I had to do a trigonometric integral the other day and realized I should be able to see the integral at a glance instead of the mechanistic method I used by substituting x=tan(theta)

Cos-Sec-Integral

W={Delta}{theta}*z 

Due to similarity of triangles

{z/1}={{Delta}x}/w 

Substituting

{z/1}={{Delta}x}/{{Delta}{theta}*z} 

{{Delta}x}/z^2={Delta}{theta} 

{{Delta}x}/{1+x^2}={Delta}{theta} 

int{.}{.}{.}{{Delta}x}/{1+x^2}=int{.}{.}{.}{Delta}{theta} 

int{.}{.}{.}{{Delta}x}/{1+x^2}={theta}=atan(x)

 

Related Topic

 

Calculus Proof of the Pythagorean Theorem

Categories: Math

0 Comments

Leave a Reply

Avatar placeholder

Your email address will not be published. Required fields are marked *