment due to Coates is more general. The development given in this section
is a mixture of the theories of Coates and Mayeda.

It is assumed that the element-admittance matrix exists, so that the
element-current transforms can be expressed in terms of the element-
voltage transforms as

I(s) = Y(s)V(s) + K(s, 0+), (7-79)

where K(s, 0-+) contains the initial values. As before, the initial values
are assumed to be zero, since the objective is to compute network functions.
Then Eq. (7-79) becomes

1(s) = Y(s)V(s). (7-80)

The following assumption is made about Y(s). If

Y(s) = [y for all 7 and j, (7-81a)
either
Yii = Yiji (7-81b)
or (if yi; # yji)
one of y;j, yj: 1s 0. (7-81c)

This assumption is satisfied in all practical networks where each R, L, C,
and generator is considered as a separate network element. Mayeda im-
plicitly makes such an assumption; Coates does not. The resultant gen-
erality of the Coates theory has been dropped in the present discussion,
for simplicity. As an example of the significance of the assumption of
Eq. (7-81c¢), consider the three common networks shown in Fig. 7-13.
The corresponding matrices Y(s) are given in Eq. (7-82a, b, ¢), where the
subscripts for the currents and voltages correspond to graphs in part (ii)
of each figure:

(1,] [o o ollv,

Ll=|0 @, ol Vof> (7-82a)
[ Is] lgn O 0OflVs

[1,] [Ge 0 0 o ][V

Iy|_|eGe 0 0 0O [|Vz| (7-82b)
Is 0 0 Ge 0 ||Vs

I, 0 0 0 GpllVs
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n |G -
= ’ (7—820)
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where A = Ly1Las — M2, (A # 0). In Fig. 7-13(a), if the voltage-gen-
erator equivalent is used, the admittance matrix Y(s) does not exist.

The assumption that Y(s) exists thus prohibits all dependent voltage
generators (unless they are converted into current generators by the use
of Norton’s theorem); even current generators that depend on currents
can be admitted only if the current (on which the generator depends)
is in an element with a finite admittance—not a short circuit, in other
words.

Much of the simplicity of the topological formulas derived for passive
reciprocal networks without mutual inductances is due to the fact that
Y(s) is a diagonal matrix. The matrices in Eq. (7-82a, b, ¢) are not. The
Coates-Mayeda technique is to modify the graph in such a fashion that
the node-admittance matrix Y,(s) can be written as

where Y(s) is the element-admittance matrix of the new graph and s
diagonal. A; and A, are two new incidence matrices (to be defined shortly).
The node-admittance matrix Y,(s) of Eq. (7-83) is the same as the node-
admittance matrix of the original graph. Thus, the problem is only
slightly more complicated than the case of passive reciprocal networks
without mutual inductances [complicated by the difference between A;
and A, of Eq. (7-83)]. The modification proceeds as follows.

The procedure is simple, but its formal description is involved because
of the various possibilities to be considered. Therefore an example is given
first, before the formal description. Consider the example of Fig. 7-13(b)
with the associated matrix of Eq. (7-82b):

Gg 0 O 0

Yy — aGg 0 0 O (7-84)
0 0 G¢ O
0 0 0 Gp

Begin with the original graph of IFig. 7-13(b)(i1)). When the diagonal
element of Y is nonzero, associate this entry as the weight of the cor-
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responding edge, as in Fig. 7-14(a). For the off-diagonal entry in the
(2, 1)-position of Eq. (7-84), there are two associated edges in the graph,
as in Fig. 7-14(b). One of these is the original current generator (edge 2),
and the other is an added edge (edge 1’). This added edge merely indicates
the voltage on which the current generator depends. The current of the
added edge is zero. However, the weight of edge 1’ is also made aGg,
the same as the other edge (2) corresponding to the (2, 1)-entry of Y.
Idges 2 and 1’ constitute an edge-pair in the terminology of Coates.
Edges 2 and 2’ must be distinguished from each other by some means.
Edge 2 is the current edge and edge 1’ is the voltage edge. Mayeda’s con-
vention is shown in Fig. 7-14(b). All other edges are ordinary edges
(Coates: single edges) and are to be treated as both current edges and
voltage edges.

The procedure in the general case is the same as in the preceding
example. The modified graph has the same vertices as the original graph.
Whenever the diagonal entry of Y is nonzero, the corresponding edge is
given this (diagonal-entry) weight. For each nonzero off-diagonal entry,
the modified graph contains a pair of edges (one of which may be an edge
of the original graph). If y;; # 0, place two edges in the modified graph
between the pairs of vertices at which edges ¢ and j of the original graph
were incident, with the same orientation as edges 7 and j, respectively.
The edge with the vertices of edge 7 is the current edge, and the edge with
the vertices of edge j is the voltage edge. With each of these is associated
the weight y;;. It is important to note that if also y;; # 0, another pair
of edges must be added, the current edge between vertices of edge j and
voltage edges between vertices of edge 7. The modified graphs of Figs.
7-13(a) and (¢) are shown in Figs. 7-15(a) and (b), respectively. For
Fig. 7-15(b), A = Ly1Lao — M2, (A ¥ 0). The Coates representation
of a transformer is different from Fig. 7-15(b).

In the Mayeda representation, used here, the graph of the network con-
sists of two graphs, a current graph and a voltage graph, which are shown
together purely for convenience. For instance, Iig. 7-15(a) represents
the current and voltage graphs of Fig. 7-16. The current graph contains
only the current elements, and the voltage graph contains only the voltage
elements. The ordinary elements appear in both graphs. The edges marked
gm in Fig. 7-16, and more generally the current and voltage elements for
yi; # 0, are considered to be the same edge, occupying different positions.
Coates prefers to think of these edges as different, and during the com-
putation interchanges their positions. Although the Coates conception is
logically more satisfying, the Mayeda procedure is more convenient for
practical computations.

The matrices A; and A, are now defined to be the incidence matrices of
the current and voltage graphs respectively, with the same reference vertex.
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For ordinary elements, the corresponding columns of A; and A, are identi-
cal. For the others, if column k of A; corresponds to a current element,
column k of A, corresponds to the corresponding voltage element. Thus
the two columns k (of A; and A,) are unrelated. For example, for the graph
of Fig. 7-14(b), the incidence matrices are (with vertex B as reference)

GE GC GB aG’E

E[ 1 0 o0 0]
A= J|—1 1 1 1
cL. 0o =1 0 —1 ]
and (7-85)
E( 1 0 0 1]
A, = J| —1 1 1 —1
clL 0 —1 o0 0 |

The element-admittance matrix Y(s) of the modified graph is defined to
be a diagonal matrix:

y1 0 0 -+ 0
Yo = |0 ¥z 0 0 O (7-86)
0 0 0 - y,

where y; is the weight of edge j in the modified graph.

THeorEM 7-14. Let G; be the graph of a network with an element-
admittance matrix Y;, and let G2 be the modified graph derived by the
procedure above, with admittance matrix Y;. Then if Y,(s) is the
node-admittance matrix of G;, with reference vertex v,

Yu(s) = AiY2A, (7-87)

where A; and A, are current- and voltage-incidence matrices of G5 with
reference vertex v, and all vertices (rows and columns of Y,, and rows
of A; and A,) appear in their natural order.

Proof. Let
Yo(s) = [Yi] = AY 1A, (7-88)

where A is the incidence matrix of G; with reference ». Then

Yij = i i QikYkp®ip, (7-89)
k

=1 p=1
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where
A= [aﬁ] and Yl = [ykj]- ’ (7—90)

On the other hand, let

=P, A=1[a], A, =[Y]; (7-91)
then
AY oA, = [n4], (7-92a)
where
ng
= Y alyiay, (7-92b)

since Yq is a diagonal matrix. Consider the product a;yrpajp. For this
product to be nonzero, yx, cannot equal 0, element k should be incident
at vertex 7, and element p should be incident at vertex j. If k = p, this
edge has been preserved in (g, say as edge m, and is an ordinary edge.

Hence

kY kKA = azmymmagrzn) (7_93)

If k # p, there are two edges in the modified graph, a current edge, edge
m say, incident at vertex ¢ (in the same way as edge k) and a voltage edge,
also edge m, incident at vertex j (in the same way as edge p). Hence

[©) (2) (v) __
Aym = Qik, Yep = Ymm, Ajp = Qjk- (7”94)

Hence the product is preserved once again, and the theorem is established.

Since the matrices are equal, determinants and all cofactors are also
equal. Thus it suffices to find topological formulas for the determinant and
cofactors of A;Y(s)A! for the modified graph. Since A; and A, are incidence
matrices of graphs, they have all the familiar properties. In particular,
nonsingular submatrices correspond to trees and have determinants 1.
By referring back to the application of the Binet-Cauchy theorem to the
node determinant (Section 7-1), we see that only such trees as are trees of
both the current and voltage graphs contribute to det A,;Y(s)A’.

DEeriNITION 7-5. Complete tree and complete-tree product. The set of
edges with weights i, ¥, ..., yi, constitute a complete tree if the
current edges with weights v, ¥4, . . ., ¥, constitute a tree of the cur-
rent graph and the voltage edges with weights y,,, vi,, . . . , ¥;, constitute
a tree of the voltage graph. (Some or all of these edges may be ordinary
edges.) The complete-tree product is the product of the admittances
YiYiy * * * Yi, of a complete tree.
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5 (Ref) 5 (Ref)

(a) (™)
Fi1g. 7-17. Complete tree. (a) Current graph. (b) Voltage graph.

Thus, from the Binet-Cauchy theorem,

det Y,(s)
= Z (complete-tree product) X (major of A;) X (major of Aj)

= Z €; (complete-tree product of tree j), (7-95)

J

where €; = 1 or —1. The problem thus reduces to the computation of the
relative signs of the majors chosen from A; and A,. If all elements of the
complete tree are ordinary elements, the two majors are identical and
€; = 1. The procedure given here for the general case is Mayeda’s al-
gorithm, which is equivalent to the procedure described by Coates.
Consider first the simplest case, in which all edges of the complete tree
are incident to the reference vertex in both current and voltage graphs,
as in Fig. 7-17. (Some of these edges are not ordinary edges and so appear
in different places in the two parts.) Remembering that it suffices to find
the relative signs of the two majors, we see that the most efficient procedure
is to find the number of changes necessary to make the two trees identical
and then to compute the effect on the incidence matrix of such changes.
Interchanging two elements of a tree is equivalent to interchanging two
columns of the incidence matrix, hence changing the sign of the major.
If y2 and y3 are interchanged in Fig. 7-17(b), the positions of the nonzero
entries in the two corresponding majors are identical, but their signs are
not. To make the signs agree as well, the reference (orientation) arrow
for y3 must be reversed. Reversing a reference arrow is equivalent to
multiplying the corresponding column by —1 and hence changing the
sign of the major. In this case, two changes are required to make the trees
identical—one interchange and one reversal of arrow. Hence the two majors
have the same sign, and the coefficient €; for the complete-tree product

Y1Y2y3ys in Eq. (7-95) is 1.
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TaBLE 7-1

S1GN PERMUTATION FOR THE ExamprLE ofF Fig. 7-17

1 2 3 4
<y§ Y y4>
Y2 Y1 Yz Y4

In the general algorithm (written for a computer) it is found easier to
arrange all the reference arrows to point toward the reference vertex
rather than to compare relative orientations in the two trees. Here again
the total number of reversals of arrows in the two graphs plus the number
of element interchanges required in one graph, decides the sign of €;. If
this number is odd, ¢; = —1, otherwise ¢; = +1.

The algorithm is the following. Make a table of two rows and v — 1
columns, where v is the number of vertices. List the vertices in natural
order as the columns. In the first row, list the edges of the current graph
incident at the vertex corresponding to each column. If any edge is
oriented away from the reference vertex, add a superscript minus. Re-
peat in the second row, for the voltage graph. This table, called a sign
permutation, is, for the example of Fig. 7-17, shown as Table 7-1. Now
€; = (—1)"™™ where n is the number of minus signs in the superscripts
(3 in Table 7-1), and m is the number of interchanges required in the
second row to make the rows identical (1 in this example).

For the general tree, which is not star-shaped like Fig. 7-17, Mayeda
notes the changes that have to be made to convert it into a star-shaped
tree. In practice, this conversion need not be made; it is necessary only to
establish the procedure. Consider any tree T’ and its incidence matrix Ar,
with reference vertex v. By Problem 2-6, T contains an end-vertex, a say,
at which only one element y; is incident. If the other vertex of y; is v,
no change is required. If it is not, let the other vertex be k. Row a of Ay
contains only one nonzero element, in column ;. Add row a to row k. In
this process, det Ar is unaltered, but the element in row k, column y;,
is now zero. No other element of A7 is changed. The new matrix is the
incidence matrix of a tree T; in which y; is incident to vertices a and v
and all other edges are as in 7. Remove vertex a and y; from T;. The
rest is still a tree (of v — 1 vertices), and so the procedure can be repeated
until 7 is converted into a star-shaped tree, with det Ar remaining un-
altered throughout. In the star-shaped tree that results, each nonreference
vertex is incident with exactly one edge. To make up the sign-permutation
table, it is necessary to find this edge only. It is not necessary to actually
convert the tree into a star shape. A little thought about the process
described above will reveal that the edge y; is incident to vertex a in the
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star-shaped tree if a is a vertex of y; in T and the (unique) path on 7 from
a to v contains y;.

DEerFiNITION 7-6. Principal edge. With respect to a given tree T and a
given reference vertex v, edge y; is the principal edge of vertex a if y;
is incident at a and the unique path in 7 from vertex a to the reference
vertex contains y;.

DeriniTioN 7-7. Sign permutation. For a given complete tree 7 and a
given reference vertex v, the sign permutation is a matrix of order
(2, v — 1) with columns corresponding to vertices, and rows correspond-
ing to current and voltage graphs. The (7, j)-entry is yy if yy is the prin-
cipal edge of vertex j in graph 7 ( = 1, 2) and is oriented away from
vertex j; it is yj if yx is the principal edge of vertex j and is oriented
toward vertex j.

Thus with the concept of a principal edge, the sign permutation can be
formed directly and the same rule as before gives ¢;.

TueorEM 7-15. If Y,(s) is the node-admittance matrix of a network
with a Y-matrix,

det Y, (s) = Z €; X (complete-tree product), (7-96)
all

complete
trees

where
€ = (_l)n-l—m,
in which
" — <t0tal number of superscript minus signs in the)
sign permutation

and

_ (number of interchanges required in one row of)
" \sign permutation to make the rows identical

ExampLE. A transformer-coupled transistor amplifier is shown in Fig. 7-18.
The driving-point impedance at terminals (1, 1’) and the transfer impedance
from (1, 1) to (2, 2') are required. The determinant is calculated at this point;
the cofactors are computed later. The modified graph of the network is shown
in Fig. 7-19 [cf. Figs. 7-14 and 7-15(b)]. Here,

_Ls _Ia = gy = —Mas,
Y4 A Y5 A’ ys Y9 A

The trees consisting only of ordinary elements are easily disposed of, as they
are complete trees and ¢, = 1. The contribution of such trees to A, is

(ys + G6)[(G1 4+ G7)(G2G3 + G2ys + Gays) + G1G7(G3 + ya)l.
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Fic. 7-18. Example for topological formulas.

172/
Fic. 7-19. Modified graph of Fig. 7-18.

The others are a little more difficult to find. The 2-tree concepts can be used to
advantage to locate them. The complete trees containing the edge-pairs are
{aGlr G7) Y4, y5}7 {CYGI, G77 Y4, G0}7 {y& Y9, Gzr Gl}’ {ygr Y9, G2: G7}7
{ys, yo, G3, G1},  {ys, yo, G3, G7}, {ys, yo, G1, G7},  {ys, yo, aG1, G7}.

The sign permutations are determined next, as in Table 7-2. Hence the node
determinant is given by

An = (y5+ Go)[(G1+ G7)(G2G3 + Goya+ Gzys) + G1G7(G3 4+ ya)]

+ aG1G7ysys — aG1G7ya(ys + yo) — ysys(Ge + G3)(G1+ G7) — ysyoeG1Gy.
(7-97)
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TABLE 7-2

S1GN PERMUTATION FOR THE ExampLE oF Fig. 7-19

Sign permutation

Tree 1 2 3 4

€

Gr ys aG1 ya
G7 ys aG1 ya

G7 Go¢ aG1  ya
G7 Go aG1 y4

{aG1, G7, y4, ys}

{aGly G7y Y4, GG}

Gi1 yo G2 ys
Gi1 ys G2 Yo

( )
( )
( )
(s, vo, G2, G} <G7 yo  Go 1/8) .
( )
( )
( )

{ys, yo, G2, G1}

G7 ys G2 yo

Gi1 yo Gs ys

) ,G‘YG
(s, yo, Gs, G1} Gr ys G3 yo

{ySy Yo, 037 G7}

{ys, yo, G1, G7}

Gr yo G ys)
{ys, yo, aG1, G7) Gr s Gr o +

It is seen that the topological formula for the general linear network is
much more involved than the formula for a passive network without
mutual inductances and consequently is more difficult to use for theoretical
investigations. However, it is a useful procedure when computing machines
are available.

Attention is next focused on the computation of the cofactors Ay; of the
node-admittance matrix, which proceeds along similar lines. To avoid
extremely complicated notation, the determination of the relative signs
of the majors (which now correspond naturally to 2-trees) is here reduced
to the sign permutation for trees (following Mayeda).

As before, the cofactor Ay; is given by

ks = (—1)*H det A;_ YA, _, (7-98)

where A;_, is the current-incidence matrix with row k removed, and

A,_; Is the voltage-incidence matrix with row j removed. Both the sym-

metrical cofactors (kK = 7) and the asymmetrical cofactors (b = j) are
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included in the present discussion. From earlier discussions, nonsingular
submatrices of A;_, correspond one-to-one to the 2-trees of the current
graph separating vertices k and (the reference) r; similarly for A,_,. Thus
nonzero terms of the expansion correspond to 2-trees, which are 2-trees
(k, r) of the current graph and 2-trees (7, r) of the voltage graph.

DerFINITION 7-8. Complete 2-tree and complete 2-tree product. The edges
Ypys Ypsr - - - » Yp,_, constitute a complete 2-tree (’;::) of the graph if the
current edges with these weights constitute a 2-tree separating vertices
k and r of the current graph, and the voltage edges with these weights
constitute a 2-tree separating vertices 7 and r of the voltage graph. The
product of the edge weights yp,yp, * * * ¥p,_, of a complete 2-tree is a
complete 2-tree product.

Thus,

Agj = (—1)*t Z €; X [complete 2-tree (f,’,’) product], € = 1.
coﬁll;lete (7_99)
2-trees

It remains to determine when ¢, = 1 and when ¢, = —1. The simplest

procedure is to convert the complete 2-tree into a complete tree, in such a
way that the relative signs of the two majors of A;_, and A,_; are simply
related to the relative signs of the majors of A; and A;. To this end, con-
nect a current element 7, between vertices & and r and the corresponding
voltage element y, between vertices j and r. If k = j (symmetrical-
cofactor case), yo becomes an ordinary element. Let both elements y( be
directed toward the reference vertex r. Given any complete 2-tree (I;-::),
it is clear that the addition of y, makes this a complete tree. Conversely,
if 7 is any complete tree of the new graph containing y,, it is clear that
removing yo from 7 leaves a complete 2-tree (j.‘j:). Thus complete 2-trees
k) are in one-to-one correspondence with complete trees of the modi-
fied graph, which contains yo. This is a useful computational procedure.
Consider the majors of A; and A, corresponding to such a complete tree.
Let y¢ occupy column p (in both matrices). Column p contains exactly
one nonzero element, 41, in both majors (of A; and A,). This +1 is in
row k of A; and row j of A,. Expand both majors by column p. Then,

(major of A;) = 1 X (—1)**? X [minor (k, p) of A;-submatrix],
. (7-100)
(major of A,) = 1 X (—1)?*? X [minor (j, p) of A,-submatrix].

Now minor (k, p) of the A;-submatrix is the major of A;_, corresponding
to the complete 2-tree in question. Similarly, minor (j, p) of A, is the
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required major of A,_;. Therefore, multiplying the corresponding sides
of the two equations (7-100), we get

(major of A;_,) X (major of A,,_j)
= (—1)F* x (major of A;) X (major of A,). (7-101)

Taking into account the (—1)**7 in Eq. (7-98), we arrive at the next
theorem.

THEOREM 7-16. If Ag; is the cofactor of the (k, j)-element of the node-
admittance matrix Y,(s) with r as the reference vertex,

Ay = Z ¢, [complete 2-tree (¥'7) product],

all complete

2-trees (I;: :)

where €, is the same as in Theorem 7-15, determined by adding a cur-
rent element yq from k to r and a voltage element yo from j to r.

It is possible to carry this discussion further to cofactors of the type
A1122 by defining 3-trees and 3-tree products as in the simpler case.*

ExampLe. Let us find Ar1 and A;2 for the network of Fig. 7-18, with (1’, 2)
as reference, completing the computation of the driving-point and transfer
impedances.

Ay is easy to find, since the added ordinary element is in parallel with G7.
Hence A11 simply contains the trees which contain G, with G7 removed from
them. Hence, from the expression for A, of the preceding example,

Ay = (y5s + Go)l(G1 + G2)(G3 + y4) + Gsy4]
+ aGysys — aGiya(ys + ys) — ysyo(Gz2 + G3) — ysyoG1.  (7-102)

For the cofactor Ayg, add a current element y¢ from vertex 1 to vertex (1/, 2")
and a voltage element yo from vertex 2 to vertex (1’, 2'), resulting in Fig. 7-20.

It is clear that any complete tree containing yo must include yg to include
vertex 2 in the current graph without having a circuit in the voltage graph.
Inspection shows two complete trees containing yo:

{yo,yo, G1, Gz} and  {yo, yo, aG1, G2}.
The sign permutations of these two trees are, respectively,
1 2 3 4 1 2 3 4
<yo yo GT G3‘> and < vo yo G2 aGr> .
G yo G3  yo al@y yo G2 Yo

* See Mayeda [111] or Coates [36] for further development of the subject.
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172/
Fra. 7-20. Computation of Aja.

As contrasted with the computation of A,, the ordinary elements also change

positions in this tree. Thus in gencral, the entire sign permutation has to be

examined and no short cuts are possible. The coefficients ¢; for the two trees are
now found from the sign permutations to be —1 and —1. Hence

A1z = —y9(G1G3 + aG1G2). (7-103)

The required network functions can now be computed.
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ProBLEMS

7-1. Write out the node-admittance matrix of Fig. 7-1, with 1’ as the reference
vertex, and compute A and Aj1; by conventional procedures. Compare with
Egs. (7-10) and (7-16).

7-2. Find the driving-point admittance of the network in Fig. 7-21 by using
Maxwell’s formulas.

Ry
I.—N{LJ
1 R |\
+ Cs +
Vg—e Ly Ry 1 2
]/
O~
Ficure 7-21

7-3. In Fig. 7-21, find the transfer impedance Z21 = Vo/I1 (all initial con-
ditions zero) by using Maxwell’s rules.

7-4. Find the open-circuit impedance matrix and short-circuit admittance
matrix of the networks in Fig. 7-22 by the use of topological formulas.

7-5. A technique for finding all the trees of a graph would be useful. Can
you formulate one?

7-6. Calculate the inverse of the node-admittance matrix of Fig. 7-21 by the
standard cofactor method. Repeat, using topological formulas.

7-7. Let N denote a passive network without mutual inductances, as in
Fig. 7-23. The driving-point impedance of N at the terminals (1, 1’) is defined by

E1(s) ,
I1(s)

By using the formulas for the determinant and cofactor of the loop-impedance
matrix, show that

Zi(s) = all initial conditions zero.

ClW1,11(2)] ,

Zd®) = vz

where the polynomials V and W and the complements are computed for the
network N only.

—o 1/

Ficure 7-23
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(8)

7-8. If G and G* are dual graphs, show that trecs of either graph correspond
to tree complements in the other. Using this fact, Theorem 3-13, and Prob-
lem 7-7, obtain an alternative proof of the well-known geometrical procedure of

obtaining inverse networks by duality.

7-9. How can we use Maxwell’s and Kirchhoff’s formulas to compute response

when there are several generators in the network?
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7-10. Obtain the open- and short-circuit functions of Figs. 7-22(e) and (g)
by direct determinant computations and compare with the topological formulas.

7-11. Prove that the 2-trecs that appear in the numerator of 232 (or y;2) are
precisely those 2-trees which are common to the numerator of both z1; and zz22
(or y11 and y22). (We use this result to derive the powerful theorems of Fialkow
and Gerst in the next chapter.)

7-12. From the topological formulas for Z,, and Y, derive the formulas for
the admittances of the T- and w-equivalents of two terminal-pair networks.

7-13. Prove that (number of trees of a graph) = det AA’. (Trent [176].)

7-14. Prove that det BB} = (number of trees of graph).

7-15. It can be shown that the matrix

i

is nonsingular for nondirected and for directed graphs. Do so. Prove further
that in directed graphs

det [A :I = 4+ (number of trees of graph).
B,

)

by its transpose, and use Theorem 5-4 and Problems 7-13 and 7-14.]
7-16. Compute the driving-point impedance at terminals (1, 1’) and the open-
circuit transfer impedance 221 of the network of Fig. 7-24 by topological formulas.

[Hint: Postmultiply the matrix

(o
It

lo——mmm

Gy

1’0o

Ficure 7-24



CHAPTER 8
APPLICATIONS TO NETWORK SYNTHESIS

As remarked earlier, the application of graph theory to problems in
network synthesis is a recent development. In this chapter, most of the
known applications are reviewed. Since the subject matter is of recent
origin, the chapter is more in the nature of a report on the “state of the
art” rather than a well-organized logical development. The entire chapter
is concerned with passive reciprocal networks without mutual inductances;
only R-, L-, and C-elements are admitted.

8-1 Enumeration of natural frequencies. The zeros of the network
determinant (either loop or node) are referred to as the natural frequencies
of the network, for these are the frequencies of the transient response.
One of the classical problems is to count the number of natural fre-
quencies of a network by inspection. An early solution to this problem is
an algorithm due to Guillemin [69], applicable to networks which contain
no all-capacitor or all-inductor loops. More recently, Reza [145] gave
the solution for networks containing only two types of elements. The
complete solution was obtained independently by Bryant [18], Bers [10],
and Seshu (in unpublished notes, 1958).

DerinitioN 8-1. Order of complexity. The order of complexity of a
network is the number of finite nonzero zeros of the determinant (loop
or node), with each R, L, and C considered as a network element.

Since by Theorem 7-10, the loop and node determinants are related by
A, = (det 2) A, = ks™ A, (8-1)

where m is an integer (positive, negative, or zero), the loop and node
determinants have the same zeros, excluding s = 0, oo. Thus Definition
8-1, which is due to Reza [145], is meaningful. Therefore also, either
A,, or A, may be chosen as the basis of the enumeration formula. In the
present discussion, the node determinant A, is chosen as the basis. Let

Ap = aps" +ap_y " FagtassT - FasT?, (8-2)

where a; # 0, a_, # 0, and p and k are integers. The order of com-
plexity is evidently & + p. Hence it suffices to determine k and p. Since

A, = Z (tree-admittance products), (8-3)
all

trees

197
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it is clear that

k = (number of capacitors in 7';) — (number of inductors in 7;), (8-4)
where T'; is the tree that maximizes this difference. Similarly,

p = (number of inductors in T'3) — (number of capacitors in T'3), (8-5)

where T'; maximizes this difference.

However, by Theorem 6-10, it is possible simultaneously to maximize
the number of capacitors and minimize the number of inductors in T'y,
as shown by the following argument. Let G be the graph of the network.
Let oy be the maximum number of inductors contained in any tree of
the graph G; let S; be the subgraph (of @) of such a set of af, inductors.
S thus contains no circuits. Let 8¢ be the smallest number of capacitors
contained in any tree of G; let T be a tree containing only B¢ capacitors.
Let S be the subgraph of all capacitors excluding the capacitors contained
in T. S, thus contains no cut-sets of G (Problem 2-20). S; and S, are
clearly edge-disjoint, since S; contains only inductors and S, contains
only capacitors. Hence, by Theorem 6-10, there exists a tree 7'; with edges
of S; as (some of the) branches and for which the edges of S, are (some
of the) chords. Hence T'; contains «y, inductors and B¢ capacitors.

It remains only to establish the numbers «a;, and B¢. Let n; be the
number of inductors in the graph . Consider the subgraph G, consist-
ing of these inductors. If G contains any circuits, then G, is not con-
tained in any tree of G. Let uz, be the nullity of Gr. Then at least up,
edges must be removed from Gy, to destroy all circuits; also removing a
suitable set of ur, edges destroys all circuits. (Construct a forest of G,
to appreciate this fact.) Hence

arp = ML — kLo (8-6)

Thus «y, is the rank of G,.

The number B¢ is established by a dual argument, which argument is,
however, spelled out in detail in the next two paragraphs.

Find the all-capacitor cut-sets of the graph G. These cut-sets are
referred to in the sequel as cut-sets of G, contained in G¢, where G¢ is the
subgraph of all capacitors. Let § of these be linearly independent. That is,
8 is the rank of the matrix Q¢, of these all-capacitor cut-sets of G. Then
at least & capacitors must be removed from G¢ to destroy all the cut-sets

of G contained in G¢. For, suppose on the contrary that ey, e, ..., e,
where r < 4, are a set of edges of G¢ such that the subgraph G¢ obtained
by removing ey, es, . . ., e, contains no cut-sets of G. Select a submatrix

Q¢ of Q¢q of 6 rows and rank 8. Consider the submatrix of Q¢ consist-
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ing of columns corresponding to ey, e, . . ., e,. Since this submatrix con-
tains only r columns, its rank is at most . Since it contains & rows, and
§ > r, the rows of this submatrix are linearly dependent. Hence a suitable
linear combination of the rows of this submatrix (with not all of the co-
efficients zero) yields a row of zeros. Consider the same linear combina-
tion of the rows of Q¢. Since Q¢ has rank §, the rows of Q¢ are linearly
independent, and so the linear combination is nonzero. Hence it is a
cut-set or disjoint union of cut-sets of G, which does not contain any
of ey, eq, ..., e.. Thus, at least § capacitors must be removed from G¢
to destroy the cut-sets of G contained in Ge.

Also, it suffices to remove a suitable set of & capacitors. For this, find
a nonsingular submatrix of Q¢ of order 8. No linear combination of the
rows of this submatrix can be zero (unless all the coeflicients are zero).
Hence, if the § edges corresponding to the columns of this nonsingular
submatrix are removed from G¢, the remaining subgraph G¢ contains no
cut-sets of G. Evidently, B¢ = 4. Tor later use, we restate these results
in more general terminology.

Lemma 8-1. Let G, be a subgraph of a connected graph G. Then the
maximum number «; of edges of G, contained in any tree of G is
given by

Qs = Ns = Mhso = Psoy (8-7)

where ng is the number of edges in G, us, is the nullity of G, and
Pso 1s the rank of 5. The minimum number 8, of edges of G, contained
in any tree of G is the number of linearly independent cut-sets of G,
contained in Gs.

It is convenient to use a formal method of computing the number of
linearly independent cut-sets of G contained in a subgraph and thereby
introduce some useful notation. Let G, be, for instance, the L-subgraph,
i.e., the subgraph consisting of all the inductors. Consider short-cir-
cuiting all elements of G which are not inductors. From the vertex-
partitioning interpretation of a cut-set given in Section 2-4 (immediately
preceding Definition 2-12), it is clear that every all-inductor cut-set of G
remains a cut-set of the resultant graph. Since the new graph contains
only inductors, the number of linearly independent L-cut-sets of @ is
equal to the rank of the graph obtained by short-circuiting all other
elements. Let this number be denoted by prs, with a similar meaning for
pcs. Similarly, the rank of the L-subgraph [= (number of inductors) —
(nullity of L-subgraph)] can be found by open-circuiting all other elements
and can be denoted by pr,, with a similar meaning for p¢,. Similarly,
Lo 1s the nullity of the graph obtained by deleting (open-circuiting) all
non-L-elements, etc.
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TueoreM 8-1. The order of complexity of a passive network without
mutual inductances is

N = pco + Pro — Pcs — PLs, (8-8)

with the above notation.

Proof. By Lemma 8-1, the maximum number of capacitors contained
in any tree is p¢,, and the minimum number of inductors in any tree is
prLs. Since the L-subgraph and the C-subgraph are edge-disjoint, by
Theorem 6-10, there exists a tree 7'y with p¢, capacitors and prs inductors.
Hence

k= pco — PLs- (8-9a)
Similarly,

P = PLo — PCs) (8-9b)
and the theorem follows.

Since (rank) 4+ (nullity) = (number of edges) in any graph, Eq. (8-8)
can be algebraically manipulated to give other useful forms.

CoroLLARY 8-1(a). With the same hypotheses and notation as in the
theorem,

N = Mes + MLs — MCo — MLo, (8’10&)
or

N = (urs — p1o) + (Pco — Pcs), (8-10Db)

where all inductors and capacitors are retained in the Ls- and Cs-
subgraphs, and single-edge loops are counted as loops.

Guillemin’s [69] algorithm gives N = uc¢s + prs, which agrees with
Eq. (8-10a) under Guillemin’s assumption of no all-inductor or all-
capacitor loops. Equation (8-10b) was conjectured by S. J. Mason and
R. Adler (quoted by Reza [145]).

CoroLraRY 8-1(b) (Reza). For an LC-network,
N = 2(u — pco — MLo)- (8-11)

The proof of Corollary 8-1(b) is left as a problem (Problem 8-1). The
number u — pco — MLo was named the number of dynamically inde-
pendent loops by Reza [145].

8-2 One terminal-pair networks. This section is devoted to the known
theory of minimality in transformerless realizations of driving-point
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functions. The emphasis is again on the relationship between the structure
of the network and the corresponding network function. Theorem 8-1
and Eq. (8-8) give the data regarding the degree of the polynomial in
A,. By shorting the input vertices and using the same formula, the
highest and lowest powers in A;; can be determined. Hence, if there
28 mo cancellation of common factors between Aand Ay, the highest power
occurring in the driving-point function is known. It is evident from
Theorem 8-1 that the order of complexity cannot exceed the total number
of inductors and capacitors in the network. These considerations lead to
the first concept in minimality.

DeriNiTION 8-2. Minimal in reactive elements. A transformerless
realization of the positive real function

n n_l CEIY
CnS + Cp_18 + + 18+ ¢o (8-12)

Z(S) = m m—1
de +dm—ls ++d18+d0

with ¢, # 0, d,, # 0, and not both ¢y, dg = 0, is minimal in reactive
elements if either

n = ng + nc or m = ny, + ne¢ (8-13)

or both, where ny, and n¢ are the numbers of inductors and capacitors
in the realization. [The numerator and denominator in Eq. (8-12) are
assumed not to have any common factors.]

It is clear from Theorem 8-1 that all-inductor and all-capacitor loops
and cut-sets must be prohibited either in the original network or in the
modified network (with the input terminals shorted) if the network is
minimal in reactive elements. This concept is made precise in the next
theorem. The notation “cut-set (1, 1’)” signifies a cut-set which places
the input vertices 1 and 1’ in different connected parts.

TueorREM 8-2. A one terminal-pair network N without mutual in-
ductances realizing Z(s) of Eq. (8-12), in which A(s) and A;;(s) have
no common factors, is minimal in reactive elements if and only if

(a) there are no all-inductor or all-capacitor loops in N,

(b) there are no all-inductor or all-capacitor cut-sets in N other than
cut-sets (1, 1’), and

(¢) there are no all-inductor or all-capacitor cut-sets in N; (when
vertices 1 and 1’ are identified).

[Condition (b) is really implied by (c), but it is more convenient to state
it separately.]
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Proof. The sufficiency of the condition is taken up first. The necessity
then becomes evident. Let

A(s) = aps® + ap_1sF P+ a_ps?
and (8-14)
Api(s) = bgs? + bq_ls"_1 I R

There are four cases to be considered, depending on the existence, or
otherwise, of paths between the input vertices 1 and 1’ consisting only
of inductors or capacitors. Such paths are denoted by L-path (1, 1’) and
C-path (1, 1').

Case 1. There is an L-path (1, 1’) and a C-path (1, 1’). It immediately
follows that there is no C-cut-set (1, 1’) (since there is an L-path) and
no L-cut-set (1, 1’). Hence from Theorem 8-1,

k = ne, P = nL
d np4dn 8-1
an g™ dy (8-15)
A(s) = L

The proof for this case is complete, but let us compute ¢ and r as an
illustration. It is clear, from condition (a), that there is only one L-path
(1, 1') and only one C-path (1, 1’). These two become loops, on identify-
ing vertices 1 and 1/, so that

g=1nc — 1 and r=ng — L (8-16)
Thus Z(s) has a zero at s = 0 and another zero at s = oo, as we expect.

Case 2. There is an L-path (1, 1’) but no C-path (1, 1’). Then there
is no C-cut-set (1, 1’), but there may be an L-cut-set (1, 1’). If there
is no L-cut-set (1, 1’), we have immediately that

¢ = ne, p = nr, q = ng, r=mn, — 1, (8-17)
so that
n = ng + ne, m = ng + ne, co = 0, (8-18)

with reference to Eq. (8-12). Thus Z(s) has a zero at s = 0, and is
regular and nonzero at s = oo. If there is an L-cut-set (1, 1’), there can
be only one. For if @, and @, are two L-cut-sets (1, 1’), their mod 2
sum @; ® @, has an even number of edges in common with a path (1, 1)
since each of @; and Q2 has an odd number of edges in common with
such a path. Thus @; ® Q- is not a cut-set (1, 1’). However, @; @ Q2
is a cut-set or disjoint union of cut-sets. [Two of these may be cut-sets
(1, 1").] Thus, N contains L-cut-sets that are not cut-sets (1, 1’). Since
there is only one L-cut-set, and one L-path (1, 1'),

k= ne — 1, P = ng, q = nc, r=mn — 1. (8-19)
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In this case, the numerator of Z(s) is of degree ny, + n¢, which completes
the proof. Z(s) has a zero at s = 0 and a pole at s = oo.

Case 3. There is a C-path (1, 1’) but no L-path (1,1’). This case is
obtained by interchanging inductors and capacitors in Case 2. Now
Z(s) has a zero at s = . Z(s) has a pole at s = 0 if there is a C-cut-set
(1, 17). Otherwise, Z(s) is regular and nonzero at s = 0.

Case 4. There is neither a C-path (1,1’) nor an L-path (1,1’). In
this case we have immediately that

qg = nc¢ and r= ngp, (8-20)

so that the maximum degree appears in the numerator of Z(s). As before,
we find that L- and C-cut-sets (1, 1’) lead to poles at s = « and s = 0,
respectively, the two being independent of each other. Z(s) is regular
and nonzero at the appropriate point in the absence of such cut-sets.

The necessity part of the theorem can now be left as evident.

We can generalize the by-products of Theorem 8-2 to nonminimal
structures, leading to the intuitively obvious result of Theorem 8-3.

Turorem 8-3. The driving-point impedance of a passive network
without mutual inductances has

(a) a pole at s = 0 if and only if there is a C-cut-set (1, 1’),

(b) a pole at s = oo if and only if there is an L-cut-set (1, 1’),
(¢) a zero at s = 0 if and only if there is an L-path (1, 1’), and
(d) a zero at s = « if and only if there is a C-path (1, 1%).

As a trivial application of Theorem 8-2, one can prove the well-known
result that the Ifoster and Cauer realizations of reactance functions are
minimal; and by the Cauer transformations (see Section 8-3) extend the
result to RC- and RL-networks.

There is no implication in Theorem 8-2 that every positive real func-
tion Z(s) has a realization containing only the minimal number of reactive
elements required. It is more difficult to establish the minimal number
of resistors required. If the given positive real function is not a reactance
function, resistors are certainly required. If mutual inductances are
permitted, the Darlington synthesis procedure realizes any positive real
function with one resistor. If mutual inductance is not permitted, one
resistor is not always sufficient. However, the only known result about
resistors is the following.

TueoreMm 8-4. If the positive real function Z(s) is regular and nonzero
at s = 0 and s = o0, and
Z(0) = Z(w), (8-21)
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then any transformerless realization of Z(s) requires at least two
resistors.

This result is intuitively obvious, since the inductors and capacitors
become open or short circuits at s = 0 and s = «. The formal proof
based on topological formulas is left as a problem (Problem 8-2).

As mentioned earlier, little is known about minimality of the various
network realizations. The only RLC-network that has been proved strictly
minimal is the seven-element realization of the biquadratic minimum posi-
tive real function. This proof is outlined next. The complete details
may be found elsewhere [157].

A minimum positive real function is a positive real function which has
no poles or zeros on the jw-axis and which has a zero real part at some
point jwg (0, ) on the imaginary axis. The next theorem states an
important fact about the structure of the realization of a minimum p.r.
function.

THEOREM 8-5. A transformerless realization of a minimum p.r. func-
tion does not contain any paths (1, 1’) or cut-sets (1, 1’) consisting of
one type of element only (i.e., all-inductor, or all-capacitor, or all-
resistor).

It already has been shown that L- and C-paths (1, 1’) and cut-sets
(1, 1') cannot exist in such a network (Theorem 8-3). To show that an
all-resistor path (1, 1’) or cut-set (1, 1’) cannot exist, consider the expres-
sion for Z(s) in terms of energy functions (Eq. 6-120):

2G) = [ [Fotior + doToGior + L votio) | 822

where I, is the a-c steady-state input current (phasor) and F,, T, and
Vo are the energy functions (quadratic forms associated with the R-,
L-, and D-matrices). At the minimum point jwy, Fo(jwe) = 0, so that
all the resistor currents must be zero, and hence also the voltages across
the resistors. An R-path (1,1’) now makes the input voltage zero so
that Z(s) has a zero at jwg. On the other hand, an R-cut-set (1, 1’) makes
the input current zero, since the input current is the sum (taking references
into account) of the cut-set-(1, 1’) currents. Thus Z(s) has a pole at jwg.
Since neither a zero nor a pole can exist on the jw-axis, the result is proved.

CoroLLARY 8-5(a). A transformerless realization of a minimum p.r.
function contains paths (1,1’) and cut-sets (1, 1) consisting of any
two types of elements (RC, RL, or LC).
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(a)

@ C

b d
(b)

Fiac. 8-1. Four-clement structures.

CororLLarYy 8-5(b). A transformerless realization of a minimum p.r.
function contains no single-element path (1, 1’) or cut-set (1, 1’).

Thus in the terminology of Moore and Shannon [118], the length and
width of such a network are at least 2. [The length is the number of
elements in the shortest path (1, 1’), and the width is the number of
elements in the smallest cut-set (1, 1’)]. Hence by the results of Moore
and Shannon, the network contains at least four elements. However,
the two four-element graphs of length 2 and width 2 shown in Iig. 8-1
cannot realize minimum p.r. functions for any assignment of R, L, and C,
as shown by the next theorem.

TuHEorREM 8-6. A minimum p.r. function cannot be represented in a
transformerless realization as a series or a parallel combination of two
networks, one of which contains only two types of elements.

This result is obvious. For, if the two elements are RL or RC, the
real part is nonzero at all finite nonzero frequencies; and if the two
elements are LC, there is at least one pole on the jw-axis; and neither can
be removed by the addition of another positive real function.

CororLLARY 8-6. A transformerless realization of a minimum p.r. func-
tion cannot be a series combination of (a) a parallel connection of
two elements and (b) another network; nor can it be a parallel combina-
tion of (a) a series connection of two elements and (b) another network.

Thus the smallest network that can realize a minimum p.r. function
is a five-element bridge. For example, the driving-point impedance of
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Fra. 8-2. A bridge realizing a minimum function.

the bridge network of Iig. 82 is a minimum p.r. function whenever
Ll == L5 a.nd G2 = G4-
The biquadratic minimum p.r. function is

2
_ pStasta ~
Z(s) = R S+ bys - by (8-23)
where the a’s and b’s are real and positive, and satisfy
a1b1 = (\/ ayg — Vb0)2. (8—24)

Since neither a; nor b; can be zero (no poles or zeros on the jw-axis),
Eq. (8-24) establishes the next theorem immediately.

Tueorem 8-7. If Z(s) is a biquadratic minimum p.r. function,
Z(0) = Z(w), so at least two resistors are required in any transformer-
less realization of Z(s).

Theorem 8-8 treats reactive elements.

TueoreEM 8-8. At least three reactive elements are required in any
transformerless realization of a biquadratic minimum p.r. function.

Proof. On the contrary, suppose that two reactive elements suffice for
some biquadratic minimum function. Then these two are necessarily
an L and a C. By Corollary 8-5(a), there exists an LC-path (1, 1’). Hence
the two reactive elements must be connected as shown in Fig. 8-3, or with
vertices 1 and 1’ interchanged. Now, however, there can be no LC-cut-set
(1, 1) (that is not an edge-disjoint union of cut-sets).

CororLrarY 8-8. If a network N without transformers realizes the
biquadratic minimum function Z(s), the node determinant A of the
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a
L ¢

1 /\>]/

Fig. 8-3. Illustration of proof.

network (and therefore A;;) is at least a cubic polynomial divided by
a power of s.

In other words, at least three of the reactive elements “contribute
degree” to A. The proof of Corollary 8-8 follows directly from Theorem 8-1,
its corollaries, and Theorem 8-8, and so is left as a problem (Problem 8-12).

Thus a common factor or factors must necessarily cancel between A
and Ay if the network realizes a biquadratic minimum function. However,
in the case of a bicubic or biquartic minimum function, this does not al-
ways happen (see Kim [84]). The known minimality argument [157] now
proceeds by exhausting all possibilities, making use of the structure
theorems 8-5 and 8-6. Since the four-element graphs have been disposed
of by Theorem 8-6, the search begins with five-element graphs. Ixcept
for the five-clement bridge (graph of I'ig. 8-2), the other five-element
graphs (of length 2 and width 2) are series or parallel combinations of
two graphs, one of which consists of two edges. Thus, by Corollary 8-6,
only the bridge graph needs to be considered. Next, all possible assign-
ments of elements R, L, and C to the edges of the bridge must be
considered. Many of these are eliminated by Corollary 8-5(a). Only six
structures remain, arranged in dual pairs, so only three networks require
detailed examination. The element values are computed from the be-
haviors at the frequencies 0, «, and jw,. At jwg, the network must be
reactive (the resistors becoming shorted by series-resonant circuits or

~
/m\

b)
Fia. 8-4. TFive-clement bridges. (a) Z(w) = 4Z(0). (b) Z(0) = 4Z(x).
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Fic. 8-5. Minimal realization of biquadratic. (a) zo > 0. (b) zo < 0.

opened by parallel-resonant circuits) with a reactance equal to X, =
(1/9)Z(jwg). Finally, the two functions [the given biquadratic and Z4(s)
of the bridge] are set equal, and the condition for the cancellation of a
common factor in the numerator and denominator of Zy(s) is found.
It is discovered that only the biquadratics which satisfy Z(0) = 4Z ()
or Z(w) = 4Z(0) can be realized with five elements, by the nctworks
shown in Fig 8-4.

The search is continued now with six-element graphs. Again the series-
parallel structures are eliminated by Corollary 8-6 and its extension to
three elements. Ifour bridge graphs remain to be examined in detail,
which are in dual pairs. Now R’s, L’s, and C’s are assigned to these bridges
in all ways possible without violating Theorem 8-5. Computation of
element values and the check for cancellation of common factors proceed
as before. It is found that no additional biquadratics are realized by
six-element networks. Thus it is proved that the known seven-element
realization of a biquadratic minimum function, shown in I'ig. 8-5, is
minimal except for the special cases shown in Iig. 8—4.

8-3 Two terminal-pair networks. In the theory of two terminal-pair
structures, the adjective minimum-phase plays a significant role. This
term is defined as follows.

DeriNiTiON 8-3. Minimum phase. A two terminal-pair network is a
minimum-phase network if none of the zeros of y;2 (or z;3) is in the
open right half-s-plane. (That is, y;2 has no zeros in ¢ > 0.)

Bode [12], who originated the name minimum phase, uses [(input)/
(output)]-functions and so uses poles (rather than zeros) in its definition.
The modern standard is to use (output)/(input), as is done here.
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I —» -,

—o 1 20— -
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W N 1,
—7t01’ 2/ o—o4—

Fic. 8-6. Two terminal-pair network.

To correlate the present treatment with conventional treatments of
minimum-phase networks, let us temporarily change the convention about
network elements. Instead of considering each R, L, and C as a network
element, let us consider each two-terminal subnetwork to be a network
element. Thus the networks being considered do not have any vertices
of degree 2, except possibly the input and output vertices, and no two
elements are in parallel. With this convention, we define the elusive term
number of transmission paths as follows.

DEeriniTION 8-4. Number of transmission paths. Let N be a two
terminal-pair passive network with no mutual inductances. With the
convention above about network elements, the number of paths of
transmission 1s the number of 2-trees in N of the types Ts,, ,/,» and
Tay .5 (See Fig. 8-6.)

The convention introduced does not change any of the topological
formulas developed in Chapter 7. We made no assumptions in Chapter 7
about what a “network element” is. With this definition, we can prove
the well-known result stated in Theorem 8-9.

THEOREM 8-9. Every two terminal-pair network without mutual
inductances that contains only one path of transmission is a minimum-
phase network.

The proof is sufficiently obvious to be omitted.

The best-known example of a network with a single transmission path
is a ladder network. A ladder is, by definition, a network of the type
shown in Fig. 8-7, in which each Z; and Y; may be a complex two-
terminal network and there is no mutual coupling. Either or both of Z,

Y, Y 4 an

lo —————————————— - ——————— 02
Zy Zy Zs Zon—1 Zon+1
’o—t— - —0 2

Fig. 8-7. Ladder network.
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and Zg,41 may be absent. Tor such a ladder network, we have the fol-
lowing theorem.

TueoreEMm 8-10. The zeros of transmission of a ladder network are
contained among the zeros of Y5, Yy, ..., Yo, and Zy, Z3, . . ., Zon 1.

Proof. Tor a ladder network (Ifig. 8-7),
W12,1’2’ = Y2Y4 e an and W12',1’2 = O (8*25)

The zeros of transmission are, by definition, the zeros of 3,2 (or z;2).
Since

_ V_V&Vz’(y) _on
219 = V(Y) ) (8 20)

the zeros of z;, are the zeros of Wz 1-2/(Y) and poles of V(Y), except
those that cancel. Now every tree of the network must contain the vertex
(1'2"), and so each term of V(Y) has one (or more) of Y1, Y3, ..., Youys
as a factor. Thus a pole of Y, Y35,..., Yo,y is also a pole of V(Y).
(These are, of course, the zeros of Z;, Z3,...,Zs,41.) Any other pole
of V(Y) is a pole of one of V3, Yy, ..., Vg, which automatically cancels
with a pole of Ws 1:2/(Y). Thus the theorem is proved.

Theorem 8-10 can also be considered to be obvious from physical intui-
tion, since an open circuit of one of the series arms (the even-numbered
elements) or a short circuit of one of the shunt arms (the odd-numbered
elements) is required for a zero of transmission. [The question of possible
cancellation of zeros of Wis 1/9/(Y) and V(Y) is much more difficult
and is not discussed here. It is important, however, and is used in the
Cauer ladder development of two terminal-pair networks.]

Thus a nonminimum-phase structure necessarily has more than one
2-tree of the types T3, ,7,» and T,/ -, or contains a transformer. The
simplest examples of nonminimum-phase structures are bridged-T' and
lattice networks, as shown in Fig. 8-8. As can be verified, the zeros of

1
7500
1
IL—’?‘—L 1 300 2
1 1 1
1
3 1
=)£>I<
170 02/ 17 2/
(a)

a (b)

Fig. 8-8. Two nonminimum-phase networks.
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1 2
¢, Gy
o
l/c 02/

Fic. 8-9. Minimum-phase structure.

transmission of the bridged-T" network are at
s = _1; %(lﬂ:JVll)y

and the zeros of transmission of the lattice are at

+ 3.

o=
njw

s =1, —

Thus, both of them have zeros of transmission in the right half-plane.

It is, however, quite possible for the network to have more than one
path of transmission and still be a minimum-phase structure. An example
of such a network is shown in Fig. 8-9. Multiplicity of transmission paths
is a necessary condition for the network to be nonminimum-phase, but is
not a sufficient condition.

In communication networks, where the transmission networks are oper-
ated in conjunction with active elements or coaxial cables or both, one
finds it useful to require that the terminals 1’ and 2’ of the network of
Fig. 8-6 be the same terminal. Such networks are variously known as
common-ground, unbalanced, common-terminal, 3-terminal, etc., networks.
They are conventionally shown as in Fig. 8-10(a) or (b). A special sub-
class of these networks consists of those containing only two types of
elements (LC, RC, or RL) and not containing any transformers. We
consider both the general common-terminal structure and the two-element
types next. Let us return to the original convention of considering each
R, L, and C to be an element.

lo—+ o——02 1 2

170 —0 92/ 1/ 0 09/

(n) (b

Fic. 8-10. Common-terminal network.
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TueoreM 8-11 (Fialkow-Gerst). The coefficients of the numerator
(and denominator) polynomials of z;, of a common-terminal network
are all nonnegative real numbers if common factors in A and A, are
not, cancelled.

Proof. From Theorem 7-8,

Wis,io(Y) — Wiari2(Y)

212 = V( Y) (8_27)

Since 1" and 2’ are the same vertex, there can be no 2-tree T’ ,’ -, in which
1’ and 2’ are in different connected parts. Therefore

Wiar12 =0 (8-28)
and
. W12.1’2’(Y) R
212 = V—( Y) ’ (8 29)

which makes the theorem obvious.

The theorem can be restated for y;2, since

. Wige(Y) — Wigae(Y)

Y12 = SU(Y) (8-30a)
which becomes
_ Wi (Y) .

for common-terminal structures. Irom this, we have the next two
corollaries.

CororLraRrY 8-11(a). If in a common-terminal network without trans-
formers, common factors of Aj, and Aj;so are not cancelled and y,,
is written with the leading coefficient in the denominator positive,
then all the coefficients in the denominator are nonnegative real num-
bers, and all the coefficients in the numerator are nonpositive real
numbers.

CoroLrLary 8-11(b). No common-terminal transformerless network
can have a zero of transmission on the positive real axis.

Corollary 8-11(b) is obvious since the sum of positive numbers cannot
be zero. (The points oo and 0 are not considered here.)

Since there can be no zero on the positive real axis, and zeros in the
right half-s-plane are possible (Ilig. 8-8a), an interesting question to ask
is, how close to the positive real axis can a zero be? To answer this
question, we need the following result, due to H. Poincaré.
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Lemma 8-12. Let P(s) be a polynomial of degree n > 0, with non-
negative real coefficients. Then P(s) has no zeros in the sector

larg s| < % (8-31a)
Further, if P(s) has a zero sq with
|arg so| = % (8-31b)
then
P(s) = as" + ao. (8-31c)
Proof. Let
P(s) = aps” + an_18" 71 4 -+ ags + ay, (8-32)
witha, >0, k=0,1,...,n — 1, and a, > 0. Let
So = Téjo

be a zero of P’(s). Then, equating real and imaginary parts of P(sqg) to
zero, we have that

anr™ oSN + an_yr" tecos(m — 1) 4 -+ 4+ ayrcos 4+ ag = 0
(8-33a)
and
" Sinnd + ap_1r" " tsin(n — 1)0 + -+ + ayrsin 6 = 0.
(8-33b)

Now if |6] < m/n, then all the terms of the second sum have the same
sign. Further,

sinkd > 0 if 6 >0

sinkf < 0 if 6 <0

for 1 <k < n.

Thus the second sum could not be equal to zero, so

™
> —.
jarg so > 7

If
T
larg so| = o
then
sinnf = 0.
But if
T
Jarg so] = T
then

sink§ 20 for1 <k <n—1,
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according as 8 2 0. Hence for Im P(sy) = 0, we must have

a, = 0 for1 <k<n-—1 (8-34a)
so that
P(s) = a,s" + ay, (8-34b)
as was to be proved.

Now we can answer the question of how close to the positive real axis
the zero can be.

TuEOREM 8-12. Let

k n n—1 .
2y =& (anfn + an—lfn_l + + ais + ao) (8-35)
bms + bm—ls + tte + bls + bO

for a common-terminal transformerless two terminal-pair network,
where a, # 0 and ay ¥ 0. Then the zeros of 2,5 are all in the region

T
>
larg s| > ~
(except for any zeros at s = 0, ).

Theorem 8-12 follows immediately from (Poincaré’s) Lemma 8-12 and
needs no comment. However, let us examine its application to two termi-
nal-pair networks.

To apply this theorem, we must find n. Since each R, L, and C is
considered as a network element, the denominator of z;, at most changes
s* of Theorem 8-12. To find n, we must find the 2-trees of the network,
of the type T, ,,’; however, it is not necessary to list them. It is
necessary only to find the highest and lowest powers of s that occur in
Wi2.172/(Y). The highest power of s is contributed by the 2-tree which
has the most capacitors and fewest inductors. The lowest power of s
results from the most inductors and fewest capacitors. Let us consider a
few examples to clarify this point. (It is certainly possible, with the use
of topological formulas, to write the numerator of z;,, but the point of
the present discussion is to find its degree n without actually writing
the numerator.)

In Fig. 8-11, there are two capacitors, C; and C2, which constitute a
2-tree by themselves. Hence the highest power of s obtainable is 2. The
lowest power here is 0, since there are no inductors in the network. The
power O is realized by the 2-tree of resistors G3 and G4. Thus n = 2,
so the zeros of transmission are restricted to

™
r > =,
jarg s > 7

that is, the left half-plane, making I'ig. 8-11 a minimum-phase structure.
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170~ 092/

Fic. 8-11. Example for zeros of transmission.

Figure 8-12 is the familiar twin-7 structure with some unfamiliar com-
ponents. The highest power of s obtainable is 2, realized by the 2-tree
(Cy, Cq, R5). The lowest power is —2, realized by the 2-tree (L3, L4, Rg).
Thus n = 4, and the zeros of transmission are the region

m™
larg s| > i

This network can be a nonminimum-phase network. Whether it is a
nonminimum-phase network depends on component values and should
be investigated.

In Fig. 8-13, the highest power of s realizable is 3 and is actually real-
ized by the 2-tree (C,, C4,Cg). The lowest possible power is —2, but
there is no 2-tree containing Ly, L3, and no capacitors. In fact, there is
no 2-tree containing L3 and Ly, since vertices 1 and 2 cannot be connected
without going through one of the vertices 3 and 4. Thus the lowest power
realized is only —1, realized by the 2-trees (R;, L3, R5) and (R, Rs, L7).

A jo
C, Co
|{ \
| I\ /1 > 9 \:{
A o >
Ry §RG
1/ 0— : 02/

(a) (b)

Fic. 8-12. Second example for zeros.
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170

Frc. 8-13. A third example for zeros.

Hence n = 4, and the zeros of transmission are in the region
T
arg s| > —-
larg s| > 7

This last example brings up the question of “minimal” structures.
Insofar as the location of the zero of transmission is concerned, L; appears
superfluous. If L7 is replaced by a resistor, the degree of the numerator
of z;2 would not be altered. The zeros of transmission would move, cer-
tainly, and function z;; would change. This question of minimality is
very complicated and one that has not yet been satisfactorily answered.

The next result is a fundamental theorem due to Ifialkow and
Gerst [54].

TueoreM 8-13 (Fialkow-Gerst). Let Y, be the node-admittance
matrix of a common-terminal network with no transformers, with 1’
as the reference node. Let

A1; = [cofactor (1, 1) of Y,] = s—:_—2 [@ns™ + an_18" " 4+ - 4+ ays + ao)

and (8-36a)
Ay = [cofactor (1, 2) of Y,] = svl_—z [bas™ 4+ bp_18" - -+ bys + bol.
(8-36b)

Then
0< b < ax for 0<k<n. (8-36¢)

Thus, if no common factors are cancelled, and the network is common-
terminal, the coefficients of the numerator polynomial of

221

M21 = ——
211

are bounded by the corresponding coefficients of the denominator.
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Proof. Since the network contains no magnetic coupling, topological
formulas apply. Thus,

Ay = Wig(Y) and Ay = Wi (Y). (8-37)
From the 2-tree identities of Section 7-2,
Wi (Y) = Wiz (Y) + Wy, ra(Y). (8-38)

Thus every 2-tree admittance product that appears in A, also appears
in Al 1.

All = A12 —I— W1'1'2(Y). (8—39)
Since the coefficients in Wy,1-2(Y) are necessarily nonnegative,
0 S bk S ar.

The second half of the theorem is merely a restatement of the same
result for common-terminal networks. us; has the interpretation “voltage-
ratio transfer function.”

We extend this theorem to general two terminal-pairs later.

TureoreMm 8-14 (IFialkow-Gerst). A necessary condition for the realiz-
ability of a voltage-ratio transfer function ug;(s) as a common-terminal
network without transformers is

0 < uoilo) <1 for 0 <o < w, (8-40)

where the equalities can hold only at the extremities (¢ = 0, w) of
the range unless ug1(s) = 0 or ugi(s) = 1.

Theorem 8-14 is actually just a restatement of Theorem 8-13. However,
it is a fundamental result of two terminal-pair theory. Fialkow and
Gerst [54] have actually shown that this condition, together with the
stability requirement that ms;(s) has no poles in the right half-plane, is
sufficient for realizability as a common-terminal network. This, however,
is network synthesis proper and so is not discussed here.

Theorem 8-13 is sometimes stated in the following form.

Let the numerator polynomials of 21, and zys be respectively

p(s) = a,s" -+ an—lsn_1 + -4 as 4 ag
and (8-41)
Q(S) = bnsn + bn—lsn_1 + -+ b1s + bo.

Then for a common-terminal metwork without transformers,

OSkaak forOSkSn.
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e
lo——9 * 02
1 2 p—
170— 02/

Fic. 8-14. Counterexample.

In this form, the theorem is not true if any common factors have been
cancelled in 2z, or z;;. A counterexample to such a statement is given
in Iig. 8-14, where

Lo _l6s+6 . 8
82 f6s+1 ° 127 85+ 4

As can be observed from the proofs of Theorems 8-13 and 8-14, A;;
can be replaced by Age and uz1(s) by wmi2(s) and these theorems still
remain true.

Let us conclude the discussion of common-terminal networks with a
brief discussion of an interesting application of the intuition that arises
from topological formulas. This application is the generation of two-
element kinds of networks that have specified locations of zeros of trans-
mission in the complex plane. As the model, we take the most important
RC-networks. It is sufficient to consider one of the three combinations,
for we can apply the results to any other combination by the following
transformations, due to W. Cauer.

An RC-network with impedances Z,(s) is converted to an LC-network
with impedances ¢;(A) by defining

EiN) = AZ;(\%). (8-42)

An RC-network with impedances Z;(s) is converted to an RL-network
with impedances 7;(s) by defining

ni(s) = Z; (%) (8-43)

Finally, an RL-network with impedances Z;(s) is converted to an LC-
network with impedances ¢;(A\) by defining

1
GO = 3 Z;0). (8-44)
With RC-networks, the admittances are G and sC, so that Wy, 1/2/(Y)

is simply a polynomial in s. Thus it is easy to determine the various
degrees. As observed earlier, the degree of Wz 1:9- (in s) is equal to
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the number of capacitors, if there is a 2-tree containing all these capacitors.
The degree of Wia 1:2/(Y) in yi’s is v — 2, where v is the number of
vertices. With these few facts in mind, we can generate a number of
configurations for zeros of transmission in various parts of the plane.

Tor example, let us try to design a minimal network (RC-common-
terminal) which realizes any pair of complex zeros of transmission in the
left half-s-plane. If the zeros are at

s = —a %+ JB, a, 320, (8-45)

the numerator of z;, can be written as

k(s® + 2as + o + B2) = k(s* + 2as + wj), (8-46)

where
wh = o + B2 (8-47)
Therefore, we want

Wiz12(Y(8) = k(s® + 2as + wp). (8-48)

Since the degree of the polynomial is 2, at least four vertices are required.
Also, at least two capacitors are needed. Since the constant term w? is
not zero, an all-resistor 2-tree is required. Hence at least two resistors
are necessary.

Let us therefore see if the network can be designed with just two
resistors and two capacitors (and four vertices), which is certainly minimal.

Since four vertices are needed, one vertex besides the terminals 1, 2,
and 1’ is necessary. Let this internal vertex be 3. The possible 2-trees
T'3,5.,75 in such a vertex configuration are listed in Iig. 8-15.

3 o/’\
| o—————O———02 1 3 2

ol/ 17

() M)

1443\02 10/3302

o]/ o1’/

(¢) ()

Fic. 8-15. 2-trees with four vertices.
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v 3
1 2 1 2
3

1/ ol”’
() (h

Fig. 8-16. Discarded networks.

All that remains is to “fit” two resistors and two capacitors into these
patterns. Several of the possible distributions can be discarded immedi-
ately on the basis that they cannot give complex zeros of transmission
because the function z;, becomes a driving-point function (of the RC-
network). Examples are the networks of I'ig. 8-16.

In a very short time, it can be seen that there are only two distribu-
tions that can possibly give complex zeros of transmission, and these are
the bridged-T structures of I'ig. 8-17. It has not yet been shown that
these networks realize complex zeros of transmission. To show this,
compute Wiy 179.. TFor Fig. 8-17(a),

Wia1e'(Y) = s°C3Cyq + sC3(Gy + Ga) + G1G. (8-49)

This expression must equal the given polynomial. Therefore, set them
equal and solve for the coeflicients:

§%C3Cy + sC3(G1 + G2) + G1Gy = ks® + 2kas + kwj, (8-50)
which leads to the simultaneous multilinear equations

C3C4 = k, C3(G1 —I- G2) = 2ka, G1G2 = kwg (8—51)

(3 G

” T3
1<</\N\ I\ 2 1 )_>2

G G,
1§ 2 (,I ('Vg
/I\(v-l G,

17 o o 09/ 170 0D/

(a) (b)

F1c. 8-17. Bridged-T networks.
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It is here that the procedure can break down. Because these are multi-
linear equations, there is no straightforward procedure for solving them.
But the problem is worse than that. The solutions (C3, C4, G1, and G2)
must be real positive numbers. Not even existence theorems are known
for such a problem.

In this particular case, however, the equations are solvable and do have
real positive solutions. The solutions are

k
C3 = .’
C4 = (real positive but arbitrary),
1 1/2 1 (8-52)
o () L
! 4k T e Qhkw?
kw?
Gy =
2 Gl

Thus the network realizes any pair of complex zeros in the left half-plane.

For a second example, let us try something slightly more complicated.
Let us try to generate a minimal configuration that realizes a pair of
zeros in the right half-plane. The sector in the right half-plane must
be chosen before the number of components required is known. Suppose
that the region of interest is the shaded region of Fig. 8-18.

By (Poincaré’s) Lemma 8-12, the numerator has to be a cubic. Hence
three capacitors are required, and these must constitute a 2-tree Ty, -,
Also, there must be a 2-tree of resistors; otherwise an s will factor out of
the numerator of z;,, leaving a quadratic with positive coefficients, which
has zeros in the left half-plane. Thus at least three capacitors, three
resistors, and five vertices are necessary. Thus at least two internal

Ao

60°

Fi1e. 8-18. Region in the right half-planec.
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3 3 3
1/\2 1 , 1 ,
4
4 4
1727 0172/ 1727
(a) b) (¢)
3 3
1 9 lo- \2
4
4
0172/ 1727

(d) (e)

Fig. 8-19. 2-trees with five vertices.

vertices have to be added, exactly two if the minimum number of three
capacitors and three resistors is used. The next problem is to fit these
together. Let us look at a few 2-trees that are possible, as in I'ig. 8-19.
Other 2-trees are also possible, and the reader can easily construct all the
possible 2-trees, starting from the ones in Iig. 8-19.

Many choices exist for assigning R’s and C’s to the 2-trees of I'ig. 8-19
and those that can be derived from Fig. 8-19. This should be considered
as encouraging rather than as discouraging. Let us look at one of the
possibilities, which leads to a familiar network. This network is obtained
by taking (a) and (c) of I'ig. 8-19 and making one of the two 2-trees a
capacitor 2-tree and the other a resistor 2-tree. Then the twin-7" structure
of Iig. 8-20 results.

To determine whether this twin-7" will satisfy the requirements, we must
follow computations similar to those in the preceding example. Only
now they are more complicated, since the multilinear equations are of
degree 3 instead of 2. However, the computations can be performed to
show that any two complex zeros in the shaded region of Fig. 8-18 can
be realized.
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Gl G2
‘O<_N;w \| >"2
i\ 1
Cl 02

7o 09/

Fi1c. 8-20. Twin-T network.

Since a cubic is involved, it has another zero on the negative real axis.
Let the zeros be at @ + jB and —o;. Positiveness of the coefficients of
W 12,179’ Tequires that

2 2

01> 2 and o®+ B2 > 2a0;; thatis, 2 ;;B— > 01> 2a. (8-53)
If, in addition, we make o, satisfy

2(—a® + 8% < i, (8-54)

the following component values give the desired zeros:

C, = (arbitrary),

1

02 = E—l-y

C; =1, (8-55)
o + p

G3 = —GW‘ g1.

@: and G, are the two (necessarily real positive) solutions of

Ci

Q* — (0, — 20)G + o1 (a® + B2 — 2a07y) = 0. (8-56)
1

Other similar examples are to be found in Hakimi and Seshu [70]. The
important idea that we wish to convey here is that we now have a means
of generating canonical configurations of two terminal-pair sections.

Leaving the case of the common-terminal structure, we prove the
Fialkow-Gerst theorems for the general two terminal-pair network.

TuaeoreM 8-15 (Fialkow-Gerst). Let the node equations of the two
terminal-pair network (Fig. 8-6) be written with vertex 1’ as the
reference vertex. Further, let there be no magnetic coupling in the
network. With A;; representing the cofactor of the (7, j)-element of the
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node-admittance matrix, let

1 n n—
A = 5 [0n8" + an18" T -0 - 4 a1s o+ a),
1 n n—
Az = 55 [bas”™ + buas Yoo 4 bis + bol,  (8-57)
1 n n—
Ary = =5 leas” 4 Cnis Vs 4 es + el
Then
0 < by < a (8-58a)
and
0 < ¢ < ay, 0<k<n, (8-58b)
so that
by — cx] < ax. (8-58¢)

Thus if no common factors are cancelled, the absolute values of the
coefficients of the numerator polynomial of

M21 = f21 (8-59)
211

are bounded by the corresponding coefficients of the denominator.

There is really no need to write a new proof, as the proof of Theorem
8-13 establishes the inequalities

0 < by < ag and 0 < ¢ < ay. (8-60)
Subtracting one from the other (both ways), we get
|bk - Ckl S A. (8—61)

As before, the statement about coefficients of the numerator and denomi-
nator in the voltage-ratio transfer function is merely a restatement of the
first part.

The second theorem can also be generalized, as follows.

TaHEOREM 8-16 (Fialkow-Gerst). A necessary condition for the realiz-
ability of a voltage-ratio transfer function ws;(s) as a two terminal-
pair network without transformers is

[ug1(a)| <1 for 0 <o < 0, (8-62)

where the equality can hold only at the extremities of the range unless
it holds identically.

Theorems 8-14 and 8-16 are to be interpreted as the bounds on the
“gain” or constant multiplier of z;s (or y;2) that can be realized. Once
again Fialkow and Gerst [55] have also established the sufficiency of this
condition (together with stability).
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Frc. 8-21. Network realizing zeros.

Theorem 8-11 and its corollaries do not extend to general two terminal-
pairs and we cannot make any general statement about the locations of
the zeros of transmission. They may be located anywhere in the plane.
Let us illustrate this last remark by generating a network that realizes
the pair of zeros of transmission:

s = —a + JB, where a2 0. (8-63)

We evidently require that

Wigie — Wiare = 8° + 2as + (o® + 8%). (8-64)
Since a may be positive or negative,
Wi 19 # 0. (8-65)

Let us try an RC realization. We need a two-capacitor 2-tree and an all-
resistor 2-tree, both in Wi 1:2. We need one 2-tree containing one
capacitor, of the type T, ,-,. Putting these ideas together, we get, as
the simplest possible structure, the network of Fig. 8-21.

For the network of Fig. 8-21,

Wizaer — Wigr1e = $°C1C2 + (G103 + C2G1 — G3C3)s + G1Ga.
(8-66)
We see that a possible solution of this problem is

Ci=Cr=1 G =G = (+ )7
Cy=1, Gy=20+ )" — 2, (8-67)
and all values are nonnegative, since

(@®+ BHY? > a (8-68)
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ProBLEMS

8-1. Prove Corollaries 8-1(a) and 8-1(b).

8-2. Give a formal proof for Theorem 8-4, based on topological formulas.

8-3. Guillemin’s algorithm for evaluating the order of complexity N is as
follows. Order the circuits in the network as 1, 2,...,u, and examine them
in this order. If loop 1 contains an inductor and a capacitor, the weight of the
loop is 2, and one inductor and one capacitor of the loop are “assigned” to loop
1, by marking “1” next to them. If the loop contains inductors and no capacitors
or vice versa, its weight is 1, and a reactive element is assigned to loop 1. If
it contains only resistors, the loop has weight 0. Next examine loop 2. At
cach stage, only unassigned reactive elements can be counted. After all loops
arc examined, the weights are added; the sum is N. Show that this algorithm
is equivalent to counting ucs + prs.

8—4. Prove that if a planar one terminal-pair network without transformers
is minimal in reactive elements, so is its dual. (Reza [145]).)

8-5. Investigate the relation between the poles and the zeros of z21(s) for
the bridged-T networks of Fig. 8-17. How can we modify this network to be
able to specify the pole independently of the zeros? (Dasher [42].)

8-6. Where are the poles of z21(s) for the twin-T network of Fig. 8-20?
Is it possible for the real zero of z21(s) of this network to cancel with a pole?

8-7. Design an LC common-terminal network that will realize any pair of
complex zeros in the region 7/6 < |args| < 7/2.

8-8. Design another RC minimal network to realize any pair of complex
zeros in the region 7/3 < |args| < m/2.

8-9. Let the open-circuit voltage-ratio transfer function be

s"+ 1" o Fas a0 kNG

p21(s) = K ™ 4 bp_18™m=1 + - - + bis + by D(s)

Show that the largest “gain” K that is realizable is such that 0 < K < Ko,
where Ko = min K such that D(s) — K N(s) has a real positive zcro.
(Fialkow and Gerst [54].)

8-10. Can a complex zero of transmission be realized by an RC ladder net-
work? Why?

8-11. A network with |u21(jw)| = 1 is called an “all-pass” network. Show
that a nontrivial all-pass network [i.c., one for which u21(s) # 1] is necessarily
nonminimum-phase. Design the simplest all-pass networks with (a) one pole
and one zero, and (b) two poles and two zeros.

8-12. Prove Corollary 8-8.

8-13. Prove that an RC common-terminal network with only two capacitors
(Fig. 8-11, for example) cannot have a zero of transmission on the imaginary
axis, so that the zeros are in the region |arg s| > m/2 (thus strengthening the
argument about Fig. 8-11). [Hint: Steinitz replacement theorem.]

8-14. Extend Problem 8-13 to show that a common-terminal network with
n reactive elements has no zeros on the lines |arg s| = 7/n.



CHAPTER 9
APPLICATIONS TO THE THEORY OF SWITCHING

Like many other chapters in this text, this chapter is based on a few
published papers and is a collection of the known applications of graph
theory to the theory of switching. In the application to contact net-
works (Section 9-1), the emphasis is on the relationships between elec-
trical networks and contact networks and on the known minimality proofs
in contact network theory. The discussion of the relationship between
conventional electrical networks and contact networks is based on the
work of Belevitch [8], Seshu [153], and Mayeda [112]. The minimality
proofs discussed are due to Cardot [22] and Shannon and Gould [66].
The application of directed graphs to the mathematical model (state
diagram) of a sequential machine is the topic of Section 9-2. Although
a great deal of work has been done on state diagrams, only a relatively
small part of it is a direct application of graph theory. Here the connec-
tion matrix of Hohn, et al., [77] is made the basis of the discussion,
primarily because it is related very closely to the flow graphs to be con-
sidered in Chapter 10. The transition matrices of Seshu, Miller, and
Metze [155] are also introduced primarily because of their relationship
to the relation matrices and structure matrices mentioned in Chapter 10.
The application of directed graphs to logic networks has not been de-
veloped completely, and a brief outline of the work of Shelly [163] is
given in Section 9-3. Iamiliarity with elementary theory of switching is
assumed in this chapter. (See, for instance, Caldwell [21].)

9-1 Contact networks. The notation of this section is based on the
so-called admittance representation of a contact network. Thus 1 stands
for a short circuit and 0 for open circuit. The symbol + stands for
Boolean addition (union) and - stands for Boolean multiplication (inter-
section) with the usual convention that xy stands for x - y. Complement
of x is denoted a’. (The transpose of a Boolean matrix P is denoted P7.)
A contact network and its switching functions may be defined from the
viewpoint of graph theory as follows.

DeriNiTION 9-1. Contact network. A contact network is a nonoriented
graph with a Boolean variable x; (or z;) associated with each edge.

DeFiNiTION 9-2. Path product. A path product m;; is the product of
the variables associated with the edges of a path from vertex ¢ to
vertex j of the contact network.

227
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DeriniTION 9-3. Switching function. The switching function f;; between
vertices ¢ and j of a contact network is

fis =y mf, 9-1)
k

where the summation is Boolean addition and extends over all the paths
from vertex ¢ to vertex j.

To show the relationship between contact networks and conventional
networks, let us first define the primitive connection matrix of Hohn
and Schissler [76].

DeriniTION 9-4. Primalive connection matriz. The primitive connection
matriz P = [p;;] of a contact network is of order (v, v), where v is the
number of vertices in the network and

pij = Y wh, 1%, (9-2)
k

where w;; is the Boolean variable associated with the edge between
vertices 7 and j and the summation is over all such edges. If there is
no such edge, p;; = 0; further,

Pii = 1 for all 7. (9“3)

It is evident that the primitive connection matrix is closely related
to the node-admittance matrix of conventional network theory. This
relationship may be stated precisely (see Belevitch [8] and Seshu [153],
as in Theorem 9-1.

TaeoreEM 9-1. Let yi, v, . . ., y. be the Boolean variables associated
with the edges of the contact network, and let
y1 0 0 --- 0
Y={0 y 0 --- Of- (9-4)
0 0 0 --- y.

Then the primitive connection matrix is given by

U+ AYAL = P, (9-5)
where A, is the incidence matrix (nonoriented), the superscript T

denotes transpose, and U is the unit matrix of order .

This result may be considered to be obvious in the light of experience
with conventional networks. The formal proof is left as a problem
(Problem 9-1).
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The switching function f;; between vertices ¢ and j of a contact net-
work is the analogue of the driving-point admittance between vertices
7 and j of an electrical network. To exhibit this relationship, some restric-
tions are necessary. In the case of the electrical network, the restriction
is to networks with no magnetic coupling. In the case of the contact
network, a stronger restriction is required, since the same variable z;
may appear in two or more different places in a general contact network,
whereas it is impossible in an electrical network (even if two components
have the same admittance, we consider them to be different). Therefore,
attention is restricted to the special case of contact networks in which
each Boolean variable appears only once (either primed or unprimed).

DerFiNITION 9-5.  Single-contact (SC-) function. A single-contact (SC-)
network is a contact network in which each edge has a different Boolean
variable associated with it. The switching function of such a network
(between any two terminals) is an SC-function.

SC-functions are also referred to as graph functions, network functions,
and nontterated functions. In case the one terminal-pair network under
consideration is series-parallel (with respect to the terminal vertices),
the relationship between the switching function and the driving-point
admittance is direct. To establish the formal relationship, we define the
star product.

DEerFiNiTION 9-6. Star product. The star product y, * ys of two ad-
mittances y; and ys is defined by

Y1y
= = 9-6
Yixyz Y1+ y2 (9-6)

Y1 * Yo is thus the admittance of a series combination of y; and y,.

It may be verified that the star product is commutative and associative,
but is not distributive over addition. Next, let us state the formal rela-
tionship between series-parallel conventional networks and SC-networks.

THEOREM 9-2. Let 1 and 1’ be the terminal vertices of a series-parallel
network. If the network is taken as a conventional network without
mutual inductances, the driving-point admittance Y,/ can be expressed
by using only the two operations * and -, with each y; appearing
only once in the expression, as

Y11' = Vi, * [yi2 + Yig * (' * )] (9_7)

If the network is taken as a single-contact switching network, the
switching function F';;- can be expressed by using Boolean multiplica-
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Frc. 9-1. Example for Theorem 9-2.

tion and addition only and with each variable y; appearing only once
in the expression, as

Fiy = yilyi, + yi,(- - )] (9-8)

The two expressions for Y, and F;- are identical except that Boolean
multiplication replaces star multiplication.

The theorem is evident, so it suffices to give an example to illustrate it.
For the network of I'ig. 9-1,

Fiir = y1 + y2(ys + yays)
and (9-9)
Yiv =yi + y2 * (ys + ya *ys).

In the case of a non-series-parallel network, it is not possible to express
the switching function or the driving-point admittance in such a way
that each variable appears only once in the expression (using the opera-
tions * and + for Y,  and the operations - and + for F;;-). That the
star product is not distributive over addition now prevents us from cor-
relating the two. It is, however, possible to construct Y., from F;-
and vice versa.

The driving-point admittance Y,/ is expressible in terms of the trees
and 2-trees of the network as (Eq. 7-34)

N 409) ,
Wi (Y)

where V(Y) = 3 (tree-admittance products, and Wy ,;/(Y) = 3 (2-tree
admittance products), with vertices 1 and 1’ in different connected parts
in each 2-tree. On the other hand,

Fip =Y miy, (9-11)
k

Y“’ (9—10)

where ;- is the path product of a path from 1 to 1’. FFrom Theorem 2-12,
each such path can be made part of a tree of the network; and it ob-
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viously cannot be made part of a 2-tree (1, 1’). Therefore, it follows that
w1 18 a factor of one (or more) of the tree-products in V(Y) and is not
a factor of any product in W, ;/(Y). By Problem 9-2, the converse of
this statement is also true. Namely, every product of edge variables that
is a factor of a product in V(Y) and is not a factor of any product in
W1.1/(Y) corresponds to a subgraph containing a path from 1 to 1’. Thus,
in the Boolean sense, every such product is conlained in a 7. Thus
we have our next theorem.

TueoreM 9-3. Let the driving-point admittance between vertices 1
and 1’ be expressed as
V(Y)

Vi = —— A
1 W1,1'(Y)

(9-12)
Then, if this network is interpreted as an SC-network,

iy — Z [factors of products in V(Y) which are not] ’

factors of products in W 1:(Y)
where the sum is Boolean.

In fact, we may interrelate F, W, and V in a number of ways, all of
which are a consequence of the next theorem.

Tueorem 9-4. If Fyy,, V, and W ;- are defined as above,
FuWip=V (Boolean equation). (9-13)

The proof is simple but interesting and so is left as a problem (Prob-
lem 9-3).

An unsolved problem in this connection is to find F + W. Another
is to find an explicit formula for F in terms of V and W. The two are,
of course, related. Fy;-, by itself, contains all the information about the
SC-network.  Precisely, Fi;» determines an SC-network to within a
2-isomorphism. This was first demonstrated by Ashenhurst [4]. His
important theorem is considered next.

TaeorEM 9-5 (Ashenhurst). Let G be a nonseparable graph and e;
any edge of G with vertices 1 and 1’. Then every circuit C' of G which
does not contain e; is the ring sum of some two paths I’; and I be-
tween vertices 1 and 1’.

Proof. Let C be a circuit not containing e;.

Case 1. The edge e; has two vertices in common with C. Then C
consists of two disjoint paths between vertices 1 and 1’. The ring sum
of these two paths is simply C.
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Case 2. e; has one vertex in common with C. Let this vertex be 1.
There is one other vertex vz in C which is not in e;. Since G is non-
separable, there is a path between 1’ and v3 not containing 1, and hence
not containing ¢;. Let vyq be the last vertex of such a path which is on C.
Then there is a path between v4 and 1’ not containing any element of C.
Let this be p;(vg, 1’). C itself consists of two paths, ps(1,v4) and
p3(1, vy), between 1 and vy. Now pi(1’, v4) together with pqo(1,v4) is a
path between 1 and 1’. Similarly, p;(v4, 1°), together with p3(1,vy), is
a path between 1 and 1’. The ring sum of these two paths is C.

Case 3. e; has no vertices in common with C. Let es; be some edge of
C with vertices v3 and v4. Since @ is nonseparable, there is a circuit
containing e; and ep. In this circuit, there is a path between 1 and one
of v3 and v4, not containing e; or e;. Suppose that this is the path be-
tween 1 and v3. Then there is a path between 1’ and v4, and the two
paths are disjoint. Let v5 be the vertex at which p;(1, v3) meets C, and
ve the vertex at which p2(1’, v4) meets C. Then there exist distinct paths
p3(1, vs) and p4(1’, vg) joining ey to C. Let ps(vs, ve) and pg(vs, vg) be
the paths which constitute C. Then p3psps and pspeps are two paths
between 1 and 1’, with C for the ring sum. The proof of the theorem is
now complete.

Lemma 9-6. Let p; and ps be two paths between vertices v; and v,.
Then p; @ po is an element-disjoint union of circuits.

Proof. At each vertex of p; @ ps, there is an even number of elements.
Hence p; @ p2 is an Euler graph, if nonempty.

THEOREM 9-6 (Ashenhurst). The realization of an SC-function as a
nonseparable SC-network is unique to within a 2-isomorphism. (The
network is nonseparable in the one terminal-pair sense.)

Proof. Let N; and N, be two networks realizing an SC-function F.
Let 1 and 1’ be the input vertices. Let an element eq be added to both
networks, between vertices 1 and 1. The networks still have the same
switching function. By Theorem 9-5 and Lemma 9-6, the circuits of
both N; and N, are derivable from the function F. Thus they are iden-
tical. Hence N, and N, are 2-isomorphic. This completes the proof.

There is an elegant way of deriving the set of all circuits from F. Let
each path and each circuit be represented as the product of the weights
of elements of the path or circuit. Let the ring sum p; ® p; be written
also as a product. Then the set of circuits of the network is given by

el + 2p: @ pj, (9-14)

where > denotes Boolean addition.
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Using Theorem 9-5, Trakhtenbrot [175], Okada [124], and Seshu [153]
devised simple synthesis procedures for SC-functions, which have since
been extended by Gould [67] to non-SC-functions. Let us briefly outline
this procedure since it can be used as a method of establishing minimality
of contact realizations. Let the SC-function be expressed as a sum of
products as

F(?/l; Y2, « o oy ye) = Z pj(yl) Y2y« .+, ye) (9_15)
J

Add a “driver element” y, between the input vertices, and construct
Yol = > yopj. Then each yop; is a circuit containing yo. Construct
the matrix By of these circuits. Since all the circuits of the graph are
expressible as linear combinations of circuits containing y,, by Ashen-
hurst’s theorem, the mod 2 rank of Bp is the nullity of G. Hence, delete
the superfluous rows to find B. Now find the matrix Q orthogonal and
complementary to B; that is, such that

BQT = 0 (mod 2)
and (9-16)
(rank of B) 4+ (rank of Q) = e + 1.

Then Q is the cut-set matrix of G, from which the incidence matrix is
found by elementary row operations.

Since the sum mod 2 of circuits is a circuit or disjoint union of circuits,
we can state the following test (a necessary condition) for realizability.

THeorEM 9-7. If F is realizable as an SC-network, the sum mod 2
of an odd number of rows of By must correspond to a product contained
in I (in the Boolean sense).

Gould’s extension to non-SC-networks is to consider each contact to
be a different variable.

As another consequence of Ashenhurst’s theorems, Mayeda’s [112] pro-
cedure for constructing the driving-point admittance Y- from the switch-
ing function Fi;- is considered next. F;- lists all the paths between
the input vertices. The ring sum of any two paths in Fys is a circuit
or edge-disjoint union of circuits. Therefore, if the ring sum of every pair
of paths in Fy;» is formed, and the minimal members chosen from the
resulting sets of edges, all the circuits are found. Let Cy, Cso,...,Ck
be the circuits that are so obtained. Now the trees of the graph can be
found as follows. Iind the number of linearly independen